
 Open access Journal Article DOI:10.1111/J.1467-9574.1985.TB01131.X

Stochastic integer programming by dynamic programming — Source link

B.J. Lageweg, Jan Karel Lenstra, A.H.G. Rinnooy Kan, Leen Stougie

Institutions: Erasmus University Rotterdam

Published on: 01 Jun 1985 - Statistica Neerlandica (Wiley-Blackwell)

Topics: Stochastic programming, Inductive programming, Branch and price, Functional reactive programming and
Constraint programming

Related papers:

 An approach for product mix optimization problems based on mathematical programming models

 Comparative analysis of the efficiency of various dynamic programming algorithms for the knapsack problem

 Fuzzy multicriteria integer programming via fuzzy generalized networks

 Solving Mixed Integer Programming Problems Using Automatic Reformulation

 MetalP - a new approach to combinatorial optimization: case studies

Share this paper:

View more about this paper here: https://typeset.io/papers/stochastic-integer-programming-by-dynamic-programming-
3d7mgmjpwn

https://typeset.io/
https://www.doi.org/10.1111/J.1467-9574.1985.TB01131.X
https://typeset.io/papers/stochastic-integer-programming-by-dynamic-programming-3d7mgmjpwn
https://typeset.io/authors/b-j-lageweg-3399noeb9v
https://typeset.io/authors/jan-karel-lenstra-3xf2gsqxt1
https://typeset.io/authors/a-h-g-rinnooy-kan-4vrblyd3te
https://typeset.io/authors/leen-stougie-5dixmymn2v
https://typeset.io/institutions/erasmus-university-rotterdam-3kcx3pkc
https://typeset.io/journals/statistica-neerlandica-2vqwbtbf
https://typeset.io/topics/stochastic-programming-3cao46s7
https://typeset.io/topics/inductive-programming-7eq5ivxl
https://typeset.io/topics/branch-and-price-s3s38elw
https://typeset.io/topics/functional-reactive-programming-2cdzfncn
https://typeset.io/topics/constraint-programming-1frut55u
https://typeset.io/papers/an-approach-for-product-mix-optimization-problems-based-on-4bzxskbzdl
https://typeset.io/papers/comparative-analysis-of-the-efficiency-of-various-dynamic-w1qvtac9vv
https://typeset.io/papers/fuzzy-multicriteria-integer-programming-via-fuzzy-11dya7xqpo
https://typeset.io/papers/solving-mixed-integer-programming-problems-using-automatic-5ddx0lh3jt
https://typeset.io/papers/metalp-a-new-approach-to-combinatorial-optimization-case-2qmlkebqjr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/stochastic-integer-programming-by-dynamic-programming-3d7mgmjpwn
https://twitter.com/intent/tweet?text=Stochastic%20integer%20programming%20by%20dynamic%20programming&url=https://typeset.io/papers/stochastic-integer-programming-by-dynamic-programming-3d7mgmjpwn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/stochastic-integer-programming-by-dynamic-programming-3d7mgmjpwn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/stochastic-integer-programming-by-dynamic-programming-3d7mgmjpwn
https://typeset.io/papers/stochastic-integer-programming-by-dynamic-programming-3d7mgmjpwn

97

STOCHASTIC INTEGER PROGRAMMING BY DYNAMIC PROGRAMMING

by B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan and L. Stougie

Abstract Stochastic integer programming is a suitable tool for modeling hierarchical decision situations

with combinatorial features. In continuation of our work on the. design and analysis of heuristics for

such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to

exploit the structure of two-stage scheduling, bin packing and multi.knapsack problems. Numerical

results for small instances of these problems are presented.

Key words: stochastic integer programming, distribution model, rwo-srage decision model, scheduling, bin

packing, multiknapsack, dynamic programming.

1 Introduction

Stochastic progranuning problems are mathematical programming problems of
which not all the parameters are known with certainty. It is usually assumed that

the unknown parameters have a known probability distribution. There are two

types of optimization models in stochastic programming.

The first one is the distribution model, in which one has to determine an optimal

decision for each realization of the stochastic parameters. As a result, one obtains
the complete probability distribution of the optimal solution value to the stochastic

programming problem. This is the 'wait and see' approach, in which the decision is

made only when perfect information is available. It is of largely theoretical interest.
The second model is the two-stage decision model, in which one has to determine

a decision that is optimal in expectation. In evaluating a decision, one takes into
account the costs of a recourse decision that may be taken when, at a later stage,

the realization of the stochastic parameters becomes known. This is the 'here and

now' approach, in which the decision is made given imperfect information. The

concept of a recourse decision should be interpreted broadly. It includes not only

emergency actions in case of particularly unfortunate realizations but any action

that is appropriate under the given circumstances.

Research in this area is so far almost exclusively concerned with stochastic linear

programming. In the distribution model, each realization of the stochastic parame

ters leads in this case to an ordinary linear program. In the two-stage decision

model, the recourse problem at the second stage is a linear program, the right-hand

side of which is usually determined by the overall decision at the first stage. This

implies that the expected second stage cost is a convex function of the first stage
decision variables (WETS (1983)). Successful algorithms for the linear two-stage

problem heavily exploit this convexity property.
By imposing integrality constraints on some of the decision variables we enter

the area of stochastic integer programming. The complexity of the problems under

98 Statistica Neerlandica 39 (1985), nr. 2.

consideration is thereby increased dramatically. One reason for this is that linear
programming is well solved while integer programming is NP-hard, so that the
solution of a deterministic subproblem may require much more time. Another rea
son is that, in the two-stage decision model, integrality of the second stage decision
variables can cause nonconvexities and even discontinuities in the expected second
stage cost function (BLAIR and JEROSLOW (1982)), so that the algorithms for the
linear case cannot be adapted.

Stochastic integer programming does not only present many theoretical chal
lenges, it is also a practical tool for modeling certain hierarchical decision situations

that arise in operations management planning and control. Such situations require
a series of decisions over time at an increasing level of detail and with an increas
ing amount of information being available. At least two decision levels can usually
be recognized: an aggregate level, at which one has to decide upon the acquisition
of resources, given vague information about what certain tasks will require of them,
and a detailed level, at which one has to decide upon the allocation of resources to

tasks, given precise information about the requirements. Integrality constraints may
appear at the first level, when the resources come in discrete units only, and at the
second level, when the allocation problem is of a combinatorial nature. ·

Given the formidable difficulty of stochastic integer programming, most
research in the area has so far concentrated on the design and analysis of approxi

mation algorithms. This approach is exemplified in (DEMPSTER et al. (1981),

(1983); FRENK et al. (1984); MARCHETII-SPACCAMELA et al. (1984)), where simple
heuristics are proposed for a variety of two-stage production and distribution plan
ning problems. Probabilistic analyses of the heuristics then provide exact statements
about the quality of the approximations, such as some form of asymptotic optimal
ity. A general framework for this approach is given in (LENSTRA et al. (1984)).

In this paper, we are interested in optimization algorithms. We will consider sto
chastic integer programs of a very special structure. The stochastic parameters will
have a discrete distribution with a finite number of points with positive density.
Moreover, each realization will lead to a combinatorial optimization problem that
is solvable by a dynamic programming routine. The overall stochastic optimization
problem will then be solved by a single giant recursion that combines the separate
dynamic programming computations for all the individual realizations. This can be
done only for problem instances of a relatively small size.

The following three sections illustrate our approach on two-stage scheduling, bin

packing, and multiknapsack problems. In each section, we first formulate the prob
lem in question, then present the dynamic programming algorithm and describe its
implementation, and finally discuss our numerical results. The discussion includes
a comparison with results obtained by heuristics for the scheduling and bin packing
problems.

Our computational experience gives empirical insight into the shape of the value
functions of stochastic integer programming problems and shows that the discon
tinuities and nonconvexities mentioned above do indeed occur. Further

Statistica Neerlandica 39 (1985), nr. 2. 99

investigations have shown that one has to distinguish between discrete and continu

ous distributions of the stochastic parameters; in the latter case, no discontinuities

will occur under certain conditions (STOUGIE (1985)). The results we have obtained

so far should be regarded as no more than a first step towards a theory for stochas

tic integer programming.

Boldface characters will denote random variables.

2 Scheduling

2.1 Problem formulation

The two-stage scheduling problem studied in this section was first formulated in

(DEMPSTER et al. (1983)). At the aggregate level, one has to decide on the number

X of identical parallel machines that are to be acquired, while knowing the cost c of

a single machine, the number n of jobs that are to be processed, and the probability

distribution of the vector w = (wi. ... ,wn) of their processing times. It is assumed

that the w1 are independent and identically distributed random variables with

expectationµ,. At the detailed level, after X has been determined, a realization wEO

of w becomes known, where 0 denotes the set of all realizations, and one has to

decide on a schedule in which each machine processes at most one job at a time,

job j is processed during an uninterrupted time period of length w1 (j = l, ... ,n)

and no job is processed prior to time 0, so as to achieve a minimum value y• (X, w)

of the maximum job completion time. The total cost of the acquisition decision X
and the optimal scheduling decision is denoted by v· (X, w) = cX + y• (X, w).

In the two-stage decision model, the objective is to determine a value x· EN

such that the expected total cost is minimized:

EV*(x*,w) = minxeN {EV*(X,w)}.

In the distribution model, the objective is to determine a function X 0
: o~N such

that for each wEO the actual total cost is minimized:

V*(X 0 (w),w) = minxeN {V*(X,w)},'v'wEO.

Previous work on this problem concerned the design and analysis of a two-stage

heuristic (DEMPSTER et al. (1983)). This heuristic sets the number of machines

equal to the value of X that minimizes the lower bound VLB(X) = cX+nµ,/ X on

EV* (X, w) and assigns the jobs to the machines by a list scheduling rule. (In our

computational experiments, we used the longest processing time rule, which puts the

jobs on a list in order of nonincreasing processing times and successively assigns

the next job on the list to the earliest available machine; this rule has a better worst

case performance than arbitrary list scheduling (GRAHAM et al. (1979)). The relative

error of the heuristic tends to 0 as n tends to infinity for various measures of sto

chastic convergence (LENSTRA et al. (1984)).

100 Statistica Neerlandica 39 (1985), nr. 2.

2.2 Dynamic programming

The second stage scheduling problem of determining Y*(X,w) for given X and w

is NP-hard (GAREY and JOHNSON (1979)). We will consider the situation in which

· the processing times can assume only k distinct values a 1,. • .,ak> for a fixed value of

k. Let us denote by w = {n 1,. •• ,nd the vector of processing times in which the

value aj occurs nj times, for j = 1,. . .,k.

One can obtain an optimal schedule on X machines by assigning a certain sub

set of jobs optimally to X -1 machines and putting the remaining jobs on another

machine. This observation leads to the following recurrence relations:

Y*(X,{n 1,. .. nk]) = min{max{Y*(X-l,{n 1 -!1,. . .,nk-lk]),

Y0 (l,{/1,. . .,/k])}

I 0~9~n/J = l, .. .,k)} (X > 1),

• - ""k Y (l,[ni. .. .,nk]) - "'-j=I njaj.

Computation of y• (X, w) by a dynamic programming algorithm based on this

recursion requires O(XITJ = 1 n) time, which is exponential in k but polynomial for

fixed k.

In the more general context of the two-stage scheduling problem, we assume

that the processing times have a discrete distribution with k integral values a 1 ,. • ., ak

in its support. The independence of the processing times implies that w = [n1,. . .,nk]

has a multinomial distribution. The idea is now to go through the entire recursion

once in order to compute y• (X,w) for all values XE{l,. .. ,n} and for all realizations

wEO, where fJ is given by

n = {[n1,. . .,nk] I O~nj~n (j = l, .. .,k), n1 + ... +nk = n}.

The distribution model is then solved bj the selection, for each wEO, of a value of

X that minimizes v• (X, w) = cX = Y (X, w). The two-stage decision model is

solved by the determination of a value of X that minimizes . "" . EV (X,w) = cX + "'- ,.,Pr{ w = w} Y (X,w).
we"

A straightforward application of the above dynamic programming algorithm

requires O(nk) comparisons for each of the O(nk+l) pairs (X,w), and hence

O(n 2k + 1) time altogether. The multinomial probabilities are easily computed

within this time bound.

A more efficient implementation of the algorithm is obtained as follows. Let

a 1 = max{a 1,. • .,ak}. It is not hard to see that, for any Xand w = [n 1,. .. ,nk]

r~;=l njaj I Xl .s;;;Y0 (X,[n1,. . .,nk]) ~ r~;=l n1a1 I Xl + a1 - I.

The lower bound is trivial, and the upper bound follows from the observation that

any list scheduling algorithm will start every job strictly before the lower bound.

Further, we assume without loss of generality that in the above recurrence relations

the second maximand attains the maximum:

Statistica Neerlandica 39 (1985), nr. 2. 101

Y*(X,[n 1, ••• ,nk]) = Y*(I,[/1>····/k]) for some II>···,lk.

We can therefore restrict our attention to vectors [/ i. ... ,lk] that yield a value

Y*(l,[/1, ... ,/k]) within a given range of a 1 integers. This implies that only a single
value of / 1 has to be considered for given 12 , ••. ,lk and that O(nk-I) comparisons

suffice for each pair (X, w). The overall running time is thereby reduced to O(n 2k).

Other, more intricate, refinements lead to a running time of
O(n2k- I af1'- 3 log na 1). Although that implementation is more efficient for small

values a 1, ••• ,ak, it is of little avail in view of the results that will be presented in
Section 3.2.

2.3 Computational results

The dynamic programming algorithm was coded in PASCAL and run on a CD

Cyber 170-750 to solve several instances of the two-stage scheduling problem. The

solution of instances with 100 jobs and two possible processing time values or with

50 jobs and three processing time values required about 30 seconds. The values of

k considered are admittedly small, but the values of n are realistic and the running

times are such that our brute force approach should not be dismissed on grounds

of manifest inefficiency.
We illustrate the numerical results on a set of representative instances given by

c = 1,

n = 1, ... ,100,

k = 2, a 1 = 18, a 2 = 14, Pr{wj = ai} = Pr{wj = a2} = ~ (j = l, ... ,n:

Figure 1 shows four functions of the number of jobs:

- the minimal lower bound minx{VLB(X)} mentioned in Section 2.1;
- the minimal expected total cost EV* (X*,w) (the optimum for the distribution

model, averaged over all realizations);

- the expected approximate total cost obtained by the heuristic mentioned in Sec-

tion 2.1.
Note that the last three functions are defined only for integral n; linear interpola

tion has been applied to improve the presentation. The distribution model yields
slightly better results than the two-stage decision model on average, as expected. A

comparison between the optima and the lower and upper bounds confirms that the
absolute differences are significant while the relative differences disappear with

increasing problem size.
For the case that n = 100, Figure 2 shows three functions of the first stage

decision variable, the number X of machines:
- the lower bound VL8 (X);

- the expected total cost EV*(X,w) in case of an optimal second stage decision;

- the expected total cost in case of al) approximate second stage decision.
Note that we have interpreted X as a continuous variable: acquisition of a

102 Statistica Neerlandica 39 (1985), nr. 2.

fractional machine costs a fraction of c but yields no benefit at the second stage;

the vertical line segments correspond to discontinuities. In spite of the smoothing

effect due to averaging over all realizations, both the optimal and the approximate

cost functions are highly nonconvex and multimodal. The functions consist of a

first stage component, which is linear and increasing, and a second stage com

ponent, which is nonconvex and nonincreasing. Addition of the two components

can tum the nonconvexities into local minima, and small values of c appear to be

most effective in this respect.

Statistica Neerlandica 39 (1985), nr. 2. 103

§
..J
w
§

" i!l z ..J
0 w

Q
~

~
u

z w
:;i

" :=
1
i

w >-

"' "
~ "'

"'
0 :;; i!
~ Q

z
0 := :=
>-

z z ::> i ..J 0 :=
Si >- >-

:l :l
~ Si Si

..J ..J :ii :0
< <

" :: ffi
t;: >- ~

~ :: 0 0

I
I

I

~

ill

\

\
'·~:;;::::::, \

"
~

g ifl
0 .., .. ,,;

.D

'.I .£,

'o
~

~
.D

E
::l
i::

" ~ -5
0

i::

~ .9
tl
i:::
2

~ "' "' "'
~

0
u

'" §
~

" -5
Oil

~ .9
:;
"O

" J::
u

Cll

...;

i:

~
ah01~--'-~,~.~-'-~~,~.~-'-~~°''----'~-,~,~-'-~-osL-~.~~~oc,____,~-d~-'-~.,+..~-'-__J

JSOJ l~JOJ

104 Statistica Neerlandica 39 (1985), nr. 2.

i' I

ti
\ J: I

\

J !
\
\ . '
\ I

I
\ l'

i \ 4' I
\
I I
\ .,,

I \ i

\
_,,

I

.1
' ,,
~;::i

~~
~'
·I

-I'
..

' .,.;
'"' <U

c::

'\1'; :.2
(.)

"

l
E
0 ...
<U

.D

\ E
::l
c::

~
<!)

'5

~ ~· I

....
0

~-~
I c::

/J ! .g
" \ c::

t
::l

"' "' ...
"
'" 0

" ";;j

3
<!)

'5

Oil
c::

:.a
13
.c::

" Cll

"' :::

~

Statistica Neerlandica 39 (1985), nr. 2. 105

3 Bin Packing

3.1 Problem formulation

The two-stage bin packing problem is formulated as follows. At the aggregate

level, one has to decide on the capacity Y of bins, while knowing the cost d of one

unit of capacity, the number n of items that are to be packed into the bins, and the

probability distribution of the vector w = (w 1 , ... ,wn) of the item weights. It is again

assumed that the w1 are independent and identically distributed random variables

with expectation µ. At the detailed level, after Y has been determined, a realization

w d2 of w becomes known, and one has to decide on a packing in which each item

is assigned to a bin and the total weight of the items assigned to the same bin does

not exceed its capacity Y, so as to achieve a minimum number x• (Y, w) of bins

needed. The total cost of the first stage decision Y and the optimal second stage

decision is denoted by W*(Y,w) = dY+X*(Y,w).

In the two-stage decision model, the objective is to determine a value y• EIR+

such that

EW*(Y*,w) = minYER. {EW*(Y,w)}.

In the distribution model, the objective is to determine a function Y° : Q-?IR +

such that

W*(Y°(w),w) = minYER+ {W*(Y,w)},V'wE~l

This problem is the symmetric counterpart of the two-stage scheduling problem

from the previous section. One can view items as jobs, weights as processing times,

bins as machines and their capacity as a job completion deadline, but now the

order of the decisions is reversed. In fact, the above cost structure is quite natural

in this context. First, a delivery date for the jobs is negotiated, whereby the cost of

extending this date by one unit is independent of the number of machines that will

turn out to be needed later on.

In analogy to the two-stage scheduling heuristic given at the end of Section 2.1,

one can consider the following two-stage bin packing heuristic. The bin capacity is

set equal to the value of Y that minimizes the lower bound wLB(Y) = dY+nµ/ Y

on EW*(Y,w), and the items are packed into bins by the first fit decreasing rule,

i.e., the items are taken in order of nonincreasing weights and each next item is

assigned to the first bin that has enough capacity to accommodate it. This heuristic

can be shown to have several strong properties of asymptotic optimality (STOUGIE

(1985)).

3.2 Dynamic programming

The second stage bin packing problem of determining x• (Y, w) for given X and

w is NP-hard (GAREY and JOHNSON (1979)). We will again consider the situation in

which the stochastic parameters can assume only k values a 1' ... ,ab for a fixed k,

and write w = [n 1, ... ,nk] to denote the vector in which the value a1 occurs n1 times,

106 Statistica N eerlandica 39 (1985), nr. 2.

for j = I, ... ,k.
The following dynamic programming algorithm is due to (HELD, KARP and

SHARESHIAN (1963)). Let C(Y, w) be the total amount of capacity needed to pack
items with weights specified by w into bins of capacity Y. It is assumed that C(Y,w)

includes the slack capacity of each bin (which is equal to Y minus the total weight
of the items assigned to that bin) except for the slack capacity of the last bin. Thus,

if C(Y, w) = XY - f with X E Z + and 0 ,;:;;;; f < Y, then an optimal packing
requires X bins and the last bin has a slack capacity r. Let D.(Y,w,a) be the extra

capacity needed when an item with weight a is added to this packing:

{
a if r ~a,

D.(Y,w,a) = f+a if f <a.

It is not hard to see that

C(Y,[n i, ... ,nd) = min1..;1..;k:n
1
>0 { C(Y,[n 1, ••. ,n1_1,n1 - l,n1+ 1, ..• ,nk])

C(Y,[0, ... ,0]) = 0.

+ D.(Y,[n 1, ... ,n1- i ,n1- I,n1+1, ... ,nk],a1)}

(n1 + ... +nk > 0),

We finally have that X*(Y,w) == f C(Y,w) / Y l ·
For the two-stage bin packing problem, we make the same assumptions con

cerning the distribution of the stochastic parameters as in Section 2.2 and apply the
same strategy to obtain solutions to both stochastic optimization models. Since the

values a 1'··· ,ak are integral, there is no loss of generality in considering only

integral capacities Y. Let Omax == max{a1>···,ad and note that 1 ,;:;;;; Y,;:;;;; namax·

The algorithm requires a fixed number of comparisons for each of the O(nk+lamax)
pairs (Y,w), and hence O(nk+ 1amax) time altogether.

A more efficient implementation of the algorithm is obtained as follows. Let

a sum = 2:J = 1 n1a1. It is not hard to see that, for any Y and w = [n 1>···,nk]

fasum/Yl ,;:;;;; X*(Y,[n1, ... ,nk]),;:;;;; 2 fasum/Yl - 1.

The lower bound is trivial. The upper bound is a performance guarantee of the fol
lowing simple heuristic: deal with the items in a fixed order and fill each of

r a sum I Y l bins successively, thereby splitting an item if necessary; next, reassign
each of the split items to a separate bin, of which no more than I a sum/ Y l -1
will be needed. Addition of the first stage cost yields

dY + asum I y,;:;;;; w*(Y,[ni, ... ,nk]) ~ dY + 2asum I y + 1.

These lower and upper bound functions are both convex and unimodal in Y. The
function w· (Y, w) therefore attains its minimum for a value of Y that is bounded
by the two values of the argument for which the lower bound is equal to the
minimum of the upper bound. A straightforward calculation shows that the latter

Statistica Neerlandica 39 (1985), nr. 2. 107

values are given by <++(2asumd)+ +(asumd+(2asumd)+ ++)+)/d. This implies
1

that for all nk realizations w only O((namax / d)T) values of Y have to be con-
k+J.. J_ _J_

sidered. The overall running time is thereby reduced to O(n 2 ar:iaxd 2).

Due to the relation between the two-stage scheduling and bin packing problems
that was observed above, the y* (X,w) values from Section 2.2 could be used to
derive the x*(Y,w) values needed here and vice versa, as long as the set (a 1, ••• ,ak}

is the same in both cases. The former recursion has the advantage of requiring
strictly polynomial time; the latter one is pseudopolynomial but much faster for
small values a 1, ••• ,ak.

3.3 Computational results

For the typical problem instance given by

d = 1,

n = 100,

k = 2,a 1 = 18,a2 = 14,Pr{w1=a 1 } = Pr{w1 =a 2 } = ~ (j = l, ... ,n),

Figure 3 shows three functions of the first stage decision variable, the capacity Y:

- the lower bound WLB(Y);

- the expected total cost E w• (Y, w) in case of an optimal second stage decision;
- the expected total cost in case of an approximate second stage decision.
An investigation of these and other results leads to the same conclusions concern
ing running time, quality of lower and upper bonds, and the occurrence of multiple
local minima as in Section 2.3.

108 Statistica Neerlandica 39 (1985), nr. 2.

~.~~-,f---,!--~J:
1SO~ "'lllJOl

Statistica Neerlandica 39 (1985), nr. 2. 109

4 Multiknapsack

4.1 Problem formulation

The two-stage multiknapsack problem that we will consider here can be viewed as a
capital budgeting problem. At the aggregate level, one has to decide on the sizes

Xi. ... ,Xm of m budgets that are to be reserved for financing a number of projects,

while knowing the cost c; of reserving one unit of budget i (i = l, ... ,m), the

requirement 'iJ of project j out of budget i (i = l, ... ,m, j = l, ... ,n), and the proba

bility distribution of the vector w = (w 1,. .. ,wn) of revenues that the projects will

yield. It is assumed that all c;, riJ and w1 are nonnegative and that the riJ are
integral. At the detailed level_, after X = (X1 , •• .,Xm) has been determined, a realiza

tion w E 0 of W becomes known, and one has to decide on a selection S of the pro

jects that maximizes the total revenue y* (X,w) within the budget constraints:

Y°(X,w) = maxs(;;(I n) {:LJES w1 I :LJeS riJ ..;;; X; (i = l,. . .,m)}.

The total profit of the budgeting decision X and the optimal selection decision is

denoted by z• (X,w) = -:L~_ 1 c;X;+Y*(X,w).
In the two-stage decision model, the objective is to determine a vector X* E IR '!t

such that

EZ 0 (X* ,w) = maxxeR: {EX* (X,w)}.

In the distribution model, the objective is to determine a function X 0
: SJ~IR '!t

such that

4.2 The distribution model

The knapsack problem, i.e., the second stage problem with m = 1, is already NP

hard (GAREY and JOHNSON (1979)). Surprisingly, the distribution model is easily
solved to optimality. For each wEO, the selection S(w) of profitable projects is

given by S(w) = U I w 1 -~7'= 1 c;ru>O}. The minimum budgets needed to finance

these projects are equal to Xj(w) = ~JeS(w)r; 1 (i = l, .. .,m), and the corresponding
total profit is

Z*(X 0 (w),w) = :LjeS(w) (wj - L~=I C;rij),'twEO.

In the situation that each revenue w1 can assume only k distinct values, the deter

mination of X° requires O(mn) computations for each of kn realizations w.

4. 3 Dynamic programming

The second stage multiknapsack problem is solvable by a classical dynamic pro

gramming algorithm from (BELLMAN (1957)). Let F/X,w) be the maximum revenue

110 Statistica Neerlandica 39 (1985), nr. 2.

if only the first j projects can be selected, for given budgets X = (X1, ... ,Xm) and
revenues w = (wi. ... ,wn). An optimal selection is either restricted to the first j -1

projects or includes project j:

Fj((XJ, ... ,Xm),w) = max.{Fj-1((Xi, ... ,Xm),w),

(j. = l, ... ,n),

Since the requirements 'iJ are integral, also the budgets X; can be assumed to be
integral. Computation of Y*(X,w) = Fn(X,w) requires a single comparison for
each of rrr=iXi vectors X' ~ X at each of n successive stages, and hence

O(n I17'= 1 X; time altogether.
For the two-stage rnultiknapsack problem, we again consider the situation in

which each revenue wj can assume only k distinct values, for a fixed k. Let

Ri = "2.J=I'iJ and note that 0 ~ X; ~ R; (i = l, ... ,m). At stage j, only the kl
different realizations of (wJ, ... ,wj) need to be distinguished() = l,. .. ,n). The algo
rithm therefore has to consider O(kiII7'= 1R;) pairs (X,w) at stage j. Summation
over all j yields an O(knII7'= 1R;) time bound for the computation of all Y*(X,w)

and also for the determination of a budget vector x• that is optimal in expectation.

4. 4 Computational results

The dynamic programming algorithm was coded in PASCAL and run on a CD
Cyber 170-750 to solve several instances of the two-stage knapsack problem. We
set m = 1 at the outset and did not attempt to solve proper multiknapsack prob
lems, for which m ;;;;;;. 2. We assumed independence of the revenues wj and tried to
make the second stage knapsack problem nontrivial by specifying a high correlation
between the expected revenue E wj of project j and its budget requirement r lj. The
solution of instances with twelve projects and two possible revenue values for each
of them required about ten seconds.

For the problem instance given by

m = 1, c = 1,

. I
n = 12, Pr{wj = alj} = Pr{wj = a21} = 2 () = l, ... ,n),

with the values of 'iJ• alj, a2j (j = l, ... ,n) given in Table 1, Figure 4 shows the
expected total profit EZ ((X1),w) as a function of the budget size X 1• Note that
the profit is shown only for integral X 1; the line segments that start from the
points shown with a slope - c 1 and that indicate the profit for fractional X 1 have
been deleted. Even if we restrict our attention to integral values of X 1, the profit
function has many local maxima.

Statistica Neerlandica 39 (1985), nr. 2. 111

Table I. Knapsack: numerical.data.

j 1 2 3 4 5 6 7 8 9 10 11 12

r1j 5 2 9 13 10 8 4 7 10 6 4 9

alj 7 4 12 17 15 12 5 9 14 9 6 11

a2i 3 1 6 11 8 7 1 4 7 7 2 8

112
Statistica Neerlandica 39 (1985), nr. 2.

" "
I

"

-i!

-!'

-!

-~

-~

-~

-:

-~

-~

--

,. Cl

~--------------- lJjQMd 11il01 ~-=--~~~~~~~___J

Statistica Neerlandica 39 (1985), nr. 2. 113

References
BELLMAN, R.E. (1957), Dynamic Programming, Princeton University Press, Princeton, NJ.

BLAIR, C.E. and R.C. JEROSLOW (1982), The value functjon of an integer program, Math. Programming
23, 237-273.

DEMPSTER, M.A.H. , M.L. FISHER, L. JANSEN, B.J. LAGEWEG, J.K. LENSTRA and A.H.G. RrNNOOY KAN
(1981), Analytical evaluation of hierarchical planning systems, Oper. Res. 29, 707-716.

DEMPSTER, M.A.H., M.L. FISHER, L. JANSEN, B.J. LAGEWEG, J.K. LENSTRA and A.H.G. RrNNOOY KAN
(1983), Analysis of heuristics for stochastic programming: results for hierarcrucal scheduling
problems, Math. Oper. Res. 8, 525-537.

FRENK, J.B.G., A.H.G. RrNNOOY KAN and L. STOUGIE (1984), A ruerarchical scheduling problem with a
well-solvable second stage, Ann. Oper. Res. I, 43-58.

GAREY, M.R. and D.S. JOHNSON (1979), Computers and Intractability: a Guide to the Theory of NP
Completeness, Freeman, San Francisco.

GRAHAM, R.L., E.L. LAWLER, J.K. LENSTRA and A.H.G. RrNNOOY KAN (1979), Optimization and
approximation in deterministic sequencing and scheduling: a survey, Ann. Discrete Math. 5, 287-
326.

HELD, M., R.M. KARP and R. SHARESHIAN (1963), Assembly-line balancing - dynamic programming
with precedence constrrunts, Oper. Res. 11, 442-459.

LENSTRA, J.K., A.H.G. RrNNOOY KAN and L. STOUGIE (1984), A framework for the probabilistic
analysis of hierarchical planning systems, Ann. Oper. Res. I, 23-42.

MARCHETTI-SPACCAMELA, A., A.H.G. RrNNOOY KAN and L. STOUGIE (1984), Hierarchical verucle rout
ing problems, Networks 14, 571-586.

STOUGIE, L. (1985), Design and Analysis of Algorithms for Stochastic Integer Programming, Ph. D. thesis,
Centre for Mathematics and Computer Science, Amsterdam.

WETS, R.J.-B. (1983), Stochastic programming: solution techniques and approximation schemes, in
BACHEM A. , M. GROTSCHEL, B. KORTE (eds.), Mathematical Programming: the State of the Art -
Bonn 1982, Springer, Berlin, 566-603. ·

B.J. Lageweg

J.K. Lenstra

L. Stougie

Centre for Mathematics

and Computer Science

P.O. Box 4079

1009 AB Amsterdam

The Netherlands

A.H.G. Rinnooy Kan

Econometric Institute

Erasmus University Rotterdam

P.O. Box 1738

3000 DR Rotterdam

The Netherlands

