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STOCHASTIC INTEGER PROGRAMMING BY DYNAMIC PROGRAMMING 

by B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan and L. Stougie 

Abstract Stochastic integer programming is a suitable tool for modeling hierarchical decision situations 

with combinatorial features. In continuation of our work on the. design and analysis of heuristics for 

such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to 

exploit the structure of two-stage scheduling, bin packing and multi.knapsack problems. Numerical 

results for small instances of these problems are presented. 

Key words: stochastic integer programming, distribution model, rwo-srage decision model, scheduling, bin 

packing, multiknapsack, dynamic programming. 

1 Introduction 

Stochastic progranuning problems are mathematical programming problems of 
which not all the parameters are known with certainty. It is usually assumed that 

the unknown parameters have a known probability distribution. There are two 

types of optimization models in stochastic programming. 

The first one is the distribution model, in which one has to determine an optimal 

decision for each realization of the stochastic parameters. As a result, one obtains 
the complete probability distribution of the optimal solution value to the stochastic 

programming problem. This is the 'wait and see' approach, in which the decision is 

made only when perfect information is available. It is of largely theoretical interest. 
The second model is the two-stage decision model, in which one has to determine 

a decision that is optimal in expectation. In evaluating a decision, one takes into 
account the costs of a recourse decision that may be taken when, at a later stage, 

the realization of the stochastic parameters becomes known. This is the 'here and 

now' approach, in which the decision is made given imperfect information. The 

concept of a recourse decision should be interpreted broadly. It includes not only 

emergency actions in case of particularly unfortunate realizations but any action 

that is appropriate under the given circumstances. 

Research in this area is so far almost exclusively concerned with stochastic linear 

programming. In the distribution model, each realization of the stochastic parame

ters leads in this case to an ordinary linear program. In the two-stage decision 

model, the recourse problem at the second stage is a linear program, the right-hand 

side of which is usually determined by the overall decision at the first stage. This 

implies that the expected second stage cost is a convex function of the first stage 
decision variables (WETS (1983)). Successful algorithms for the linear two-stage 

problem heavily exploit this convexity property. 
By imposing integrality constraints on some of the decision variables we enter 

the area of stochastic integer programming. The complexity of the problems under 
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consideration is thereby increased dramatically. One reason for this is that linear 
programming is well solved while integer programming is NP-hard, so that the 
solution of a deterministic subproblem may require much more time. Another rea
son is that, in the two-stage decision model, integrality of the second stage decision 
variables can cause nonconvexities and even discontinuities in the expected second 
stage cost function (BLAIR and JEROSLOW (1982)), so that the algorithms for the 
linear case cannot be adapted. 

Stochastic integer programming does not only present many theoretical chal
lenges, it is also a practical tool for modeling certain hierarchical decision situations 

that arise in operations management planning and control. Such situations require 
a series of decisions over time at an increasing level of detail and with an increas
ing amount of information being available. At least two decision levels can usually 
be recognized: an aggregate level, at which one has to decide upon the acquisition 
of resources, given vague information about what certain tasks will require of them, 
and a detailed level, at which one has to decide upon the allocation of resources to 

tasks, given precise information about the requirements. Integrality constraints may 
appear at the first level, when the resources come in discrete units only, and at the 
second level, when the allocation problem is of a combinatorial nature. · 

Given the formidable difficulty of stochastic integer programming, most 
research in the area has so far concentrated on the design and analysis of approxi

mation algorithms. This approach is exemplified in (DEMPSTER et al. (1981), 

(1983); FRENK et al. (1984); MARCHETII-SPACCAMELA et al. (1984)), where simple 
heuristics are proposed for a variety of two-stage production and distribution plan
ning problems. Probabilistic analyses of the heuristics then provide exact statements 
about the quality of the approximations, such as some form of asymptotic optimal
ity. A general framework for this approach is given in (LENSTRA et al. (1984)). 

In this paper, we are interested in optimization algorithms. We will consider sto
chastic integer programs of a very special structure. The stochastic parameters will 
have a discrete distribution with a finite number of points with positive density. 
Moreover, each realization will lead to a combinatorial optimization problem that 
is solvable by a dynamic programming routine. The overall stochastic optimization 
problem will then be solved by a single giant recursion that combines the separate 
dynamic programming computations for all the individual realizations. This can be 
done only for problem instances of a relatively small size. 

The following three sections illustrate our approach on two-stage scheduling, bin 

packing, and multiknapsack problems. In each section, we first formulate the prob
lem in question, then present the dynamic programming algorithm and describe its 
implementation, and finally discuss our numerical results. The discussion includes 
a comparison with results obtained by heuristics for the scheduling and bin packing 
problems. 

Our computational experience gives empirical insight into the shape of the value 
functions of stochastic integer programming problems and shows that the discon
tinuities and nonconvexities mentioned above do indeed occur. Further 
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investigations have shown that one has to distinguish between discrete and continu

ous distributions of the stochastic parameters; in the latter case, no discontinuities 

will occur under certain conditions (STOUGIE (1985)). The results we have obtained 

so far should be regarded as no more than a first step towards a theory for stochas

tic integer programming. 

Boldface characters will denote random variables. 

2 Scheduling 

2.1 Problem formulation 

The two-stage scheduling problem studied in this section was first formulated in 

(DEMPSTER et al. (1983)). At the aggregate level, one has to decide on the number 

X of identical parallel machines that are to be acquired, while knowing the cost c of 

a single machine, the number n of jobs that are to be processed, and the probability 

distribution of the vector w = (wi. ... ,wn) of their processing times. It is assumed 

that the w1 are independent and identically distributed random variables with 

expectationµ,. At the detailed level, after X has been determined, a realization wEO 

of w becomes known, where 0 denotes the set of all realizations, and one has to 

decide on a schedule in which each machine processes at most one job at a time, 

job j is processed during an uninterrupted time period of length w1 (j = l, ... ,n) 

and no job is processed prior to time 0, so as to achieve a minimum value y• (X, w) 

of the maximum job completion time. The total cost of the acquisition decision X 
and the optimal scheduling decision is denoted by v· (X, w) = cX + y• (X, w ). 

In the two-stage decision model, the objective is to determine a value x· EN 

such that the expected total cost is minimized: 

EV*(x*,w) = minxeN {EV*(X,w)}. 

In the distribution model, the objective is to determine a function X 0 
: o~N such 

that for each wEO the actual total cost is minimized: 

V*(X 0 (w),w) = minxeN {V*(X,w)},'v'wEO. 

Previous work on this problem concerned the design and analysis of a two-stage 

heuristic (DEMPSTER et al. ( 1983)). This heuristic sets the number of machines 

equal to the value of X that minimizes the lower bound VLB(X) = cX+nµ,/ X on 

EV* (X, w) and assigns the jobs to the machines by a list scheduling rule. (In our 

computational experiments, we used the longest processing time rule, which puts the 

jobs on a list in order of nonincreasing processing times and successively assigns 

the next job on the list to the earliest available machine; this rule has a better worst 

case performance than arbitrary list scheduling (GRAHAM et al. (1979)). The relative 

error of the heuristic tends to 0 as n tends to infinity for various measures of sto

chastic convergence (LENSTRA et al. (1984)). 
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2.2 Dynamic programming 

The second stage scheduling problem of determining Y*(X,w) for given X and w 

is NP-hard (GAREY and JOHNSON (1979)). We will consider the situation in which 

· the processing times can assume only k distinct values a 1,. • .,ak> for a fixed value of 

k. Let us denote by w = {n 1,. •• ,nd the vector of processing times in which the 

value aj occurs nj times, for j = 1,. . .,k. 

One can obtain an optimal schedule on X machines by assigning a certain sub

set of jobs optimally to X -1 machines and putting the remaining jobs on another 

machine. This observation leads to the following recurrence relations: 

Y*(X,{n 1,. .. nk]) = min{max{Y*(X-l,{n 1 -!1,. . .,nk-lk]), 

Y0 (l,{/1,. . .,/k])} 

I 0~9~n/J = l, .. .,k)} (X > 1), 

• - ""k Y (l,[ni. .. .,nk]) - "'-j=I njaj. 

Computation of y• (X, w) by a dynamic programming algorithm based on this 

recursion requires O(XITJ = 1 n) time, which is exponential in k but polynomial for 

fixed k. 

In the more general context of the two-stage scheduling problem, we assume 

that the processing times have a discrete distribution with k integral values a 1 ,. • ., ak 

in its support. The independence of the processing times implies that w = [n1,. . .,nk] 

has a multinomial distribution. The idea is now to go through the entire recursion 

once in order to compute y• (X,w) for all values XE{l,. .. ,n} and for all realizations 

wEO, where fJ is given by 

n = {[n1,. . .,nk] I O~nj~n (j = l, .. .,k), n1 + ... +nk = n}. 

The distribution model is then solved bj the selection, for each wEO, of a value of 

X that minimizes v• (X, w) = cX = Y (X, w ). The two-stage decision model is 

solved by the determination of a value of X that minimizes . "" . EV (X,w) = cX + "'- ,.,Pr{ w = w} Y (X,w). 
we" 

A straightforward application of the above dynamic programming algorithm 

requires O(nk) comparisons for each of the O(nk+l) pairs (X,w), and hence 

O(n 2k + 1) time altogether. The multinomial probabilities are easily computed 

within this time bound. 

A more efficient implementation of the algorithm is obtained as follows. Let 

a 1 = max{a 1,. • .,ak}. It is not hard to see that, for any Xand w = [n 1,. .. ,nk] 

r~;=l njaj I Xl .s;;;Y0 (X,[n1,. . .,nk]) ~ r~;=l n1a1 I Xl + a1 - I. 

The lower bound is trivial, and the upper bound follows from the observation that 

any list scheduling algorithm will start every job strictly before the lower bound. 

Further, we assume without loss of generality that in the above recurrence relations 

the second maximand attains the maximum: 
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Y*(X,[n 1, ••• ,nk]) = Y*(I,[/1>····/k]) for some II>···,lk. 

We can therefore restrict our attention to vectors [/ i. ... ,lk] that yield a value 

Y*(l,[/1, ... ,/k]) within a given range of a 1 integers. This implies that only a single 
value of / 1 has to be considered for given 12 , ••. ,lk and that O(nk-I) comparisons 

suffice for each pair (X, w). The overall running time is thereby reduced to O(n 2k). 

Other, more intricate, refinements lead to a running time of 
O(n2k- I af1'- 3 log na 1). Although that implementation is more efficient for small 

values a 1, ••• ,ak, it is of little avail in view of the results that will be presented in 
Section 3.2. 

2.3 Computational results 

The dynamic programming algorithm was coded in PASCAL and run on a CD 

Cyber 170-750 to solve several instances of the two-stage scheduling problem. The 

solution of instances with 100 jobs and two possible processing time values or with 

50 jobs and three processing time values required about 30 seconds. The values of 

k considered are admittedly small, but the values of n are realistic and the running 

times are such that our brute force approach should not be dismissed on grounds 

of manifest inefficiency. 
We illustrate the numerical results on a set of representative instances given by 

c = 1, 

n = 1, ... ,100, 

k = 2, a 1 = 18, a 2 = 14, Pr{wj = ai} = Pr{wj = a2} = ~ (j = l, ... ,n: 

Figure 1 shows four functions of the number of jobs: 

- the minimal lower bound minx{VLB(X)} mentioned in Section 2.1; 
- the minimal expected total cost EV* (X*,w) (the optimum for the distribution 

model, averaged over all realizations); 

- the expected approximate total cost obtained by the heuristic mentioned in Sec-

tion 2.1. 
Note that the last three functions are defined only for integral n; linear interpola

tion has been applied to improve the presentation. The distribution model yields 
slightly better results than the two-stage decision model on average, as expected. A 

comparison between the optima and the lower and upper bounds confirms that the 
absolute differences are significant while the relative differences disappear with 

increasing problem size. 
For the case that n = 100, Figure 2 shows three functions of the first stage 

decision variable, the number X of machines: 
- the lower bound VL8 (X); 

- the expected total cost EV*(X,w) in case of an optimal second stage decision; 

- the expected total cost in case of al) approximate second stage decision. 
Note that we have interpreted X as a continuous variable: acquisition of a 
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fractional machine costs a fraction of c but yields no benefit at the second stage; 

the vertical line segments correspond to discontinuities. In spite of the smoothing 

effect due to averaging over all realizations, both the optimal and the approximate 

cost functions are highly nonconvex and multimodal. The functions consist of a 

first stage component, which is linear and increasing, and a second stage com

ponent, which is nonconvex and nonincreasing. Addition of the two components 

can tum the nonconvexities into local minima, and small values of c appear to be 

most effective in this respect. 
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3 Bin Packing 

3.1 Problem formulation 

The two-stage bin packing problem is formulated as follows. At the aggregate 

level, one has to decide on the capacity Y of bins, while knowing the cost d of one 

unit of capacity, the number n of items that are to be packed into the bins, and the 

probability distribution of the vector w = (w 1 , ... ,wn) of the item weights. It is again 

assumed that the w1 are independent and identically distributed random variables 

with expectation µ. At the detailed level, after Y has been determined, a realization 

w d2 of w becomes known, and one has to decide on a packing in which each item 

is assigned to a bin and the total weight of the items assigned to the same bin does 

not exceed its capacity Y, so as to achieve a minimum number x• ( Y, w) of bins 

needed. The total cost of the first stage decision Y and the optimal second stage 

decision is denoted by W*(Y,w) = dY+X*(Y,w). 

In the two-stage decision model, the objective is to determine a value y• EIR+ 

such that 

EW*(Y*,w) = minYER. {EW*(Y,w)}. 

In the distribution model, the objective is to determine a function Y° : Q-?IR + 

such that 

W*(Y°(w),w) = minYER+ {W*(Y,w)},V'wE~l 

This problem is the symmetric counterpart of the two-stage scheduling problem 

from the previous section. One can view items as jobs, weights as processing times, 

bins as machines and their capacity as a job completion deadline, but now the 

order of the decisions is reversed. In fact, the above cost structure is quite natural 

in this context. First, a delivery date for the jobs is negotiated, whereby the cost of 

extending this date by one unit is independent of the number of machines that will 

turn out to be needed later on. 

In analogy to the two-stage scheduling heuristic given at the end of Section 2.1, 

one can consider the following two-stage bin packing heuristic. The bin capacity is 

set equal to the value of Y that minimizes the lower bound wLB(Y) = dY+nµ/ Y 

on EW*(Y,w), and the items are packed into bins by the first fit decreasing rule, 

i.e., the items are taken in order of nonincreasing weights and each next item is 

assigned to the first bin that has enough capacity to accommodate it. This heuristic 

can be shown to have several strong properties of asymptotic optimality (STOUGIE 

(1985)). 

3.2 Dynamic programming 

The second stage bin packing problem of determining x• ( Y, w) for given X and 

w is NP-hard (GAREY and JOHNSON (1979)). We will again consider the situation in 

which the stochastic parameters can assume only k values a 1' ... ,ab for a fixed k, 

and write w = [n 1, ... ,nk] to denote the vector in which the value a1 occurs n1 times, 
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for j = I, ... ,k. 
The following dynamic programming algorithm is due to (HELD, KARP and 

SHARESHIAN ( 1963)). Let C( Y, w) be the total amount of capacity needed to pack 
items with weights specified by w into bins of capacity Y. It is assumed that C(Y,w) 

includes the slack capacity of each bin (which is equal to Y minus the total weight 
of the items assigned to that bin) except for the slack capacity of the last bin. Thus, 

if C( Y, w) = XY - f with X E Z + and 0 ,;:;;;; f < Y, then an optimal packing 
requires X bins and the last bin has a slack capacity r. Let D.(Y,w,a) be the extra 

capacity needed when an item with weight a is added to this packing: 

{
a if r ~a, 

D.(Y,w,a) = f+a if f <a. 

It is not hard to see that 

C(Y,[n i, ... ,nd) = min1..;1..;k:n
1
>0 { C(Y,[n 1, ••. ,n1_1,n1 - l,n1+ 1, ..• ,nk]) 

C(Y,[0, ... ,0]) = 0. 

+ D.(Y,[n 1, ... ,n1- i ,n1- I,n1+1, ... ,nk],a1)} 

(n1 + ... +nk > 0), 

We finally have that X*(Y,w) == f C(Y,w) / Y l · 
For the two-stage bin packing problem, we make the same assumptions con

cerning the distribution of the stochastic parameters as in Section 2.2 and apply the 
same strategy to obtain solutions to both stochastic optimization models. Since the 

values a 1'··· ,ak are integral, there is no loss of generality in considering only 

integral capacities Y. Let Omax == max{a1>···,ad and note that 1 ,;:;;;; Y,;:;;;; namax· 

The algorithm requires a fixed number of comparisons for each of the O(nk+lamax) 
pairs (Y,w), and hence O(nk+ 1amax) time altogether. 

A more efficient implementation of the algorithm is obtained as follows. Let 

a sum = 2:J = 1 n1a1. It is not hard to see that, for any Y and w = [n 1>···,nk] 

fasum/Yl ,;:;;;; X*(Y,[n1, ... ,nk]),;:;;;; 2 fasum/Yl - 1. 

The lower bound is trivial. The upper bound is a performance guarantee of the fol
lowing simple heuristic: deal with the items in a fixed order and fill each of 

r a sum I Y l bins successively, thereby splitting an item if necessary; next, reassign 
each of the split items to a separate bin, of which no more than I a sum/ Y l -1 
will be needed. Addition of the first stage cost yields 

dY + asum I y,;:;;;; w*(Y,[ni, ... ,nk]) ~ dY + 2asum I y + 1. 

These lower and upper bound functions are both convex and unimodal in Y. The 
function w· ( Y, w) therefore attains its minimum for a value of Y that is bounded 
by the two values of the argument for which the lower bound is equal to the 
minimum of the upper bound. A straightforward calculation shows that the latter 
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values are given by <++(2asumd)+ +(asumd+(2asumd)+ ++)+)/d. This implies 
1 

that for all nk realizations w only O((namax / d)T) values of Y have to be con-
k+J.. J_ _J_ 

sidered. The overall running time is thereby reduced to O(n 2 ar:iaxd 2 ). 

Due to the relation between the two-stage scheduling and bin packing problems 
that was observed above, the y* (X,w) values from Section 2.2 could be used to 
derive the x*(Y,w) values needed here and vice versa, as long as the set (a 1, ••• ,ak} 

is the same in both cases. The former recursion has the advantage of requiring 
strictly polynomial time; the latter one is pseudopolynomial but much faster for 
small values a 1, ••• ,ak. 

3.3 Computational results 

For the typical problem instance given by 

d = 1, 

n = 100, 

k = 2,a 1 = 18,a2 = 14,Pr{w1=a 1 } = Pr{w1 =a 2 } = ~ (j = l, ... ,n), 

Figure 3 shows three functions of the first stage decision variable, the capacity Y: 

- the lower bound WLB(Y); 

- the expected total cost E w• ( Y, w) in case of an optimal second stage decision; 
- the expected total cost in case of an approximate second stage decision. 
An investigation of these and other results leads to the same conclusions concern
ing running time, quality of lower and upper bonds, and the occurrence of multiple 
local minima as in Section 2.3. 
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4 Multiknapsack 

4.1 Problem formulation 

The two-stage multiknapsack problem that we will consider here can be viewed as a 
capital budgeting problem. At the aggregate level, one has to decide on the sizes 

Xi. ... ,Xm of m budgets that are to be reserved for financing a number of projects, 

while knowing the cost c; of reserving one unit of budget i (i = l, ... ,m), the 

requirement 'iJ of project j out of budget i (i = l, ... ,m, j = l, ... ,n), and the proba

bility distribution of the vector w = (w 1,. .. ,wn) of revenues that the projects will 

yield. It is assumed that all c;, riJ and w1 are nonnegative and that the riJ are 
integral. At the detailed level_, after X = (X1 , •• .,Xm) has been determined, a realiza

tion w E 0 of W becomes known, and one has to decide on a selection S of the pro

jects that maximizes the total revenue y* (X,w) within the budget constraints: 

Y°(X,w) = maxs(;;(I ..... n) {:LJES w1 I :LJeS riJ ..;;; X; (i = l,. . .,m)}. 

The total profit of the budgeting decision X and the optimal selection decision is 

denoted by z• (X,w) = -:L~_ 1 c;X;+Y*(X,w). 
In the two-stage decision model, the objective is to determine a vector X* E IR '!t

such that 

EZ 0 (X* ,w) = maxxeR: {EX* (X,w)}. 

In the distribution model, the objective is to determine a function X 0 
: SJ~IR '!t

such that 

4.2 The distribution model 

The knapsack problem, i.e., the second stage problem with m = 1, is already NP

hard (GAREY and JOHNSON (1979)). Surprisingly, the distribution model is easily 
solved to optimality. For each wEO, the selection S(w) of profitable projects is 

given by S(w) = U I w 1 -~7'= 1 c;ru>O}. The minimum budgets needed to finance 

these projects are equal to Xj(w) = ~JeS(w)r; 1 (i = l, .. .,m), and the corresponding 
total profit is 

Z*(X 0 (w),w) = :LjeS(w) (wj - L~=I C;rij),'twEO. 

In the situation that each revenue w1 can assume only k distinct values, the deter

mination of X° requires O(mn) computations for each of kn realizations w. 

4. 3 Dynamic programming 

The second stage multiknapsack problem is solvable by a classical dynamic pro

gramming algorithm from (BELLMAN (1957)). Let F/X,w) be the maximum revenue 
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if only the first j projects can be selected, for given budgets X = (X1, ... ,Xm) and 
revenues w = (wi. ... ,wn). An optimal selection is either restricted to the first j -1 

projects or includes project j: 

Fj((XJ, ... ,Xm),w) = max.{Fj-1((Xi, ... ,Xm),w), 

(j. = l, ... ,n), 

Since the requirements 'iJ are integral, also the budgets X; can be assumed to be 
integral. Computation of Y*(X,w) = Fn(X,w) requires a single comparison for 
each of rrr=iXi vectors X' ~ X at each of n successive stages, and hence 

O(n I17'= 1 X; time altogether. 
For the two-stage rnultiknapsack problem, we again consider the situation in 

which each revenue wj can assume only k distinct values, for a fixed k. Let 

Ri = "2.J=I'iJ and note that 0 ~ X; ~ R; (i = l, ... ,m). At stage j, only the kl 
different realizations of (wJ, ... ,wj) need to be distinguished() = l,. .. ,n). The algo
rithm therefore has to consider O(kiII7'= 1R;) pairs (X,w) at stage j. Summation 
over all j yields an O(knII7'= 1R;) time bound for the computation of all Y*(X,w) 

and also for the determination of a budget vector x• that is optimal in expectation. 

4. 4 Computational results 

The dynamic programming algorithm was coded in PASCAL and run on a CD 
Cyber 170-750 to solve several instances of the two-stage knapsack problem. We 
set m = 1 at the outset and did not attempt to solve proper multiknapsack prob
lems, for which m ;;;;;;. 2. We assumed independence of the revenues wj and tried to 
make the second stage knapsack problem nontrivial by specifying a high correlation 
between the expected revenue E wj of project j and its budget requirement r lj. The 
solution of instances with twelve projects and two possible revenue values for each 
of them required about ten seconds. 

For the problem instance given by 

m = 1, c = 1, 

. I 
n = 12, Pr{wj = alj} = Pr{wj = a21} = 2 () = l, ... ,n), 

with the values of 'iJ• alj, a2j (j = l, ... ,n) given in Table 1, Figure 4 shows the 
expected total profit EZ ((X1),w) as a function of the budget size X 1• Note that 
the profit is shown only for integral X 1; the line segments that start from the 
points shown with a slope - c 1 and that indicate the profit for fractional X 1 have 
been deleted. Even if we restrict our attention to integral values of X 1, the profit 
function has many local maxima. 
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Table I. Knapsack: numerical.data. 

j 1 2 3 4 5 6 7 8 9 10 11 12 

r1j 5 2 9 13 10 8 4 7 10 6 4 9 

alj 7 4 12 17 15 12 5 9 14 9 6 11 

a2i 3 1 6 11 8 7 1 4 7 7 2 8 
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