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ABSTRACT. – For every value of the Hurst indexH ∈ (0,1) we define a stochastic integral
with respect to fractional Brownian motion of indexH . We do so by approximating fractional
Brownian motion by semi-martingales.

Then, for H > 1/6, we establish an Itô’s change of variables formula, which is more
precise than Privault’s Ito formula (1998) (established for everyH > 0), since it only involves
anticipating integrals with respect to a driving Brownian motion.
 2003 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Pour toutH ∈ (0,1), nous construisons une intégrale stochastique par rapport
au mouvement Brownien fractionnaire de paramètre de HurstH . Cette intégrale est basée sur
l’approximation du mouvement Brownien fractionnaire par une suite de semi-martingales.

Ensuite, pourH > 1/6, nous établissons une formule d’Itô qui précise celle obtenue par
Privault (1998), au sens où elle ne comporte que des intégrales anticipantes par rapport à un
mouvement Brownien directeur.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Fractional Brownian motion was originally defined and studied by Kolmogorov [14]
within a Hilbert space framework. Fractional Brownian motion of Hurst indexH ∈ (0,1)
is a centered Gaussian processWH with covariance

E
[
WH

t WH
s

]= 1

2

(
t2H + s2H − |t − s|2H ) (s, t � 0)
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(for H = 1
2 we obtain standard Brownian motion). Fractional Brownian motion has

stationary increments

E
[(
WH(t)−WH(s)

)2]= |t − s|2H (s, t � 0),

and isH -self similar(
1

cH
WH(ct); t � 0

)
d= (WH(t); t � 0

)
(for all c > 0).

The Hurst parameterH accounts not only for the sign of the correlation of the
increments, but also for the regularity of the sample paths. Indeed, forH > 1

2, the
increments are positively correlated, and forH < 1

2 they are negatively correlated.
Furthermore, for everyβ ∈ (0,H), its sample paths are almost surely Hölder continuous
with index β. Finally, it is worthy of note that forH > 1

2, according to Beran’s
definition [3], it is a long memory process: the covariance of increments at distance
u decrease asu2H−2.

These significant properties make fractional Brownian motion a natural candidate as
a model of noise in mathematical finance (see Comte and Renault [5], Rogers [26]), and
in communication networks (see, for instance, Leland, Taqqu and Willinger [16]).

Recently, there has been numerous attempts at defining a stochastic integral with
respect to fractional Brownian motion. Indeed, forH �= 1

2W
H is not a semi-martingale

(see, e.g., Example 2 of Section 4.9.13 of Liptser and Shyriaev [19]), and usual Itô’s
stochastic calculus may not be applied. However, the integral

t∫
0

a(s)dWH(s) (1.1)

may be defined for suitablea. On the one hand, sinceWH has almost its sample paths
Hölder continuousof indexβ, for anyβ < H , the integral (1.1) exists in the Riemann–
Stieljes sense (path by path) if almost every sample path ofa has finitep-variation
with 1

p
+ β > 1 (see Young [32]): this is the approach used by Dai and Heyde [8]

and Lin [18] whenH > 1
2. Let us recall that thep-variation of a functionf over an

interval [0, t] is the least upper bound of sums
∑

i |f (xi)− f (xi−1)|p over all partitions
0= x0 < x1 < · · · < xn = T . A recent survey of the important properties of Riemann–
Stieltjes integral is the concentrated advanced course of Dudley and Norvaisa [11]. An
extension of Riemann–Stieltjes integral has been defined by Zähle [33], see also the
recent work of Ruzmaikina [29], by means of composition formulas, integration by parts
formula, Weyl derivative formula concerning fractional integration/differentiation, and
the generalized quadratic variation of Russo and Vallois [27,28].

On the other hand,WH is a Gaussian process, and (1.1) can be defined for
deterministic processesa by way of anL2 isometry: see, for example, Norros, Valkeila
and Virtamo [21] or Pipiras and Taqqu [23]. With the help of stochastic calculus of
variations (see [22]) this integral may be extended to random processesa. In this case,
the stochastic integral (1.1) is a divergence operator, that is the adjoint of a stochastic
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gradient operator (see the pioneering paper of Decreusefond and Ustunel [9]). It must
be noted that Duncan, Hu and Pasik-Duncan [12] have defined the stochastic integral
in a similar way by using Wick product. Feyel and de La Pradelle [13], Ciesielski,
Kerkyacharian and Roynette [4] also used the Gaussian property ofWH to prove that
WH belongs to suitable function spaces and construct a stochastic integral.

Eventually, Alos, Mazet and Nualart [1] have established, following the ideas
introduced in a previous version of this paper, very sharp sufficient conditions that
ensures existence of the stochastic integral (1.1).

The construction of the stochastic integral. The starting point of our approach is
the following representation of fractional Brownian motion given by Decreusefond and
Ustunel [9]

WH(t)=
t∫

0

KH(t, s)dB(s),

where

KH(t, s)= (t − s)H−1/2

�(H + 1
2)

F

(
H − 1

2
,

1

2
−H,H + 1

2
,1− t

s

)
(s < t), (1.2)

where F denotes Gauss hypergeometric function and(B(t); t � 0) is a standard
Brownian motion.

The first step we take is to define the integral of deterministic functions (Section 4).
Observing thatKH(t, s)= IHt 1[0,t ](s) whereIHt is the integral operator

IHt f (s)=KH(t, s)f (s)+
t∫

s

(
f (u)− f (s)

)
∂1K

H(u, s)du, (1.3)

we define

t∫
0

f (s)dWH(s)=
t∫

0

IHt f (u)dBu (1.4)

for suitable deterministic functions.
In order to extend formula (1.4) to random processesf , we introduce the key idea of

this paper, which is to approximateWH by processes of the type

WK(t)=
t∫

0

K(t, s)dB(s) (t ∈ [0, T ]) (1.5)

with a kernelK smooth enough to ensure thatWK is a semi-martingale (Proposition 2.5).
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Then, for a such asemi-martingalekernelK and a good integranda, we prove the
following generalization of (1.4)

t∫
0

a(s)dWK(s)=
t∫

0

Ita(s)dB(s)+
t∫

0

ItDsa(s)ds, (1.6)

whereDsa denotes the stochastic gradient andIt is defined asIHt .
In Sections 2 and 3 topologies are defined on the space of kernels and the space of

integrands. These are not ‘natural’ topologies butad hocones, whose sole aim is to fulfill
the following requirements:

(1) The mapping(a,K)→ ∫ t

0a(s)dWK(s) is bilinear continuous (Propositions 6.1).
(2) Rough kernels such asKH are in the closure of the space of semi-martingale

kernels.
(3) For nice integrandsa the processt → ∫ t

0a(s)dWK(s) has a continuous modifica-
tion (Theorem 7.1).

Eventually, we are able to take limits in the Itô’s formula established for semi-
martingale kernels in Proposition 8.1. LetCn

b be the set of functionsf whose derivatives,
up to the ordern ∈ N, are continuous and bounded. Privault proved that forf ∈C2

b ,

f
(
WH(t)

)= f (0)+
t∫

0

f ′(WH(s)
)

dWH(s)

+ 1

2

t∫
0

f ′′(WH(s)
)(
cH2Hs2H−1)ds,

where
∫ t

0f
′(WH (s))dWH(s) is theL2-limit of divergences (Skorokhod integrals). For

H > 1/4 andf ∈ C3
b , we show that this integral, which is not in general the limit of

Riemann sums, is a Skorokhod integral with respect to the driving Brownian motion:

f
(
WH(t)

)= f (0)+
t∫

0

IHt f ′(WH
)
(s)dBs

+ 1

2

t∫
0

f ′′(WH(s)
)(
cH2Hs2H−1)ds. (1.7)

By the same procedure, we have been able to prove an Itô’s formula forH > 1/6, in
Proposition 8.11. We do not give here this formula since it is complex (5 lines) and does
not seem to be an easy starting point for a generalization to everyH ∈ (0,1).

To end this rather lengthy introduction we try to give an answer to a question that
nearly everyone involved with stochastic integration with respect to Fractional Brownian
motion has asked us.

“What is the difference between the stochastic approach and the pathwise approach to
integration with respect to Fractional Brownian motion?”
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On the one hand we prove in the Appendix that forWH
1 ,WH

2 two independent
fractional Brownian motions of index 1/4<H < 1/2, the integral

t∫
0

WH
1 (s)dWH

2 (s)

cannot be defined for the classical and generalized pathwise integrals. On the other hand,
a slight generalization of our results enabled Coutin and Qian [7,6] to show that for
1
4 <H < 1

2 the integral
∫ t

0W
H
1 (s)dWH

2 (s) can be defined as a process with a continuous
modification.

Our main source of inspiration for Itô’s formula is T. Lyons paper [20], and in
particular the idea that in order to integrate with respect to rough signals, you may
sometimes have to replace approximating Riemann sums, of order 1, with Taylor sums
of higher order. More precisely, you may want to replacef (WH(ti+1))− f (WH(ti)) by

f
(
WH(ti+1)

)− f
(
WH(ti)

)− (WH(ti+1)−WH(ti)
)
f ′(WH(ti)

)+ · · · .

2. The vector spaces of kernels

The spaces of integrands and kernels we shall work with depend on parameters
(p, γ, θ). We shall assume from now on that the set(p, γ, θ) of parameters is
admissible, that is

1< p < 2,
1

p
+ 1

q
= 1,

2

q
> γ >

1

q
, δ = 2p

2− p
(2.1)

hγ = 1

θ∗
� 2

q
− γ,

1

θ/2
+ 1

θ∗/2
= 1. (2.2)

Observe thatδ/2 andq/2 are conjugated Hölder exponents, and that 1> 2/q.
LetK :R2 → R be a measurable kernel such that

t∫
0

K(t, s)2 ds <+∞ for everyt > 0, (2.3)

K(t, s)= 0 if s > t. (2.4)

We consider the adapted Gaussian process

WK(t)=
t∫

0

K(t, s)dBs,

where(Bt; t � 0) is a standard Brownian motion.

DEFINITION 2.1. –We say thatK is a rough kernelif there exists a measurable
function (t, s) → ∂1K(t, s), such thatu → ∂1K(u, s) is integrable on every[t, t ′] ⊂



32 P. CARMONA ET AL. / Ann. I. H. Poincaré – PR 39 (2003) 27–68

(s,+∞) and satisfies

K(t ′, s)−K(t, s)=
t ′∫
t

∂1K(u, s)du (s < t < t ′). (2.5)

We say thatK is asmooth kernelif K is a rough kernel that satisfies

K(t, s)−K(s, s)=
t∫

s

∂1K(u, s)du (s < t). (2.6)

The topology on the space of rough kernels is defined via mixed Lebesgue spaces
(see Stroock [31], Section 6.2). Let(E1,B1,µ1) and (E2,B2,µ2) be a pair ofσ -
finite measure spaces and letp1,p2 ∈ [1,∞). Given a measurable functionf on
(E1 ×E2,B1 ×B2), define

‖f ‖p1,p2
=
[∫
E2

(∫
E1

∣∣f (x1, x2)
∣∣p1

µ1(dx1)

)p2/p1

µ2(dx2)

]1/p2

,

and let L(p1,p2)(µ1,µ2) denote themixed Lebesgue spaceof R valued, B1 × B2

measurablef for which‖f ‖p1,p2
<∞.

For i = 1,2 we let (Ei,Bi ,µi) = ((0, t),B(0, t), ds) be the space(0, t) endowed
with the σ -field of Borel sets and Lebesgue measure,p1 = p andp2 = δ, f (u, s) =
∂1K(u, s)(u− s)γ 1(0<s<u) and‖K‖γ,θ,p,t def=‖f ‖p,δ + ‖K(t, ·)‖δ , that is

‖K‖γ,θ,p,t def=
( t∫

0

( t∫
s

∣∣∂1K(u, s)(u− s)γ
∣∣p du

)δ/p

ds

)1/δ

+
( t∫

0

∣∣K(t, s)
∣∣θ ds

)1/θ

.

(2.7)
LetEγ,θ,p,t be the space of rough kernelsK such that‖K‖γ,θ,p,t <+∞.

LEMMA 2.2. –Eγ,θ,p,t is a Banach space.

Proof. –Assume that(Kn)n∈N is a Cauchy sequence inEγ,θ,p,t . Then the sequence
of functionsfn(u, s)= ∂1Kn(u, s)(u− s)γ 1(0<s<u) is a Cauchy sequence inL(p,2p/2−p).
Therefore it converges inL(p,2p/2−p) to a functionf and we letz(u, s) = f (u, s)(u −
s)−γ . Since (Kn(t, ·))n∈N is a Cauchy sequence inLθ(0, t) it converges inLθ to a
functionφ ∈ Lθ(0, t). Finally, lettingK be the kernel

K(v, s)=
{
φ(s)− ∫ tv z(u, s)du if 0 < s < v < t ,
0 if v � s � t

we conclude thatK is a rough kernel for which‖K −Kn‖γ,θ,p,t → 0 since by
construction:

‖K −Kn‖γ,θ,p,t = ‖f − fn‖p,δ +
∥∥Kn(t, ·)− φ(·)∥∥

θ
. ✷
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Remark2.3. – It is quite straightforward to prove, via Hölder’s inequality, that for
t � T , the spaceEγ,θ,p,T can be continuously embedded inEγ,θ,p,t . Indeed, we only
need to prove that‖K(T, ·)−K(t, ·)‖Lθ (0,t ) <+∞. We first observe that fors < t :

∣∣K(T, s)−K(t, s)
∣∣=
∣∣∣∣∣

T∫
t

∂1K(u, s)du

∣∣∣∣∣

� (t − s)1/q−γ

( T∫
t

∣∣∂1K(u, s)(u− s)γ
∣∣pdu

)1/p

.

Therefore, applying Hölder’s inequality to the pair of conjugated exponents(r =
δ/θ, r ′)

t∫
0

∣∣K(T, s)−K(t, s)
∣∣θ ds �C

( t∫
0

(t − s)θ(1/q−γ )r ′ ds

)1/r ′

‖K‖θγ,θ,p,T .

The first factor may be majorized by a constantC, since2
q
−γ > 1

θ∗ impliesθ( 1
q
−γ )r ′ >

−1.

Let us recall that our main results are proved by approximating the fractional
Brownian motion kernel by smooth kernels for whichWK is a semi-martingale.

DEFINITION 2.4. –We say that the smooth kernelK is asemi-martingalekernel if

sup
u�t

( u∫
0

∂1K(u, s)2 ds

)
+

t∫
0

K(s, s)2 ds <+∞ (∀t > 0). (2.8)

PROPOSITION 2.5. –
(1) If K is a semi-martingale kernel, thenWK is a semi-martingale with decomposi-

tion

WK(t)=
t∫

0

K(s, s)dBs +
t∫

0

W∂1K(s)ds.

(2) The vector spaceFγ,θ,p,t of semi-martingale kernels inEγ,θ,p,t is dense inEγ,θ,p,t .

Proof. –(1) The definition of a smooth kernel is more than what we need to apply
Fubini’s Stochastic Theorem (see, e.g., Protter [25], Theorem 46):

WK(t)=
t∫

0

(
K(s, s)+

t∫
s

∂1K(u, s)du

)
dBs

=
t∫

0

K(s, s)dBs +
t∫

0

( u∫
0

∂1K(u, s)dBs

)
du.
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(2) Let ε > 0 be given. We perform the change of variablesu = v + s in the
definition of ‖K‖γ,θ,p,t , and we letg(v, s) = ∂1K(v + s, s)vγ 1(0<v<t−s). Theng is in
L(p,δ)((0, t)×(0, t)) and by Lemma 6.2.11 of Stroock [31] can be approached at distance
less thanε by a functionh(v, s) having the form

h(v, s)=
n∑

i=1

φi(v)ψj(s),

where theψi,φi are inL∞(0, t) and theφi have disjoint support. Therefore, if we let

1(r, s)=K(t, s)−
t∫

r

h(u− s, s)(u− s)−γ du (s < r < t),

then1 is a kernel such that‖K −1‖γ,θ,p,t � ε. Furthermore since∂11(r, s) = h(r −
s, s)(r − s)−γ for 0< s < r < t , andh is bounded, we see that1 is a smooth kernel.
However,1 is not a semi-martingale kernel ifγ > 1

2. Hence forε > 0 we consider

1ε(r, s)=K(t, s)−
t∫

r

h(u− s, s)(u+ ε− s)−γ du (s < r < t). (2.9)

The1ε is a semi-martingale kernel, and

‖1−1ε‖δγ,θ,p,t � (const)

t∫
0

ds

( t∫
s

∣∣∣∣
(

u− s

u+ ε− s

)γ

− 1
∣∣∣∣du

)δ/p

→ 0

asε→ 0 by dominated convergence.✷
DEFINITION 2.6. –In order to prove the continuity of our stochastic integral we

introduceAβ
γ,θ,p,T the subset ofEγ,θ,p,T of kernelsK such that

‖K‖2
β = sup

0<t<t+τ�T

τ−(hγ+β)

t∫
0

[ t+τ∫
t

(u− s)β∂1K(u, s)du

]2

ds <+∞

and endow it with the norm

∥∥|K|∥∥= ‖K‖γ,θ,p,T + ‖K‖β.
Since Itô’s formula is proved by approximating with smooth kernels, we introduce
B

β
γ,θ,p,T the closure ofFγ,θ,p,T in A

β
γ,θ,p,T .

2.1. The case of fractional Brownian motion

We recall here the basic properties of hypergeometric functions required throughout
this paper (see, e.g., Chapter 9 of Lebedev [15]). Gauss hypergeometric function
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F(α,β, γ, z) is defined for everyα,β, γ, |z|< 1 andγ �= 0,−1, . . . by

F(α,β, γ, z)=∑
k�0

(α)k(β)k

(γ )kk! zk,

where(α)0 = 1 and(α)k = �(α+ k)/�(α)= α(α+1) · · · (α+k−1) is the Pochammer
index. The convergence radius of this series is 1 and, as soon as Re(γ − β − α) > 0,
limz→1F(α,β, γ, z) exists and is finite. Obviously we have

F(α,β, γ, z)= F(β,α, γ, z), F (α,β, γ,0)= 1.

Furthermore, if|arg(1− z)|< π and Re(γ ) > Re(β) > 0,

F(α,β, γ, z)= �(γ )

�(β)�(γ − β)

1∫
0

uβ−1(1− u)γ−β−1 (1− zu)−α du. (2.10)

The hypergeometric functionF(α′, β ′, γ ′, ·) is said to be contiguous toF(α,β, γ, ·) if
|α− α′| = 1 or |β − β ′| = 1 or |γ − γ ′| = 1. If F1 andF2 are hypergeometric functions
contiguous toF , then there exists a relation of the type

P(z)F (z)+P1(z)F1(z)+P2(z)F2(z)= 0 (|arg(1− z)|< π),

with P(z),P1(z),P2(z) polynomials in the variablez. These relations ensure that there
exists an analytical continuation ofF(α,β, γ, z) to the domain

C×C× (C\{0,−1,−2, . . .})× {z: ∣∣arg(1− z)
∣∣<π

}
.

We shall also use the asymptotic estimate, for|arg(1− z)| < π,Re(�) > Re(α) >
0,Re(β) < 0:

F(α,β, γ, z)∼ �(γ )�(α− β)

�(α)�(γ − β)
(−z)−β (|z| →∞).

LEMMA 2.7. – Givens > 0 andH �= 1
2 , the functiont →KH(t, s) is differentiable

on (s,+∞) with derivative

∂1K
H(t, s)= (s/t)1/2−H

�(H − 1
2)

(t − s)H−3/2 (0< s < t).

Furthermore,KH ∈A
β
γ,θ,p,T for admissible parameters(p, q, γ, . . .) such that

1

p
+ γ > 3/2−H, −θ

∣∣∣∣H − 1

2

∣∣∣∣+ 1> 0 and β +H < 1.

In particular, for 0< ε < H < 1
2 , there exists a set of admissible parameters for which

hγ =H − ε.
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Remark2.8. – Observe that forH < 1
2, we haveγ − 1

q
> 1/2−H > 0.

Proof. –Let us state three facts:
(1) From the analyticity of the Gauss function, we deduce that the functiont →

KH(t, s) is differentiable on(s,+∞) with a derivativef (H, t, s) such that
H → f (H, t, s) is holomorphic on{H ∈ C: Re(H) >−1

2}.
(2) The integral representation (2.10) implies that forH ∈ (1/2,1) the function

t →KH(t, s) is differentiable on(s,+∞) with derivative∂1K
H(t, s).

(3) The functionH → ∂1K
H(t, s) is holomorphic in the region

8= {H ∈ C: 0< Re(H) < 1
}\{ 1

2

}
.

Therefore, by analytic continuation: for 0< s < t , ∂1K
H(t, s)= f (H, t, s) on8.

To determine the admissible set of parameters for whichKH ∈ Eγ,θ,p,T , we just use
the fact that(s, t)→KH(t, s) is continuous on{0< s < t}, combined with the following
consequence of the asymptotic estimate ofF ,

KH(t, s)∼s→0+ (const) s−|H−1/2|,
KH (t, s)∼s→t− (const) (t − s)H−1/2.

Therefore, given 0< ε < H < 1
2, we can set1

q
= 1

2 − ε
3 and hγ = 1

θ∗ = H − ε,
2
q
− γ =H − ε/2 to getq > 2, 2/q > γ , andγ − 1

q
= 1

q
− (H − ε/2) > 1

2 −H > 0.
It remains to show that‖K‖β < +∞ (indeed, we can then approximateK by the

sequenceKn(t, s)=K(t + 1
n
, s) of smooth kernels inFγ,θ,p,T ): for 0< t < t + τ � T ,

t∫
0

( t+τ∫
t

(u− s)β∂1K(u, s)du

)2

ds

�
t∫

0

(t − s)−1+2ε

( t+τ∫
t

(u− s)β+H−1−ε du

)2

ds

� Cτ 2(β+H−ε). ✷
2.2. Properties of integral operators associated to kernels

Let X be a separable Hilbert space with norm|·|X, andK be a rough kernel. To a
measurablea : [0, T ] →X we associate

IKt (a)(s)=K(t, s)a(s)+
t∫

s

(
a(u)− a(s)

)
∂1K(u, s)du, (2.11)

as soon as the integral in the right-hand side makes sense for almost everys ∈ [0, T ].
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Similarly we shall denote byJK
t the integral operator defined on measurable

f : [0, T ]2 →X by

JK
t (f )(s)=

t∫
s

f (u, s)∂1K(u, s)du, (2.12)

as soon as the integral in the right-hand side makes sense for almost everys ∈ [0, T ].
Observe that if80

s,ua = a(u)− a(s), then

IKt (a)(s)=K(t, s)a(s)+ JK
t

(
80a

)
(s).

SinceK and∂1K need not be positive, we introduce a dominating positive kernel

K+(t, s)=
[ ∣∣K(T, s)

∣∣+
T∫
t

∣∣∂1K(u, s)
∣∣du

]
1(s<t).

For 0� s < t � t + τ � T we have∣∣K(t + τ, s)−K(t, s)
∣∣� K+(t, s)−K+(t + τ, s),∣∣K(t, s)

∣∣�K+(t, s). (2.13)

Forβ ∈ R, β �= 0, we letwβ be the weight

wβ(u, s)= max(u− s,0)β.

Then if duds denotes the Lebesgue measure on[0, T ]2, we introduce the Lebesgue space

Lq
wβ
(X)= Lq

([0, T ]2;X;wβ(u, s)duds
)
.

Eventually we denote byHβ(X) the set ofβ Hölder continuous functions taking their
values inX:

Hβ(X)=
{
f : [0, T ] →X,‖f ‖Hβ (X) = sup

0�u<s�T

|f (u)− f (s)|X
|u− s|β <+∞

}
.

For functions of two variablesf (u, s) we introduce

H̃β(X)=
{
f : [0, T ]2 →X,‖f ‖H̃β (X)

= sup
0�u<s�T

|f (u, s)|X
|u− s|β <+∞

}
.

Through the rest of this paper(γ, δ,p) denotes a set of admissible parameters,T > 0 and
β ∈ R∗. The constantC may vary from line to line but depends only on(γ, δ,p,T ,β);
to ease notation, we shall omit this dependency when the context allows it.

PROPOSITION 2.9. – For every fixedt ∈ [0, T ]
(1) The mappingsJ : (f,K) → JK� (f )(t) and J+ : (f,K) → J

K+
t (f ) are bilinear

continuous fromLq
w−γ q

(X)×Eγ,θ,p,T to L2([0, T ]2;ds,X).
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(2) The mappingIt : (a,K)→ IKt (a) is bilinear continuous fromLθ∗([0, T ];ds;X)∩
{a: 80a ∈ Lq

w−γ q
(X)} ×Eγ,θ,p,T to L2([0, T ]2;ds,X).

Proof. –Since|JK
t (f )|

X
� J

K+
t (|f |X), we can suppose, without any loss in general-

ity, thatX = R and studyJK+ .
First, apply Hölder’s inequality to the pair of conjugated exponents(p, q):

∣∣JK+
t (f )(s)

∣∣�
( t∫

s

w−γ q(u, s)|f |q(u, s)du

)1/q( t∫
s

wγp(u, s)
∣∣∂1K(u, s)

∣∣p du

)1/p

.

Then, apply Hölder’s inequality to(q/2, δ/2) to get

∥∥JK+
t (f )(·)∥∥

L2([0,T ],ds) � ‖f ‖Lq
w−γ q

(R)‖K‖γ,θ,p,T .

The second assertion is clearly a consequence of the first one, another Hölder’s
inequality for(θ/2, θ∗/2), and Remark 2.3:∥∥K(t, ·)a(·)∥∥

L2([0,T ],ds) � ‖a‖Lθ∗ ([0,T ];R)‖K‖γ,θ,p,t
�C‖a‖Lθ∗ ([0,T ];R) ‖K‖γ,θ,p,T . ✷

The next proposition establish the Hölder regularity of a rough KernelK(t, s) with
respect to the first variablet .

PROPOSITION 2.10. – The spaceEγ,θ,p,T may be continuously embedded into
Hhγ (L2([0, T ];ds)).

Furthermore, the mappingK →K+ is continuous fromEγ,θ,p,T into Hhγ (L2([0, T ];
ds)).

Proof. –According to the inequalities (2.13), we only need to prove the second point.
The embedding is the following: we identifyK+ with the functionF : [0, T ] → X =
L2([0, T ];ds) defined byF(t)=K+(t, ·). Let 0� t � t + τ � T ; we have, fors �= t :

K+(t + τ, s)−K+(t, s)=
∣∣K(T, s)

∣∣1(t,t+τ)(s)+ J
K+
T (f + g)(s)

with f (u, s)= 1(t,t+τ)(s)1(t+τ,T )(u), g(u, s)= 1(0,t)(s)1(t,t+τ )(u).

According to Lemma B.1, there exists a constantC such that:

‖f ‖Lq
w−γ q

+ ‖g‖Lq
w−γ q

� C|τ |2/q−γ

and

‖1(t,t+τ)‖Lθ∗ ([0,T ],ds) �Cτ 1/θ∗ .

Therefore, sincehγ = 1
θ∗ < 2/q − γ , we only need to apply Proposition 2.9 to

f,g,1(t,t+τ) to obtain the continuity ofK →K+. ✷
Similarly, we can establish Hölder regularity for the operatorsJ andJ+.

PROPOSITION 2.11. – The operatorsJ and J+ are bilinear continuous from
H̃β(X)×A

β
γ,θ,p,T to Hβ+h(L2([0, T ]);ds;X) as soon as0< h< hγ .
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Proof. –Let 0� t � t + τ � T andK̃ be one ofK,K+. Then,

80
t,t+τJ

K̃(a)(s)= J K̃
t+τ (a)(s)− J K̃

t (a)(s)= J K̃
t+τ (a)

(
max(s, t)

)
. (2.14)

We plug in the estimate|a(u, s)| � ‖a‖H̃βwβ(u, s) for u > s, and get

∣∣80
t,t+τJ

K̃(a)(s)
∣∣� 80

t,t+τJ
K̃(wβ)(s)‖a‖H̃β

and thus the proposition is an easy consequence of the following lemma.✷
LEMMA 2.12. – The mappingK → J K̃(wβ) is linear continuous fromAβ

γ,θ,p,T to
Hβ+h(L2([0, T ]);ds) as soon as0<h< hγ .

Proof. –For 0< t < t + τ � T

J
K+
t+τ (wβ)(s)− JK+

t (wβ)(s)= J
K+
t+τ

(
1(t,t+τ)(s)wβ

)
(s)+ J

K+
t+τ

(
1(0,t)(s)wβ

)
(t).

According to Lemma B.1, the norm of(u, s) → 1(t,t+τ)(s)wβ(u, s) in Lq
w−γ q

is

dominated byCτβ+hγ . Therefore, Proposition 2.9

∥∥JK+
t+τ

(
1(t,t+τ)(s)wβ

)
(s)
∥∥
L2([0,T ],ds) �Cτβ+hγ ‖K‖γ,θ,p,T .

SinceK+ ∈A
β
γ,θ,p,T , then forh < hγ ,

∥∥JK+
t+τ

(
1(0,t)(s)wβ

)
(t)
∥∥
L2([0,T ],ds) �Cτβ+h‖K‖β .

Combining these two upper bounds yields the desired result.✷
The following technical results now involve pairs of rough kernels.

LEMMA 2.13. – The mapping(K1,K2) → 〈K1(t, ·),K2(t, ·)〉L2([0,T ]) is bilinear
continuous fromE2

γ,θ,p,T to the set of absolutely continuous functions, vanishing at the
origin, endowed with the norm

‖f ‖ =
T∫

0

|ḟ |(s)ds,

whereḟ is equal almost everywhere to the derivative off .

Proof. –Assume that the kernels can be written, as in the proof of Proposition 2.5,

Ki(t, s)=Ki(T , s)−
T∫
t

hi(u− s, s)w−γ (u+ ε, s)du for s � t, i = 1,2, (2.15)

wherehi(v, s)=∑n
l=1φl,i(v)ψl,i(s) and theφl,i ,ψl,i ∈ L∞(0, T ) have disjoint supports.

Then the mapping

1 : t → 〈
K1(t, ·),K2(t, ·)〉L2([0,T ])
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is differentiable with derivative

1̇(t)=K1(t, t)K2(t, t)+
t∫

0

(
∂1K1(t, s)K2(t, s)+K1(t, s)∂1K2(t, s)

)
ds.

From the domination relation (2.13) we get

∣∣1̇(t)
∣∣� d

dt

〈
K1,+(t, ·),K2,+(t, ·)〉L2([0,T ]). (2.16)

Integrating with respect tot yields, taking into account Proposition 2.10,

T∫
0

∣∣1̇(t)
∣∣dt �

〈
K1,+(t, ·),K2,+(t, ·)〉L2([0,T ]) � C‖K1‖γ,θ,p,T ‖K2‖γ,θ,p,T .

By Proposition 2.5, the space of kernels that can be written as in (2.15) is dense in
Eγ,θ,p,T . This concludes our proof since the space of absolutely continuous functions is
closed. ✷

We now associate to a pair(K,K ′) of rough kernels an integral operator

J
K,K ′
2,t (a)(s, s1)= a(s, s1)

( t∫
s

K(u, s)∂1K
′(u, s1()) du

)
1(s1<s) (2.17)

defined for measurablea : [0, T ]2 →X.

LEMMA 2.14. – If 0 < h < hγ , then the mappingJ2,t is bilinear continuous from

H̃β(X)×Eγ,θ,p,T ×A
β+hγ
γ,θ,p,T into Hβ+2h(L2([0, T ]2;X;ds ds1)).

Proof. –According to equality (2.14) applied to

ã(u, s1)=K(u, s)a(s, s1)1(s1<s)

we get

1(s1<s) 8
0
t,t+τJ

K,K ′
2 (a)(s, s1)= JK ′

t+τ (ã)
(
max(s, t)

)
.

Using again the dominating kernels,a ∈ H̃β(X) and that

(s − s1)
β � (u− s1)

β for 0< s1 < s < u

we obtain
∣∣80

t,t+τJ
K,K ′
2 (a)(s, s1)

∣∣� ‖a‖H̃β J
K ′+
t+τ

(
K+(u, s)wβ(u, s1)

)
(s1)1(s>s1).

According to Proposition 2.10 there exists a constantC such that:

∥∥(u, s)→K+(u, s)wβ(u, s1)
∥∥
H̃β+hγ (L2([0,T ])) � C‖K‖γ,θ,p,T . (2.18)
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Therefore, thanks to Proposition 2.11 we have the upper bound

∥∥80
t,t+τJ

K,K ′
2 (a)(s, s1)

∥∥
L2([0,T ],X,ds)

� C‖K‖γ,θ,p,T ‖K ′‖
A
β+hγ

γ,θ,p,T

‖a‖H̃β τ
β+2hγ . ✷

LEMMA 2.15. – The mapping(K,K ′) → 〈K(t + τ, ·)−K(t, ·), K ′(t, ·)〉L2([0,T ]) is

bilinear continuous fromAβ
γ,θ,p,T ×E2

γ,θ,p,T to R with norm bounded byCτβ+h for any
h ∈ (0, hγ ) (we extendK so thatK(u, s)= 0 if u < s).

Proof. –Thanks to (2.13) we can restrict ourselves toK+,K ′+. we have:∣∣〈K+(t + τ, ·)−K+(t, ·), K ′
+(t, ·)

〉
L2([0,T ])

∣∣
=

t∫
0

ds K ′
+(t, s)

t+τ∫
t

du∂1K+(u, s)

=
t∫

0

ds K ′
+(t, s)

t+τ∫
t

du (u− s)−β(u− s)β ∂1K+(u, s)

�
t∫

0

ds K ′
+(t, s)(t − s)−β

t+τ∫
t

du (u− s)β ∂1K+(u, s)

=
t∫

0

ds K ′
+(t, s)(t − s)−β80

t,t+τJ
K+(wβ)(s)

�
( t∫

0

ds K ′
+(t, s)

2 (t − s)−2β

)1/2( t∫
0

ds
(
80

t,t+τJ
K+(wβ)(s)

)2)1/2

�
(
C1‖K ′‖

A
β

γ,θ,p,T

)× (C2τ
β+h‖K‖γ,θ,p,T

)
.

The second inequality is Cauchy–Schwarz’s inequality, and the last one is due to
Hölder’s inequality(θ/2, θ∗/2) for the first factor (sinceβθ∗ < 1) and Lemma 2.12
for the second factor. We can now conclude with the help of Remark 2.3.✷

3. The space of integrands

3.1. A review of basic notions of Malliavin Calculus

A nice introduction to Malliavin Calculus can be found in Nualart’s book [22], but for
the sake of completeness, we state here the few definitions and properties we use in this
paper.

Let = denote the spaceC(I,R), I = [0, T ], equipped with the topology of uniform
convergence on the compact sets,F the Borelσ -field on =, P the standard Wiener
measure, and let{Bt(ω)= ω(t), 0� t � T }. For anyt � 0, we defineFt = σ (ω(s), s �
t) ∨N , whereN denotes the class of the elements inF which have zeroP measure.
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Forh ∈ L2(I,R), we denote byB(h) the Wiener integral

B(h)=
∫
I

(
h(t),dBt

)
.

Let X be a separable Hilbert space with norm|·|X. (UsuallyX = L2([0, T ]i;R).) Let S
denote the dense subset ofL2(=,F,P) consisting of those classes of random variables
of the form:

F = f
(
B(h1), . . . ,B(hn)

)
, (3.1)

wheren ∈ N, f ∈ C∞
b (Rn;X), h1, . . . , hn ∈ L2(I,R). If F has the form (3.1), we define

its derivative as the processDF
def= {DtF, t ∈ I } given by

DtF =
n∑

k=1

∂f

∂xk

(
B(h1), . . . ,B(hn)

)
hk(t).

We shall denote byD1,α the closure ofS with respect to the norm

‖F‖1,α = ‖F‖α +
∥∥‖DF‖L2(I )

∥∥
α
.= E

[|F |α]1/α +E

[( t∫
0

|DuF |2 du

)α/2]1/α

.

The higher order derivativeDnF are defined inductively, and the spaceDn,α is the
closure ofS under the norm

‖F‖n,α = ‖F‖α +
∥∥∥∥∥

n∑
i=1

∥∥DiF
∥∥
L2(I i)

∥∥∥∥∥
α

.

Then, defineδ, the Skorokhod integral with respect toW , as the adjoint ofD, i.e.,
Dom(δ) is the set ofu ∈ L2(=× I ) such that there exists a constantc with∣∣∣∣E

[∫
I

DtFut dt
]∣∣∣∣� c‖F‖2, ∀F ∈ S.

If u ∈ Domδ, δ(u) is defined as the unique element ofL2(=) which satisfies

E
[
δ(u)F

]= E

[∫
I

DtFut dt
]
, ∀F ∈ S.

In order to prevent a confusion betweenδ, an admissible parameter, andδ the Skorokhod
integral, we shall from now on use the same notations for the Ito and the Skorokhod
integral, that is:

δ(u)=
T∫

0

u(s)dBs.
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Let L1,2 be the Hilbert spaceL2(I ;D1,2) endowed with the norm

‖u‖2
L1,2 = E

[∫
I

u2
t dt +

∫
I×I

(Dvut )
2 dv dt

]
.

We haveL1,2 ⊂ Domδ, and foru ∈ L1,2

E

[( T∫
0

u(s)dBs

)2]
=E

[∫
I

u2
t dt
]
+E

[∫
I

∫
I

Dtus Dsut ds dt
]

� ‖u‖2
L1,2. (3.2)

Note that{u ∈ L2(=× I ); u isFt progressively measurable} ⊂ Domδ, and for such au,
δ(u) coincide with the usual Itô integral. Note that whenu is progressively measurable,
Dsut = 0 for s > t, so (3.2) is consistent with the formula in the adapted case.

Let L2,2 be the Hilbert spaceL2(I 2,D2,2) endowed with the norm

‖u‖2
L2,2 = E

[∫
I2

u2(t, s)dt ds +
∫
I3

(
Dvu(t, s)

)2
dv dt ds +

∫
I4

(
D2

v,ru(t, s)
)2

dt ds dv dr
]
.

(3.3)
We haveL2,2 ⊂ Dom(δ ◦ δ) and foru ∈ L2,2

E

[ T∫
0

( s∫
0

u(s, s1)dBs1

)
dBs

]
� 2‖u‖2

L2,2. (3.4)

Property P(Integration by parts formula). – Suppose thatu belongs toL1,2. LetF be
a random variable belonging toD1,2 such thatE[F 2 ∫

I u
2
t dt]<∞, then

∫
I

Fut dBt = F

∫
I

ut dBt −
∫
I

DtFut dt, (3.5)

in the sense thatFu belong to Dom(δ) if and only if the right-hand side of (3.5) belongs
to L2(=).

For m = 1,2, let CβLm,2(0, t) = Hβ(Dm,2) ∩ Lm,2 be the space of processesa ∈
Lm,2(0, t) such that for a constantC

∥∥a(u)− a(v)
∥∥

Dm,2 � C|u− v|β (0� u, v � t). (3.6)

3.2. The space of good integrands

Recall that(p, γ, θ) is a set of admissible parameters, that is

1< p < 2,
1

p
+ 1

q
= 1,

2

q
> γ >

1

q
, δ = 2p

2− p
(3.7)

hγ = 1

θ∗
<

2

q
− γ,

1

θ/2
+ 1

θ∗/2
= 1. (3.8)
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The spaceGIγ,θ,q,t is the space of adapted processesa ∈ L1,2(0, t) such that‖a‖γ,θ,q,t <
∞ where

‖a‖γ,θ,q,t def=
( ∫

0<s<u<t

(‖a(u)− a(s)‖D1,2(u− s)−γ
)q

duds
)1/q

+
( t∫

0

∥∥a(s)∥∥θ∗2 ds

)1/θ∗

(we hope that the use of the same notations form norms of kernels and norms of
integrands will not confuse the reader). With the notations introduced in the previous
section,

‖a‖γ,θ,q,t =
∥∥80a

∥∥
L
q
w−γ q

(D1,2)
+‖a‖Lθ∗ (L2(=)).

Observe that ifa ∈ CβL1,2(0, t) is adapted and bounded, and ifβ > γ − 1
q
, then

a ∈ GIγ,θ,q,t .
Finally, we need to introduce the subsetCGIγ,θ,q,t of processesa ∈ GIγ,θ,q,t such that

t∫
0

t∫
s

E
[(
Dsa(u)

)2]q/2
(u− s)−γ q duds <+∞

which we endow with the norm

∣∣‖a‖∣∣
γ,θ,q,t

= ‖a‖γ,θ,q,t +‖Da‖Lq
w−γ q

(L2(=)).

4. Integration of deterministic functions

We recall that to a rough kernelK we associate the integral operator defined for a
measurablea on (0, t)

Ita(s)=K(t, s)a(s)+
t∫

s

(
a(u)− a(s)

)
∂1K(u, s)du (0< s < t) (4.1)

as soon as the integral on the right-hand side makes sense for almost everys in (0, t).
WhenK is a smooth kernel, we have

Ita(s)=K(s, s)a(s)+
t∫

s

a(u)∂1K(u, s)du (0< s < t).

We shall also consider the integral operator

Jta(s)=
t∫

s

a(u, s) ∂1K(u, s)du (0< s < t). (4.2)
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We end this section by the definition of the integral of a deterministic function. Since
K(t, s)= It1[0,t](s), we have, fors < t ,

Cov
(
WK(s),WK(t)

)=E

[ t∫
0

K(t, u)dBu

s∫
0

K(s, v)dBv

]

= 〈It1[0,t], It1[0,s]〉L2,

where〈,〉L2 denotes the inner product ofL2(R+).
Accordingly, we defineL2

K(0, t)= I−1
t (L2(0, t)) and endow it with the inner product

〈f,g〉L2
K
(0,t )

def= 〈Itf, Itg〉L2. (4.3)

L2
K(0, t) is the closure ofL2

K(0, t) with respect to〈· , ·〉L2
K
(0,t ). Givenf ∈ L2

K(0, t), it is
natural to define

t∫
0

f (s)dWK(s)=
t∫

0

Itf (u)dBu. (4.4)

This is clearly an isometry betweenL2
K(0, t) and the Gaussian space generated by

(WK(s),0� s � t). It is interesting to note that forf ≡ 1 we obtain

t∫
0

dWK(s)=WK(t).

5. Regularity of sample paths

PROPOSITION 5.1. – Assume thatK ∈Eγ,θ,p,t . Then, almost surely, the sample paths
of WK are Hölder continuous of indexτ ∈ (0, hγ ). More precisely, ifα > 1

hγ
and

τ ∈ [0, hγ − 1
α
[ then for some constantC

∥∥∥∥ sup
0�u<v�t

|WK(v)−WK(u)|
|v− u|τ

∥∥∥∥
α

� C‖K‖γ,θ,p,t .

Proof. –SinceWK is a Gaussian process with covariance

RK(u, v)=
min(u,v)∫

0

K(v, s)K(u, s)ds. (5.1)

Proposition 2.10 yields for 0� u < v < t∥∥WK(v)−WK(u)
∥∥

2 =
∥∥K(v, ·)−K(u, ·)∥∥

L2(0,t ) � C|v − u|hγ ‖K‖γ,θ,p,t .
Then, we use Kolmogorov’s Continuity Lemma in the special case of Gaussian
processes, as described by the next lemma.✷
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LEMMA 5.2. –Let (Z(t),0 � t � T ) be a centered Gaussian process such that for
someδ > 0

E
[(
Z(t)−Z(s)

)2]�C(T )|t − s|δ (0� s, t � T ).

ThenZ has a modification(denoted by the same letterZ) with Hölder continuous paths
of orderλ for eachλ ∈ [0, δ/2[.

Furthermore, for everyp � sup(1,2/δ) we have

∥∥∥ sup
0�s,t�T

∣∣Z(t)−Z(s)
∣∣∥∥∥

p

� C(T )1/2 21+1/p

1− 21/2p−δ/2
T δ/2mp,

∥∥∥∥ sup
0�s<t�T

|Z(t)−Z(s)|
(t − s)λ

∥∥∥∥
p

�C ′(λ, δ,p,T )C(T )1/2 (0 � λ < δ/2− 1/p).

Wheremp
p is the pth moment of the absolute value of a standard Gaussian random

variable.

Since the proof of this lemma uses the explicit constant of Kolmogorov’s Lemma, we
feel compelled to state here the version of this lemma that we use, which can be found
in [10], Section XXIII, numbers 19 and 20.

LEMMA 5.3. –Let (X(t),0� t � T ) be a real process such that for someσ > 0 and
somep � 1

E
[|Xt −Xs |p]� C|t − s|1+σ (0� s, t � T ).

Then for everyλ ∈ [0, σ/p[ the random variable

Mλ = sup
{ |Xt −Xs|

|t − s|λ : s, t ∈ Q, s �= t,0 � s, t � T

}

is almost surely finite. More precisely,

‖Mλ‖p �C1/p 2λ+1+1/p

1− 2λ−σ/p
T (1+σ−λ)/p.

Proof of Lemma 5.2. –For everyp � 1, sinceZ(t) − Z(s) is a centered Gaussian
random variable, we have

E
[∣∣Z(t)−Z(s)

∣∣p]� mp
pC(T )

p/2|t − s|δp/2 (0� s, t, T ).

If p > sup(1,2/δ), then we obtain the upper bound on thepth moment, and the fact that
Z has Hölder continuous paths for everyλ ∈ [0, δ/2− 1/p[. ✷

COROLLARY 5.4. –Assume that for somep � 1, K ∈ Eγ,θ,p,t . Then there exists a
sequence of kernels(Kn,n ∈ N) in Fγ,θ,p,t such that

sup
s�t

∣∣WK(s)−WKn
(s)
∣∣→ 0 in L2 and a.s.
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Proof. –There exists a sequence of kernels(Kn,n ∈ N) in Fγ,θ,p,t such that
‖Kn −K‖γ,θ,p,t → 0. We let

Mn = sup
s�t

∣∣WK(s)−WKn
(s)
∣∣.

Proposition 5.1 yields, forα > 1
hγ

andτ = 0,

‖Mn‖α � C‖K −Kn‖γ,θ,p,t → 0.

By taking a subsequence, we can ensure that
∑‖Mn‖αα < +∞, and thus obtain, by a

Borel–Cantelli argument, the almost sure convergence ofMn to 0. ✷

6. Construction of the stochastic integral

The first step of our construction is to identify the semi-martingale integral
∫
a(s)×

dWK(s), for a adapted andWK a semi-martingale, with a sum of (Skorokhod) integrals
of a and its stochastic gradient with respect to the driving Brownian motionB and
time.

PROPOSITION 6.1. – Assume thata ∈ GIγ,θ,q,t andK is a semi-martingale kernel in
Eγ,θ,p,t . Then

(i) The processIt (a)(·) is in L1,2(0, t) and

∥∥∥∥∥
t∫

0

It (a)(s)dBs

∥∥∥∥∥�
∥∥It (a)∥∥L1,2(0,t ) � ‖a‖γ,θ,q,t‖K‖γ,θ,p,t .

(ii) We have the decomposition

t∫
0

a(s)dWK(s)=
t∫

0

Ita(s)dBs +
t∫

0

( t∫
s

Dsa(u)∂1K(u, s)du

)
ds. (6.1)

(iii) If furthermorea ∈ CGIγ,θ,q,t then the process

s → Jt
(
D·(a)(·))(s)=

t∫
s

Dsa(u)∂1K(u, s)du

satisfies ∥∥∥∥∥
t∫

0

Jt
(
D·(a)(·))(s)

∥∥∥∥∥
L2(=)

�
t∫

0

∥∥Jt(D·(a)(·))(s)∥∥L2(=)
ds

�C
∣∣‖a‖∣∣

γ,θ,q,t
‖K‖γ,θ,p,t
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and we have the upper bound

∥∥∥∥∥
t∫

0

a(s)dWK(s)

∥∥∥∥∥
L2(=)

�C
∣∣‖a‖∣∣

γ,θ,q,t
‖K‖γ,θ,p,t . (6.2)

Proof. –(i) On the one hand, Lemma 6.2(ii) implies thatJt(a)(·) ∈ L1,2(0, t) and

∥∥Jt (a)∥∥L1,2(0,t ) � ‖a‖Lq
w−γ q

(D1,2)‖K‖γ,θ,p,t .

On the other hand, the second part of Proposition 2.9 implies that

∥∥K(t, ·)a(·)∥∥
L2([0,T ],L2(=,P))

� C‖a‖Lθ∗ (L2(=))‖K‖γ,θ,p,T .
We conclude by combining these two results.

(ii) Recall from Proposition 2.5 thatWK is a semi-martingale with decomposition

dWK(s)=K(s, s)dBs +W∂1K(s)ds.

Therefore, sincea is adapted and inL1,2(0, t), we have that
t∫

0

a(s)dWK(s)=
t∫

0

a(s)K(s, s)dBs +
t∫

0

a(s)W∂1K(s)ds

=
t∫

0

a(s)K(s, s)dBs +
t∫

0

a(u)

( u∫
0

∂1K(u, s)dBs

)
du.

We now apply the integration by parts formula of Malliavin Calculus
t∫

0

a(s)dWK(s)=
t∫

0

a(s)K(s, s)dBs +
t∫

0

( u∫
0

a(u)∂1K(u, s)dBs

)
du

+
t∫

0

( u∫
0

Dsa(u)∂1K(u, s)ds

)
du. (6.3)

SinceM2 def= supx�t

∫ x

0 ∂1K(x,u)2 du < +∞, we can apply Fubini’s Theorem to the
third term on the right-hand side of (6.3) to obtain

t∫
0

( u∫
0

Dsa(u)∂1K(u, s)ds

)
du=

t∫
0

( t∫
s

Dsa(u)∂1K(u, s)du

)
ds.

Indeed,

E

[ t∫
0

( u∫
0

∣∣Dsa(u)
∣∣∣∣∂1K(u, s)

∣∣ds
)

du

]
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� ME

[ t∫
0

( u∫
0

∣∣Dsa(u)
∣∣2 ds

)1/2

du

]

� M‖a‖L1,2.

The anticipating Fubini’s Stochastic Theorem (see Theorem 3.1 of Leon [17]) yields that

t∫
0

( s∫
0

a(u)∂1K(u, s)dBs

)
du=

t∫
0

( t∫
s

a(u)∂1K(u, s)du

)
dBs.

Indeed, all we need to do is to consider the finite measureµ(dx) = dx1[0,t ](x) on
X= [0, t] and the measurable function

φ(x,u,ω)= a(x,ω)∂1K(x,u) (x, u � t).

It is clear that for fixedx ∈ [0, t], φ(x) :u→ φ(x,u, ·) is in L1,2(0, t), withDvφ(x,u)=
Dva(x)∂1K(x,u) and

∥∥φ(x)∥∥2
L1,2 =E

[ t∫
0

(
φ(x,u)2 +

t∫
0

(
Dvφ(x,u)

)2
dv

)
du

]

=
x∫

0

du∂1K(x,u)2 E

[
a(x)2 +

x∫
0

(
Dva(x)

)2
dv

]
.

Therefore the Bochner integral
∫
X φ(x)dµ(x) is well defined since(∫

µ(dx)
∥∥φ(x)∥∥L1,2

)2

�µ(X)

∫
µ(dx)

∥∥φ(x)∥∥2
L1,2

�µ(X)E

[ t∫
0

dx

(
a(x)2 +

x∫
0

(
Dva(x)

)2
dv

) x∫
0

∂1K(x,u)2 du

]

�µ(X)

(
sup
x�t

x∫
0

∂1K(x,u)2 du

)
‖a‖L1,2(0,t ) <+∞.

(iii) The first part is a consequence of the first part of Proposition 2.9 applied to the
process̃a(u, s)=Dsa(u). We conclude by combining this upper bound with (i).✷

LEMMA 6.2. –
(i) For everya ∈ L1,2(0, t) such thats → ∫ t

s a(v)∂1K(v, s)dv is in L1,2 we have the
commutation relation

Du

t∫
s

a(v)∂1K(v, s)dv =
t∫

s

Dua(v)∂1K(v, s)dv.
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(ii) The application (a,K) → JK
t (a) is bilinear continuous from(L1,2(0, t) ∩

Lq
w−γ q

(Dm,2))×Eγ,θ,p,T to Lm,2 with m= 0,1,2.

Proof. –(i) The simplest way to see this property is to use the Wiener chaos expansion
of a

a(s)=∑
m�0

1m

(
fm(·, s)),

where 1m denotes the multiple Wiener integral andfm(s1, . . . , sm, s) are square
integrable kernels symmetric in the firstm variables. By linearity, we can restrict
ourselves to the casea =1m(fm(·, s)) for somem � 1.

On the one hand, Fubini’s Stochastic Theorem implies that

t∫
s

a(v)∂1K(v, s)dv=
t∫

s

dv ∂1K(v, s)1m

(
fm(•, v))

=1m

(
•→

t∫
s

∂1K(v, s)fm(•, v)dv

)
.

Therefore,

Du

t∫
s

a(v)∂1K(v, s)dv =m1m−1

(
•→

t∫
s

∂1K(v, s)fm(•, u, v)dv

)
.

On the other hand,

t∫
s

Dua(v)∂1K(v, s)dv=
t∫

s

∂1K(v, s)m1m−1
(
fm(•, u, v))dv

=m1m−1

(
•→

t∫
s

∂1K(v, s)fm(•, u, v)dv

)
.

(ii) For t ∈ [0, T ], Proposition 2.9 implies∥∥s → JK
t

(
a(·, s))(s)∥∥

L2(=×[0,T ]) +
∥∥(r, s)→ JK

t

(
Dra(·, s))(s)∥∥L2(=×[0,T ]2)

� C‖a‖Lq
w−γ q

(D1,2)‖K‖γ,θ,p,T . (6.4)

We shall now use a by product of the proof of Proposition 2.5, namely the existence
of a sequence of semi-martingale kernels(1n)n∈N given by

1n(r, s)=K(T, s)−
T∫
r

hn(u− s, s)

(
u+ 1

n
− s

)−γ

du,

hn(v, s)=
N∑
i=0

φn
i (v)ψ

n
i (s),
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whereφn
i ,ψ

n
i are inL∞, thei → φn

i have disjoint support and limn→∞ ‖K −1n‖γ,θ,p,T
= 0.

It is clear (see (i)) that for everyn, the random variable

J1n
t

(
a(·, s))(s)=

t∫
s

a(u, s)hn(u− s, s)

(
u+ 1

n
− s

)−γ

du

belongs toD1,2 and that

DrJ
1n
t

(
a(·, s))(s)= J1n

t

(
Dra(·, s))(s). (6.5)

From the inequality (6.4) applied to the kernels1n −K,1n −1m we deduce that the
sequence(J1n

t (a(·, s))(s), s ∈ [0, T ]) is a Cauchy sequence inL1,2(0, T ) that converges
to (JK

t (a(·, s))(s), s ∈ [0, T ]) in L2(=× [0, T ]).
Thanks to (6.5), we obtain also that(DrJ

1n
t (a(·, s))(s), (s, r) ∈ [0, T ]2) converges to

(JK(Dra(·, s))(s), (s, r) ∈ [0, T ]2) in L2(=× [0, T ]2).
Therefore,(JK

t (a(·, s))(s), s ∈ [0, T ]) is in L1,2(0, T ) and we have the commutation
relation.

DrJ
K
t

(
a(·, s))(s)= JK

t

(
Dra(·, s))(s). (6.6)

It is now clear that (6.4) gives the proof of the second part of the lemma form= 1. For
m= 2, we only need to replacea by Da. ✷

Combining the density ofFγ,θ,p,t in Eγ,θ,p,t (see Proposition 2.5) with Proposition 6.1
yields that the continuous bilinear operatorλt : CGIγ,θ,q,t × Fγ,θ,p,t → L2:

λt(a,K)=
t∫

0

a(s)dWK(s)

can be uniquely extended to an operatorλ̃t : CGIγ,θ,q,t × Eγ,θ,p,t → L2, defined on the
closure of this product space.

DEFINITION 6.3. –For a ∈ CGIγ,θ,q,t and K ∈ Eγ,θ,p,t the stochastic integral of
a with respect toWK is defined to bẽλt(a,K) and denoted by

∫ t

0a(s)dWK(s). By
construction we have the decomposition(6.1)and the upper bound(6.2).

7. The stochastic integral as a process

We shall exhibit assumptions that ensure that the processt → ∫ t

0a(s)dWK(s) has a
continuous modification.

THEOREM 7.1. – Assume that for someβ > 0 such thatβ + hγ > 1
2:

• K ∈A
β
γ,θ,p,T .

• The adapted integranda is in CβL1,2(0, T ).
• sups�T |a| ∈ Lα, for αhγ > 1.
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Then the processt → ∫ t

0Ita(s)dBs has a continuous modification on[0, T ].
If, furthermore,α ∈ CGIγ,θ,q,T then t → ∫ t

0a(s)dWK(s) has a continuous modifica-
tion on[0, T ].

Proof. –Recall that the stochastic integral may be represented as

t∫
0

It (a)(s)dBs =X(t)+ Y (t),

X(t)=
t∫

0

K(t, s)a(s)dBs,

Y (t)=
t∫

0

Jt
(
80a

)
(s)dBs.

The continuity ofX is established via Kolmogorov’s continuity criterion. More
precisely forα > 0 big enough, there existsη > 0 andC = C(T ,α) such that

E
[∣∣X(t + τ)−X(t)

∣∣α]� Cτ 1+η (0� t < t + τ � T ). (7.1)

First we write

X(t + τ)−X(t)=
t∫

0

(
K(t + τ, s)−K(t, s)

)
a(s)dBs

+
t+τ∫
t

K(t + τ, s)a(s)dBs.

Sincea is adapted, we can apply Burkholder–Davis–Gundy inequalities to the martin-
gales

r →
∫
0

[
K(t + τ, s)−K(t, s)

]
1(0,t)(s) a(s)dBs,

r →
∫
0

K(t + τ, s)1(t,t+τ)(s) a(s)dBs

to obtain, for a constantCα, the upper bound

E
[∣∣X(t + τ)−X(t)

∣∣α]1/α �CαE

[( t∫
0

[
K(t + τ, s)−K(t, s)

]2
a(s)2 ds

)α/2]1/α

+CαE

[( t+τ∫
t

K(t + τ, s)2a(s)2 ds

)α/2]1/α

.

The integrability assumptions ona, and Proposition 5.1 implies, forα > 2,
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∥∥X(t + τ)−X(t)
∥∥
Lα(=)

�Cα

∥∥sups�T |a(s)|
∥∥
Lα(=)

∥∥K(t + τ, ·)−K(t, ·)∥∥
L2([0,T ])

�C
∥∥sups�T |a(s)|

∥∥
Lα(=)

‖K‖γ,θ,p,T τ hγ .
Therefore we only need to assume alsoαhγ > 1 to obtain (7.1). The existence of a
continuous modification for the processY is given by the Proposition 7.2.

If, furthermore,a ∈ CGIγ,θ,q,T , then the stochastic integral may be represented as

t∫
0

a(s)dWK(s)=
t∫

0

It (a)(s)dBs +Z(t), Z(t)=
t∫

0

Jt
(
D·(a)

)
(s)ds.

The processZ is obviously a continuous process so that ends the proof.✷
PROPOSITION 7.2. – Let β > 0 such thatβ + hγ > 1

2 . Assume thata ∈ H̃β(D1,2 ∩
L1,2) and K ∈ A

β
γ,θ,p,T . Then the processt → ∫ t

0J
K
t (a(·, s))(s)dBs has a continuous

modification.
In particular, if a ∈ CβL1,2(0, T ) thenã(u, s)=80

s,ua = a(u)− a(s) is in H̃β(D1,2 ∩
L1,2) and t → ∫ t

0J
K
t (80a)(s)dBs has a continuous modification.

Proof. –According to Lemma 6.2(ii) we haveDrJ
K(a)(s)= JK(Dra)(s) and∥∥JK

t+τ

(
a(·, s))(s)− JK

t

(
a(·, s))(s)∥∥L1,2 � C‖a‖H̃β (D1,2)‖K‖

A
β

γ,θ,p,T

τ β+hγ .

Since 2(β + hγ ) > 1 we can conclude by Kolmogorov’s continuity criterion.✷
8. Itô’s formula

Itô’s formula for fractional Brownian motion of Hurst parameterH > 1
2 is now well

known: see, for instance, Decreusefond and Ustunel [9], Dai and Heyde [8]. Here, we
show how to obtain it for a wide family of kernels. The first step of our method is to
write Itô’s formula for a semi-martingale kernel in a suitable way, that is a way that will
be easily extended to more general kernels.

PROPOSITION 8.1. –Let K be a semi-martingale kernel andf ∈ C2
b . Then, almost

surely, for everyt > 0:

f
(
WK(t)

)= f (0)+
t∫

0

It
(
f ′(WK)

)
(s)dBs

+ 1

2

t∫
0

f ′′(WK(s)
) d

ds
E
[
WK(s)

2]ds. (8.1)

Proof. –We let φ(s) = E[WK(s)
2] = ∫ s

0 K(s, r)2 dr . SinceK is a semi-martingale
kernel,φ is differentiable with

φ′(s)=K(s, s)2 + 2

s∫
0

K(s, r)∂1K(s, r)dr.
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By the chain rule,

Dsf
′(WK(u)

)= f ′′(WK(u)
)
Ds

(
WK(u)

)= f ′′(WK(u)
)
K(u, s),

and therefore the process(f ′(WK(s));D ∈ [0, T ]) is in L1,2(0, t) and we may use
Proposition 6.1. Furthermore,

t∫
0

Jt
(
Dsf

′(WK)
)
(s)ds =

t∫
0

ds

t∫
s

dv ∂1K(v, s)Dsf
′(WK(v)

)

=
t∫

0

ds

t∫
s

dv ∂1K(v, s)f ′′(WK(v)
)
K(v, s).

Recall that the semi-martingale decomposition ofWK is

dWK(s)=K(s, s)dBs +W∂1K(s)ds.

Therefore, Itô’s formula yields

f
(
WK(t)

)= f (0)+
t∫

0

f ′(WK(s)
)

dWK(s)+ 1

2

t∫
0

f ′′(WK(s)
)
K(s, s)2 ds

= f (0)+
t∫

0

It
(
f ′(WK)

)
(s)dBs +

t∫
0

Jt
(
Dsf

′(WK)
)
(s)ds

+ 1

2

t∫
0

f ′′(WK(s)
)
K(s, s)2 ds

= f (0)+
t∫

0

It
(
f ′(WK)

)
(s)dBs + 1

2

t∫
0

f ′′(WK(s)
)
φ′(s)ds. ✷

We shall make use ofBβ
γ,θ,p,T defined in 2.6.

THEOREM 8.2. –Assume that for some12 − hγ < β < hγ the kernelK is in B
β
γ,θ,p,T

for everyT > 0, thatf ∈ C4
b , and thathγ >

1
4. Then, almost surely, for everyt > 0,

f
(
WK(t)

)= f (0)+
t∫

0

It
(
f ′(WK)

)
(s)dBs

+ 1

2

t∫
0

f ′′(WK(s)
) d

ds
E
[
WK(s)

2]ds. (8.2)

Proof. –Our first step will be to prove that the processes on both sides have a
continuous modification. Then, we shall establish this formula for fixedt > 0.
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SinceWK has a continuous modification, see Proposition 5.1,f (WK) also has a
continuous modification. It is obvious that

t → f (0)+ 1

2

t∫
0

f ′′(WK(s)
) d

ds
E
[
WK(s)

2]ds,
also has a continuous modification.

In fact, Proposition 5.1 ensures that a.s. and inL2, sample paths of the Gaussian
processWK are Hölder continuous with indexβ < hγ . Since f ′, f ′′ and f (3) are
bounded, Proposition 8.4 ensures thata = f ′(WK) belongs toCβL1,2(0, T )∩L∞([0, T ]
× =) as soon asβ < hγ . We furthermore impose thatβ > 1

2 − hγ > γ − 1/q,
which is possible sincehγ > 1/4; then, according to Theorem 7.1, the processt →∫ t

0It (f
′(WK))(s)dBs has a continuous modification.

Let us now establish formula (8.2) for a fixedt > 0. Assume thatKn is a family
of semi-martingale kernels such thatKn → K in B

β
γ,θ,p,T . Then formula (8.2) is valid

for Kn.
We shall first handle the term

t∫
0

f ′′(WKn
(s)
) d

ds
E
[
WKn

(s)2]ds.
According to the proof of Corollary 5.4, by taking a subsequence, we may assume that
sups�t |WKn

(s)−WK(s)| → 0 both inL2 and n almost surely. Therefore according to
Lemma 2.13:

t∫
0

f ′′(WKn
(s)
) d

ds
E
[
WKn

(s)2]ds →
t∫

0

f ′′(WK(s)
) d

ds
E
[
WK(s)

2]ds.
To prove the convergence

t∫
0

Itf
′(WKn

)(s)dBs →
t∫

0

Itf
′(WK(s)

)
dBs

we need to prove thatIKn
t an → Ita in L1,2(0, t) wherea(s) = f ′(WK(s)) andan(s) =

f ′(WKn
(s)). Thanks to Proposition 6.1, and to the fact thatKn → K in B

β
γ,θ,p,T , it

is enough to prove that‖a − an‖γ,θ,q,t #−→
n→∞ 0, and this we achieve in the following

Proposition 8.4. ✷
DEFINITION 8.3. –From now on,80F, 81F will denote the Taylor expansion of the

functionF :

80
x,yF = F(y)− F(x), 81

x,yF = F(y)−F(x)− (y − x)F ′(x).

PROPOSITION 8.4. – Assumef ∈ Cm+i+2
b with i = 0,1 and m = 0,1,2. Then the

mappingK →8i
WK(s),WK(u)f is continuous fromEγ,θ,p,T to H(i+1)hγ (Dm,2).
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Proof. –Let X be a separable Hilbert space.

DEFINITION 8.5. –A functionG :R2 × [0, T ]2 → X is said to satisfy assumption
HH(m, k, k̃) if G is m-times differentiable with respect to its first two variables,
and if there exists a constantC(G) = C(G,m,k, k̃) such that for every real numbers
(x, y) ∈ R2, 0 � u, s � T , integersi, j such that0 � i + j � m, we have

∣∣∂i+j
i,j G(x, y, u, s)

∣∣
X

�C(G)

j∑
l=0

|y|max(k−l,0)|u− s|k̃ .

Observe that iff ∈ CM+m
b , thenG(x, y,u, s) = 8M−1

x,x+yf = 1
M!
∫ 1

0 f (M)(x + θy)yM dθ
satisfiesHH(m,M,0). Therefore Proposition 8.4 is an immediate consequence of the
following lemma. ✷

LEMMA 8.6. – Assumeα � 1 and G satisfiesHH(m, k; k̃). Then for everyK ∈
Eγ,θ,p,T , 0 � u, s � T ,

∥∥G(WK(s),8
0
s,uWK,u, s)

∥∥
Dn,α(X)

� C ×C(G)×
m∑

j=0

‖K‖k+j
γ,θ,p,T × |u− s|khγ+k̃ .

Proof. –The proof is an induction on the integerm.
Assume thatG satisfiesHH(0, k, k̃). Then,

∣∣G(WK(s);80
s,uWK;u, s)∣∣X � C(G)

∣∣80
s,uWK

∣∣k|u− s|k̃ .

Since the random variable80
s,uWK is centered with covariance‖80

s,uK(·, r)‖
L2([0,T ],dr)

with the conventionK(u, r) = 0 for u < r , we deduce from Proposition 2.10 the upper
bound ∥∥80

s,uK(·, r)∥∥
L2([0,T ],dr) � C‖K‖γ,θ,p,T |u− s|hγ . (8.3)

We plug in the expression of thekαth order moment of a centered Gaussian random
variable, to obtain that the lemma is satisfied for a constant

C ′ = C
∥∥N (0,1)

∥∥k
khγ

.

We now assume the lemma satisfied form and letG verify assumptionHH(m+1, k, k̃).
ThenG is differentiable with respect to the first two variables up to the orderm+1, and
G together with its partial derivatives have at most polynomial growth. According to the
chain rules of Malliavin Calculus, the random variableG(WK(s),8

0
s,uWK;u, s) belongs

to Dm+1,α and

Dm+1[G(WK(s),8
0
s,uWK;u, s)]= ∑

σ∈Sm+1,i+j=m+1

Gi,j,σ
(
WK(s),8

0
s,uWK;u, s),

whereSn denotes the group of ordern permutations,⊗ the tensor product and
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G(i, j, σ )(x, y, u, s)(r1, . . . , rm+1)

= 1

i!j !∂
i+j
i,j G(x, y, u, s)⊗i K(s, ·)(rσ(1), . . . , rσ(i))

⊗j 80
s,uK(·, ·)(rσ(i+1), . . . , rσ(m+1)). (8.4)

Injecting the upper bound 8.3, we get thatG(i, j, σ ) satisfiesHH(0, k− j, k̃+ jhγ ) on
X = L2([0, T ]m+1). We can therefore apply the lemma form= 0 to everyG(i, j, σ ) to
obtain ∥∥Dm+1[G(WK(s),8

0
s,uWK;u, s)]∥∥Lα(X)

� CC(G,m+ 1)
∑
j

‖K‖k+j
γ,θ,p,T |u− s|khγ+k̃ . (8.5)

We conclude by using the definition of the norm inDα,m+1 and the induction
assumption. ✷

LEMMA 8.7. –Assume thatG satisfiesHH(m, k, k̃) with m � 1, k > 0. Then the
mappingK →G(WK(s),8

0
s,uWK,u, s) is continuous fromEγ,θ,p,T to H̃khγ+k̃(Dm−1,2)∩

L1,2 (with the conventionL0,2 = L2(=)).

Proof. –Using Taylor integral expansion we have forK,K ′ ∈Eγ,θ,p,T

G
(
WK(s);80

s,uWK;u; s)−G
(
WK ′(s);80

s,uWK ′ ;u; s)=
1∫

0

Bθ dθ, (8.6)

with

Bθ =∇G
(
WK+θ(K−K ′)(s);80

s,uWK+θ(K−K ′);u, s)[WK−K ′(s);80
u,sWK−K ′

]t
,

wherext denotes the transpose ofx.
For i = 1,2, the mapping∂iG(x, y, u, s) satisfiesHH(m−1, k+1− i, k̃). Therefore

Lemma 8.6 implies∥∥∂iG(WK+θ(K−K ′);80
s,uWK+θ(K−K ′); s, u)∥∥Dm−1,2

� C|u− s|(k+1−i)hγ+k̃
m−1∑
j=0

(‖K‖k+j
γ,θ,p,T +‖K ′‖k+j

γ,θ,p,T

)
. (8.7)

The same Lemma 8.6 yields∥∥WK−K ′(s)
∥∥

Dm−1,2 �C‖K −K ′‖γ,θ,p,T ,∥∥80
s,uWK−K ′

∥∥
Dm−1,2 � C‖K −K ′‖γ,θ,p,T |u− s|hγ . (8.8)

Combining (8.7) and (8.8) yields,

‖Bθ‖Dm−1,2 � C

m−1∑
j=1

(‖K‖k+j
γ,θ,p,T +‖K ′‖k+j

γ,θ,p,T

)‖K −K ′‖|u− s|khγ+k̃

and injecting this into (8.6) yields the desired result.✷
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8.1. Application to fractional Brownian motion

According to Lemma 2.7 we can takehγ = H − ε with ε > 0 small enough so that
hγ >

1
4 and then use Theorem 8.2.

8.2. Ito formula for H > 1
6

We first derive a new expression for the Ito formula for the Gaussian processes
associated to semi-martingale kernels.

PROPOSITION 8.8. –Let K a semi-martingale kernel andf ∈ C4
b . Then, for t ∈

[0, T ] almost everywhere,

f
(
WK(t)

)= f (0)+ 1

2

t∫
0

f ′′(WK(s)
) d

ds
RK(s, s)ds

+
t∫

0

K(t, s)
(
f ′(WK(s)

)+ f ′′(WK(s)
)
E
[
WK(t)−WK(s) |Fs

])
dBs

−
t∫

0

K(t, s)f ′′′(WK(s)
)
E
[(
WK(t)−WK(s)

)
WK(s)

]
dBs

+
t∫

0

IKt
[
81

WK(s),WK(·)f
′ + f ′′′(WK(s)

)
E
[(
WK(·)−WK(s)

)
WK(s)

]]
(s)dBs

−
t∫

0

( s∫
0

[(
f ′′(WK(s))− f ′′(WK(s1))

)

×
t∫

s

∂1K(u, s1)K(u, s)du

]
dBs1

)
dBs

with RK the covariance function of the Gaussian processWK

RK(x, y)= E
[
WK(x)WK(y)

]
.

Proof. –Let K a semi-martingale kernel andf ∈ C4
b . According to Proposition 8.1,

for t ∈ [0, T ], we have

f
(
WK(t)

)= f (0)+
t∫

0

IKt
(
f ′(WK)

)
(s)dB(s)

+ 1

2

t∫
0

f ′′(WK(s)
) d

ds
E
[
WK(s)

2]ds.
A Taylor expansion off ′ betweenWK(u) andWK(s) yields
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IKt
(
f ′(WK)

)
(s)=K(t, s)f ′(WK(s)

)+ IKt
(
81

WK(s),WK(·)f
′)(s)

+ f ′′(WK(s)
)
IKt
(
80

s,·WK

)
(s).

Sincef ∈ C4
b , the process(a(s)= f ′′(WK(s)),0� s � T ) belongs toL2,2 and

s∫
0

Ds1a(s)

t∫
s

K(u, s)∂1K(u, s1)duds1

= f ′′′(WK(s)
) t∫
s

K(u, s)
d

ds
E
[
WK(u)WK(s)

]
du.

Using the integration by parts formula,

s∫
0

Ds1a(s)

t∫
s

K(u, s)∂1K(u, s1)duds1

= f ′′′(WK(s)
)(
K(t, s)E

[
80

s,tWK WK(s)
]− JK

t

(
E
[
80

s,·WKWK(s)
])
(s)
)
.

Then Lemma 8.9 yields,

f
(
WK(t)

)= f (0)+ 1

2

t∫
0

f ′′(WK(s)
) d

ds
RK(s, s)ds

+
t∫

0

[
f ′(WK(s)

)+ f ′′(WK(s)
)
E
[
80

s,tWK |Fs

]]
K(t, s)dBs

+
t∫

0

[
f ′′′(WK(s)

)
E
[
80

s,tWK WK(s)
]]
K(t, s)dBs

+
t∫

0

IKt
[
81

WK(s),WK(·)f
′ + f ′′′(WK(s)

)
E
[
80

s,·WKWK(s)
]]
(s)dBs

+
t∫

0

( s∫
0

80
WK(s),WK(s1)

f ′′ JK
t

(
K(·, s))(s1)dBs1

)
dBs. ✷

LEMMA 8.9. – LetK be a semi-martingale kernel anda ∈ L2,2 an adapted process.
Then

t∫
0

a(s)IKt
(
80

s,·WK

)
(s)dBs

=
t∫

0

a(s)E
[
80

s,tWK |Fs

]
K(t, s)dBs
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+
t∫

0

[ s∫
0

(
80

s,s1
a

t∫
s

K(u, s)∂1K(u, s1)du

)
dBs1

]
dBs

−
t∫

0

( s∫
0

[
Ds1a(s)

t∫
0

K(u, s)∂1K(u, s1)du

]
ds1

)
dBs.

Proof. –We splitWK(u)−WK(s)=80
s,uWK in two parts:

80
s,uWK = E

[
80

s,uWK |Fs

]+ (80
s,uWK −E

[
80

s,uWK |Fs

])
.

Observe thatWKE
= (E[80

s,tWK |Fs], s � t � T ) is a centered Gaussian process that
can be written, thanks to Fubini’s Stochastic Theorem,

WKE
(t)=

s∫
0

80
s,tK(·, s1)dBs1 =

t∫
s

du

( u∧s∫
0

∂1K(u, s1)dBs1

)
.

The integration by parts formula (applied to the semi-martingaleWKE
and the

deterministic kernelK(·, s)) yields

K(t, s)WKE
(t)=K(s, s)WKE

(s)+
t∫

s

WKE
(u)∂1K(u, s)du

+
t∫

s

K(u, s)dWKE
(u).

Sincea is adapted andWKE
(s)= 0, we obtain

t∫
s

a(s)E
[
80

s,uWK |Fs

]
∂1K(u, s)du

= a(s)E
[
80

s,tWK |Fs

]
K(t, s)−

t∫
0

a(s)1(s,t)(u)K(u, s)dWKE
(u)

= a(s)E
[
80

s,tWK |Fs

]
K(t, s)−

t∫
s

a(s)K(u, s)

( s∫
0

∂1K(u, s1)dBs1

)
du.

The integration by parts formula yields then, as in the proof of Proposition 6.1
t∫

s

a(s)E
[
80

s,uWK |Fs

]
∂1K(u, s)du

= a(s)E
[
WK(t)−WK(s) |Fs

]
K(t, s)

−
s∫

0

(
a(s)

t∫
s

K(u, s)∂1K(u, s1)du

)
dBs1
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−
s∫

0

( t∫
s

Ds1a(s)K(u, s)∂1K(u, s1)du

)
ds1.

Integrating with respect to dB(s) each term of this equality we obtain,
t∫

0

(
a(s)

t∫
s

E
[
WK(u)−WK(s) |Fs

]
∂1K(u, s)du

)
dBs

=
t∫

0

a(s)E
[
WK(t)−WK(s) |Fs

]
K(t, s)dBs

−
t∫

0

[ s∫
0

(
a(s)

t∫
s

K(u, s)∂1K(u, s1)du

)
dBs1

]
dBs

−
t∫

0

[ s∫
0

( t∫
s

Ds1a(s)K(u, s)∂1K(u, s1)du

)
ds1

]
dBs. (8.9)

Observe that fors � t ,

WK(u)−WK(s)−E
[
WK(u)−WK(s) |Fs

]=
t∫

s

K(u, s1)dB(s1)

and using again stochastic integration by parts and Fubini’s Stochastic Theorem for
deterministic integrands, we obtain that

t∫
0

t∫
s

a(s)
(
WK(u)−WK(s)−E

[
WK(u)−WK(s) |Fs

])
∂1K(u, s)dudBs

=
t∫

0

( s1∫
0

a(s)

t∫
s

K(u, s1)∂1K(u, s)dudBs

)
dBs1.

Summing up this equality with (8.9) yields, after one substitutions ↔ s1,
t∫

0

a(s)IKt
(
WK(·)−WK(s)

)
(s)dBs

=
∫

a(s)E
[
WK(t)−WK(s) |Fs

]
K(t, s)dBs

−
t∫

0

[ s∫
0

((
a(s)− a(s1)

) t∫
s

K(u, s)∂1K(u, s1)du

)
dBs1

]
dBs

−
t∫

0

( s∫
0

[
Ds1a(s)

t∫
0

K(u, s)∂1K(u, s1)du

]
ds1

)
dBs. ✷
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PROPOSITION 8.10. – Assumeβ + 2hγ > 1
2. Then the mapping

(K,K ′, a)→ a(s, s1)J
K
t

(
K ′(·, s))(s1)1(s1<s)

= a(s, s1)1(s1<s)

t∫
s

K ′(u, s)∂1K(u, s1)du

is multilinear continuous fromAβ
γ,θ,p,T × Eγ,θ,p,T × (L∞

wβ
(D2,2) ∩ L2,2) to L2,2. In

particular, there exists a constantC such that∥∥∥∥∥
t∫

0

dB(s)

s∫
0

(
a(s, s1)J

K
t

(
K ′(·, s))(s1)

)
dB(s1)

∥∥∥∥∥
L2

� C‖a‖H̃β‖K‖
A
β

γ,θ,p,T

‖K ′‖γ,θ,p,T .
Moreover, the process

t →
t∫

0

dB(s)

s∫
0

(
a(s, s1)

t∫
s

K ′(u, s)∂1K(u, s)du

)
dBs1 (8.10)

has a continuous modification on[0, T ].
Proof. –According to the definition (2.17) ofJ2,t we have

a(s, s1)J
K
t

(
K ′(·, s))(s1)1(s1<s) = J

K,K ′
2,t (a)(s, s1). (8.11)

Hence, Lemma 2.14 implies that

∥∥JK ′,K
2,t (a)(s, s1)

∥∥
L2,2 � C‖a‖H̃β‖K‖

A
β

γ,θ,p,T

‖K ′‖γ,θ,p,T .

Moreover, thanks to the same Lemma 2.14, if

X(t)=
t∫

0

dB(s)

s∫
0

(
a(s, s1)J

K
(
K ′(·, s))(s)1(s1<s)

)
dBs1

then we have, for 0� t � t + τ � T ,

∥∥X(t + τ)−X(t)
∥∥
L2 �C‖a‖H̃β‖K‖

A
β

γ,θ,p,T

‖K ′‖γ,θ,p,T τ β+2hγ .

Since 2(β + 2hγ ) > 1, Kolmogorov’s continuity criterion ensures the existence of a
continuous modification. ✷

We can now state and prove an Ito formula that applies to the family of Gaussian
processesWK such thathγ > 1

6 and therefore, by Lemma 2.7 to fractional Brownian
motion with Hurst indexH > 1

6.
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PROPOSITION 8.11. – Let K ∈ B
β
γ,θ,p,T with β/2 > hγ > 1

6 and let f ∈ C6
b . Then

almost surely, for0< t � T ,

f
(
WK(t)

)= f (0)+ 1

2

t∫
0

f ′′(WK(s)
) d

ds
E
[
WK(s)

2]ds

+
t∫

0

[
f ′(WK(s)

)+ f ′′(WK(s)
)
E
[
WK(t)−WK(s) |Fs

]]
K(t, s)dB(s)

−
t∫

0

[
f ′′′(WK(s)

)
E
[(
WK(t)−WK(s)

)
WK(s)

]]
K(t, s)dB(s)

+
t∫

0

IKt
(
81

WK(s),WK(·)f
′ + f ′′′(WK(s)

)
E
[(
WK(·)−WK(s)

)
WK(s)

])
(s)dBs

+
t∫

0

dBs

s∫
0

80
s,s1

f ′′(WK)I
K
t

(
K(·, s))(s1)dBs1.

Proof. –The first step of the proof consists in showing that every process involved
in this formula has a continuous modification. Then we shall prove in a second step
that the formula is valid for each fixedt by establishing the continuity with respect to
K ∈ Fγ,θ,p,T for the norm‖ · ‖γ,θ,p,T and using Proposition 8.8. We conclude by using

the density ofFγ,θ,p,T into B
β
γ,θ,p,T .

Step 1: Existence of a continuous modification

(1) Sincef (4) is bounded, Proposition 8.4 entails that81
WK(s),WK(u)f

′ belongs to

H̃2hγ (D1,2). Hence, we infer from Proposition 7.2 that since 3hγ > 1
2, the process

t →
t∫

0

IKt
(
81

WK(s),WK(·)f
′)(s)dBs

has a continuous modification.
(2) Similarly, sincef ∈ C4

b , Lemma 2.15 implies that we may apply Proposition 7.2
to the process(f ′′′(WK(s))E[(WK(u)−WK(s))WK(s)] ; 0 � u, s � T ) to obtain
the existence of a continuous modification for

t →
t∫

0

IKt
(
f ′′′(WK(s)

)
E
[(
WK(u)−WK(s)

)
WK(s)

])
(s)dBs.
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(3) Sincef ∈ C5
b we can apply Proposition 8.10 to80

WK(s),WK(s1)
f ′′ to obtain the

existence of a continuous modification for

t →
t∫

0

dBs

s∫
0

80
s,s1

f ′′(WK)I
K
t

(
K(·, s))(s1)dBs1.

(4) The existence of a continuous modification for

t →
t∫

0

f ′′(WK(s)
)
E
[
WK(t)−WK(s) |Fs

]
K(t, s)dBs

is a consequence of Burkholder–Davis–Gundy inequalities, Proposition 5.1, and
the fact thatf ′′ is bounded.

(5) Eventually, sincef ∈ C3
b the existence of a continuous modification for

t →
t∫

0

f ′′′(WK(s)
)
E
[
WK(s)

(
WK(t)−WK(s)

)]
K(t, s)dBs

is a consequence of Burkholder–Davis–Gundy inequalities and Lemma 2.15.

Step 2: Itô’s formula for a fixed time

According to the definition 2.6, ofBβ
γ,θ,p,T , the mappingK → ∫ t

0f
′′(WK(s)) ×

d
dsE[WK(s)

2]ds is continuous onBβ
γ,θ,p,T .

In order to establish the continuity of the linear application

K →
t∫

0

[
f ′(WK(s)

)+ f ′′(WK(s)
)
E
[
WK(t)−WK(s) |Fs

]]
K(t, s)dB(s)

−
t∫

0

[
f ′′′(WK(s)

)
E
[(
WK(t)−WK(s)

)
WK(s)

]]
K(t, s)dB(s)

we only need to prove the continuity fromEγ,θ,p,T into the spaceLα, for someα � θ∗/2,
of the integrand mapping

K → f ′(WK(s)
)+ f ′′(WK(s)

)
E
[
WK(t)−WK(s) |Fs

]
− f ′′′(WK(s)

)
E
[(
WK(t)−WK(s)

)
WK(s)

]
.

This can be obtained by Taylor expansions forf ′, f ′′ andf ′′′, Proposition 5.1, Lem-
ma 2.15 and the following upper bound, proved for any adapted processb bounded in
Lθ∗/2 via Burkholder–Davis–Gundy and Hölder(θ/2, θ∗/2) inequalities

∥∥∥∥∥
t∫

0

K(t, s)b(s)dBs

∥∥∥∥∥
L2

� C‖K‖γ,θ,p,T
( T∫

0

E
[|b(s)|θ∗/2]ds

)1/θ∗

.
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Thanks to Lemma 6.2, the continuity of

K →
t∫

0

IKt
(
81

WK(s),WK(·)f
′)(s)dBs

is a consequence of the continuity of

K ∈Eγ,θ,p,T →81
WK(s),WK(u)f

′ ∈ H̃β
(
D2,2)

for someβ > hγ − 1
q
. This latter continuity is an easy consequence of Proposition 8.4

applied toβ = 2hγ .
Sincehγ > 1/6, combining Lemmas 6.2 and 2.15 with a Taylor expansion off ′′′,

shows that the mapping

K →
t∫

0

IKt
(
f ′′′(WK(s)

)
E
[(
WK(·)−WK(s)

)
WK(s)

])
(s)dBs

is continuous fromA
hγ
γ,θ,p,T into L2(=,P).

Eventually, thanks to Proposition 8.4, we can apply Proposition 8.10 toa(s, s1) =
f ′(WK(s))− f ′(WK(s1)) to get the continuity of

K →
t∫

0

dBs

s∫
0

80
s,s1

f ′′(WK)I
K
t

(
K(·, s))(s1)dBs1

from A
2hγ
γ,θ,p,T into L2(=,P). ✷

Appendix A. Pathwise versus stochastic integration

We shall establish that forWH
1 , WH

2 two independent fractional Brownian motions of
index 0<H < 1

2,

t∫
0

WH
1 (s)dWH

2 (s)

cannot be defined as aclassicalpathwise integral. To this end we recall that ifCα[0, T ]
denotes the space of Hölder continuous functions on[0, T ] of indexα then:

for everyα ∈ (0,H), a.s WH ∈Cα[0, T ], (A.1)

P
(
WH ∈CH [0, T ])= 0. (A.2)

((A.1) can be proved with Kolmogorov’s continuity criterion, and (A.2) is an immediate
consequence of the law of the iterated logarithm, Theorem 1.7 of [2].) Letv(f ) be the
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variation index of the functionf :

v(f )= inf
{
p > 0: vp(f ) <+∞}.

Then, see Theorem 5.3 of [11],

almost surely v
(
WH

)= 1

H
. (A.3)

(1)
∫ t

0W
H
1 (s)dWH

2 (s) cannot be defined as ap-variation integral . Indeed, see [11],
this requires that forp,q > 0 such that1

p
+ 1

q
> 1,

WH
1 ∈Wp

([0, T ]), WH
2 ∈Wq

([0, T ]).
From (A.3) we deduce thatp,q � 1

H
and thusH > 1

2.
(2)

∫ t
0W

H
1 (s)dWH

2 (s) cannot be defined as ageneralized stochastic integral of
Russo–Vallois[28] and Zähle [34]. Indeed, this integral requires that the integrandWH

1
admits a generalized quadratic variation, and this implies by Proposition 5.1 [34], that

WH
1 is in the function spaceW

1
2−
2,∞. Since, see Theorem 1.1 [34], forε > 0 small enough

W
1
2−ε

2,∞ ⊂ I
1
2−2ε(L2)⊂ C

1
2−3ε.

Hence, we need thatWH
1 ∈ C

1
2−3ε for arbitrary smallε, and this impliesH � 1

2.
(3)

∫ t
0W

H
1 (s)dWH

2 (s) cannot be defined as ageneralized integral of Ciesielski
et al. [4]. If this were the case, then Section V.B implies that

WH
1 ∈ B1−H

p,1 for
1

p
<H <

1

p′ = 1− 1

p
.

Since, forε > 0 small enough,B1−H
p,1 ⊂ B1−H−ε∞,∞ = C1−H−ε, this implies againH � 1

2.

Appendix B. An elementary Calculus Lemma

This lemma is used in Section 2 to evaluate the Hölder exponent of some integral
processes.

LEMMA B.1. – Let, for0� s � t � T andγ ∈ (0,1)∪ (1,2),

f (s, t)=
∫

0<u<s<v<t

dudv(v− u)−γ .

Then, ∣∣f (s, t)∣∣� C(T , γ ) (t − s)hγ (0� s � t � T ),



P. CARMONA ET AL. / Ann. I. H. Poincaré – PR 39 (2003) 27–68 67

with hγ = 1 if γ ∈ (0,1) andhγ = 2− γ if γ ∈ (1,2). Similarly the function defined for
0� s � t � T by

g(s, t)=
∫

s<u<t<v<T

|u− v|−γ dudv

satisfies|g(s, t)| � C|T − s|hγ .

Proof. –Sinceγ /∈ {1,2}, then

f (s, t)= 1

(1− γ )(2− γ )

(
t2−γ − (t − s)2−γ − s2−γ

)
.

If 1 < γ < 2, this implies|f (s, t)| � C(T , γ )(t − s)2−γ since the functionx → xδ is
locally Hölder of indexδ if δ ∈ (0,1).

If 0 < γ < 1, then Taylor’s formula yieldst2−γ − s2−γ � C(t, γ )(t − s) and this
implies |f (s, t)| � C(T , γ )(t − s). ✷
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