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ABSTRACT. — For every value of the Hurst indei € (0, 1) we define a stochastic integral
with respect to fractional Brownian motion of indék. We do so by approximating fractional
Brownian motion by semi-martingales.

Then, for H > 1/6, we establish an Itd's change of variables formula, which is more
precise than Privault’s Ito formula (1998) (established for evéry 0), since it only involves
anticipating integrals with respect to a driving Brownian motion.
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RESUME. — Pour toutH € (0, 1), nous construisons une intégrale stochastique par rapport
au mouvement Brownien fractionnaire de parameétre de HiirsCette intégrale est basée sur
I'approximation du mouvement Brownien fractionnaire par une suite de semi-martingales.

Ensuite, pourH > 1/6, nous établissons une formule d'Itd qui précise celle obtenue par
Privault (1998), au sens ou elle ne comporte que des intégrales anticipantes par rapport a |
mouvement Brownien directeur.
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1. Introduction

Fractional Brownian motion was originally defined and studied by Kolmogorov [14]
within a Hilbert space framewaork. Fractional Brownian motion of Hurst infex (0, 1)
is a centered Gaussian procéB§ with covariance
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(for H = % we obtain standard Brownian motion). Fractional Brownian motion has
stationary increments

E[(W! () -~ WH ()] =1t =5 (s.1>0).

and isH -self similar
1
(—HWH(CI); t> O) 4 (W' (@);t >0) (forallc > 0).
C

The Hurst parameteH accounts not only for the sign of the correlation of the
increments, but also for the regularity of the sample paths. IndeedH for % the
increments are positively correlated, and fér < % they are negatively correlated.
Furthermore, for everg € (0, H), its sample paths are almost surely Holder continuous
with index B. Finally, it is worthy of note that forH > % according to Beran’s
definition [3], it is a long memory process: the covariance of increments at distance
u decrease ag?" 2.

These significant properties make fractional Brownian motion a natural candidate a:
a model of noise in mathematical finance (see Comte and Renault [5], Rogers [26]), an
in communication networks (see, for instance, Leland, Tagqu and Willinger [16]).

Recently, there has been numerous attempts at defining a stochastic integral wit
respect to fractional Brownian motion. Indeed, fér#£ %W” is not a semi-martingale
(see, e.g., Example 2 of Section 4.9.13 of Liptser and Shyriaev [19]), and usual Itd’s
stochastic calculus may not be applied. However, the integral

t

/ a(s) dw (s) (1.1)

0

may be defined for suitable. On the one hand, sind®* has almost its sample paths
Holder continuousof indeg, for any 8 < H, the integral (1.1) exists in the Riemann—
Stieljes sense (path by path) if almost every sample path lo&s finite p-variation
with % + B > 1 (see Young [32]): this is the approach used by Dai and Heyde [8]

and Lin [18] whenH > % Let us recall that the-variation of a functionf over an
interval [0, ] is the least upper bound of surk§ | f (x;) — f(x;—1)|” over all partitions
O=xp<x;<---<x,=T.Arecent survey of the important properties of Riemann—
Stieltjes integral is the concentrated advanced course of Dudley and Norvaisa [11]. Al
extension of Riemann-Stieltjes integral has been defined by Zéhle [33], see also th
recent work of Ruzmaikina [29], by means of composition formulas, integration by parts
formula, Weyl derivative formula concerning fractional integration/differentiation, and
the generalized quadratic variation of Russo and Vallois [27,28].

On the other handW* is a Gaussian process, and (1.1) can be defined for
deterministic processesby way of anL? isometry: see, for example, Norros, Valkeila
and Virtamo [21] or Pipiras and Taqqu [23]. With the help of stochastic calculus of
variations (see [22]) this integral may be extended to random processeshis case,
the stochastic integral (1.1) is a divergence operator, that is the adjoint of a stochasti
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gradient operator (see the pioneering paper of Decreusefond and Ustunel [9]). It mus
be noted that Duncan, Hu and Pasik-Duncan [12] have defined the stochastic integr:
in a similar way by using Wick product. Feyel and de La Pradelle [13], Ciesielski,
Kerkyacharian and Roynette [4] also used the Gaussian propei/‘ofo prove that
WH belongs to suitable function spaces and construct a stochastic integral.

Eventually, Alos, Mazet and Nualart [1] have established, following the ideas
introduced in a previous version of this paper, very sharp sufficient conditions that
ensures existence of the stochastic integral (1.1).

The construction of the stochastic integral. The starting point of our approach is
the following representation of fractional Brownian motion given by Decreusefond and
Ustunel [9]

WH () = /KH(t, s)dB(s),
0
where

K (s S)Z(IL)H_MFOL] 11 1

t
- Z—-HH+=Z,1—- 1), 1.2
T(H+ 5 22 3 s> (s <) (1.2)

where F denotes Gauss hypergeometric function amli{z);r > 0) is a standard
Brownian motion.

The first step we take is to define the integral of deterministic functions (Section 4).
Observing tha # (¢, s) = 11,0 ,(s) wherel is the integral operator

19 F(s) = K™ (1, 5) f(5) + / () — £5) K" (u,5) dlu, (1.3)
we define

/ Fls)dWH (s) = / 17 f(u)dB, (1.4)
0 0

for suitable deterministic functions.
In order to extend formula (1.4) to random procesgew/e introduce the key idea of
this paper, which is to approxima#®’ by processes of the type

Wi (1) = /K(t, s)dB(s) (tel0,T)) (1.5)
0

with a kernelK smooth enough to ensure thék is a semi-martingale (Proposition 2.5).
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Then, for a such aemi-martingalekernel K and a good integrand, we prove the
following generalization of (1.4)

t

/a(s) dWg (s) = /Ita(s) dB(s) + /I,Dsa(s) ds, (1.6)
0 0

0

whereD;a denotes the stochastic gradient dnis defined ad”.

In Sections 2 and 3 topologies are defined on the space of kernels and the space
integrands. These are not ‘natural’ topologiesdmihocones, whose sole aim is to fulfill
the following requirements:

(1) The mappinga, K) — féa(s) dWk (s) is bilinear continuous (Propositions 6.1).

(2) Rough kernels such as* are in the closure of the space of semi-martingale

kernels.

(3) For nice integrands the process — [ya(s) dWk (s) has a continuous modifica-

tion (Theorem 7.1).

Eventually, we are able to take limits in the Ité’s formula established for semi-
martingale kernels in Proposition 8.1. L€} be the set of functiong whose derivatives,
up to the order € N, are continuous and bounded. Privault proved thatfferC?,

FOWH @) = £(0) + / F1(WH(s)) dW? (5)
0

1 t
+5 / (W (s)) (cy2Hs*"1) ds,
0

where [y f/(WH (s)) dWH (s) is the L2-limit of divergences (Skorokhod integrals). For
H > 1/4 and f € C3, we show that this integral, which is not in general the limit of
Riemann sums, is a Skorokhod integral with respect to the driving Brownian motion:

FOWH @) = £O) + / 11 £/ (WH) (s) dB,
0

+ %/f”(WH (5)) (cu2H s?"71) ds. a.7)
0

By the same procedure, we have been able to prove an Itd's formuld ferl/6, in
Proposition 8.11. We do not give here this formula since it is complex (5 lines) and does
not seem to be an easy starting point for a generalization to éveryO0, 1).

To end this rather lengthy introduction we try to give an answer to a question that
nearly everyone involved with stochastic integration with respect to Fractional Brownian
motion has asked us.

“What is the difference between the stochastic approach and the pathwise approach
integration with respect to Fractional Brownian motion?”
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On the one hand we prove in the Appendix that {8, WS two independent
fractional Brownian motions of index/4 < H < 1/2, the integral

[wiodwte
0

cannot be defined for the classical and generalized pathwise integrals. On the other har
a slight generalization of our results enabled Coutin and Qian [7,6] to show that for
7 < H < 3 the integralfy W{ (s) dW/ (s) can be defined as a process with a continuous
modification.

Our main source of inspiration for 1té’s formula is T. Lyons paper [20], and in
particular the idea that in order to integrate with respect to rough signals, you may
sometimes have to replace approximating Riemann sums, of order 1, with Taylor sum
of higher order. More precisely, you may want to replg@ 7 (1, .1)) — f(WH (1)) by

FWH () — FWH @) — (WP (i) = WH @) £ (WP (@) + -

2. The vector spaces of kernels

The spaces of integrands and kernels we shall work with depend on parameter
(p,y,0). We shall assume from now on that the set y,6) of parameters is
admissible that is

1 1 2 1 2
l<p<2 —+-=1 —->y>-—, P (2.1)
P g q q 2—p
1 2 1 1
hy=—<--y, — =1 2.2
YSeSyTY st e (2:2)
Observe tha/2 andg /2 are conjugated Hdolder exponents, and that2/q.
Let K :R? — R be a measurable kernel such that
t
/K(t, 5)?ds < 400 for everyr > 0, (2.3)
0
K(t,s)=0 ifs >1. (2.4)

We consider the adapted Gaussian process
t
W) = [K(t.5)dB,.
0

where(B;; t > 0) is a standard Brownian motion.

DEFINITION 2.1.-We say thatK is a rough kernelif there exists a measurable
function (z,s) — 9:K (¢, s), such thatu — 9,K (u, s) is integrable on everys, '] C
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(s, +00) and satisfies
t/
K(t’,s)—K(t,s):/alK(u,s)du (s <t<t). (2.5)
t
We say thatk is asmooth kernelf K is a rough kernel that satisfies
t
K(t,s)—K(s,s):/alK(u,s)du (s <1). (2.6)

The topology on the space of rough kernels is defined via mixed Lebesgue space
(see Stroock [31], Section 6.2). L&Eq, B1, u1) and (E», By, up) be a pair ofo-

finite measure spaces and Igf, p» € [1, 00). Given a measurable functiofi on

(E1 x Es, By x By), define

p2/p1 1/p2
1F 1y = { / ( / |f(x1,xz>!’”m(dxl>) Mz(dxz)} ,
Eq

E3

and let L7129 (uq, uo) denote themixed Lebesgue spaaef R valued, By x Bo
measurablef for which || £, ,, < o©.

Fori =1,2 we let (E;, B;, u;) = ((0, 1), B(0, 1), ds) be the spac€0, ) endowed

with the o-field of Borel sets and Lebesgue measyre= p and p, =6, f(u,s) =

def :
01K (u, $)(t — 8)" Locs<uy @Kl 4., S 1£11,.5+ 1K@, )5, thatis

t ' 8/p 1/8 P 1/6
1K1, 6. d=ef</</|81K(u,s)(u—s)y]pdu> ds) + (/’K(t,s)]e ds>
0 s 0

Let £, ., be the space of rough kernetSsuch that| K ||, , , , < +00.

2.7)

LEMMA 2.2.-E, , ,,is a Banach space.

Proof. —Assume thatK,),cn is a Cauchy sequence i,y ,,. Then the sequence
of functions f,, (u, s) = 91K, (u, s)(u — 5)? Los -, iS @ Cauchy sequence Ir{?-2r/2=p),
Therefore it converges ih(?27/2=P) to a function f and we letz(u, s) = f(u, s)(u —
$)77. Since (K,(, -)).en is @ Cauchy sequence ib’(0, 1) it converges inL? to a
function¢ € L?(0, ¢). Finally, letting K be the kernel

K s):{qﬁ(s)—f,fz(u,s)du if0<s<v<t,
’ 0 if v<s <t

we conclude thatk is a rough kernel for which|K — K[, ,, — O since by
construction:

1K = Kullyo.p0 = ILf = fall s + [ Knt, ) = 0Ol 0
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Remark?2.3. — It is quite straightforward to prove, via Holder’'s inequality, that for
t < T, the spacef, o , 7 can be continuously embedded i) 4 , .. Indeed, we only
need to prove thatK (7, -) — K (t, )|l .60, < +00. We first observe that for< ¢:

T
|K(T,s)—K(t,s)| = /alK(u, 5) dlu

1/p

T
<(t — )Y ( / 31K (u, ) (u — s>y|”du>

Therefore, applying Hoélder's inequality to the pair of conjugated exponénts
5/6,r")

P 1/r'

t
/ K(T,s)— K(t,5)|"ds < C ( / (1 —s)"Ha=rr ds) K15, 6.p.7-
0

0

The first factor may be majorized by a consté?msincef —y>2 impliese(% ) >
-1

Let us recall that our main results are proved by approximating the fractional
Brownian motion kernel by smooth kernels for whidfy is a semi-martingale.

DEFINITION 2.4. —We say that the smooth kernélis a semi-martingalekernel if

sup(/alK(u,s)zds> +/K(s,s)2ds <400 (V1>0). 2.8)
0 0

u<t

PROPOSITION 2.5. —
() If K is a semi-martingale kernel, théik is a semi-martingale with decomposi-
tion

Wk (1) = /K(s,s) dB; +/W31K(s) ds.
0 0

(2) The vector space,, , ,, of semi-martingale kernels if, 4 , , isdenseirnE, g , ;.

Proof. —(1) The definition of a smooth kernel is more than what we need to apply
Fubini’'s Stochastic Theorem (see, e.g., Protter [25], Theorem 46):

t

Wk (t) = / (K(s, s)+ [ 01K (u, s) du) dB;

0 s
t t u
:/K(s,s)dB‘y—{—/(/BlK(u,s)st> du.
0 0 ‘0
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(2) Let e > 0 be given. We perform the change of variables= v + s in the
definition of | K|, 4., ,» and we letg(v,s) = 1K (v + 5, 5)v" Lo<y<—s). ThENg IS iN

LP9((0, 1) x (0, 1)) and by Lemma 6.2.11 of Stroock [31] can be approached at distance
less thare by a functioni (v, s) having the form

h(v,s) =Y ¢i()¥;(s),
i=1
where they;, ¢; are inL>°(0, t) and thep; have disjoint support. Therefore, if we let

A(”,S)ZK(I,S)—/h(u—s,s)(u—s)_ydu (s <r<t),

then A is a kernel such thatk — All, 4 ,, < &. Furthermore sincé; A(r, s) = h(r —
s,8)(r —s)V for 0 <s <r <t,andh is bounded, we see that is a smooth kernel.
However,A is not a semi-martingale kernelyjf > % Hence fore > 0 we consider

t
Ag(r,s) =K(t,s) — /h(u -5, 8)u+e—s)"7"du (s<r<t). (2.9)
The A, is a semi-martingale kernel, and

t t
Y
5 u-—=s
||A—Aglly,e,p,,<(C°”S°/ds</Km) 1
0 N

ase — 0 by dominated convergencen

8/p

du) —0

DEFINITION 2.6.—In order to prove the continuity of our stochastic integral we
introduceAffﬂ,p,T the subset of, y , r of kernelsk such that

t o t+T 2

||K||§ = sup r_(hVJrﬁ)/ [ /(u —)P01K (u, s) du] ds < +o00
O<t<t+t<T
0 t
and endow it with the norm
K =1Kl,6,p7+ 1K

Since 1td’s formula is proved by approximating with smooth kernels, we introduce
B, . the closure off, 4 , 1 in A”

v.0.p, y.0.p.T"
2.1. The case of fractional Brownian motion

We recall here the basic properties of hypergeometric functions required throughou
this paper (see, e.g., Chapter 9 of Lebedev [15]). Gauss hypergeometric functiol
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F(x, B,v, 2) is defined for every, 8, y, |z| <1l andy #0, -1, ... by

@Bk
F ’ ’ k] = ’
@Fv.2) g; k!

where(ax)p=1and(a);, =T'(¢ +k)/T'(a¢) =a(x+1)--- (¢ +k—1) is the Pochammer
index. The convergence radius of this series is 1 and, as soon(gsRgé— «) > 0,
lim,_1 F(a, B, y, z) exists and is finite. Obviously we have

F(a, ﬁ7 V’Z):F(IB’O(7 V’Z)7 F(a’IB’ V70):1

Furthermore, ifarg(1 — z)| < 7 and R€y) > Re(B) > 0,

1
__ Ty B—10q _ \v—F-1(1 _ .\
Fepy. 9=t 0/ ALy P A e, (210)

The hypergeometric functiof'(«’, 8’, y’, -) is said to be contiguous tB(«a, 8, y, -) if
la —a'|=21or|8—pB|=1or|y —y'| =1. If F; andF, are hypergeometric functions
contiguous taF, then there exists a relation of the type

P(2)F(2) + Pu(2) F1(2) + P2(2) F2(z) =0 (Jarg(l — 2)| <),

with P(z), P1(z), P»(z) polynomials in the variable. These relations ensure that there
exists an analytical continuation &f(«, 8, y, z) to the domain

CxCx (C\{0,-1,-2,...}) x {z: |argl —z)| <7 }.

We shall also use the asymptotic estimate, flnmg(l—z)| < 7, ReT’) > Re(w) >
0, Re(B) < 0:

T —=p) 4
Fa,B,y.2) —F(a)l"(y—ﬁ)( )" (z] = 00).

LEMMA 2.7.— Givens > 0and H # % the functiorr — K% (¢, s) is differentiable
on (s, +00) with derivative

f/2-H
K (t,s) = (s/)il(z —)f32 0<s <)
I'(H—-3)
Furthermore,K? e Aﬁﬁ,p,T for admissible parameteny, ¢, y, ...) such that

1 1
—+y>3/2—H, —9‘H—§‘+1>0 and B+ H <1
p

In particular, forO <e < H < % there exists a set of admissible parameters for which
h,=H —¢.
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Remark2.8. — Observe that fal < , we havey — % >1/2—H > 0.

Proof. —Let us state three facts:

(1) From the analyticity of the Gauss function, we deduce that the functien
K (t,s) is differentiable on(s, +00) with a derivative f(H,t,s) such that
H — f(H,1,s) is holomorphic on{H € C: Re(H) > —3}.

(2) The integral representation (2.10) implies that fére (1/2,1) the function
t — KH(z,s) is differentiable on(s, +00) with derivatived, K 7 (¢, s).

(3) The functionH — 31:K (¢, s) is holomorphic in the region

A={HeC: 0<Re(H) <1}\{3}.

Therefore, by analytic continuation: for0s < ¢, 3K (t,s) = f(H,t,s) onA.

To determine the admissible set of parameters for whi¢he E, o , r, we just use
the fact thats, ) — K% (¢, s) is continuous o0 < s < ¢}, combined with the following
consequence of the asymptotic estimate of

KH(t7 S) ~s—>0+ (ConSD S_IH_1/2|’
KH(I’ S) ~e—>t— (COHSD (l — s)H_l/z'

Therefore, given O< ¢ < H < 3, we can sett =% — £ andh, = £ = H — ¢,
q %

g—)/=H—£/2togetq>2,Z/q>)/,and)/—(%:(]1—(H—(9/2)>%—H>O.
It remains to show thafK||, < +oo (indeed, we can then approximake by the
sequencek,, (1, s) = K (¢ + 2, 5) of smooth kernels itF, 4, 7): for0<t <t +1 < T,

2

/( 7r(u —)P1K (u,s) du) ds

0 t
2

t 141
< /([ _ s)—l+26< /(Ll _ s)ﬂ-i-H—l—a dbl) ds
0 t

< Cr2PHH—e) O
2.2. Properties of integral operators associated to kernels

Let X be a separable Hilbert space with nofify, and K be a rough kernel. To a
measurable : [0, T] — X we associate

1X(a)(s) = K (¢, s)a(s) + /(a(u) —a(s))01K (u, s) du, (2.11)

as soon as the integral in the right-hand side makes sense for almost evgryT].
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Similarly we shall denote by/X the integral operator defined on measurable
f:[0,T1?—= X by

JEH)(s) =/f(u,s)81K(u,s)du, (2.12)

as soon as the integral in the right-hand side makes sense for almost evgryT'].
Observe that iA? @ = a(u) — a(s), then

1X(@)(s) = K(t, s)a(s) + J X (A%) (s).

SinceK andd; K need not be positive, we introduce a dominating positive kernel

K—i—(tv S) =

T
|K(T, s)]+/]81K(u,s)|du] 1<n-
t

ForO<s <t <tr+ 1 <T wehave

|K(t +1,5)— K(t, s)’ <Ky (t,s)— K, (t+r1,s),

|K(,5)| < Ki(t,5). (2.13)
Forg e R, B # 0, we letwy be the weight

wg(u,s) =maxu — s, 0)”.
Then if du ds denotes the Lebesgue measurg®']?, we introduce the Lebesgue space
LY (X)=L([0, T1? X; wy(u, s) duds).

Eventually we denote b#(X) the set of8 Holder continuous functions taking their
values inX:

Hﬁ(X):{f:[O,T]—>X,||f||Hﬁ(X): sup M<+O@}_

0<u<s<T |1/l _SV3

For functions of two variableg («, s) we introduce

ﬂﬁ(X):{f:[O, T1? > X, £l x, = SUp M<+oo}_

0<u<s<T |u - Sl‘3

Through the rest of this papéy, 8, p) denotes a set of admissible parametérs; 0 and
B € R*. The constanC may vary from line to line but depends only én, $, p, T, B);
to ease notation, we shall omit this dependency when the context allows it.

PROPOSITION 2.9. — For every fixed € [0, T]
(1) The mappings/: (f, K) — JX(f)(r) and JT:(f, K) — J,K+(f) are bilinear
continuous fromL¢,  (X) x Ey 4,7 10 L3([0, T1% ds, X).
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(2) The mappingd; : (a, K) — 1X(a) is bilinear continuous frond?" ([0, T'; ds; X)N
{a: A%aeLd (X)) x E,q,rtoL%(0,T]?ds, X).
W_yg v.v,p,

Proof. —Since|JtK(f)|X < J,K+(|f|X), we can suppose, without any loss in general-
ity, that X = R and studyy X+,
First, apply Holder’'s inequality to the pair of conjugated exponéptsy):

t 1/q t 1/p
|JIK+(f)(s)’ < (/w_yq(u,s)lﬂq(u,s) du) (/wyp(u,s)lalK(u,s)’pdu>

N s

Then, apply Hélder’s inequality tq;/2, §/2) to get
|‘J[K+(f)(')HLZ([O’T],dS) g ”f”L?L,_yq(R)”K”y,@,p,T'

The second assertion is clearly a consequence of the first one, another Holder
inequality for(0/2, 6*/2), and Remark 2.3:

HK([, )a() HLZ([O,T],dS) < “a”LH* ([0, T];R) ||K”y,9,p,t
< Cllall e o, 71wy 1K Wy 0,p.7- =

The next proposition establish the Holder regularity of a rough Kekhel s) with
respect to the first variable

PROPOSITION 2.10. — The spaceE, ,r may be continuously embedded into
H" (LA([0, T1; ds)).

Furthermore, the mapping — K is continuous fronk, , , r into H" (L?([0, T];
ds)).

Proof. —According to the inequalities (2.13), we only need to prove the second point.
The embedding is the following: we identifif . with the functionF:[0, 7] - X =
L?([0, T1; ds) defined byF (1) = K (t,-). Let 0< ¢ <t + v < T; we have, fors # ¢:

Ko(t+71.5) = Ki(t,8) = |K(T. )| Ly () + J7 7 (f + 8)(s)

with fu,s)= 1(t,t+r) (s)l(t+r,T) w), gu,s)= 1(0,:) (S)l(t,t+r)(u)-
According to Lemma B.1, there exists a const@rguch that:

+lgllye < Cle|a

W—_ygq

L1l

W—_ygq

and

1/6*
||1(t,t+r)”Le*([oj],d?) <Ct /9%,

Therefore, sinceh, = gi < 2/q — y, we only need to apply Proposition 2.9 to

f+ &, 1.1+ to obtain the continuity oK — K,.. O
Similarly, we can establish Holder regularity for the operatbendJ*.

_ProPOSITION 2.11. — The operatorsJ and J* are bilinear continuous from
HP(X) x AD, , r o HP"(L2([0, T1); ds; X) as soon a® < h < h,.
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Proof. —Let 0< ¢ <t + 1 < T andK be one ofK, K. Then,
AL, TR @) (s) = TK (a)(s) — I X (a)(s) = T . (@) (maxGs, 1)). (2.14)

We plug in the estimatgi(u, s)| < |lallzswp(u, s) for u > s, and get

|A, eI K@) (9)] < ”+,JK(wﬁ)(S)IIaIIHﬁ
and thus the proposition is an easy consequence of the following lemma.

LEMMA 2.12.— The mappingk — JX (w) is linear continuous froma’ , |  to
HPH(LA([O, T]); ds) as soon ad < h < h,,.

Proof. —-ForO<t<t+1t<T
Jzﬁ(wﬁ)(s) I (wp)(s) = 75 (L ()wp) (s) + J5 (Lo, (s)wp) (1).
According to Lemma B.1, the norm ofu,s) — 1,40 (s)wg(u,s) in Ly . is
dominated byCt#*"». Therefore, Proposition 2.9

H Jrl—%r (1(t,t+r) (s)w,g) (s) HLZ([O,T], ds) < Cfﬁ+hy 1K ”yﬂ,p,T'

Sincek € AL, , 7, thenforh < h,,

H J,I_(ﬁ; (1(0,t)(s)wﬁ> ) HLZ([O,T],ds) < Crfh IK ”ﬁ'

Combining these two upper bounds yields the desired resuit.
The following technical results now involve pairs of rough kernels.

LEMMA 2.13.— The mapping(Ki, K2) — (Ki(t,-), Ka(t, ")) 20,77 IS bilinear
continuous fromEﬁ 0.p.7 10 the set of absolutely continuous functions, vanishing at the
origin, endowed with the norm

T
||f||=/|f'|(s>ds,
0

where f is equal almost everywhere to the derivativefof
Proof. —Assume that the kernels can be written, as in the proof of Proposition 2.5,

Ki(t,s)=K;(T,s) — /h,-(u —s,9)w_, (u+¢e,s)du fors<tr, i=12  (2.15)
t

whereh; (v, s) = >/, ¢ (V)Y (s) and thep, ;, ¥, ; € L*>(0, T) have disjoint supports.
Then the mapping

At — (Ka(t, ), Ka(t,)) 240,
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is differentiable with derivative
A(t) =Ki(t,)Ko(t,t) + /(31K1(l, s)Ko(t,s) + K1(t, s)01 Ko (¢, S)) ds

From the domination relation (2.13) we get

d
[AD] < 3 (K1e(,), K24 9) 120 7y (2.16)

Integrating with respect toyields, taking into account Proposition 2.10,

/’A(t)’dt < <K1,+(ta ')a K2,+(ta .)>L2([O,T]) < C”Kl“yﬁ,p,T”KZHV,H,IJ,T'

By Proposition 2.5, the space of kernels that can be written as in (2.15) is dense ir
E, s, r- This concludes our proof since the space of absolutely continuous functions is
closed. O

We now associate to a pgik, K’) of rough kernels an integral operator
t
B K (@) (s, s0) = as, s1) (/K(u, $)01K (u, 51, du) L, <5) (2.17)

defined for measurabte: [0, T]°> — X.

LEMMA 2.14. - If O < h < h,, then the mappingfg,, is bilinear continuous from
HP(X) X Ey 657 x Ab o into HAT21(L2((0, T1Z; X ds dsy)).
Proof. —According to equality (2.14) applied to

d(l/l, Sl) = K(I/l, S)a(s, S]_) 1(S1<S)

we get

1(Y1<Y) Al‘ l‘+‘r ,K/(a)(sv Sl) - t+r(a)(ma)(s t))
Using again the dominating kernelse 7{# (X) and that

(s—s)/<(u—s1)f forO<s;<s<u
we obtain
K,K' K’
1AL T @) (s, s)| < llallys Jvs (Ko, )wp (u, 51)) (51) Loy
According to Proposition 2.10 there exists a constasuch that:

|G, 8) = Ko @, SYwp @, 50| gony 12077 < CIK 0,7 (2.18)
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Therefore, thanks to Proposition 2.11 we have the upper bound

K.,K' 2h
IA? ez @0, 5D | oo 1y x.a0) < CIHK o, 7 1K, iy Nallgge”™. o

LEMMA 2.15.—-The mappingK K') — (K(t+7t,)) = K(,-), K'(t,))12q0.7) IS
bilinear continuous fromt? , , ; x EZ, ,+ to R with norm bounded by'z#+" for any
h € (0, hy,) (we extendK so thatK(u s) 0 if u <s).

Proof. —Thanks to (2.13) we can restrict ourselvesto, K. . we have:

(Kot +7,) = Ki(8,), K)o |
t+7

—/dsK (t, s)/du81K+(u s)

t+7

_/dsK (1, s)/du (u—35)"Pu—s5)0.K,(u,s)

t+7

/dsK (t,8)(t — )~ ﬂ/du (u — )P 30.K, (u,s)

—/dsK t, )t — ) PAY L T (wp)(s)

172
< <O/ds K, (t,s)? (t—s)-2ﬁ> <O/ds (A2, T5+(wp)(s)) )

< (CallK e, ) (Cor? UK Ny .p.1)

1/2

The second inequality is Cauchy—Schwarz’s inequality, and the last one is due tc
Holder's inequality(6/2,6*/2) for the first factor (since86* < 1) and Lemma 2.12
for the second factor. We can now conclude with the help of Remark 233.

3. The space of integrands
3.1. Areview of basic notions of Malliavin Calculus

A nice introduction to Malliavin Calculus can be found in Nualart's book [22], but for
the sake of completeness, we state here the few definitions and properties we use in tt
paper.

Let © denote the spac€(7,R), I = [0, T], equipped with the topology of uniform
convergence on the compact sefsthe Borelo-field on 2, P the standard Wiener
measure, and €8, (w) = w(t), 0< ¢t < T}. Foranyt > 0, we define; = o (w(s), s <
t) v N, where N denotes the class of the elementsAnwhich have zerd® measure.
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Forh € L?(1,R), we denote byB(h) the Wiener integral

B(h) =/(h(t), dB,).

1

Let X be a separable Hilbert space with nory. (Usually X = L2([0, T]'; R).) LetS
denote the dense subsetlof(2, F, P) consisting of those classes of random variables
of the form:

F = f(B(h),..., B(hy)), (3.1)
wheren e N, f e C;°(R"; X), hy, ..., h, € L?(I,R). If F has the form (3.1), we define
its derivative as the proce$sF d:ef{D,F, t € I} given by

n 8
DF=) a—f(B(hl), ey B(hy)) i (D).
k=1 OXk

We shall denote b the closure ofS with respect to the norm

/ a/2 1/
IFllve = IFlla + | IDFl20p)]],- =E[|F|°‘]”°‘+EK/|DMF|2du> ]
0

The higher order derivativdd” F are defined inductively, and the spabé® is the
closure ofS under the norm

1 E e = 1 F o +

n .
Z HDIFHLZ(H)
i=1

Then, defines, the Skorokhod integral with respect W, as the adjoint ofD, i.e.,
Dom(é8) is the set oft € L?(Q2 x I) such that there exists a constarwith

o

’E[/D,Fut dt”écIIFllz, VF eS.
1

If u e Domé, §(u) is defined as the unique elementIgf(2) which satisfies

E[8(u)F] :E[/ D, Fu, dt}, VF€S.
1

In order to prevent a confusion betwe®ran admissible parameter, ahthe Skorokhod
integral, we shall from now on use the same notations for the Ito and the Skorokhoc
integral, that is:

T
8(u) :/u(s) dB;.
0
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Let LY2 be the Hilbert spac&?(/; D*?) endowed with the norm
el =E[/u3dz+ /w,,u,)zdvdt}
1 IxI

We havel 12 ¢ Doms, and foru e L12

T 2
E[(/u(s) st> :E[/ufdz} +EU/Dtus Dy, ds dt] <ultz. (3.2
0 1 1 1

Note that{u € L?(Q x I); u is F, progressively measuraljle Doms, and for such a,
8(u) coincide with the usual 1td integral. Note that wheis progressively measurable,
D,u, =0 fors > 1, so (3.2) is consistent with the formula in the adapted case.

Let L?2 be the Hilbert spacé&?(72, D%?) endowed with the norm

||u||L22_E[/u (t, s)dtds+/ Dyu(t,s)) dvdtds+/ ult, s)) drdsdvdr|.

12

(3.3)
We havel. 22 c Dom(8 o §) and foru e L2?

El/T (/u(s,sl) dBM) dB,

0 0

< 2lull?22. (3.4)

Property P(Integration by parts formula). — Suppose thdtelongs td_12. Let F be
a random variable belonging ®"2 such tha£[ F2 [, u?dt] < oo, then

/Fu,dBt:F/u,dB,—/D,Futdl, (35)
1 1 1

in the sense that'u belong to Dondd) if and only if the right-hand side of (3.5) belongs
to L%(Q).

Form = 1,2, let CAL™?(0,t) = H#(D™?) N L™? be the space of processese
L™2(0, t) such that for a constaut

la@) —a)|gne < Clu—vl? (O<u,v<1). (3.6)

3.2. The space of good integrands

Recall that(p, y, 0) is a set of admissible parameters, that is

1 1 2 1 2
l<p<2 —+-=1 —-—>y>-—, P 3.7)
P q q q 2—p
1 2 1 1
hy=—<——v,

YTer g 0/2" 972" (3.8)
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The spacésl, 4 , ; is the space of adapted processesL 12(0, ) such thatlall, ¢, . <
oo where

1/q
lall, 0.4 &« ( / (Ila(u) —a(s)|pr2(u — s)_V)q du ds)

O<s<u<t

#( flawly o)
0

(we hope that the use of the same notations form norms of kernels and norms o
integrands will not confuse the reader). With the notations introduced in the previous
section,

1/6*

0
lally.oq. =14 “HL‘;,_WmLz) + llall Lo (2

Observe that ifa € CPLY?(0,t) is adapted and bounded, andAf> y — ql then
ae Gl%g,q’t.
Finally, we need to introduce the sub§¥sl, , , , of processes € Gl, 4, ; such that

//E[(Dsa(u))z]q/z(u —5) 7 duds < 400
0 s

which we endow with the norm
lalll, g.q., =llally 640+ 1Dalliy w2y

4. Integration of deterministic functions

We recall that to a rough kern&l we associate the integral operator defined for a
measurable on (0, 1)

La(s) =K(t,s)a(s) + [ (a(u) —a(s)) 0.K(u,s)du (O<s <1t) 4.1)
( )

as soon as the integral on the right-hand side makes sense for almos{ avedy:).
WhenK is a smooth kernel, we have

La(s) = K(s,s)a(s) + /a(u)alK(u, s)du (O<s <1).

We shall also consider the integral operator

Jia(s) = /a(u, s)01K(,s)du (O<s <t). 4.2)

s
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We end this section by the definition of the integral of a deterministic function. Since
K (t,s) = 1,1,/(s), we have, fos <,

Cov(Wk (s), Wk (1)) =E [/K(t, u)dB, / K (s,v)dB,
0 0

= <It1[0,t]7 Itl[O,s]>LZa

where(,), > denotes the inner product af(R.).
Accordingly, we defind .2 (0, r) = 1,71(L?(0, t)) and endow it with the inner product

(fs 8)L§<(o,z) d:ertf’ 1,g) 2. (4.3)

L2(0,1) is the closure of.2 (0, t) with respect ta-, V12 0. Given f e L2(0,1), itis
natural to define

/ £(s)dWi (s) = / 1, f(u) dB,. (4.4)
0 0

This is clearly an isometry betweeb? (0,¢) and the Gaussian space generated by
(W (s),0< s <1). Itis interesting to note that fof = 1 we obtain

/ AW (s) = Wi (0).
0

5. Regularity of sample paths

PROPOSITION 5.1. —Assume thak € E, 4 , ;. Then, almost surely, the sample paths
of Wk are Holder continuous of index € (0, i,). More precisely, ifo > % and

t€[0,h, — %[ then for some constaidt

W 4
sup Wk (v) r1< ]
O<u<v<t |v - I/l|

< CIK]

o

y.0,p.t*

Proof. —SinceWg is a Gaussian process with covariance

min(u,v)
Rx(u,v)= / K, s)K(u,s)ds. (5.1)
0

Proposition 2.10 yields for & u < v < ¢
Wi () = Wx )], = [[K (v, ) = K (u, )| 20, < Clv = ul" (K 1l,.0.p.-

Then, we use Kolmogorov's Continuity Lemma in the special case of Gaussian
processes, as described by the next lemnta.
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LEMMA 5.2.—-Let (Z(),0<t < T) be a centered Gaussian process such that for
somes > 0
E[(Z(t) — Z(s)))] <C(T)|t —s° (0<s.t<T).

ThenZ has a modificatior{denoted by the same lett&) with Holder continuous paths
of order A for eacha € [0, §/2].

Furthermore, for every > sup(1, 2/8) we have
1+1/p

| S, 120 - 200l| <D

sup |Z(1) = Z(s)]

0<s<t<T (t _S))L

8/2
T/m,,,

<C'(A, 8, p, TYC(THY? (0<r<8/2—1/p).
P

Wherem? is the pth moment of the absolute value of a standard Gaussian random
variable.

Since the proof of this lemma uses the explicit constant of Kolmogorov’s Lemma, we
feel compelled to state here the version of this lemma that we use, which can be foun
in [10], Section XXIII, numbers 19 and 20.

LEMMA 5.3.—-Let(X(¢),0<t < T) be areal process such that for some- 0 and
somep > 1

E[|X; — X,["] < Clt —s"*"  (0<s5,1<T),

Then for every. € [0, o/ p[ the random variable

X_ s
M,\_sup{%. s,te@,s;ét,ogs,th}

is almost surely finite. More precisely,

Y A+14+1/p @ 2/
p__—_ +o—A)/p
1M, < CYP =T -

Proof of Lemma 5.2. For everyp > 1, sinceZ(t) — Z(s) is a centered Gaussian
random variable, we have

E[|Z(1) = Z(s)|"] <mbC(T)P?|t —s|P* (0<s,1,T).

If p>supl,2/8), then we obtain the upper bound on g moment, and the fact that
Z has Holder continuous paths for every [0,5/2—1/p[. O

COROLLARY 5.4. —Assume that for somg > 1, K € E, 4 ,,. Then there exists a
sequence of kernel(K,,, n e N) in F, 4 , , such that

sup| Wk (s) — Wx, (s)| — 0 in L?and a.s.
s<t
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Proof. —There exists a sequence of kerndls,,n € N) in F,, ,, such that
K, — K”y,@,p,, — 0. We let

M, = SUp|WK(S) — WK,I (S)|

s<t
Proposition 5.1 yields, fox > % andt =0,

Ml < CIK — K| — 0.

v.0.p.t
By taking a subsequence, we can ensure FHatM,, ||% < o0, and thus obtain, by a
Borel-Cantelli argument, the almost sure convergendd,ofo 0. O

6. Construction of the stochastic integral

The first step of our construction is to identify the semi-martingale intefak) x
dWk (s), for a adapted andVx a semi-martingale, with a sum of (Skorokhod) integrals
of a and its stochastic gradient with respect to the driving Brownian maoBoand
time.

PROPOSITION 6.1. — Assume that € Gl,, ¢, , and K is a semi-martingale kernel in
E, 0, Then
(i) The procesd,(a)(-) isinLY2(0, ) and

g HII(G)HLLZ(O,:) g ||a”y,9,q,t||K||y,0,p,t'

t
[1@e)ds,
0

(i) We have the decomposition
t t t t
/a(s) dWg (s) = /I,a(s) dB; +/</Dsa(u)81K(u, s) du> ds. (6.1)
0 0 0 N
(iii) If furthermorea € CGl, 4 , , then the process
t
s = J(D(a)())(s) = / Dya(u)d1K (u, s) du

satisfies

t

/ 1(D.(@)()(s)

0

< /||J1(D<(a)('))(s)“L2(Q) ds
L2(Q) 0
< Clllall|

1Kl

v.0.q.t v.0,p.t
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and we have the upper bound

t

/ a(s) AWy (s)

0

< C|“a”|y’9’q,t”K”yﬁ,p,t' (62)

L2(Q)

Proof. —(i) On the one hand, Lemma 6.2(ii) implies th&ata)(-) € L*?(0, r) and

HJI(G)HLI,Z(Q,,) < ||a||L?H7yq(Dl-2)||K||y,0,p,t'

On the other hand, the second part of Proposition 2.9 implies that

HK(I, .)a(.)HLZ([O,T],LZ(Q,]P’)) < C“a”Le*(LZ(Q))”K”y,@,p,T'

We conclude by combining these two results.
(i) Recall from Proposition 2.5 tha¥ is a semi-martingale with decomposition

dWk (s) = K (s, s) dBs + Wy, x (s) ds.

Therefore, since is adapted and ih*?(0, ¢), we have that

t t t

/a(s) dWk(s) = /a(s)K(s, s)dB; + /a(s)WalK(s) ds
0

0 0

= [a(s)K (s,s)dB, + a(u)( 81K(u,s)st>du.
/ [«

We now apply the integration by parts formula of Malliavin Calculus

t t t u

/a(s) dWk (s) :/a(s)K(s, s) dB; —{—/(/a(u)BlK(u,s) st> du
0 0

0 0

+ ( Dsa(u)01K (u, s) ds) du. (6.3)
0/ 0/
def

Since M? = sup,, fo 01K (x,u)?du < 400, we can apply Fubini's Theorem to the
third term on the right-hand side of (6.3) to obtain

0/<O/Dsa(u)81K(u,s) ds> dM=O/<S/Dsa(M)31K(u,s)du> ds.

Indeed,

EL/(O/|DXa(u)H81K(u,s)|ds> du]
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1/2

<ME[/</MIDX(1(M)|2ds> du]
0

0
< Mla|lLz.

The anticipating Fubini’s Stochastic Theorem (see Theorem 3.1 of Leon [17]) yields that

t

/(/a(u)81K(u,s) dBS> du =/t</ta(u)81[((u,s) du) dB,.

0 0 0 s

Indeed, all we need to do is to consider the finite meagui@x) = dx1;,(x) on
X = [0, 7] and the measurable function

o(x,u,w) =a(x,w)01 1 K(x,u) (x,u<t).

Itis clear that for fixedk € [0, ], p(x):u — ¢ (x, u, -) isin LY2(0, 1), with D, (x, u) =
D,a(x)0:K (x,u) and

”(P(X)Hil,z=E[/<¢(x,u)2+/(Dv¢(x,u))2dv> du]
0

0
:/du 81K(x,u)2E[a(x)2+/(Dva(x))2dv].
0 0

Therefore the Bochner integrdi} ¢ (x) du(x) is well defined since

(/u(dx>||¢(x>y|L1,z)

< u(X) / (@0 ¢ )|

< (XOE [/dx(a(x)2+/(Dva(x))2dv> /alK(x,u)zdu]
0 0 0

2

X

< u(X) (Sup 91K (x,u)? du) lall 12, < +00.

x<t
0
(iii) The first part is a consequence of the first part of Proposition 2.9 applied to the
processi(u, s) = Dya(u). We conclude by combining this upper bound with ()Xo

LEMMA 6.2.—
(i) Foreverya € L¥2(0,) such thats — [’ a(v)d:K (v, s)dv is in L1-2 we have the
commutation relation

t t

D, | a(v)01K (v,s)dv = /Dua(v)alK(v, s) dv.

s s
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(i) The application (a, K) — JX(a) is bilinear continuous from(L2(0,#) N
LY (D"?) x E, g, toL™?withm =0,1,2.

Proof. —(i) The simplest way to see this property is to use the Wiener chaos expansior
ofa

a(s) = Z Am(fm(’v s))v

m=>0

where A,, denotes the multiple Wiener integral ang,(s1,...,s,,s) are square
integrable kernels symmetric in the first variables. By linearity, we can restrict
ourselves to the case= A, (f, (-, s)) for somem > 1.

On the one hand, Fubini’'s Stochastic Theorem implies that

t

/a(v)alK(v,s) dv:/ dv 91K (v, $) Ay (fin (e, v))

N

=A, (o — /81K(v,s)fm(o, v)dv).

Therefore,

t t
D, /a(v)alK(v, s)dv = mAm_l<o — /81K(v, ) (o, 1, v) dv).
On the other hand,

/Dua(v)alK(v, s)dv = / 01K (v, $)mAy_1( f (e, u,v)) dv

=mAm_1<o — /81K(v, 8) (o, u, v) dv).

(i) For r € [0, T, Proposition 2.9 implies

s — 7K (a("s))(s)HLz(Qx[O,T]) + | s) — JX (Dra("s))(s)HLZ(Qx[O,T]Z)

<Clallyg, oK (6.4)

v.0,p,T*

We shall now use a by product of the proof of Proposition 2.5, namely the existence
of a sequence of semi-martingale kerngls),.«n given by

—-Y

T
An(r,s)zK(T,s)—/h”(u—s,s)(u-i-}—s) du,
n

N
R (v,5) = ¢! Y] (s),

i=0



P. CARMONA ET AL./Ann. I. H. Poincaré — PR 39 (2003) 27-68 51

whereg?!, ' are inL>, thei — ¢!' have disjoint support and lim., [| K — A,||

0 v.6.p.T
B It.is clear (see (i)) that for eveny, the random variable
Jh(a(,9)(s) = /a(u, SR (u — s, 5) <u + % - s> T
belongs taD'? and that
D,JM (a(,9)(s) = J " (Dya(, 5))(s). (6.5)

From the inequality (6.4) applied to the kernéls — K, A,, — A,, we deduce that the
sequencéJ, " (a(-, 5))(s), s € [0, T]) is a Cauchy sequence lit-2(0, T') that converges
to (JX(a(-,s))(s),s €[0, T]) in L% x [0, T]).

Thanks to (6.5), we obtain also th@d, J,"" (a(-, 5))(s), (s, r) € [0, T1?) converges to
(JK(D,a(-,$))(s), (s,r) € [0, T1?) in L%(Q x [0, T1?).

Therefore,(J X (a(-, 5))(s),s € [0, T]) is in L¥2(0, T) and we have the commutation
relation.

D, I (a(-,9))(s) = X (D,a(-, 5)) (). (6.6)

It is now clear that (6.4) gives the proof of the second part of the lemma ferl. For
m =2, we only need to replaceby Da. O

Combining the density of, » , , in E, 4 , ; (see Proposition 2.5) with Proposition 6.1
yields that the continuous bilinear operater CGl, 4., x Fy 9., — L?:

t

M(a, K) = /a(s) dWk (s)

0

can be uniquely extended to an operatprCGI, 4, ; x E, 4 ,, — L?, defined on the
closure of this product space.

DEFINITION 6.3.-For a € CGl, 4, and K € E, 4 ,, the stochastic integral of

a with respect toWy is defined to be,(a, K) and denoted b%a(s)dWK(s). By
construction we have the decomposit{@nl) and the upper boun(b.2).

7. The stochastic integral as a process

We shall exhibit assumptions that ensure that the prozcessféa(s)dWK(s) has a
continuous modification.

THEOREM 7.1. — Assume that for somg > 0 such thatg + h,, > %:
[ ] K S Aﬁ,@,p,T'
e The adapted integrand is in CFLY2(0, T).

e SUpcrlal € L%, forah, > 1.
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Then the process— félta(s) dB, has a continuous modification ¢, T].
If, furthermore,o € CGl, 4y, 7 thent — féa(s) dWg (s) has a continuous modifica-
tion on[O, T].

Proof. —Recall that the stochastic integral may be represented as

/wadef=X0>+Yax
0
X(t)= [ K(t,s)a(s)dBs,

/

Y(t)= /J,(Aoa)(s) dB,.
0

The continuity of X is established via Kolmogorov’s continuity criterion. More
precisely fora > 0 big enough, there exists> 0 andC = C(T, @) such that

E[|X(t+7) - X" ] <C™ O<r<t+1<T). (7.1)

First we write
t

Xt+1)—X@®)= /(K(t +1,5) — K(t,5))a(s) dB,

0
t+7

+ / K+ t,s)a(s)dB;.

Sincea is adapted, we can apply Burkholder—Davis—Gundy inequalities to the martin-
gales

r— /[K(t +1,5) — K(t, s)] L. (s)a(s) dBy,
0

%9/K0+nﬂkmm®M@M&
0

to obtain, for a constant,, the upper bound
/ a2 1/«
E[|X(+1)— X)) < C.E K/[K(t +1.5) — K, s)]za(s)2ds> ]

0
a/2 1/

t+t
+CQE[< / K+, s)2a(s)2ds> ]

The integrability assumptions @n and Proposition 5.1 implies, for > 2,
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Xt +7)— X(I)HLD‘(Q) < CaHSUR<T|‘1(S)|HLa(Q)HK(t +71.) - K(@, ')”LZ([O,T])

< Cllsup<rla)]l o 1Ky .77

Therefore we only need to assume aiglo, > 1 to obtain (7.1). The existence of a
continuous modification for the procegss given by the Proposition 7.2.
If, furthermore,a € CGl, 4 , 7, then the stochastic integral may be represented as

t

t t
Jawawe) = [1L@@ s+ 20, 20 = [1(D@)6)d.
0 0 0
The proces¥ is obviously a continuous process so that ends the praof.

PROPOSITION 7.2. — Let 8 > 0 such thatg + h, > 1. Assume that € H#(D*2 N

L1?) and K € A)’f,@,ﬂ. Then the process— [3JX(a(:,5))(s) dB; has a continuous
modification. 5

In particular, ifa € CAL2(0, T) thena(u, s) = A ,a = a(u) — a(s) is in H#(D¥?N
L12) ands — [5JX(A%)(s) dB, has a continuous modification.

Proof. —According to Lemma 6.2(ii) we havB, J X (a)(s) = JX(D,a)(s) and
195 (@t ) ) =I5 (@l 9) ©)[ 1o < Cllalgspaz 1K lLge, 77

Since 28 + h,) > 1 we can conclude by Kolmogorov’s continuity criterionc

8. Itd’s formula

It&’s formula for fractional Brownian motion of Hurst parameiér> % is now well
known: see, for instance, Decreusefond and Ustunel [9], Dai and Heyde [8]. Here, we
show how to obtain it for a wide family of kernels. The first step of our method is to
write 1t6’s formula for a semi-martingale kernel in a suitable way, that is a way that will
be easily extended to more general kernels.

PROPOSITION 8.1. —Let K be a semi-martingale kernel anfle C2. Then, almost
surely, for every > O:

F(Wk() = £(0) + / 1(f'(Wx))(s) dB,
0

17, d
+§0/f (WK(S))gE[WK(S)Z] ds. (8.1)

Proof. ~-We let ¢ (s) = E[Wk(s)?] = [y K(s,r)?dr. SinceK is a semi-martingale
kernel,¢ is differentiable with

@' (s) =K(s,s)* + Z/K(s, r)1K (s, r)dr.
0
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By the chain rule,

Dy f'(Wx ) = f"(Wk ) Ds (Wi () = " (Wk ) K (u, 5),

and therefore the procesy’(Wk(s)); D € [0, T]) is in L2(0,7) and we may use
Proposition 6.1. Furthermore,

/J,(Dsf’(WK))(s)ds=/ds/dv 1K (v, s) Dy f'(Wk ()
0 0 s

:/ds/dv 01K (v, 8) f"(Wk(v))K (v, s).
0 K

Recall that the semi-martingale decompositioigf is
dWk (s) = K (s, s) dB; + Wj, k (s) Os.

Therefore, 1td6's formula yields

t 1 t
F(We®) = £(0) + / F(Wi(5)) dWi (5) + / £ (Wi () K (s, 5)2 ds
0 0
= £(0) + / L(f'(We))(s) dB, + / J,(Dy f'(Wi)) (s) ds
0 0
+ %O/f”(WK(s))K(s,s)zds

t 1 t
= £(0) + / (' (Wi0) (5) B, + 5 / £ (We@)d')ds. O
0 0

We shall make use a8’ , , ; defined in 2.6.

THEOREM 8.2. —Assume that for some— 7, < B < h, the kernelK is in Bfﬁ,pj

for everyT > O, that f € C;,‘, and thatz,, > ;11. Then, almost surely, for every> 0,

F(We (@) = £0) + / 1,(f'(Wy)) (s) dB
0

17, d
+§0/f (WK(S))gE[WK(s)Z] ds. (8.2)

Proof. —Our first step will be to prove that the processes on both sides have a
continuous modification. Then, we shall establish this formula for fixed.
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Since Wi has a continuous modification, see Proposition ¥.(Wx) also has a
continuous modification. It is obvious that

17, d
1~ 10+ 0/ £ (Wie(9))  E[Wic (7] ds,

also has a continuous modification.

In fact, Proposition 5.1 ensures that a.s. and.fy sample paths of the Gaussian
processWg are Holder continuous with indeg < h,. Since f/, f” and f® are
bounded, Proposition 8.4 ensures that f'(Wx) belongs taC/L12(0, T)NL>®([0, T]
x Q) as soon a8 < h,. We furthermore impose that > 3 — h, > y — 1/q,
which is possible sincé, > 1/4; then, according to Theorem 7.1, the process
félt(f/(WK))(s) dB, has a continuous modification.

Let us now establish formula (8.2) for a fixed> 0. Assume thatk, is a family
of semi-martingale kernels such th&j, — K in Bfﬂ’pj. Then formula (8.2) is valid
for K,,.

We shall first handle the term

/ d
/ f" (Wi, () T E[Wk, (s)?] ds.
0

According to the proof of Corollary 5.4, by taking a subsequence, we may assume tha
SUR ¢, | Wk, (s) — Wk (s)| — O both in L? and n almost surely. Therefore according to
Lemma 2.13:

[ d [ d
/ f (WKn(s))gE[WK”(s)z] ds — / f (WK(s))gE[WK(s)Z] ds.
0 0

To prove the convergence

/ 1 (Wk,)(s) dB, — / L' (Wk(s)) dB,
0 0

we need to prove that*"a, — I,a in LY2(0, 1) wherea(s) = f'(Wk(s)) anda,(s) =
f'(Wg, (s)). Thanks to Proposition 6.1, and to the fact tigt — K in Bf,e,p,T, it
is enough to prove thafa — ayll, ¢4, > 0, and this we achieve in the following

Proposition 8.4. O

DEFINITION 8.3. —From now on A°F, A'F will denote the Taylor expansion of the
function F':

A F=F(y)—F), AL F=Fy—F&—0-0Fx.

PROPOSITION 8.4. — Assumef € C;"t+2 with i =0,1 andm = 0, 1, 2. Then the
mappingK — A% ) w. )/ is continuous fronk, 4 , r to H+D(D™-2),
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Proof. —Let X be a separable Hilbert space.

DEFINITION 8.5.—A function G:R? x [0, T]?> — X is said to satisfy assumption
HH(m, k, k) if G is m-times differentiable with respect to its first two variables,
and if there exists a constadt(G) = C(G, m, k, k) such that for every real numbers
(x,y) e R?, 0<u,s < T, integersi, j such thatd <i + j < m, we have

L J -
0,5 G(x, y,u,9)], SCG) Y |y — g1F,
=0
Observe that iff € C)"*", thenG(x, y,u,s) = AV L f = fol_f(M)(x +0y)yM do
satisfiesH H(m, M, 0). Therefore Proposition 8.4 is an immediate consequence of the
following lemma. 0O

LEMMA 8.6.— Assumex > 1 and G satisfiesH H(m, k: k). Then for everyk e
Ey,@,p,Ta 0<u,s<T,

1G(Wk(s), A2 Wk, u,s)|

m
k+j khy +k
SCxC(G) x Y IKIlyg pr x lu— 5|7,
j=0

D™ (X)

Proof. —The proof is an induction on the integer
Assume thaG satisfiesH H(0, k, k). Then,

|G (Wi ($); A2 Wi u,5)|, < C(G)|A?QMWK]k|u — sk,

Since the random variabIAS,u Wy is centered with covarianqmgul((~, r)||L2([0 1dr)
with the conventionk (u, r) = 0 for u < r, we deduce from Proposition 2.10 the upper

bound

A7 K G CIK I, .o prlu—s". (8.3)

L2([0,T],dr) <

We plug in the expression of thiexth order moment of a centered Gaussian random
variable, to obtain that the lemma is satisfied for a constant

C'=C|NO Dy, -

We now assume the lemma satisfieddoand letG verify assumptio{ H(m + 1, k, IE).
Theng is differentiable with respect to the first two variables up to the orderl, and

G together with its partial derivatives have at most polynomial growth. According to the
chain rules of Malliavin Calculus, the random variabléW (s), A?’MWK; u, s) belongs

to D"t1e gand

D" G (Wi (s), A Wi u,s)] = > G"7 (W (s), AY Wksu,s),
0€S,11.i+j=m+1

whereS, denotes the group of orderpermutations® the tensor product and
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G(i,j,o)(x, y,M,S)(I"l, ~~~7rm+l)

1 i+j i
= ﬁa,ﬂ. G(x,y,u,s)® K(s, sy, -, Fo@@))

® AL K () (ai41ys -+ Tomin)- (8.4)

Injecting the upper bound 8.3, we get ti@t, j, o) satisfiesH H(0, k — j, k + jh,)on
X = L?([0, T]"*Y). We can therefore apply the lemma for= 0 to everyG(i, j, o) to
obtain

D™ G (Wi (), AL Wi 14, )] ]

<SCCG,m+D) S IKISY prlu— s+, (8.5)
J

We conclude by using the definition of the norm DBf”*+! and the induction
assumption. O

LEMMA 8.7.—-Assume thatG satisfiesH H(m, k, IE) withm > 1,k > Q. Then the
mappingk — G (Wk (s), A2 Wk, u, s) is continuous fronk, ¢ , r to H»+(D"=12)n

s,u

L 12 (with the conventioh. %2 = L2(Q)).
Proof. —Using Taylor integral expansion we have ®t K’ € E, ¢ , r

1
G(Wk(s); A2 Wi u;s) — G(Wii(s); A2, Wirsus s) :/Bg a, (8.6)
0

with
By =VG(Wkiok—k(5); A?,u Wk iok—k7); U, 8) [Wk—k(5); AS,S WK—K/]t7

wherex' denotes the transpose .of ~
Fori =1, 2, the mappind; G (x, y, u, s) satisfiesH H(m — 1, k+1—1i, k). Therefore
Lemma 8.6 implies

10:G (Wkiok—k7); Agu Wk ok—k7); S, ut) ||Dm_1.z
m—1

k+1—i)h, +k k+j k+j
< Clu — 5“0 N KN e+ 1K1 1) 8.7)
j=0

The same Lemma 8.6 yields

HWK—K/(S)HDHHLZ < C”K - K/||y,9,p,T7

1A Wk—|lgn 12 SCIK = K'll, g rlu —s|". (8.8)
Combining (8.7) and (8.8) yields,

m—1
k+j k+j khy +k
IByllpn-12 < C Y (1K Iy pr + 1K 155 o o) IK — K'[[Ju — s
j=1

and injecting this into (8.6) yields the desired result
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8.1. Application to fractional Brownian motion

According to Lemma 2.7 we can takg = H — ¢ with ¢ > 0 small enough so that
h, > % and then use Theorem 8.2.

8.2. Ito formula for H > %

We first derive a new expression for the Ito formula for the Gaussian processes
associated to semi-martingale kernels.

PROPOSITION 8.8. —Let K a semi-martingale kernel ang € C}. Then, fort €
[0, T] almost everywhere,

1 d
Wk ®) = £O +5 / 1 (Wi(5)) - Rix(5,5) ds
0
4 / K@) (f (Wi () + £ (We ) E[Wk (1) — Wx (s) | F]) dB
0
- / K(t, ) f" (Wi () E[(Wk (1) — W (5)) Wi ()] dB,
0

+ / LK [AY, oweor f + (W) E[(Wk () — Wi (s)) Wk (5)]](s) dB;
0

t

_/</[(f”(WK(s)) — [ (W (s1)))
0

0

t
X /BlK(u, s1)K (u,s)du

with R the covariance function of the Gaussian procéss

R (x,y) = E[Wg (x)Wk (»)].

Proof. —Let K a semi-martingale kernel anfl e C;. According to Proposition 8.1,
fort € [0, T'], we have

F(Wk() = £(0) + / 1K (F'(Wi)) (s) dB(s)
0

17, d
- 0/ 1 (Wi (5)) g E Wi (5)7] .

A Taylor expansion off’ betweenWg (1) and Wk (s) yields
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LXK (W) () =K (2, 9) f (Wk(s)) + I,K(AivK(s),WK(.)f/)(S)
+ £ (W () LK (A W) (s).

Sincef € C}, the processa(s) = f"(Wx(s)),0< s < T) belongs td_%2 and

s t
/ Dy, a(s) / K(u,s)0,K (u, s1) du ds;
0 K

t
d
= £ (Wi(s)) [ KGu,) 4 BIWic ) Wi ()]
Using the integration by parts formula,

s t
/ Dy a(s) / K (u,s)01K (u, s1) du dsq
0 K

_ fW(WK (S)) (K(t, S)E[A?JWK Wk (s)] — JtK (E [Ag,AWK Wk (S)])(S))

Then Lemma 8.9 yields,

NI~

/ d
F(Wk(®) = £(0) + O/ £ (W) 3 Rics.)ds
+/[f’(WK(s)) + (Wi ())E[A?, Wk | ]]K (¢, 5)dB,
0
+/[f”’(WK(s))E[A§{,WK Wk (s)]] K (t,s) dB
0

"‘/IrK [ Ay rweird =+ F" (Wi () E[A] Wg Wi ()] ] (5) dB;
0

t s
+ /(/ASVK(S),WK(sl)f// JtK (K(’ S)) (sl) dBSl) dBS' i
0 0

LEMMA 8.9.— LetK be a semi-martingale kernel arde L2? an adapted process.
Then

t

/ a()15 (A? Wi)(s)dB,

0
t
= / a()E[AS, Wk | F,] K (1, 5) dB;
0
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t s t
+ / / (Afﬂa / K (u,s)3.K (u, 1) du) dB,,
0 -0 s
t N t
— /(/ [Dsla(s)/l((u,s)alK(u,sl) du] ds1> dB;.
0

0 \0
Proof. —We split Wx (1) — Wk (s) = A2, W in two parts:

dB;

AL Wi =E[A] Wi | F] + (A9, W — E[AT, Wk | F]).

Observe thatVg, = (E[A?’IWK | Fsl,s <t < T)is a centered Gaussian process that
can be written, thanks to Fubini’s Stochastic Theorem,

UnNSs

/ 31K (u, Sl) dBM) .
0

The integration by parts formula (applied to the semi-martingdlg, and the
deterministic kerneK (-, s)) yields

s t
Wi, (1) = / A9 K (-, 51)dB,, = / du(
0

N

K(t,s)WKE(t):K(s,s)WKE(s)+/WKE(u)81K(u,s) du

+ /K(u, $)dWg . (u).

Sincea is adapted andV, (s) =0, we obtain
t
/ a()E[AS, Wi | F]01K (u, 5) du

N

=a()E[AY, Wk | F]K(t, ) — /a(S)lu,z)(u)K(u, s) AW, (u)
0

= a(s)E[A?JWK | ]:S]K(t, s) — /a(s)K(u, s) (/81K(u, 51) dBSl> du.
K 0
The integration by parts formula yields then, as in the proof of Proposition 6.1

t

/a(s)E[AO Wk | F] 81K (u, s) du

s,u

N

=a()E[Wg (1) — Wi (s) | F]K(2,5)

—/(a(s)/K(u,s)alK(u,sl) du) dB,,

0
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N t
— / (/D‘Yla(s)K(u,s)BlK(u, 51) du) ds.
0 N
Integrating with respect toR{(s) each term of this equality we obtain,

t

/(a(s) /E[WK(M) — Wk(s) | fs]alK(u, s) du) dB;

0

= /a(S)E[WK(I) — Wk (s) | F5]K (1, 5) dBy
0

—/ /(a(s)/K(u,s)alK(u,sl) du) dB,, | dB;
0 -0 s

—/ /(/Dsla(s)l((u,s)all((u,sl) du) dsq | dB;. (8.9)
0 -0 s

Observe that fos < ¢,
Wi (1) — Wi (s) —E[Wk () — Wk (s) | F] =/K(u,sl) dB(s1)

and using again stochastic integration by parts and Fubini’s Stochastic Theorem fo
deterministic integrands, we obtain that

/ / a(s) (Wi (1) — Wi () — E[Wg (1) — Wk (s) | F.]) 31K (u. ) cu dB,
0 s

:O/<O/a(s)/K(u,s1)alK(u,s) du st> dB,,.

Summing up this equality with (8.9) yields, after one substitutias s;,

t

/ a(s)IX (W () — Wi (s))(s) dB

0

- / a()E[Wx (6) — Wi () | F] K (1, 5) dB,

t N

_/[/ ((a(s) —0(51))/K(u,s)alK(u,sl)du> dB,,

0 *~0

dB;

t N

- /(/ [Dsla(s)/K(u,s)alK(u,sl) du] ds1> dB;. O
0

0 0
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PROPOSITION 8.10. — Assumes + 2h,, > % Then the mapping

(Kv K/v a) - a(sv sl)J[K (K/('v S)) (sl)l(sl<s)

t
— als, $1) 1) / K'(u, $)00K (u, 51) dlu

is multilinear continuous frormj’f,@,p,T X Eygp1 X (Lgf;(Dz»z) NL2%2) to L22. In
particular, there exists a constant such that

/ dB(s) / (a(s,s)JX(K'(,5))(s1)) dB(s1)
0 0

LZ
<CllallypIKllye 1K .7
Moreover, the process
t s t
t— /dB(s)/ (a(s,sl)/K/(u,s)alK(u,s) du) dB,, (8.10)
0 0 s
has a continuous modification ¢, 7'].
Proof. —According to the definition (2.17) af,; we have
a(s, s JK(K' () (51 Ly <s) = Ja; < (@) (s, 50). (8.11)

Hence, Lemma 2.14 implies that
K'.K ’
12,7 (@) (s, 51) || 22 < C”a”ﬂﬁ”K”AgepT 1K1l 6, p.7-

Moreover, thanks to the same Lemma 2.14, if
t s
X = [ dB6) [ (@, s0I % (K'.9) () 1is) 8B
0 0

then we have, for&Xr<r+ 1t < T,

[X@+ 1) = X0 2 <Cllallgs 1Kl 1K .77

Since 28 + 2h,) > 1, Kolmogorov’s continuity criterion ensures the existence of a
continuous modification. O

We can now state and prove an Ito formula that applies to the family of Gaussian
processedVk such thath, > % and therefore, by Lemma 2.7 to fractional Brownian

motion with Hurst indexH > %
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PROPOSITION 8.11. — Let K € BY, , » with 8/2> h, > L and let f € C. Then
almost surely, foD <t < T,

1/, d
FWk(®) = £+ O/ £ (Wie(5)) 4 E[Wk (5)7] o

+ /[f’(WK(S)) + [ (Wk (9))E[Wk (1) — Wk (s) | Fs]] K (2, 5) dB(s)
0

- / 7 (Wi ) E[(Wk (1) — W () Wk ()] | K (1, 5) dB(s)

0

+ / 1K (AL e f + (W) E[(Wk () — Wi () Wi (5)]) (s) dB,

0
+ O/ dB, O/ AWK (K (. 5))(s1) dBy,.

Proof. —The first step of the proof consists in showing that every process involved
in this formula has a continuous modification. Then we shall prove in a second stef
that the formula is valid for each fixedby establishing the continuity with respect to
K € F, 4 ,.r for the norm| -, 4 , r and using Proposition 8.8. We conclude by using

the density of,, 4, 7 into B, , , ;.

Step 1: Existence of a continuous modification
(1) Since f® is bounded, Proposition 8.4 entails thaf, ., ..,/  belongs to

H?»(D*?). Hence, we infer from Proposition 7.2 that sindg, 3- 3, the process

t
r— /ItK (A%VK(s),WK(.)f/) (s) dBy
0

has a continuous modification.

(2) Similarly, sincef € C3, Lemma 2.15 implies that we may apply Proposition 7.2
to the process f"” (Wi (s)E[(Wk (u) — Wk (s)) Wk (s)]; 0< u,s < T) to obtain
the existence of a continuous modification for

. / 1K (" (Wk (8))E[ (Wi () — W () W (5)]) (s) B
0
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3) Sincef € C; we can apply Pr_o_pos_ition 8.10 m(v)vk(s),wk(sl)f” to obtain the
existence of a continuous modification for

t—>/dB /AYYlf”(WK)ItK(K(-,s))(sl)stl.

(4) The existence of a continuous modification for
t
r— /f”(WK ($))E[Wk (t) — Wk (s) | F] K (¢, 5) dBy
0

is a consequence of Burkholder—Davis—Gundy inequalities, Proposition 5.1, anc
the fact thatf” is bounded.

(5) Eventually, sincef € C} the existence of a continuous modification for
t
(= [ Wk G)EWe ) (W) = Wi )] K ) d,
0

is a consequence of Burkholder—Davis—Gundy inequalities and Lemma 2.15.

Step 2: 1t6’s formula for a fixed time

According to the definition 2.6, oBy o.p.7» the mappingk — féf”(WK(s)) X
JE[Wk (5)%]ds is continuous oB? o
In order to establish the COﬂtIhUIty of the linear application

K— /[f’(WK(S)) + [ (Wi () E[Wk (1) — Wk (s) | F5]] K (2, 5) dB(s)
0

t
- /[f’"(WK(S))E[(WK(I) — Wi (s)) Wi (s)]] K (t,5) dB(s)

0
we only need to prove the continuity frof), , , r into the spacé., for somex > 6*/2,
of the integrand mapping

K — f'(Wk(s)) + f"(Wk () E[Wk (1) — Wk (s) | F]

— " (Wk())E[(Wk (1) — Wk (s)) Wk (s)].

This can be obtained by Taylor expansions for f” and f””, Proposition 5.1, Lem-

ma 2.15 and the following upper bound, proved for any adapted précksanded in
L?"/2 via Burkholder—-Davis—Gundy and Holdét/2, 6*/2) inequalities

T
<CIKIl, g.p1 (/E“b(s)le*/z] ds)
0

1/6*

L2
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Thanks to Lemma 6.2, the continuity of

t
1 /
K — /ItK (AWK(S),WK(.)f )(s) dB
0

is a consequence of the continuity of
1 ¥ 2,2
K €Ey,opr— Myt wea S € H (D*?)
for somepg > h, — % This latter continuity is an easy consequence of Proposition 8.4
applied tog = 2h,,.

Sinceh, > 1/6, combining Lemmas 6.2 and 2.15 with a Taylor expansiory tf
shows that the mapping

K — /I;K(fw(WK(s))E[(WK(’) — Wk (s)) Wk (5)]) (s) dB,
0

is continuous from4 "y p.7 INO LA(Q,P).
Eventually, thanks to Proposition 8.4, we can apply Proposition 8.:stx;) =
f'(Wk(s)) — f'(Wg(s1)) to get the continuity of

K—>/dB /A”l "(Wi)IX (K (-, 5))(s1) dBy,

from Ai}fgﬂ into L2(Q,P). O

Appendix A. Pathwise versus stochastic integration
We shall establish that fav?, W;’ two independent fractional Brownian motions of
index 0< H < %,

/ W/ () dW,) (s)
0

cannot be defined asciassicalpathwise integral. To this end we recall that# [0, T']
denotes the space of Holder continuous functionflof'] of index« then:

for everya € (0, H), a.s W e C¥[0, T, (A.1)

P(W"ec”[0,T])=0. (A.2)

((A.1) can be proved with Kolmogorov’s continuity criterion, and (A.2) is an immediate
consequence of the law of the iterated logarithm, Theorem 1.7 of [2].) @t be the
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variation index of the functiory:

v(f)=inf{p>0:v,(f) <+oo}.

Then, see Theorem 5.3 of [11],

1
almost surely v(W?) = R (A.3)

(1) [oWH (s)dWS (s) cannot be defined asavariation integral . Indeed, see [11],
this requires that fop, ¢ > 0 such that! + 2 > 1,

wlew,(0,T]), W, eWw,(I0,T]).

From (A.3) we deduce that, ¢ > + and thusH > 3.

2 féWlH (s)dWZ (s) cannot be defined as generalized stochastic integral of
Russo—Vallois[28] and Zahle[34]. Indeed, this integral requires that the integravf
admits a generalized quadratic variation, and this implies by Proposition 5.1 [34], that

1
W/ is in the function spac®V; .. Since, see Theorem 1.1 [34], for- 0 small enough
e
WEL cIi%(Ly) cci®,

Hence, we need thav/’ ¢ C2~% for arbitrary smalk, and this impliesH > 3
(3) JoW{ (s)dWf (s) cannot be defined as generalized integral of Ciesielski
et al. [4]. If this were the case, then Section V.B implies that

1 1 1
WlHeBll,_lH for—<H<—=1-—.
’ p p p

Since, fore > 0 small enough3: ' C BY 7~ = C1~H~¢, this implies agair > 1.

Appendix B. An elementary Calculus Lemma

This lemma is used in Section 2 to evaluate the Holder exponent of some integra
processes.

LEMMA B.1.—Let,forO<s<tr<T andy €(0,1)U(1,2),

f(s, )= / dudv(v—u)77.

O<u<s<v<t
Then,
|fs. O] <CT, )t —9)" 0<Ls<t<T),
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withh, =1if y € (0,1) andh, =2—y if y € (1, 2). Similarly the function defined for
0<s<t<Thy

g(s, 1) = / lu —v|~ dudv

s<u<t<v<T
satisfiesg (s, 1)] < C|T —s|".
Proof. —Sincey ¢ {1, 2}, then

_; 2-y (4 N2V 2
f(s’”_(l_y)(z_y)(t V= (1= 9)TT =57,

If 1 <y < 2, this implies| f(s, 1)] < C(T, y)(t — s)>77 since the functionx — x° is
locally Holder of indexs if § € (0, 1).

If 0 < y <1, then Taylor's formula yields?>™” — s> < C(t, y)(t — s) and this
implies|f(s,))| < C(T,y)(t—s). O
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