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STOCHASTIC INTERACTING PARTICLE SYSTEMS
AND NONLINEAR KINETIC EQUATIONS

BY ANDREAS EIBECK AND WOLFGANG WAGNER

Weierstrass Institute for Applied Analysis and Stochastics

We present the stochastic approach to nonlinear kinetic equations
(without gradient terms) in a unifying general framework, which covers many
interactions important in applications, such as coagulation, fragmentation,
inelastic collisions, as well as source and efflux terms. We provide conditions
for the existence of corresponding stochastic particle systems in the sense
of regularity (nonexplosion) of a jump process with unbounded intensity.
Using an appropriate space of measure-valued functions, we prove relative
compactness of the sequence of processes and characterize the weak limits
in terms of solutions to the nonlinear equation. As a particular application,
we derive existence theorems for Smoluchowski’s coagulation equation with
fragmentation, efflux and source terms, and for the Boltzmann equation
with inelastic collisions.

1. Introduction. Studies of the connection between stochastic interacting
particle systems and nonlinear kinetic equations have a long history. The earliest
references seem to be the papers by Kac [20] and Leontovich [22], where the
Boltzmann equation (cf. [6] and [7]) from rarefied gas dynamics was considered.
In the simplest (spatially homogeneous) case, this equation describes the time
evolution of the velocity distribution of gas molecules that change their velocities
during collisions. The stochastic approach to the Boltzmann equation has been
further developed in [25] and [32]. The practically relevant (unbounded) hard
sphere collision kernel was treated in [31]. We refer to [35] for more comments and
references concerning this field. Algorithms based on the corresponding stochastic
interacting particle systems are presently the most widely used numerical tools in
kinetic theory [5].

Stochastic particle systems related to Smoluchowski’s coagulation equation
(cf. [8] and [34]) were used in [14], [23] and [24] in the context of various
applications. In the spatially homogeneous case, this equation describes the time
evolution of the size distribution of particles moving in a physical medium and
merging during collisions. The stochastic approach to Smoluchowski’s coagulation
equation has been reviewed in [1]. We refer to [10] and [12] for comments and
references concerning applications of the particle systems in numerics. Note that
the coagulation process can be considered as a chemical system with infinitely
many species (characterized by size) and simple reactions (merging of two
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partners). The study of the relationship between stochastic and deterministic
models for chemical systems with a finite number of species and reactions goes
back to [21] (cf. [15] concerning numerical applications).

Developing the stochastic approach to the Boltzmann equation, systems with
a general binary interaction between particles and a general (Markovian) single-
particle evolution (including spatial motion) were considered in [17] and [26].
Results concerning the approximation of the solution to the corresponding non-
linear kinetic equation by the particle system were obtained in the case of
bounded intensities and a constant (in time) number of particles. The weak
law of large numbers for stochastic particle systems related to Smoluchowski’s
coagulation equation with general kernels has attracted attention only recently
(cf. [1], Problem 10(a)). Meanwhile, rigorous results of this type are contained,
for example, in [11] (continuous coagulation–fragmentation equation), [18] (dis-
crete coagulation–fragmentation equation with bounded kernels), [19] (discrete
coagulation–fragmentation equation) and [28] (continuous coagulation equation).
Most of the practically relevant coagulation kernels are unbounded. Moreover, if
the kernel grows sufficiently fast, solutions to the limiting equation show the so-
called gelation effect (loss of mass in finite time). In the stochastic system, this
effect corresponds to the fast formation of a very big particle (with size compa-
rable to the size of the whole system). Gelation can also be related to explosion
phenomena in specific stochastic models. It has been observed that the stochas-
tic approach provides new existence results for the deterministic limiting equation
(cf. the discussion in [11]), besides the approximation results that were the original
motivation.

The purpose of this paper is to present the stochastic approach to nonlinear
kinetic equations (without gradient terms) in a unifying general framework, which
covers the cases mentioned above and allows one to include other effects important
in applications. Examples are multiple fragmentation (splitting of particles in more
than two pieces), structured clusters (e.g., consisting of several chemical species),
inelastic collisions (leading to dissipation of energy), internal degrees of freedom
(e.g., rotating gas molecules), sources and efflux (creation and annihilation of
particles) and so on (see also [29] and [36], Sections 3.3 and 3.7). To this end, we
use an arbitrary locally compact separable metric space as the type space of a single
particle and consider rather general multiple interactions with unbounded rates.
The state space of the particle system consists of appropriately normalized discrete
measures on the type space. The limiting equation is considered in a weak form so
that solutions are functions of time taking values in some space of measures on the
type space.

The paper is organized as follows. The main results are given in Section 2.
The first theorem provides conditions for the existence of the particle system in
the sense of regularity (nonexplosion) of a jump process. The second theorem
studies the property of relative compactness of the sequence (with respect to the
normalization parameter) of processes. The third theorem characterizes the weak
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limits of the sequence in terms of solutions to a deterministic nonlinear equation.
An existence theorem for the limiting equation is given in the form of a special
corollary. In Section 3, the general results are applied to some specific models.
First, the coagulation–fragmentation equation with source and efflux is considered.
In this case, new existence results are obtained. Second, a generalized Boltzmann
equation with inelastic collisions is considered. Such equations have attracted
considerable interest in recent years in connection with the study of granular
materials (cf., e.g., [4] and [16]). An existence result is obtained that covers the
known results in the classical Boltzmann case. The rest of the paper is concerned
with the proofs of the main results. In Section 4, we consider the so-called minimal
jump process, with a compactly bounded kernel on some locally compact separable
metric space, and prove a theorem concerning its regularity (nonexplosion). In
Section 5, we give proofs of our main theorems, using the results from the previous
section and applying techniques from [13]. Some auxiliary results are collected in
the Appendix in order to make the paper self-contained.

In conclusion, we note that convergence of the particle system to the solution
of the limiting deterministic equation (weak law of large numbers) is obtained
under the assumption of uniqueness of that solution. So far, no general uniqueness
results have been obtained (cf. [28] concerning the coagulation case). However,
the general framework proposed in this paper provides a basis for the derivation
and justification of stochastic algorithms in many fields of application. The
results cover both unbounded kernels (thus avoiding any truncation leading
to unnecessary numerical errors) and a variable number of particles (possibly
unbounded in time). As to concrete applications, we worked out only two specific
models in order to keep the length of the paper reasonable. However, any
combinations of these interaction models, and many others, can be considered.

2. Main results. Let E and E′ be metric and separable spaces. Let M(E),
B(E), C(E), Cb(E) and Cc(E) denote the sets of functions on E that are
measurable, bounded measurable, continuous, bounded continuous and continuous
with compact support, respectively. For E locally compact, let C0(E) denote
the set of continuous functions on E vanishing at infinity as the closure of
Cc(E) with respect to the sup-norm ‖·‖. Furthermore, the sets of Borel measures,
bounded Borel measures and probability measures on the Borel-σ -algebra B(E)

are denoted by M(E), Mb(E) and P (E), respectively. The Dirac measure on ξ ∈
E is denoted by δξ . Vague and weak convergence of Borel measures are denoted by
µn→vµ and µn→wµ, respectively, whereas the ⇒ sign is used for convergence in
distribution. Let C([0,∞),E) be the space of continuous paths and D([0,∞),E)

the Skorohod space of cadlag paths. For ϕ ∈ M(E) and µ ∈ M(E), we use the
notation 〈ϕ,µ〉 = ∫

ϕ dµ. Finally, let 1A denote the indicator function of a set A.

A kernel from E to E′ (on E if E = E′) is a function λ : E × B(E′) → [0,∞)

such that

λ(·,B) ∈ M(E) ∀B ∈ B(E′) and λ(ξ, ·) ∈ Mb(E
′) ∀ ξ ∈ E.
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A kernel λ is called compactly bounded if

sup
ξ∈C

λ(ξ,E′) < ∞ for any compact C ⊂ E.

We consider particles with types from a locally compact separable metric
space Z and weights 1/N. Define the state space of the particle system as

EN =
{

1

N

n∑
i=1

δxi
:n ≥ 0, xi ∈ Z, i = 1, . . . , n

}
, N = 1,2, . . . .(2.1)

Any event in the system consists of the interaction of at most R particles and
produces as a result at most K particles. This includes, for example, the generation
of new particles from a source, the extinction or transformation of single particles
and the collision of two particles. The admissible subsequent states of µ ∈ EN are
denoted by

J0(µ, ξ) = µ + 1

N
ξ,

J1(µ, i, ξ) = µ + 1

N

[
ξ − δxi

]
,

Jr(µ, i1, . . . , ir , ξ) = µ + 1

N

[
ξ − δxi1

− · · · − δxir

]
, r = 2, . . . ,R,

(2.2)

where i1, . . . , ir are pairwise distinct indices from {1, . . . , n} and ξ ∈ EK, with

EK =
{

n∑
i=1

δxi
: 0 ≤ n ≤ K,xi ∈ Z, i = 1, . . . , n

}
,(2.3)

for some given natural numbers R and K. Both spaces EN and EK are equipped
with the weak topology.

The rates for the different events are determined by a measure q0 and kernels
q1, . . . , qR such that

q0 ∈ Mb(EK) and

qr :Zr × B(EK) → [0,∞), r = 1, . . . ,R,
(2.4)

are compactly bounded. Thus, transitions (jumps) in the system are governed by
the kernel

λN(µ,B) = N

∫
EK

1B

(
J0(µ, ξ)

)
q0(dξ) +

n∑
i=1

∫
EK

1B

(
J1(µ, i, ξ)

)
q1(xi, dξ)

+
R∑

r=2

1

Nr−1

∑̃
1≤i1,...,ir≤n

∫
EK

1B

(
Jr(µ, i1, . . . , ir , ξ)

)

×qr(xi1, . . . , xir , dξ), B ∈ B
(
EN

)
,

(2.5)
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where µ ∈ EN and
∑̃

denotes summation over pairwise distinct indices.
We first provide conditions for the regularity (nonexplosion) of the system.

THEOREM 2.1 (Regularity). Consider a locally compact separable metric
space Z and a function

H ∈ C(Z) such that H > 0 and
1

H
∈ C0(Z).(2.6)

Suppose νN
0 ∈ P (EN) satisfies∫

EN
〈H,µ〉νN

0 (dµ) ≤ c0(2.7)

for some c0 ≥ 0. Suppose q0, q1, . . . , qR satisfy (2.4) and are such that the
kernel (2.5) satisfies ∫

EN
[〈H,µ1〉 − 〈H,µ〉]λN(µ,dµ1)

≤ c1
[〈H,µ〉 + c′

1
] ∀µ ∈ EN

(2.8)

for some c1, c
′
1 ≥ 0.

Then there exists a random process XN with sample paths in D([0,∞),EN)

that is indistinguishable from the minimal jump process, corresponding to the
kernel λN and the initial distribution νN

0 .

Note that, in applications, the function H is often related to conserved quantities
of the particle system, such as mass in the coagulation–fragmentation case or
energy in the Boltzmann case.

Next, we study the asymptotic properties of the sequence XN. To this end, we
construct an appropriate common state space. Consider two functions

h,H ∈ C(Z) : 0 ≤ h(x) ≤ cH(x) ∀x ∈ Z for some c > 0,(2.9)

the set

M(Z,H) = {
µ ∈ M(Z) : 〈H,µ〉 < ∞}

(2.10)

and the metric

dh(µ, ν) = d0(µ, ν) + min{1, |〈h,µ〉 − 〈h, ν〉|}, µ, ν ∈ M(Z,H),(2.11)

where d0 is a metric generating the vague topology. Introduce the space

M(Z,H,h) = (
M(Z,H), dh

)
.(2.12)

Note that M(Z,0) = M(Z),M(Z,1) = Mb(Z) and

M(Z,H) ⊂ Mb(Z) if inf
x∈Z

H(x) > 0.(2.13)

According to [2], Theorem 45.7, the metric d1 generates the weak topology
on Mb(Z).
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THEOREM 2.2 (Relative compactness). Consider a locally compact separable
metric space Z and functions H satisfying (2.6) and

h ∈ C(Z) such that h ≥ 0 and
h

H
∈ C0(Z).(2.14)

Suppose νN
0 ∈ P (EN) satisfy (2.7) uniformly in N. Suppose q0, q1, . . . , qR are

such that (2.8) is satisfied uniformly in N and

q0(EK) ≤ c2 and qr(x,EK) ≤ c2H(x1) · · ·H(xr)

∀x = (x1, . . . , xr) ∈ Zr
(2.15)

for r = 1, . . . ,R and some c2 ≥ 0.

Then the processes XN form a relatively compact sequence of D([0,∞),

M(Z,H,h))-valued random variables.

THEOREM 2.3 (Characterization of weak limits). Consider a locally compact
separable metric space Z and functions H,h satisfying (2.6) and (2.14). Suppose
νN

0 ∈ P (EN) satisfy (2.7) uniformly in N and are such that

XN(0) ⇒ µ0 for some µ0 ∈ M(Z,H).(2.16)

Suppose q0, q1, . . . , qR are such that (2.8) is satisfied uniformly in N ,

q0(EK) ≤ c2 and qr(x,EK) ≤ c2 h(x1) · · ·h(xr)

∀x = (x1, . . . , xr) ∈ Zr
(2.17)

for r = 1, . . . ,R and some c2 ≥ 0, and

qr(·,EK) ∈ C(Zr ),

∫
EK

〈ϕ, ξ 〉qr(·, dξ) ∈ C(Zr ), r = 1, . . . ,R,(2.18)

for any ϕ ∈ Cc(Z).

Then the processes XN form a relatively compact sequence of D([0,∞),

M(Z,H,h))-valued random variables and every weak limit X satisfies, almost
surely,

〈ϕ,X(t)〉 = 〈ϕ,µ0〉 +
∫ t

0
G
(
ϕ,X(s)

)
ds ∀ t ≥ 0, ϕ ∈ Cc(Z),(2.19)

where, for µ ∈ M(Z,H),

G(ϕ,µ) =
∫
EK

〈ϕ, ξ 〉q0(dξ)

+
R∑

r=1

∫
Z

· · ·
∫
Z

∫
EK

[〈ϕ, ξ 〉 − ϕ(x1) − · · · − ϕ(xr)]

×qr(x1, . . . , xr, dξ)µ(dx1) · · ·µ(dxr).

(2.20)
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COROLLARY 2.4 (Continuity). Under the assumptions of Theorem 2.2, every
weak limit X satisfies

P
(
X ∈ C

([0,∞),M(Z,H,h)
)) = 1.(2.21)

COROLLARY 2.5 (Moments). Under the assumptions of Theorem 2.2, every
weak limit X satisfies

E〈H,X(t)〉 ≤ (c0 + c′
1) exp(c1t) ∀ t ≥ 0.(2.22)

COROLLARY 2.6 (Existence). Consider a locally compact separable metric
space Z and functions H,h satisfying (2.6) and (2.14). Let µ0 ∈ M(Z,H).

Suppose q0, q1, . . . , qR are such that (2.8) is satisfied uniformly in N, and
assumptions (2.17) and (2.18) are fulfilled.

Then there exists some µ ∈ C([0,∞),M(Z,H,h)) solving the macroscopic
equation

〈ϕ,µ(t)〉 = 〈ϕ,µ0〉 +
∫ t

0
G
(
ϕ,µ(s)

)
ds ∀ t ≥ 0, ϕ ∈ Cc(Z).(2.23)

COROLLARY 2.7 (Convergence). Let the assumptions of Theorem 2.3 be ful-
filled. If there is a unique µ ∈ C([0,∞),M(Z,H,h)) satisfying equation (2.23),
then the stochastic processes XN converge in distribution to µ.

COROLLARY 2.8. For nonnegative g ∈ C(Z) and γ > 0, consider the set

Mγ (Z, g) = {µ ∈ M(Z) : 〈g,µ〉 ≤ γ }.(2.24)

Suppose q0, q1, . . . , qR are such that, for all N = 1,2, . . . ,

λN
(
µ,EN ∩ Mγ (Z, g)

) = λN
(
µ,EN

) ∀µ ∈ EN ∩ Mγ (Z, g).(2.25)

Then Theorems 2.1–2.3 hold when the spaces EN and M(Z,H,h) are replaced
by EN ∩ Mγ (Z, g) and (M(Z,H) ∩ Mγ (Z, g), dh), respectively.

COROLLARY 2.9. Consider a locally compact separable metric space Z
and functions H,h satisfying (2.6) and (2.14). Let µ0 ∈ M(Z,H) be such
that 〈g,µ0〉 < ∞ for some nonnegative g ∈ C(Z) and consider γ =
〈g,µ0〉 + 1. Suppose q0, q1, . . . , qR are such that assumptions (2.17), (2.18)
and (2.25) are fulfilled and (2.8) is satisfied uniformly in N, with EN replaced
by EN ∩ Mγ (Z, g).

Then there exists some µ ∈ C([0,∞), (M(Z,H) ∩ Mγ (Z, g), dh))

solving (2.23).

We finish this section by providing some basic properties of the objects under
consideration, which will be used throughout the paper.
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REMARK 2.10. Let µk = N−1 ∑nk

i=1 δxk
i
, k ≥ 1, and µ = N−1 ∑n

i=1 δxi
.

Then d1(µk,µ) → 0 if and only if there are an l ≥ 1 and permutations πk

on {1, . . . , n}, k ≥ l, such that

nk = n, k ≥ l and lim
k→∞, k≥l

xk
πk(i)

= xi, i = 1, . . . , n.

Note that the kernel (2.5) satisfies∫
EN

	(ν)λN (µ,dν)

= N

∫
EK

	
(
J0(µ, ξ)

)
q0(dξ) +

n∑
i=1

∫
EK

	
(
J1(µ, i, ξ)

)
q1(xi, dξ)

+
R∑

r=2

1

Nr−1

∑̃
1≤i1,...,ir≤n

∫
EK

	
(
Jr(µ, i1, . . . , ir , ξ)

)

×qr(xi1, . . . , xir , dξ)

(2.26)

for µ ∈ EN and appropriate test functions, for example, 	 ∈ C(EN). In particular,
one obtains

λN(µ,EN)

≤ N

[
q0(EK) +

R∑
r=1

∫
Z

· · ·
∫
Z

qr(x1, . . . , xr,EK)µ(dx1) · · ·µ(dxr)

]
.

(2.27)

REMARK 2.11. If ϕ ∈ C(Z), then the function


 :EN → R, 
(µ) = 〈ϕ,µ〉,(2.28)

is continuous, according to Remark 2.10.

Using (2.26) and (2.2), one obtains∫
EN

[〈ϕ, ν〉 − 〈ϕ,µ〉]kλN(µ,dν)

= N1−k

[∫
EK

〈ϕ, ξ 〉kq0(dξ) + 1

N

n∑
i=1

∫
EK

[〈ϕ, ξ 〉 − ϕ(xi)]kq1(xi, dξ)

+
R∑

r=2

1

Nr

∑̃
1≤i1,...,ir≤n

∫
EK

[〈ϕ, ξ 〉 − ϕ(xi1) − · · · − ϕ(xir )
]k

× qr

(
xi1, . . . , xir , dξ

)]
(2.29)
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for µ ∈ EN, k = 1,2 and ϕ ∈ C(Z). Introduce the notation

Q0(ϕ) =
∫
EK

〈ϕ, ξ 〉q0(dξ),

Qr(ϕ, x) =
∫
EK

[〈ϕ, ξ 〉 − ϕ(x1) − · · · − ϕ(xr)]qr(x, dξ),(2.30)

r = 1, . . . ,R,

for x = (x1, . . . , xr) ∈ Zr and ϕ ∈ C(Z). Using (2.29) with ϕ = H and k = 1,

condition (2.8) takes the form

Q0(H) +
∫
Z

Q1(H,x)µ(dx) +
R∑

r=2

1

Nr

∑̃
1≤i1,...,ir≤n

Qr

(
H,xi1, . . . , xir

)

≤ c1
[〈H,µ〉 + c′

1
]
.

(2.31)

It follows from the definition (2.3) that

|〈ϕ, ξ 〉| ≤ ‖ϕ‖K ∀ ξ ∈ EK(2.32)

and ∫
EK

|〈ϕ, ξ 〉|kq0(dξ)

≤ Kk‖ϕ‖kq0(EK),∫
EK

|〈ϕ, ξ 〉 − ϕ(x1) − · · · − ϕ(xr)|kqr(x, dξ)

≤ (K + r)k‖ϕ‖kqr(x,EK)

(2.33)

for k = 1,2, x = (x1, . . . , xr ) ∈ Zr , r = 1, . . . ,R and ϕ ∈ Cb(Z). Using (2.33)
with k = 1, one obtains [cf. (2.30)]

|Q0(ϕ)| ≤ K‖ϕ‖q0(EK),

|Qr(ϕ, x)| ≤ (K + r)‖ϕ‖qr(x,EK) ∀x ∈ Zr , r = 1, . . . ,R.
(2.34)

3. Applications. In this section, we apply the general results, in particular
Corollaries 2.6 and 2.9, to several special cases. We consider R = 2. One has to
check conditions (2.8), (2.17), (2.18) and (2.25) (in the case of Corollary 2.9) for
appropriate functions H,h satisfying (2.6) and (2.14).

According to (2.31), condition (2.8) is satisfied for all µ ∈ EN if

Q0(H) =
∫
EK

〈H,ξ 〉q0(dξ) ≤ c1,(3.1)

Q1(H,x) =
∫
EK

[〈H,ξ 〉 − H(x)]q1(x, dξ) ≤ c1H(x) ∀x ∈ Z(3.2)
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and

Q2(H,x, y) =
∫
EK

[〈H,ξ 〉 − H(x) − H(y)]q2(x, y, dξ)

≤ 0 ∀x, y ∈ Z.

(3.3)

Using (2.26) with 	 = 1EN∩Mγ (Z,g) and (2.2), one observes that condi-
tion (2.25) is satisfied provided that

q0 = 0, 〈g, ξ 〉 ≤ g(x), q1(x, dξ) a.e.,

〈g, ξ 〉 ≤ g(x) + g(y), q2(x, y, dξ) a.e. ∀x, y ∈ Z.
(3.4)

In this case, condition (2.8) is satisfied for all µ ∈ EN ∩ Mγ (Z, g) if (3.2) holds
and

Q2(H,x, y) ≤ c1[H(x)g(y) + g(x)H(y) + g(x)g(y)] ∀x, y ∈ Z.(3.5)

Indeed, (3.5) implies

1

N2

∑
1≤i �=j≤n

Q2(H,xi, xj ) ≤ c1(γ )[〈H,µ〉 + 1] ∀µ ∈ Mγ (Z, g).

3.1. Source and efflux. Any source term q0 ∈ Mb(EK) [cf. condition (2.17)]
satisfying (3.1) is covered by the results. In particular, we consider

q0(B) =
∫
Z

1B(δx)S(dx), B ∈ B(EK),

where S ∈ Mb(Z). Condition (3.1) takes the form∫
Z

H(x)S(dx) < ∞.(3.6)

Note that [cf. (2.30)]

Q0(ϕ) = 〈ϕ,S〉.(3.7)

The corresponding jump [cf. (2.2) and (2.5)] consists of adding (1/N)δx to the
system, where x is distributed according to the normalized measure S.

Next, we consider the efflux term

q1(x,B) = 1B(0)E(x), x ∈ Z,B ∈ B(EK),

where 0 denotes the zero measure and E ∈ C(Z) is such that

0 ≤ E(x) ≤ c2h(x) ∀x ∈ Z.(3.8)

Conditions (2.17) and (2.18) are satisfied, and condition (3.2) is fulfilled
with c1 = 0, since the left-hand side is nonpositive. Note that [cf. (2.30)]

Q1(ϕ, x) = −ϕ(x)E(x).(3.9)

The corresponding jump [cf. (2.2) and (2.5)] consists of removing (1/N)δx from
the system, where E determines the intensity of this event.
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3.2. Coagulation and fragmentation. Let Z = N or Z = (0,∞). Consider the
coagulation term

q2(x, y,B) = 1B(δx+y)K(x, y), x, y ∈ Z,B ∈ B(EK),

where K ∈ C(Z × Z) is nonnegative, and note that [cf. 2.30]

Q2(ϕ, x, y) = [ϕ(x + y) − ϕ(x) − ϕ(y)]K(x,y).(3.10)

Consider the fragmentation term

q1(x,B) =
∫
Z

1B(δx−y + δy)F (x, dy), x ∈ Z,B ∈ B(EK),

where F is a kernel on Z satisfying

F
(
x, [x,∞)

) = 0 ∀x ∈ Z,(3.11)

and note that [cf. (2.30)]

Q1(ϕ, x) =
∫
Z
[ϕ(x − y) + ϕ(y) − ϕ(x)]F(x, dy).(3.12)

With the terms (3.7), (3.9), (3.10) and (3.12), (2.23) takes the form∫
Z

ϕ(x)µ(t, dx)

=
∫
Z

ϕ(x)µ0(dx)

+
∫ t

0

[∫
Z

ϕ(x)S(dx) −
∫
Z

ϕ(x)E(x)µ(s, dx)

+
∫
Z

∫
Z
[ϕ(x + y) − ϕ(x) − ϕ(y)]K(x,y)µ(s, dx)µ(s, dy)

+
∫
Z

∫
Z
[ϕ(x − y) + ϕ(y) − ϕ(x)]F(x, dy)µ(s, dx)

]
ds

∀ t ≥ 0, ϕ ∈ Cc(Z).

(3.13)

THEOREM 3.1. Let Z = N or Z = (0,∞). Consider functions H satisfy-
ing (2.6) and

H(x)

x
≥ H(y)

y
∀0 < x ≤ y < ∞,(3.14)

and h satisfying (2.14). Let µ0, S ∈ M(Z,H) and E ∈ C(Z) such that (3.8) holds.
Consider a function K ∈ C(Z × Z) such that

0 ≤ K(x,y) ≤ c2h(x)h(y) ∀x, y ∈ Z,(3.15)

and a kernel F satisfying (3.11),

F(xn, ·) w→ F(x, ·) if xn → x ∈ Z,(3.16)
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Z
[H(x − y) + H(y) − H(x)]F(x, dy) ≤ c1H(x) ∀x ∈ Z,(3.17)

and

0 ≤ F(x,Z) ≤ c1h(x) ∀x ∈ Z.(3.18)

Then there exists some µ ∈ C([0,∞), M(Z,H,h)) satisfying (3.13).

REMARK 3.2. In the case Z = (0,∞) and F ≡ 0, any continuous coagulation
kernel satisfying (3.15) is covered, provided that H satisfies (3.14). Note there is
no restriction on K at 0.

COROLLARY 3.3. Let Z = (0,∞),

H(x) = x−α + x, α ∈ (0,1),

and

h(x) = x−α+ε + x1−ε, ε ∈ (0, α].
Let µ0, S ∈ M(Z,H) and E ∈ C(Z) such that (3.8) holds. Consider a func-
tion K ∈ C(Z × Z) satisfying (3.15). Assume F has the form

F(x, dy) = 1(0,x)(y) f (x, y) dy,(3.19)

where f is continuous with respect to the first argument and satisfies

0 ≤ f (x, y) ≤ R(x)y−β

x1−β
, β ∈ [0,1 − α),R(x) = c (1 + x1−ε).

Then there exists some µ ∈ C([0,∞),M(Z,H,h)) satisfying (3.13).

To our knowledge, the most general existence result in the continuous case,
including source and efflux terms, is contained in [9], Theorem 2.2. There it
is assumed that both K and f have compact support and that both the source
term and the initial distribution have a finite moment of some order r ≥ 1. Thus,
Corollary 3.3 provides a new existence result for unbounded K and f.

COROLLARY 3.4. Let Z = N and H(x) = x,h(x) = o(x). Consider µ0,

S ∈ M(Z,H) and E such that (3.8) holds. Suppose K satisfies (3.15) and
F satisfies (3.11) and (3.18). Then there exists some µ ∈ C([0,∞),M(Z,H,h))

satisfying (3.13).

To our knowledge, the most general existence result in the discrete case,
including source and efflux terms, is contained in [30]. The corresponding
assumptions there are K(x,y) = o(x)o(y), E(x) = O(x),

∑∞
x=1 xS(x) < ∞ and

boundedness of F(x,Z) in x. Thus, Corollary 3.4 provides a new existence result
for an unbounded total fragmentation rate.
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THEOREM 3.5. Let Z = N or Z = (0,∞). Consider functions H and h

satisfying (2.6) and (2.14). Let µ0 ∈ M(Z,H) such that∫
Z

xµ0(dx) < ∞,(3.20)

S = 0 and E ∈ C(Z) such that (3.8) holds. Consider a function K ∈ C(Z × Z)

satisfying (3.15) and

[H(x + y) − H(x) − H(y)]K(x,y) ≤ c1[H(x)y + xH(y) + xy],(3.21)

and a kernel F satisfying (3.11) and (3.16)–(3.18). Then there exists some µ ∈
C([0,∞),M(Z,H,h)) satisfying (3.13).

COROLLARY 3.6. Let Z = (0,∞),

H(x) = x−α + x2, α ∈ (0,1),

and
h(x) = x−α+ε + x2−ε, ε ∈ (0, α].

Let µ0 ∈ M(Z,H),S = 0 and E ∈ C(Z) such that (3.8) holds. Consider
a function K ∈ C(Z × Z) satisfying

K(x,y) ≤ c1(1 + x + y).(3.22)

Suppose F has the form (3.19), where f is continuous with respect to the first
argument and satisfies

0 ≤ f (x, y) ≤ R(x)y−β

x1−β
, β ∈ [0,1 − α),R(x) = c(1 + x2−ε).

Then there exists some µ ∈ C([0,∞),M(Z,H,h)) satisfying (3.13).

COROLLARY 3.7. Consider Z = N and the functions H(x) = xr , h(x) =
xr−ε with some r = 2,3, . . . and ε ∈ (0,1]. Let µ0 ∈ M(Z,H),S = 0 and E such
that (3.8) holds. Suppose K satisfies

K(x,y) ≤ c1(x + y),(3.23)

and F satisfies (3.11) and (3.18). Then there exists some µ ∈ C([0,∞),

M(Z,H,h)) satisfying (3.13).

REMARK 3.8. Consider Z = (0,∞). Suppose F has the form (3.19) and

µ(t, dx) = c(t, x) dx, S(dx) = S(x) dx.

Then, using the identity∫ ∞
0

∫ ∞
0

ψ(x, y) dy dx =
∫ ∞

0

∫ x

0
ψ(x − y, y) dy dx,
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equation (3.13) takes the form∫ ∞
0

ϕ(x)c(t, x) dx

=
∫ ∞

0
ϕ(x)c0(x) dx

+
∫ ∞

0
dx ϕ(x)

∫ t

0
ds

×
[
S(x) − E(x)c(s, x)

+ 2
∫ ∞

0
f (x + y, y)c(s, x + y) dy −

∫ x

0
f (x, y)c(s, x) dy

+
∫ x

0
K(x − y, y)c(s, x − y)c(s, y) dy

−
∫ ∞

0
[K(x,y) + K(y,x)]c(s, x)c(s, y) dy

]
.

Removing the test functions, one obtains

∂

∂t
c(t, x) = S(x) − E(x)c(t, x)

+ 2
∫ ∞

0
f (x + y, y)c(t, x + y) dy − c(t, x)F (x,Z)

+
∫ x

0
K(x − y, y)c(t, x − y)c(t, y) dy

−
∫ ∞

0
[K(x,y) + K(y,x)]c(t, x)c(t, y) dy.

(3.24)

In the discrete case Z = N, analogous transformations of (3.13) lead to the
form (3.24), with integrals replaced by sums. In this case, both forms are
equivalent, without any additional assumptions.

LEMMA 3.9. If condition (3.16) holds, then condition (2.18) is satisfied. If
F has the form (3.19), for some nonnegative function f, which is continuous with
respect to the first argument, then condition (3.16) is fulfilled.

PROOF. Condition (2.18) reduces to

F(·,Z) ∈ C(Z),

∫
Z
[ϕ(· − y) + ϕ(y)]F(·, dy) ∈ C(Z).(3.25)
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Note that∣∣∣∣
∫
Z
[ϕ(x − y) + ϕ(y)]F(x, dy) −

∫
Z
[ϕ(xn − y) + ϕ(y)]F(xn, dy)

∣∣∣∣
≤

∣∣∣∣
∫
Z
[ϕ(x − y) + ϕ(y)]F(x, dy) −

∫
Z
[ϕ(x − y) + ϕ(y)]F(xn, dy)

∣∣∣∣
+

∣∣∣∣
∫
Z
[ϕ(x − y) + ϕ(y)]F(xn, dy) −

∫
Z
[ϕ(xn − y) + ϕ(y)]F(xn, dy)

∣∣∣∣
≤

∣∣∣∣
∫
Z
[ϕ(x − y) + ϕ(y)]F(x, dy) −

∫
Z
[ϕ(x − y) + ϕ(y)]F(xn, dy)

∣∣∣∣
+ F(xn,Z) sup

y∈Z
|ϕ(x − y) − ϕ(xn − y)|

and

lim
n→∞ sup

y∈Z
|ϕ(x − y) − ϕ(xn − y)| = 0 ∀ϕ ∈ Cc(Z)

if xn → x. Thus, (3.25) follows from (3.16).
If F has the form (3.19), then condition (3.16) takes the form∫

Z
1(0,x)(y)ϕ(y)f (x, y) dy ∈ C(Z) ∀ϕ ∈ Cb(Z).(3.26)

Note that

1(0,xn)(y)ϕ(y)f (xn, y) ≤ 1(0,x̄)(y)‖ϕ‖ sup
n

R(xn)

x
1−β
n

y−β, x̄ = sup
n

xn,

and

lim
n→∞1(0,xn)(y)ϕ(y)f (xn, y) = 1(0,x)(y)ϕ(y)f (x, y) ∀y �= x

if limn→∞ xn = x. Thus, (3.26) follows from the dominated convergence theorem,
since f (x, y) is continuous in x. �

LEMMA 3.10. If condition (3.14) holds, then H(x) + H(y) ≥ H(x + y). If

H(x)

x
≤ H(y)

y
∀0 < x ≤ y < ∞,

then H(x) + H(y) ≤ H(x + y).

PROOF. Since

H(x) + H(y) = H(x)

x
x + H(y)

y
y,

H(x + y) = H(x + y)

x + y
x + H(x + y)

x + y
y,

the assertions follow. �
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LEMMA 3.11. Let Z = (0,∞), H1(x) = x−α,α ∈ (0,1), and

f1(x, y) = y−β

x1−β
, β ∈ [0,1 − α).(3.27)

Then ∫ x

0
[H1(x − y) + H1(y) − H1(x)]f1(x, y) dy

≤ c(α,β)H1(x) ∀x > 0.

(3.28)

PROOF. Using∫ x

0
(x − y)−α y−β dy

=
∫ x/2

0
(x − y)−α y−β dy +

∫ x

x/2
(x − y)−αy−β dy

≤
∫ x/2

0

(
x

2

)−α

y−β dy +
∫ x

x/2
(x − y)−α

(
x

2

)−β

dy

=
(

x

2

)−α(x

2

)1−β 1

1 − β
+

(
x

2

)−β(x

2

)1−α 1

1 − α

=
(

x

2

)1−α−β[ 1

1 − β
+ 1

1 − α

]

and (3.27), one obtains∫ x

0
[H1(x − y) + H1(y) − H1(x)]f1(x, y) dy

= 1

x1−β

∫ x

0
[(x − y)−α + y−α − x−α]y−β dy

≤ x−α

{
1

21−α−β

[
1

1 − β
+ 1

1 − α

]
+ 1

1 − α − β
− 1

1 − β

}

so that (3.28) follows. �

LEMMA 3.12. Let Z = (0,∞),

H(x) = x−α + xγ , α ∈ (0,1), γ ≥ 1,

and
h(x) = x−α+ε + xγ−ε, ε ∈ (0, α].

Assume F has the form (3.19), where f satisfies

0 ≤ f (x, y) ≤ R(x)y−β

x1−β
, β ∈ [0,1 − α),R(x) = c(1 + xγ−ε).(3.29)

Then conditions (3.17) and (3.18) are fulfilled.
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PROOF. Using Lemma 3.10, (3.29) and Lemma 3.11, one obtains∫
Z
[H(x − y) + H(y) − H(x)]F(x, dy)

≤
∫ x

0
[H1(x − y) + H1(y) − H1(x)]f (x, y) dy

≤ R(x)

∫ x

0
[H1(x − y) + H1(y) − H1(x)]f1(x, y) dy

≤ c(α,β)R(x)H1(x),

and condition (3.17) follows. Moreover, (3.29) implies

F(x,Z) ≤ R(x)

x1−β

∫ x

0
y−β dy = R(x)

1 − β
≤ c1h(x)

so that condition (3.18) is satisfied. �

PROOF OF THEOREM 3.1. The statement is a consequence of Corollary 2.6.
Indeed, condition (2.17) follows from (3.8), (3.15) and (3.18), and condition (2.18)
is satisfied due to the continuity assumptions and Lemma 3.9. Furthermore,
condition (3.1) follows from S ∈ M(Z,H) [cf. (3.6)], condition (3.2) follows
from (3.17) and condition (3.3) is fulfilled, according to Lemma 3.10 and (3.14).

�

PROOF OF COROLLARY 3.3. The statement is a consequence of Theorem 3.1.
Note that (2.6), (2.14) and condition (3.14) are satisfied. Moreover, condition
(3.16) is fulfilled, according to Lemma 3.9, and conditions (3.17) and (3.18) follow
from Lemma 3.12, with γ = 1. �

PROOF OF COROLLARY 3.4. The statement follows immediately from
Theorem 3.1. �

PROOF OF THEOREM 3.5. The statement is a consequence of Corollary 2.9,
with g(x) = x. Note that condition (3.4) is satisfied. Moreover, condition (2.17)
follows from (3.8), (3.15) and (3.18), and condition (2.18) is satisfied due to
the continuity assumptions and Lemma 3.9. Furthermore, condition (3.2) follows
from (3.17), and condition (3.5) is fulfilled, according to (3.21). �

PROOF OF COROLLARY 3.6. The statement is a consequence of Theorem 3.5.
Note that (2.6), (2.14) and (3.20) are satisfied, and (3.15) follows from (3.22).
Using Lemma 3.10 and (3.22), one obtains

[H(x + y) − H(x) − H(y)]K(x,y)

≤ [(x + y)2 − x2 − y2]K(x,y)

= 2xyK(x, y) ≤ 2c1[xy + x2y + xy2]
≤ 2c1[xy + H(x)y + xH(y)]
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so that (3.21) is fulfilled. Moreover, condition (3.16) is fulfilled, according to
Lemma 3.9, and conditions (3.17) and (3.18) are consequences of Lemma 3.12,
with γ = 2. �

PROOF OF COROLLARY 3.7. The statement is a consequence of Theorem 3.5.
Note that (2.6), (2.14) and (3.20) are satisfied, and (3.15) follows from (3.23).
Since

xkyl = x(x/y)k−1yl+k−1 ≤ xyl+k−1 if x ≤ y,

one obtains

xkyl ≤ xyk+l−1 + yxk+l−1 ∀x, y ≥ 0, k, l ≥ 1.(3.30)

Using (3.23) and (3.30), one obtains[
(x + y)r − xr − yr

]
K(x,y)

=
r−1∑
l=1

Cr
l x

lyr−lK(x, y)

≤ c1

[
r−1∑
l=1

Cr
l x

l+1yr−l +
r−1∑
l=1

Cr
l x

lyr−l+1

]

≤ 2c1

(
r−1∑
l=1

Cr
l

)
[xyr + yxr ],

and condition (3.21) follows. Finally, condition (3.17) is a consequence of
Lemma 3.10. �

3.3. Inelastic collisions. Here we consider the case Z = Rd, d ≥ 1. Denote

v′(v,w, e, θ) = v + w

2
+ ε(v,w, θ)

‖v − w‖e
2

(3.31)

and

w′(v,w, e, θ) = v + w

2
− ε(v,w, θ)

‖v − w‖e
2

,(3.32)

where v,w ∈ R
d , e ∈ S

d−1 (unit sphere), θ ∈ � for some measurable space �,

and ε is some measurable function. Note that

‖v′‖2 + ‖w′‖2 = ‖v‖2 + ‖w‖2 − 1 − ε(v,w, θ)2

2
‖v − w‖2;(3.33)

that is, energy is dissipated if ε2 < 1, conserved if ε2 = 1 and created if ε2 > 1.

Transformation (3.31), (3.32) generalizes the one-dimensional model proposed
in [33], with

ε(v,w, θ) = 1

1 + θ‖v − w‖a
, θ ∈ [0,∞), a > 0.
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In the special case ε ≡ 1, we use the notation

v∗(v,w, e) = v + w

2
+ ‖v − w‖e

2
,

w∗(v,w, e) = v + w

2
− ‖v − w‖e

2
.

(3.34)

THEOREM 3.13. Consider the functions

H(v) = ‖v‖2 + 1, v ∈ R
d,(3.35)

and h satisfying (2.14). Let β1, β2 : Rd × Rd × B(Sd−1) → [0,∞) be compactly
bounded kernels satisfying

β1(v,w,S
d−1) ≤ ch(v)H(w) ∀v,w ∈ R

d,(3.36)

β2(v,w,S
d−1) ≤ ch(v)h(w) ∀v,w ∈ R

d,(3.37)

β1(vn,w, ·) w→ β(v,w, ·) ∀w ∈ R
d(3.38)

and

β2(vn,wn, ·) w→ β(v,w, ·),(3.39)

when vn → v and wn → w in Rd . Consider µ0 ∈ M(Rd,H), π ∈ P (�) and

M ∈ P (Rd) such that
∫

Rd
‖w‖4 M(dw) < ∞.(3.40)

Suppose ∫
�

ε(v,w, θ)2π(dθ) ≤ 1 ∀v,w ∈ R
d(3.41)

and

ε(·, ·, θ) ∈ C(Rd × R
d) ∀ θ ∈ �.(3.42)

Then there exists some µ ∈ C([0,∞),M(Rd,H,h)) satisfying the equation

〈ϕ,µ(t)〉
= 〈ϕ,µ0〉 +

∫ t

0

[∫
Rd

∫
Rd

∫
Sd−1

[
ϕ
(
v∗(v,w, e)

) − ϕ(v)
]

× β1(v,w,de)M(dw)µ(s, dv)

+
∫

Rd

∫
Rd

∫
�

∫
Sd−1

[
ϕ
(
v′(v,w, e, θ)

)
+ ϕ

(
w′(v,w, e, θ)

)
− ϕ(v) − ϕ(w)

]
× β2(v,w,de)π(dθ)µ(s, dv)µ(s, dw)

]
ds,

t ≥ 0,

(3.43)

for any ϕ ∈ Cc(R
d).
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REMARK 3.14. The probability measure π ∈ P (�) introduces some random-
ness into the collision events. The probability measure M ∈ P (Rd) represents the
influence of some background gas. Condition (3.40) is fulfilled, for example, when
M is a Maxwellian.

REMARK 3.15. Consider the special case

ε ≡ 1, β1(v,w,de) = ‖v − w‖de, β2(v,w,de) = 1
2‖v − w‖de

and suppose µ(t, dv) = f (t, v) dv,M(dv) = M(v)dv. Then (3.43) takes the form∫
Rd

ϕ(v)f (t, v) dv

=
∫

Rd
ϕ(v)f0(v) dv

+
∫

Rd
dv ϕ(v)

∫ t

0
ds

×
[∫

Rd

∫
Sd−1

‖v − w‖[M(w∗)f (s, v∗) − M(w)f (s, v)
]
de dw

+
∫

Rd

∫
Sd−1

‖v − w‖[f (s,w∗) f (s, v∗) − f (s,w)f (s, v)
]
de dw

]
.

Removing the test functions, one obtains

∂

∂t
f (t, v) =

∫
Rd

∫
Sd−1

‖v − w‖[M(w∗)f (t, v∗) − M(w)f (t, v)
]
de dw

+
∫

Rd

∫
Sd−1

‖v − w‖[f (t,w∗)f (t, v∗) − f (t,w)f (t, v)
]
de dw.

PROOF OF THEOREM 3.13. Introducing the background collision term

q1(v,B) =
∫

Rd

∫
Sd−1

1B

(
δv∗(v,w,e)

)
β1(v,w,de)M(dw),

v ∈ Rd,B ∈ B(EK),

one obtains [cf. (2.30)]

Q1(ϕ, v) =
∫

Rd

∫
Sd−1

[
ϕ
(
v∗(v,w, e)

) − ϕ(v)
]
β1(v,w,de)M(dw).(3.44)

With (3.35), condition (3.2) takes the form∫
Rd

∫
Sd−1

[‖v∗(v,w, e)‖2 − ‖v‖2]β1(v,w,de)M(dw) ≤ c1
[‖v‖2 + 1

]
.(3.45)

Note that (3.33) (with ε = 1) implies

‖v∗(v,w, e)‖2 − ‖v‖2 ≤ ‖w‖2,
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so that assumptions (3.36) and (3.40) are sufficient for condition (3.45).
Introducing the binary collision term

q2(v,w,B) =
∫
�

∫
Sd−1

1B

(
δv′(v,w,e,θ) + δw′(v,w,e,θ)

)
β2(v,w,de)π(dθ),

where v,w ∈ Rd and B ∈ B(EK), one obtains [cf. (2.30)]

Q2(ϕ, v,w)

=
∫
�

∫
Sd−1

[
ϕ
(
v′(v,w, e, θ)

) + ϕ
(
w′(v,w, e, θ)

) − ϕ(v) − ϕ(w)
]

×β2(v,w,de)π(dθ).

(3.46)

In view of (3.35) and (3.33), condition (3.3) takes the form

‖v − w‖2

2

[∫
�

ε(v,w, θ)2π(dθ) − 1
]
β2(v,w,S

d−1) ≤ 0

and follows from (3.41).
Condition (2.17) takes the form (3.37) and∫

Rd
β1(v,w,S

d−1)M(dw) ≤ ch(v) ∀v ∈ R
d

and follows from (3.36) and (3.40).
Condition (2.18) reduces to β2(·, ·,S

d−1) ∈ C(Rd ,R
d),∫

�

∫
Sd−1

[
ϕ
(
v′(·, ·, e, θ)

) + ϕ
(
w′(·, ·, e, θ)

)]
× β2(·, ·, de)π(dθ) ∈ C(Rd,R

d),

(3.47)

∫
Rd

β1(·,w,S
d−1)M(dw) and

∫
Rd

∫
Sd−1

ϕ
(
v∗(·,w, e)

)
β1(·,w,de)M(dw) ∈ C(Rd).

(3.48)

Note that [cf. (3.31)]

‖v′(v,w, e, θ) − v′(vn,wn, e, θ)‖
≤ ‖v − vn‖ + ‖w − wn‖

2
+ |ε(v,w, θ) − ε(vn,wn, θ)|‖v − w‖

2

+ ε(vn,wn, θ)

2

∣∣‖v − w‖ − ‖vn − wn‖
∣∣
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implies

sup
e∈Sd−1

‖v′(v,w, e, θ) − v′(vn,wn, e, θ)‖ → 0 if (vn,wn) → (v,w),

according to assumption (3.42). Since ϕ ∈ Cc(R
d), it follows that

sup
e∈Sd−1

∣∣ϕ(
v′(v,w, e, θ)

) − ϕ(v′(vn,wn, e, θ)
)∣∣ → 0

if (vn,wn) → (v,w).

(3.49)

One obtains∣∣∣∣
∫

Sd−1
ϕ
(
v′(v,w, e, θ)

)
β2(v,w,de)

−
∫

Sd−1
ϕ
(
v′(vn,wn, e, θ)

)
β2(vn,wn, de)

∣∣∣∣
≤

∣∣∣∣
∫

Sd−1
ϕ
(
v′(v,w, e, θ)

)
β2(v,w,de)

−
∫

Sd−1
ϕ
(
v′(v,w, e, θ)

)
β2(vn,wn, de)

∣∣∣∣
+ sup

e∈Sd−1

∣∣ϕ(
v′(v,w, e, θ)

) − ϕ
(
v′(vn,wn, e, θ)

)∣∣β2(vn,wn,S
d−1),

(3.50)

and the continuity of∫
�

∫
Sd−1

ϕ
(
v′(·, ·, e, θ))β2(·, ·, de)π(dθ)

follows from (3.50) and (3.49), assumption (3.39) and the dominated convergence
theorem. The other terms in (3.47) and (3.48) are treated in an analogous
way, using also assumption (3.38). Finally, the assertion is a consequence of
Corollary 2.6, since, with the terms (3.44) and (3.46), (2.23) takes the form (3.43).

�

4. The minimal jump process. Let λ be a compactly bounded kernel on
a locally compact separable metric space E. The minimal jump process X� ,

corresponding to λ and some initial distribution ν0 ∈ P (E), is constructed on the
one-point compactification E� in the following way (cf. [13], page 263 and [27],
page 69). Let Y0, Y1, . . . be a Markov chain in E with initial distribution ν0 and
transition function p : E × B(E) → [0,1] defined by

p(ξ,B) =



λ(ξ,B)

λ(ξ,E)
, if λ(ξ,E) > 0,

1B(ξ), if λ(ξ,E) = 0.
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Let T0, T1, . . . be independent and exponentially distributed random variables with
mean 1 that are also independent of (Yk), all defined on some probability space
(�,F ,P ). Introduce the jump and explosion times

τ0 = 0, τl =
l−1∑
k=0

Tk

λ(Yk,E)
, l = 1,2, . . . , τ∞ =

∞∑
k=0

Tk

λ(Yk,E)
,(4.1)

where Tk/0 := ∞, and define

X�(t) =
{

Yl, if τl ≤ t < τl+1,
�, if t ≥ τ∞,

t ≥ 0.(4.2)

Note that X� is an E�-valued stochastic process and, for every A ∈ B(E), the
random variable

σ�
A = inf

{
t ≥ 0 :X�(t) /∈ A

}
(4.3)

is an {F X�

t }-stopping time. By construction (4.1), (4.2), X� is right-constant, but
left limits may not exist at τ∞. In particular, one obtains

X�(t) ∈ E ∀ t ≥ 0 ⇐⇒ τ∞ = ∞ ⇐⇒ X� ∈ D([0,∞),E)(4.4)

and

X�(t) ∈ A ∀ t < σ�
A , X�(σ�

A ) /∈ A.(4.5)

The following theorem provides a sufficient condition for nonexplosion of the
minimal jump process, which, then, is equivalent to a cadlag process taking values
in E.

THEOREM 4.1. Let λ be a compactly bounded kernel on a locally compact
separable metric space E, and ν0 ∈ P (E). Suppose there exists a nonnegative
continuous function η such that

1

η + 1
∈ C0(E),(4.6)

∫
E

η(ξ)ν0(dξ) ≤ c0(4.7)

and ∫
E
[η(ξ1) − η(ξ)]λ(ξ, dξ1) ≤ c1

[
η(ξ) + c′

1
] ∀ ξ ∈ E(4.8)

for some c0, c1, c
′
1 ≥ 0.

Then there exists a D([0,∞),E)-valued random variable X such that

P
(
X(t) = X�(t) ∀ t ≥ 0

) = 1(4.9)

and

Eη(X(t)) ≤ (c0 + c′
1) exp(c1t) ∀ t ≥ 0.(4.10)
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COROLLARY 4.2. Let X be given by Theorem 4.1. Then

σCm = inf{t ≥ 0 :X(t) /∈ Cm},(4.11)

with

Cm = {ξ ∈ E :η(ξ) ≤ m},(4.12)

and

M(	, t) = 	(X(t)) − 	(X(0)) −
∫ t

0
A	(X(s)) ds,(4.13)

with

A	(ξ) =
∫
E
[	(ξ1) − 	(ξ)]λ(ξ, dξ1), ξ ∈ E,(4.14)

satisfy

P (σCm ≤ t) ≤ m−1(c0 + c′
1) exp(c1t)(4.15)

and

E sup
s≤t

∣∣M(	, s ∧ σCm)
∣∣ ≤ 2

(
t sup
ξ∈Cm

∫
E

[	(ξ1) − 	(ξ)]2 λ(ξ, dξ1)

)1/2

(4.16)

for all m ≥ 1, t ≥ 0 and 	 ∈ Cb(E).

LEMMA 4.3. If

sup
ξ∈A

λ(ξ,E) < ∞,(4.17)

then there exists a process XA with sample paths in D([0,∞),E) such that

P
(
XA(t) = X�(t ∧ σ�

A ) ∀ t ≥ 0
) = 1.(4.18)

Moreover, for 	 ∈ Cb(E) and t ≥ 0, it satisfies

E	(XA(t)) = E	(XA(0)) + E

∫ t

0
AA	(XA(s)) ds(4.19)

and

E sup
s≤t

|MA(	, s)| ≤ 2
(
t sup

ξ∈A

∫
E
[	(ξ1) − 	(ξ)]2λ(ξ, dξ1)

)1/2

,(4.20)

where

AA	(ξ) =
∫
E
[	(ξ1) − 	(ξ)]λA(ξ, dξ1), ξ ∈ E ,(4.21)

with

λA(ξ,B) = 1A(ξ)λ(ξ,B), ξ ∈ E,B ∈ B(E),(4.22)

and

MA(	, t) = 	(XA(t)) − 	(XA(0)) −
∫ t

0
AA	(XA(s)) ds.(4.23)
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PROOF. We first check that

P (�′) = 1 where �′ = {
X�(t ∧ σ�

A ) ∈ E ∀ t ≥ 0
}
.(4.24)

If there is a k ≥ 0 such that Tk(ω) > 0 and Yk(ω) /∈ A, then σ�
A (ω) ≤ τk(ω); that

is, there are at most k jumps for this trajectory, and ω ∈ �′. Thus, for ω /∈ �′, one
obtains Yk(ω) ∈ A whenever Tk(ω) > 0, and therefore

τ∞(ω) =
∞∑

k=0

Tk(ω)

λ(Yk(ω),E)
≥ 1

supξ∈A λ(ξ,E)

∞∑
k=0

Tk(ω).

Moreover, ω /∈ �′ implies τ∞(ω) < ∞ [cf. (4.4)] so that

P (� \ �′) ≤ P

{ ∞∑
k=0

Tk < ∞
}

= 0.

Therefore, (4.24) is fulfilled, and a process XA satisfying (4.18) is obtained by
redefining the process X�(t ∧σ�

A ) on the set �\�′ by elements of D([0,∞),E).

It follows from the explicit construction procedure that the process XA is
equivalent to the minimal jump process corresponding to ν0 and the kernel (4.22)
and therefore is a Markov process with the bounded generator (4.21) (cf., e.g.,
[13], page 163). Thus, for 	 ∈ Cb(E), the processes (4.23) and

MA(	, t)2 −
∫ t

0

[
AA	2 − 2	AA	

]
(XA(s)) ds

are {F XA
t }-martingales (cf., e.g., [13], page 93 and Proposition 4.1.7). In particular,

one obtains (4.19) and

EMA(	, t)2 = E

∫ t

0

[
AA	2 − 2	AA	

]
(XA(s)) ds.(4.25)

Using the identity

[
AA	2 − 2	AA	

]
(ξ) =

∫
E
[	(ξ1) − 	(ξ)]2λA(ξ, dξ1), ξ ∈ E,(4.26)

and Doob’s inequality (cf. [13], Corollary 2.2.17)

E sup
s≤t

|MA(	, s)|2 ≤ 4EMA(	, t)2,(4.27)

one obtains (4.20) from (4.27), (4.25), (4.26) and (4.22). �

LEMMA 4.4. Let the assumptions of Theorem 4.1 be fulfilled. Then
[cf. (4.3) and (4.12)]

P
(
σ�

Cm
≤ t

) ≤ m−1(c0 + c′
1) exp(c1t) ∀ t ≥ 0.(4.28)
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PROOF. Note that

Cm ⊂ Om := {ξ ∈ E :η(ξ) < m + 1} ⊂ Cm+1.

According to Lemma A.2, we choose ek ∈ Cc(E), k ≥ 1, such that

ek(ξ) = 1, ξ ∈ Ck, ek(ξ) = 0, ξ ∈ Cc
k+1, 0 ≤ ek(ξ) ≤ 1, ξ ∈ E.

Note that ek(ξ) = 1, k ≥ m,ξ ∈ Cm. Thus, the functions 	k = ek[η + c′
1] ∈ Cc(E)

satisfy [cf. (4.22)]∫
E
[	k(ξ1) − 	k(ξ)]λCm(ξ, dξ1)

≤
∫
E
[η(ξ1) − η(ξ)]λCm(ξ, dξ1) ∀ k ≥ m.

(4.29)

It follows from assumption (4.6) and Lemma A.1 that the sets (4.12) are compact.
Thus, since λ is compactly bounded, assumption (4.17) is fulfilled so that
Lemma 4.3 is applicable. Using (4.19) and (4.29) and assumptions (4.7) and (4.8),
one obtains

E	k(XCm(t))

= E	k(X(0)) + E

∫ t

0

∫
E

[
	k(ξ1) − 	k

(
XCm(s)

)]
λCm

(
XCm(s), dξ1

)
ds

≤ E	k(X(0)) + E

∫ t

0

∫
E

[
η(ξ1) − η

(
XCm(s)

)]
λCm

(
XCm(s), dξ1

)
ds

≤ E	k(X(0)) + c1E

∫ t

0
1Cm

(
XCm(s)

)[
η
(
XCm(s)

) + c′
1
]
ds

≤ c0 + c′
1 + c1

∫ t

0
E
[
η
(
XCm(s)

) + c′
1
]
ds ∀ t ≥ 0, k ≥ m,

where XCm is a D([0,∞),E)-valued random variable such that

P
(
XCm(t) = X�

(
t ∧ σ�

Cm

) ∀ t ≥ 0
) = 1.(4.30)

The monotone convergence theorem (with k → ∞) implies

Eη
(
XCm(t)

) + c′
1 ≤ c0 + c′

1 + c1

∫ t

0
E
[
η
(
XCm(s)

) + c′
1
]
ds.(4.31)

Using (4.30), (4.5) and assumption (4.8), one obtains

Eη
(
XCm(t)

) = Eη
(
XCm(t)

)
1{σ�

Cm
>t} + Eη

(
XCm(t)

)
1{σ�

Cm
≤t}

≤ m + sup
ξ∈Cm

∫
E

η(ξ1)λ(ξ, dξ1)

≤ m + sup
ξ∈Cm

(
c1

[
η(ξ) + c′

1
] + η(ξ)λ(ξ,E)

)

≤ m +
(
c1 [m + c′

1] + m sup
ξ∈Cm

λ(ξ,E)

)
.
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An application of Gronwall’s inequality to (4.31) yields

Eη
(
XCm(t)

) ≤ (c0 + c′
1) exp(c1 t) ∀ t ≥ 0.(4.32)

Using (4.5) and (4.30), one obtains

P
(
σ�

Cm
≤ t

) = P
(
XCm(t) /∈ Cm

) = P
(
η
(
XCm(t)

)
> m

) ≤ m−1
Eη

(
XCm(t)

)
for all m ≥ 1 and t ≥ 0, so that (4.28) follows from (4.32). �

PROOF OF THEOREM 4.1. Since σ�
Cm

≤ σ�
Cm+1

, for all m ≥ 1, Lemma 4.4
implies

P

(
lim

m→∞σ�
Cm

≤ t

)
= 0 ∀ t ≥ 0,

so that

P

(
lim

m→∞σ�
Cm

= ∞
)

= 1.(4.33)

Since 0 ≤ σ�
Cm

≤ τ∞ = σ�
E , (4.33) implies P (τ∞ = ∞) = 1. Thus, according

to (4.4), a process X with sample paths in D([0,∞),E), satisfying (4.9), is
obtained by appropriately redefining X� on the set {τ∞ < ∞}, for example, by
constant paths. This process is a D([0,∞),E)-valued random variable according
to [13], page 128, since E is separable.

Using (4.33) and continuity of η, one obtains

P

(
lim

m→∞η
(
X(t ∧ σCm)

) = η(X(t))

)
= 1.

Thus, Fatou’s lemma and (4.32) imply (4.10). �

PROOF OF COROLLARY 4.2. Note that [cf. (4.11) and (4.3)]

P
(
σCm = σ�

Cm

) = 1,(4.34)

according to (4.9). Thus, (4.15) is a consequence of Lemma 4.4.
Moreover, (4.9) and (4.34) imply

P
(
X�

(
t ∧ σ�

Cm

) = X
(
t ∧ σCm

) ∀ t ≥ 0
) = 1

and [cf. (4.18)]

P
(
XCm(t) = X

(
t ∧ σCm

) ∀ t ≥ 0
) = 1.(4.35)

Note that [cf. (4.13)]

M
(
	, t ∧ σCm

) = 	
(
X(t ∧ σCm)

) − 	
(
X(0)

)
−

∫ t∧σCm

0
A	(X(s)) ds

(4.36)



872 A. EIBECK AND W. WAGNER

and [cf. (4.23), (4.21), (4.22) and (4.14)]

MCm(	, t) = 	
(
XCm(t)

) − 	
(
XCm(0)

)
−

∫ t

0
1Cm

(
XCm(s)

)
A	

(
XCm(s)

)
ds.

(4.37)

Since XCm(s) /∈ Cm a.e., for s ≥ σCm , one obtains, using (4.35)–(4.37),

P
(
M

(
	, t ∧ σCm

) = MCm(	, t) ∀ t ≥ 0
) = 1,

so that (4.16) follows from (4.20), with A = Cm. �

5. Proofs of the main results.

5.1. Regularity.

LEMMA 5.1. Let Z be a locally compact separable metric space. Then the
space (EN,d1) [cf. (2.1) and (2.11)] is separable and locally compact. If, in
addition, assumption (2.4) holds, then the kernel λN [cf. (2.5)] on (EN,d1) is
compactly bounded.

PROOF. Let Z′ be a countable dense set in Z. Then the set{
1

N

n∑
i=1

δxi
:n ≥ 0, xi ∈ Z′, i = 1, . . . , n

}

is countable and dense in (EN,d1), according to Remark 2.10. Choose compact
and open sets �m,�m,m ≥ 1, according to Lemma A.3. Then the sets

Gm =
{

1

N

n∑
i=1

δxi
: 0 ≤ n ≤ m,xi ∈ �m, i = 1, . . . , n

}
(5.1)

and

Om =
{

1

N

n∑
i=1

δxi
: 0 ≤ n ≤ m,xi ∈ �m, i = 1, . . . , n

}

are, respectively, compact and open (this is easily established using Remark 2.10).
They satisfy

Gm ⊂ Om ⊂ Gm+1 and EN = ⋃
m

Gm.(5.2)

In particular, every µ ∈ EN has a compact neighborhood, which proves local
compactness of the space EN. Any compact set C ⊂ EN is covered by a finite
number of sets Om, according to (5.2). Thus, it is contained in some Gm, and
(2.27) implies

sup
µ∈C

λN
(
µ,EN

) ≤ N

[
q0(EK) +

R∑
r=1

sup
x∈�r

m

qr(x,EK)

(
m

N

)r
]
.(5.3)
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The right-hand side of (5.3) is finite by assumption (2.4), so that the kernel is
compactly bounded. �

REMARK 5.2. For any µ = (1/N)
∑n

i=1 δxi
∈ EN , one obtains

n

N
= µ

(
EN

) ≤ 〈H,µ〉
infH

and H(xi) ≤ N〈H,µ〉 ∀ i = 1, . . . , n.(5.4)

LEMMA 5.3. If assumption (2.6) holds, then the function 
 defined in (2.28),
with ϕ = H , satisfies

1


 + 1
∈ C0

(
EN )

.(5.5)

PROOF. It follows from assumption (2.6) that the set � = {x ∈ Z :
H(x) ≤ mN} is compact, according to Lemma A.1, and that infx∈Z H(x) > 0.

As a consequence of Remark 5.2, the set{
µ ∈ EN :
(µ) ≤ m

}
, m > 0,(5.6)

is contained in the set {
1

N

n∑
i=1

δxi
: 0 ≤ n ≤ mN

infH
,xi ∈ �

}
,

which is compact [cf. (5.1)]. Since the function 
 is continuous, according to
assumption (2.6) and Remark 2.11, the set (5.6) is closed and therefore compact.
Finally, property (5.5) follows from Lemma A.1 and the first part of Lemma 5.1.

�

PROOF OF THEOREM 2.1. According to assumption (2.4) and Lemma 5.1,
the kernel λN is compactly bounded on the separable and locally compact
space (EN,d1). Condition (4.6), with η = 
, follows from assumption (2.6) and
Lemma 5.3. Assumptions (2.7) and (2.8) take the form (4.7) and (4.8). Thus,
Theorem 2.1 follows from Theorem 4.1. �

We finish this section by providing further consequences of the assumptions of
Theorem 2.1, which will be used later.

REMARK 5.4. The process XN provided by Theorem 4.1 is a D([0,∞),EN)-
valued random variable. Note that EN ⊂ M(Z,H) and the embedding (EN,

d1) → M(Z,H,h) is continuous (cf. Remark 2.10). Thus, in view of Lemma A.4,
the process XN can be considered as a D([0,∞),M(Z,H,h))-valued random
variable.
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Using (4.10), one obtains

E
〈
H,XN(t)

〉 ≤ (c0 + c′
1) exp(c1t) ∀ t ≥ 0.(5.7)

Moreover, Corollary 4.2 implies

P (σN
m > T ) ≥ 1 − m−1(c0 + c′

1) exp(c1T ) ∀T ≥ 0,m ≥ 1,(5.8)

and

E sup
t≤T

∣∣MN(	, t ∧ σN
m )

∣∣

≤ 2
(
T sup

µ∈CN
m

∫
EN

[	(ν) − 	(µ)]2 λN(µ,dν)

)1/2(5.9)

for all m ≥ 1, T ≥ 0 and 	 ∈ Cb(E
N), where

σN
m = inf

{
t ≥ 0 :XN(t) /∈ CN

m

}
,(5.10)

CN
m := {

µ ∈ EN : 〈H,µ〉 ≤ m
}
, m > 0,(5.11)

MN(	, t) = 	
(
XN(t)

) − 	
(
XN(0)

)
−

∫ t

0
AN	

(
XN(s)

)
ds, t ≥ 0,

(5.12)

and

AN	(µ) =
∫
EN

[	(ν) − 	(µ)] λN(µ,dν), µ ∈ EN.(5.13)

LEMMA 5.5. Suppose the assumptions of Theorem 2.1 are satisfied. Let ϕ ∈
Cb(Z) and 
 be defined in (2.28). Then [cf. (5.10), (5.11)]

E sup
t≤T

∣∣MN(
, t ∧ σN
m )

∣∣

≤ 2
(
T sup

µ∈CN
m

∫
EN

[〈ϕ, ν〉 − 〈ϕ,µ〉]2 λN(µ,dν)

)1/2(5.14)

for any T ≥ 0 and m ≥ 1.

PROOF. The function (2.28) is continuous but, in general, unbounded.
However, the stopped process reaches only a set, on which the function is
bounded. Indeed, introduce the sets ĈN

m of all ν ∈ EN such that ν = J0(µ, ξ)

or ν = Jr(µ, i1, . . . , ir , ξ), for some µ ∈ CN
m , pairwise distinct indices i1, . . . , ir

from {1, . . . , n}, r = 1, . . . ,R and ξ ∈ EK. Using

|
(µ)| ≤ ‖ϕ‖µ(
EN

) ≤ ‖ϕ‖〈H,µ〉
infH

∀µ ∈ EN
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and (2.32), one obtains [cf. (2.2)]

|
(ν)| ≤ ‖ϕ‖
(

m

infH
+ K

N

)
∀ ν ∈ CN

m ∪ ĈN
m .(5.15)

Note that

P
(
XN(t ∧ σN

m ) ∈ CN
m ∪ ĈN

m ∀ t ≥ 0
) = 1.

Consequently, (5.15) implies

P
(



(
XN(t ∧ σN

m )
) = 
m

(
XN(t ∧ σN

m )
) ∀ t ≥ 0

)
= 1,(5.16)

where


m(µ) := 
(µ) ∧ ‖ϕ‖
(

m

inf H
+ K

N

)
, µ ∈ EN,

is a bounded function. Moreover, (2.26) and (5.15) imply, for µ ∈ CN
m ,∫

EN
[
(ν) − 
(µ)]kλN(µ,dν)

=
∫
EN

[
m(ν) − 
m(µ)]kλN(µ,dν), k = 1,2.

(5.17)

It follows from (5.16) and (5.17), with k = 1, that

P
(
MN(
, t ∧ σN

m ) = MN(
m, t ∧ σN
m ) ∀ t ≥ 0

) = 1.(5.18)

Finally, (5.14) follows from (5.9), (5.18) and (5.17), with k = 2. �

5.2. Relative compactness.

LEMMA 5.6. Suppose assumption (2.15) is satisfied. Then [cf. (5.11)]

sup
µ∈CN

m

∣∣∣∣
∫
EN

[〈ϕ, ν〉 − 〈ϕ,µ〉]kλN(µ,dν)

∣∣∣∣

≤ c2N
1−k(K + R)k‖ϕ‖k

R∑
r=0

mr

for any ϕ ∈ Cb(Z), k = 1,2 and m ≥ 1.

PROOF. Using (2.29) and (2.33) and assumption (2.15), one obtains∣∣∣∣∣
∫
EN

[〈ϕ, ν〉 − 〈ϕ,µ〉]kλN(µ,dν)

∣∣∣∣∣
≤ N1−k(K + R)k‖ϕ‖k

×
[
q0(EK) +

R∑
r=1

∫
Z

· · ·
∫
Z

qr(x1, . . . , xr ,EK)µ(dx1) · · ·µ(dxr)

]

≤ c2N
1−k(K + R)k‖ϕ‖k

[
1 + 〈H,µ〉 + · · · + 〈H,µ〉R]

,
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and the assertion follows from the definition (5.11). �

COROLLARY 5.7. Suppose the assumptions (2.6)–(2.8) and (2.15) are satis-
fied. Let ϕ ∈ Cb(Z) and 
 be defined in (2.28). Then [cf. (5.10)]

E sup
t≤T

∣∣MN(
, t ∧ σN
m )

∣∣ ≤ 2‖ϕ‖(K + R)

(
c2 T

N

R∑
r=0

mr

)1/2

(5.19)

for any T ≥ 0 and m ≥ 1.

PROOF. Property (5.19) follows from Lemmas 5.5 and 5.6, with k = 2. �

LEMMA 5.8. Suppose the assumptions (2.6) and (2.15) are satisfied, and the
assumptions (2.7) and (2.8) hold uniformly in N. Consider

ϕ ∈ C(Z) such that
ϕ

H
∈ C0(Z).(5.20)

Then, for any T > 0 and ε > 0,

∃�t, N0 > 0 : sup
N≥N0

P

(
sup

|s−t|≤�t,t≤T

∣∣〈ϕ,XN(s)〉−〈ϕ,XN(t)〉∣∣ ≥ ε

)
≤ ε.(5.21)

PROOF. Consider T > 0 and ε > 0 fixed. According to Lemma A.1, the set

� =
{
x ∈ Z :

|ϕ(x)|
H(x)

≥ ε

8 m

}
(5.22)

is compact, for any m ≥ 1. Choosing ψ according to Lemma A.2, we find ϕ̃ =
ϕ ψ ∈ Cc(Z) such that

ϕ̃(x) = ϕ(x), x ∈ � and |ϕ̃(x)| ≤ |ϕ(x)|, x ∈ Z.(5.23)

Consider [cf. (5.10) and (5.11)]

0 ≤ s ≤ t < σN
m(5.24)

so that XN(s) ∈ CN
m and 〈H,XN(s)〉 ≤ m. Using (5.23) and (5.22), we obtain∣∣〈ϕ,XN(s)〉 − 〈ϕ,XN(t)〉∣∣

≤ ∣∣〈ϕ − ϕ̃,XN(s)〉∣∣ + ∣∣〈ϕ − ϕ̃,XN(t)〉∣∣ + ∣∣〈ϕ̃,XN(s)〉 − 〈ϕ̃,XN(t)〉∣∣
≤

∫
�c

2|ϕ(z)|
H(z)

H(z)XN(s, dz) +
∫
�c

2|ϕ(z)|
H(z)

H(z)XN(t, dz)

+ ∣∣〈ϕ̃,XN(s)〉 − 〈ϕ̃,XN(t)〉∣∣
≤ ε

2
+ ∣∣〈ϕ̃,XN(s)〉 − 〈ϕ̃,XN(t)〉∣∣.

(5.25)
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Furthermore, setting 
̃(µ) = 〈ϕ̃,µ〉, we obtain [cf. (5.24), (5.12) and (5.13)]∣∣〈ϕ̃,XN(s)〉 − 〈ϕ̃,XN(t)〉∣∣
≤ ∣∣MN(
̃, s) − MN(
̃, t)

∣∣ + ∫ t

s

∣∣AN
̃
(
XN(r)

)∣∣dr

≤ ∣∣MN(
̃, s) − MN(
̃, t)
∣∣ + c(t − s),

(5.26)

where c = c(m,ϕ,K,R), according to Lemma 5.6, with k = 1. Choose m

according to (5.8) such that

inf
N

P (σN
m > T + 1) ≥ 1 − ε

2
,(5.27)

and let 0 < �t < ε/4c ∧ 1. Using (5.25), (5.26) [which hold under condi-
tion (5.24)], (5.27) and the Chebyshev inequality, we obtain

P

(
sup

|s−t|≤�t,t≤T

∣∣〈ϕ,XN(s)〉 − 〈ϕ,XN(t)〉∣∣ ≥ ε

)

≤ P

(
sup

|s−t|≤�t,t≤T

∣∣〈ϕ,XN(s)〉 − 〈ϕ,XN(t)〉∣∣ ≥ ε, σN
m > T + 1

)
+ ε

2

≤ P

(
3ε

4
+ sup

|s−t|≤�t,t≤T

∣∣MN(
̃, s) − MN(
̃, t)
∣∣ ≥ ε, σN

m > T + 1
)

+ ε

2

≤ P

(
sup

t≤T +1

∣∣MN(
̃, t)
∣∣ ≥ ε

8
, σN

m > T + 1
)

+ ε

2

≤ 8

ε
E sup

t≤T +1

∣∣MN(
̃, t ∧ σN
m )

∣∣ + ε

2
.

By Corollary 5.7, the mean value of the right-hand side becomes smaller
than ε2/16 for sufficiently large N and thus (5.21) is satisfied. �

LEMMA 5.9. Let Z be a locally compact separable metric space. Consider

H ∈ C(Z) such that H > 0,(5.28)

and h satisfying (2.14). Then the sets

Cε = {µ ∈ M(Z) : 〈H,µ〉 ≤ ε}, ε > 0,(5.29)

are compact subsets of the space M(Z,H,h).

PROOF. By [3], Corollary 31.3, the set C̃ = {ν ∈ M(Z) :ν(Z) ≤ ε} is vaguely
compact. Consider the mapping [cf. (2.11)]

T : (C̃, d0) → (Cε, dh), T (ν)(B) =
∫
B

1

H
dν, B ∈ B(Z),
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which is invertible and continuous. Indeed, according to assumption (2.14) and [3],
Theorem 30.6, one obtains

〈h,T (νk)〉 =
〈

h

H
,νk

〉
−→

〈
h

H
,ν

〉
= 〈h,T (ν)〉,

if νk, ν ∈ C̃ are such that d0(νk, ν) → 0. Hence, Cε = T (C̃) is compact w.r.t. the
topology generated by dh. �

REMARK 5.10. Since Z is locally compact and separable, there is a countable
subset {ψk}∞k=1 of Cc(Z) which is dense in Cc(Z) w.r.t. uniform convergence
(cf. [3], Lemma 31.4). According to Lemmas A.3 and A.2, choose compact and
open sets satisfying (A.1), and localizing functions em ∈ Cc(Z),m ≥ 1, such that

em(z) = 1, z ∈ �m, em(z) = 0, z /∈ �m, 0 ≤ em(z) ≤ 1, z ∈ Z.(5.30)

Reorder the elements of the countable set

{ψk :k ≥ 1} ∪ {ψk · em :k,m ≥ 1} ∪ {em :m ≥ 1}(5.31)

and denote them by {ϕk}∞k=1. According to [3], Proof of Theorem 31.5, we
introduce the metric

d0(µ, ν) =
∞∑

k=1

1

2k
min

{
1, |〈ϕk,µ〉 − 〈ϕk, ν〉|}, µ, ν ∈ M(Z),(5.32)

generating the vague topology.

PROOF OF THEOREM 2.2. Note that assumption (2.15) implies (2.4) so that
Theorem 2.1 is applicable. To prove relative compactness of the sequence (XN),
we apply [13], Theorem 3.7.6, with E = M(Z,H,h) (cf. Remark 5.4).

The first condition to be checked is the compact containment condition

∀T, ε > 0, ∃ compact C ⊂ E : inf
N

P
(
XN(t) ∈ C,0 ≤ t ≤ T

) ≥ 1 − ε.(5.33)

Choose m according to (5.8) such that infN P (σN
m > T ) ≥ 1 − ε. Note that

the set Cm [cf. (5.29)] is compact, according to Lemma 5.9. One obtains [cf.
(5.11) and (5.10)]

inf
N

P
(
XN(t) ∈ Cm,0 ≤ t ≤ T

) = inf
N

P (σN
m > T ) ≥ 1 − ε;

that is, (5.33) is satisfied.
The second condition to be checked is

∀T, ε > 0, ∃ δ > 0 : sup
N

P
(
w(XN, δ, T ) ≥ ε

) ≤ ε,(5.34)

where the modulus of continuity

w(µ, δ, T ) = inf{ti}
max

i
sup

s,t∈[ti−1,ti )

dh

(
µ(s),µ(t)

)
(5.35)
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is defined for δ, T > 0 and µ ∈ D([0,∞),E). Here {ti} ranges over all partitions
of the form 0 = t0 < t1 < · · · < tn−1 < T ≤ tn with min1≤i≤n(ti − ti−1) > δ and
n ≥ 1. Recall the definition (2.11) of the metric dh and Remark 5.10. Let T, ε > 0
and choose L ≥ 0 such that

∑∞
k=L+1 1/2k ≤ ε/2. With the notation ϕ0 = h

[cf. (5.32)], we obtain

P

(
sup

|s−t|≤�t,t≤T

dh

(
XN(s),XN(t)

) ≥ ε

)

≤ P

(
sup

|s−t|≤�t,t≤T

L∑
k=0

∣∣〈ϕk,X
N(s)〉 − 〈ϕk,X

N(t)〉∣∣ ≥ ε

2

)

≤
L∑

k=0

P

(
sup

|s−t|≤�t,t≤T

∣∣〈ϕk,X
N(s)〉 − 〈ϕk,X

N(t)〉∣∣ ≥ ε

2(L + 1)

)
.

(5.36)

Taking into account that (5.20) is fulfilled for ϕ = h, according to assump-
tion (2.14), we apply Lemma 5.8 to the right-hand side of (5.36). Thus, there
are �t,N0 > 0 such that

sup
N≥N0

P

(
sup

|s−t|≤�t,t≤T

dh

(
XN(s),XN(t)

) ≥ ε

)
≤ ε.(5.37)

Since [cf. (5.35)]

w(µ, δ, T ) ≤ sup
|s−t|≤�t,s≤T

dh

(
µ(s),µ(t)

)
, δ < �t,

we obtain from (5.37) that

sup
N≥N0

P
(
w(XN, δ, T ) ≥ ε

) ≤ ε, δ < �t.(5.38)

For any N , there exists δN > 0 such that P (w(XN, δN,T ) ≥ ε) ≤ ε, according
to [13], Lemma 3.6.2(a). Thus, for 0 < δ < min{�t, δ1, . . . , δN0−1}, (5.38) implies

sup
N

P
(
w(XN, δ, T ) ≥ ε

) ≤ ε;

that is, condition (5.34) is satisfied. �

5.3. Characterization of weak limits.

LEMMA 5.11. Consider µ,µn ∈ M(Z,H) such that

lim
n→∞dh(µn,µ) = 0.(5.39)

Let µ
(k)
n ,µ(k), h(k), k = 1,2, . . . , denote the k-fold products of µn,µ,h, respec-

tively. Then

lim
n→∞

〈
ψ,µ(k)

n

〉 = 〈
ψ,µ(k)

〉
(5.40)
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for any ψ ∈ C(Zk) such that

|ψ(x)| ≤ ch(k)(x) ∀x ∈ Zk for some c > 0.(5.41)

PROOF. Define the measures νn, ν ∈ Mb(Z) by

νn(B) =
∫
B

h(k)(x)µ(k)
n (dx),

ν(B) =
∫
B

h(k)(x)µ(k)(dx), B ∈ B(Zk).

Since ϕh(k) ∈ Cc(Z
k) for every ϕ ∈ Cc(Z

k) and since µ
(k)
n converges vaguely

to µ(k), one obtains

〈ϕ, νn〉 = 〈
ϕh(k),µ(k)

n

〉 → 〈
ϕh(k),µ(k)

〉 = 〈ϕ, ν〉;
that is, νn converges vaguely to ν. Using (5.39), one obtains

νn(Z
k) = 〈

h(k),µ(k)
n

〉 = [〈h,µn〉]k −→ 〈
h(k),µ(k)

〉 = ν(Zk),

so that νn converges weakly to ν. Note that Zk is a locally compact separable
metric space and therefore complete according to [2], Theorem 44.1. Using
Lemma A.6, we find, for any ε > 0, a compact � ⊂ Zk satisfying

νn(�
c) ≤ ε

3c
,n ≥ 1, and ν(�c) ≤ ε

3c
.

Choose f ∈ Cc(Z
k) according to Lemma A.2 and consider ψ ∈ C(Zk) satisfy-

ing (5.41). Then, for sufficiently large n, one obtains∣∣〈ψ,µ(k)
n

〉 − 〈
ψ,µ(k)

〉∣∣
≤ ∣∣〈ψ(1 − f ),µ(k)

n

〉 − 〈
ψ(1 − f ),µ(k)

〉∣∣ + ∣∣〈ψf,µ(k)
n

〉 − 〈
ψf,µ(k)

〉∣∣
≤ c

∫
�c

h(k)(x)µ(k)
n (dx) + c

∫
�c

h(k)(x)µ(k)(dx) + ∣∣〈ψf,µ(k)
n

〉 − 〈
ψf,µ(k)

〉∣∣
≤ ε,

which proves (5.40.) �

LEMMA 5.12. Suppose assumptions (2.17) and (2.18) are satisfied. Then the
mapping

Mϕ :D
([0,∞),M(Z,H,h)

) → D
([0,∞),R

)
defined by [cf. (2.20)]

Mϕ(µ)(t) = 〈ϕ,µ(t)〉 − 〈ϕ,µ(0)〉 −
∫ t

0
G
(
ϕ,µ(s)

)
ds, t ≥ 0,(5.42)

is continuous, for any ϕ ∈ Cc(Z).
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PROOF. According to Lemma A.5, the mapping

F1 :D
([0,∞),M(Z,H,h)

) → D
([0,∞),R

)
, F1(µ)(t) = 〈ϕ,µ(0)〉,

is continuous. In view of Lemma A.4 and since (cf. [13], page 153, (11.10)) the
mapping

F2 :D
([0,∞),R

) → D
([0,∞),R

)
, F2(ξ)(t) =

∫ t

0
ξ(s) ds,

is continuous, it remains to show that the mappings f1(ν) = 〈ϕ, ν〉 and f2(ν) =
G(ϕ, ν) from M(Z,H,h) into R are continuous. For f1, this is obvious,
since convergence in M(Z,H,h) implies vague convergence. Using (2.34), the
continuity of f2 follows from assumptions (2.17) and (2.18) and Lemma 5.11. �

LEMMA 5.13. Suppose assumption (2.17) is satisfied. Let ψn,ψ ∈ Cc(Z) be
such that limn→∞ ‖ψ − ψn‖ = 0 and

{x ∈ Z : |ψn(x)| > 0} ⊂ �, n ≥ 1,(5.43)

for some compact � ⊂ Z. Then [cf. (5.42)]

lim
n→∞Mψn(µ)(t) = Mψ(µ)(t) ∀ t ≥ 0,

for any µ ∈ D([0,∞),M(Z,H,h)).

PROOF. Note that

sup
n

‖ψn‖ < ∞ and 〈ψn, ξ 〉 → 〈ψ,ξ 〉 ∀ ξ ∈ EK.(5.44)

The dominated convergence theorem implies, using (2.32) and (5.44),

Q0(ψn) → Q0(ψ), Qr(ψn, x) → Qr(ψ,x) ∀x ∈ Zr , r = 1, . . . ,R,

and, using (2.34) and assumption (2.17),

lim
n→∞G(ψn,µ) = G(ψ,µ) ∀µ ∈ M(Z,H).(5.45)

Using (5.43), one obtains

lim
n→∞〈ψn,µ〉 = 〈ψ,µ〉 ∀µ ∈ M(Z,H).(5.46)

Moreover, it follows from (2.34) and assumption (2.17) that [cf. (2.20)]

sup
n

sup
s≤t

∣∣G(
ψn,µ(s)

)∣∣

≤ c2(K + R) sup
n

‖ψn‖ sup
s≤t

[
1 +

R∑
r=1

〈h,µ(s)〉r
]

< ∞
(5.47)

for any µ ∈ D([0,∞),M(Z,H,h)). Using (5.45)–(5.47), a further application of
the dominated convergence theorem completes the proof. �
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LEMMA 5.14. Suppose assumptions (2.14) and (2.17) are satisfied. Let ϕ ∈
Cb(Z) and 
 be defined in (2.28). Then [cf. (5.13) and (2.20)]

lim
N→∞ sup

µ∈CN
m

∣∣AN
(µ) − G(ϕ,µ)
∣∣ = 0 ∀m ≥ 1.(5.48)

PROOF. Using (5.13), (2.29), (2.30) and (2.20), one obtains

AN
(µ) = G(ϕ,µ) −
R∑

r=2

1

Nr

∑̂
1≤i1,...,ir≤n

Qr(ϕ, xi1, . . . , xir ),(5.49)

where µ ∈ EN and
∑̂

denotes summation over those indices, at least two of which
are equal. According to (2.34) and assumption (2.17), (5.49) implies∣∣AN
(µ) − G(ϕ,µ)

∣∣
≤

R∑
r=2

c2(K + r)‖ϕ‖
Nr

∑̂
1≤i1,...,ir≤n

h(xi1) · · ·h(xir )

≤
R∑

r=2

c2(K + r)‖ϕ‖r(r − 1)

2N
〈h2,µ〉〈h,µ〉r−2

and

sup
µ∈CN

m

∣∣AN
(µ) − G(ϕ,µ)
∣∣

≤ 1

N
sup

µ∈CN
m

〈h2,µ〉c2‖ϕ‖
2

R∑
r=2

(K + r)r(r − 1)(cm)r−2.

(5.50)

According to assumption (2.14) and Lemma A.1, the set

�(ε) =
{
x ∈ Z :

h(x)

H(x)
≥ ε

}

is compact, for any ε > 0. Using (5.4), one obtains

〈h2,µ〉 =
∫
�(ε)

h2(x)µ(dx) +
∫
�(ε)c

h2(x)µ(dx)

≤ m sup
x∈�(ε)

h2(x)

H(x)
+ ε2 1

N

n∑
i=1

H 2(xi)

≤ m sup
x∈�(ε)

h2(x)

H(x)
+ ε2m2N

(5.51)

for any µ ∈ CN
m . Finally, (5.50) and (5.51) imply (5.48). �
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PROOF OF THEOREM 2.3. Using (5.42) and (5.12), one obtains

Mϕ

(
XN

)
(t) = MN(
, t) +

∫ t

0

[
AN


(
XN(s)

) − G
(
ϕ,XN(s)

)]
ds.(5.52)

For ε > 0 and t ≥ 0, choose m ≥ 1 according to (5.8) such that

inf
N

P (σN
m > t) ≥ 1 − ε

2
.(5.53)

By (5.53), (5.52), Lemma 5.14 and the Chebyshev inequality, one obtains

P

(
sup
s≤t

∣∣Mϕ(XN)(s)
∣∣ ≥ ε

)

≤ P

(
sup
s≤t

∣∣Mϕ(XN)(s)
∣∣ ≥ ε, σN

m > t

)
+ ε

2

≤ P

(
ε

2
+ sup

s≤t

∣∣MN(
, s)
∣∣ ≥ ε, σN

m > t

)
+ ε

2

≤ P

(
sup
s≤t

∣∣MN(
, s ∧ σN
m )

∣∣ ≥ ε

2

)
+ ε

2

≤ 2

ε
E sup

s≤t

∣∣MN(
, s ∧ σN
m )

∣∣ + ε

2

(5.54)

for sufficiently large N. By Corollary 5.7, the right-hand side of (5.54) becomes
smaller than ε for sufficiently large N , that is,

lim sup
N

P

(
sup
s≤t

∣∣Mϕ(XN)(s)
∣∣ ≥ ε

)
≤ ε ∀ ε > 0, t > 0.

This implies

sup
s≤t

∣∣Mϕ(XN)(s)
∣∣ ⇒ 0 ∀ t > 0,

and, recalling the definition of the Skorohod metric d ([13], page 117),

d
(
Mϕ(XN),0

) ⇒ 0.(5.55)

Suppose XNl ⇒ X for some subsequence Nl. According to Lemma 5.12, the
mapping Mϕ is continuous so that Mϕ(XNl ) ⇒ Mϕ(X) and d(Mϕ(XNl ),0) ⇒
d(Mϕ(X),0). Thus, (5.55) implies

Mϕ(X) = 0 a.e. for any fixed ϕ.

Using Remark 5.10, Lemma 5.13 and right-continuity of the trajectories, one
obtains

Mϕ(X) = 0 ∀ϕ ∈ Cc(Z) a.e.(5.56)
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Moreover, it follows from Lemma A.5 that XNl (0) ⇒ X(0) so that assump-
tion (2.16) implies

X(0) = µ0 a.e.(5.57)

According to (5.56) and (5.57), X satisfies (2.19) almost everywhere. Note
that, by Theorem 2.2, the sequence of D([0,∞),M(Z,H,h))-valued random
variables XN is relatively compact. �

5.4. Corollaries.

PROOF OF COROLLARY 2.4. Note that

sup
t≤T

dh

(
XN(t),XN(t−)

) ≤ sup
|s−t|≤�t, t≤T

dh

(
XN(s),XN(t)

) ∀�t > 0.

Thus, (5.37) implies

sup
N≥N0

P

(
sup
t≤T

dh

(
XN(t),XN(t−)

) ≥ ε

)
≤ ε,

so that

sup
t≤T

dh

(
XN(t),XN(t−)

) ⇒ 0, T > 0,

as N → ∞. An application of [13], Theorem 3.10.2(a), gives (2.21), for every
weak limit X of the sequence (XN). �

PROOF OF COROLLARY 2.5. Suppose XNl ⇒ X for some subsequence Nl.

Then Corollary 2.4 and [13], Proposition 3.5.2, imply

XNl(t) ⇒ X(t) ∀ t ≥ 0.(5.58)

For any ψ ∈ Cc(Z), the mapping 	(µ) = 〈ψ,µ〉 from M(Z,H,h) into R is
continuous, and

	
(
XNl (t)

) ⇒ 	(X(t)) ∀ t ≥ 0,(5.59)

as a consequence of (5.58).
Consider a sequence of localizing functions ek ∈ Cc(Z) satisfying (5.30).

Then (5.59), with ψ = Hek, implies〈
Hek,X

Nl (t)
〉 ⇒ 〈Hek,X(t)〉 ∀ t ≥ 0, k = 1,2, . . . .(5.60)

Since, according to (5.7),

E
〈
Hek,X

N(t)
〉 ≤ E

〈
H,XN(t)

〉 ≤ (c0 + c′
1) exp(c1 t) ∀N,

Fatou’s lemma and (5.60) imply

E〈Hek,X(t)〉 ≤ (c0 + c′
1) exp(c1 t) ∀ t ≥ 0, k = 1,2, . . . .
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Thus, (2.22) follows from the monotone convergence theorem. �

PROOF OF COROLLARY 2.6. Consider µ0 ∈ M(Z,H) and note that
µ0(Z) < ∞, according to assumption (2.6) and (2.13). Let y1, y2, . . . be i.i.d. ran-
dom variables with distribution (1/µ0(Z))µ0(dx), and

lim
N→∞

nN

N
= µ0(Z).(5.61)

Then

YN = 1

N

nN∑
i=1

δyi
∈ EN(5.62)

and, by (5.61) and the law of large numbers,

〈ϕ,YN〉 = nN

N

1

nN

nN∑
i=1

ϕ(yi)

→ µ0(Z)

∫
Z

ϕ(x)
1

µ0(Z)
µ0(dx) = 〈ϕ,µ0〉 a.e.

(5.63)

for all nonnegative ϕ ∈ M(Z) such that 〈ϕ,µ0〉 < ∞. Thus, limN→∞ dh(Y
N,

µ0) = 0 a.e., and YN ⇒ µ0. Moreover,∫
EN

〈H,µ〉νN
0 (dµ) = E〈H,YN〉

= nN

N

∫
Z

H(x)
1

µ0(Z)
µ0(dx),

(5.64)

where νN
0 ∈ P (EN) denotes the distribution of YN. Thus, νN

0 satisfies assump-
tions (2.7) and (2.16). By Theorem 2.3 and Corollary 2.4, there is at least one µ ∈
C([0,∞),M(Z,H,h)) satisfying (2.23). �

PROOF OF COROLLARY 2.7. By Theorem 2.3, any weak limit is concentrated
on the set of solutions, which now consists only of one element. Thus, all weak
limits are the same, and the assertion follows. �

PROOF OF COROLLARY 2.8. Assumption (2.25) assures that the processes
remain in the restricted space, once they have started there. According to
Remark 2.10, the mapping 〈g,µ〉 is continuous so that the subset EN ∩ Mγ (Z, g)

is closed in EN. According to Lemma A.7, the subset M(Z,H) ∩ Mγ (Z, g) is
closed in M(Z,H,h). Thus, all statements about compact sets remain true for the
restricted spaces. �

PROOF OF COROLLARY 2.9. Define [cf. (5.62)]

Ỹ N(ω) =
{

YN(ω), if 〈g,YN〉 ≤ 〈g,µ0〉 + 1,
0, otherwise,
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and let ν̃N
0 denote the distribution of Ỹ N . By definition, one obtains 〈g, Ỹ N〉 ≤

〈g,µ0〉 + 1 and E〈H, ỸN〉 ≤ E〈H,YN〉. This implies ν̃N
0 ∈ P (EN ∩ Mγ (Z, g)),

with γ = 〈g,µ0〉 + 1, and (2.7), according to (5.64). Moreover, it follows
from (5.63) that 〈g,YN〉 → 〈g,µ0〉 a.e., so that (5.63) holds for Ỹ N . Conse-
quently, Ỹ N ⇒ µ0, that is, (2.16) is fulfilled, and the assertion follows from Corol-
laries 2.8 and 2.4. �

APPENDIX

LEMMA A.1 (cf. [3], Theorem 27.6). Let E be a locally compact space.
Then 	 ∈ C0(E) iff

	 ∈ C(E) and {ξ ∈ E : |	(ξ)| ≥ ε} is compact for every ε > 0.

LEMMA A.2 (cf. [3], Corollary 27.3). Let E be a locally compact space and
C and O be compact and open subsets such that C ⊂ O. Then there is a
	 ∈ Cc(E) such that

	(ξ) = 1, ξ ∈ C, 	(ξ) = 0, ξ /∈ O, 0 ≤ 	(ξ) ≤ 1, ξ ∈ E.

LEMMA A.3. Let Z be a locally compact separable metric space. Then there
are compact and open subsets �m and �m such that

Z =
∞⋃

m=1

�m and �m ⊂ �m ⊂ �m+1, m ≥ 1.(A.1)

PROOF. Since Z is σ -compact, the statement is given by [3], Lemma 29.8.
�

LEMMA A.4 (cf. [13], page 151). Let E,E1 be metric spaces. If f :E → E1
is continuous, then the mapping

F :D
([0,∞),E

) → D
([0,∞),E1

)
, F (ξ)(t) = f (ξ(t)), t ≥ 0,

is continuous.

LEMMA A.5. Let E be a metric space. If limn→∞ µn = µ in D([0,∞),E),
then limn→∞ µn(0) = µ(0) in E.

PROOF. The assertion follows from [13], Chapter 3, Proposition 5.2, since
0 is a continuity point for any µ ∈ D([0,∞),E). �

LEMMA A.6. Let E be a complete separable metric space, and µ,µn ∈
Mb(E) such that µn→wµ. Then, for each ε > 0, there exists a compact Kε such
that

µn(E \ Kε) ≤ ε ∀n, µ(E \ Kε) ≤ ε.
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PROOF. Introduce the measures

νn(B) =



1

µn(E)
µn(B), if µn(E) > 0,

0, otherwise,

ν(B) =



1

µ(E)
µ(B), if µ(E) > 0,

0, otherwise.

Note that, if µ(E) = 0, then µn(E) ≤ ε for all n except a finite number. For those,
one finds the corresponding compact. If µ(E) > 0, then νn → ν weakly, and the
statement follows from Prohorov’s theorem and the boundedness of µn(E). �

LEMMA A.7. Let Z be a locally compact space, and µ,µn ∈ M(Z) such
that µn→vµ. Then

〈H,µ〉 ≤ lim inf
n→∞ 〈H,µn〉 for any nonnegative H ∈ C(Z).

PROOF. Note that νn→vν, where

νn(B) =
∫
B

H(x)µn(dx), ν(B) =
∫
B

H(x)µ(dx), B ∈ B(Z).

Thus, the assertion follows from [3], Lemma 30.3. �
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