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Abstract. Different solution methods are developed to solve an inventory routing problem
for a perishable product with stochastic demands. The solution methods are empirically
compared in terms of average profit, service level, and actual freshness. The benefits
of explicitly considering demand uncertainty are quantified. The computational study
highlights that in certain situations although a simple ordering policy can achieve very
good performance, statistically and economically significant improvements are achieved
when using more advanced solution methods. Managerial insights concerning the impact
of shelf life and store capacity on profit are also obtained.
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1. Introduction
Consider a retail chain whose main goal is to optimize
the long-term profit of a distribution network where
products are shipped from a central warehouse (depot)
to several stores. The decisions to be made are: (1) how
much to deliver to each store in each period, and
(2) which delivery routes to use. If customer demands
at the stores are deterministic and known for the entire
planning horizon, then this is known as the Inventory
Routing Problem (IRP).

In this paper, we consider the IRP for a (single) per-
ishable product, e.g., a dairy product, flowers, fruits
or vegetables, with stochastic customer demands. We
develop and compare four solution methods: (1) an
expected-value method in which stochastic demands
are replaced by their expected values, (2) a deliver-
up-to-level policy with a high target service level,
(3) a decomposition method that relies on indepen-
dent inventory control models for each store and on
estimates of the routing costs that can be attributed
to each store, (4) a decomposition-integration method
that improves the solution obtained by the decompo-
sition method by analyzing and reducing the routing
costs.

1.1. Motivation
In an IRP, the delivery quantities at a store and the
delivery routes to serve the stores are determined by a
centralized decision-maker for a given planning hori-
zon. IRPs are very difficult to solve to optimality even
when the distribution network is small, far smaller

than those typically encountered in practice. Coelho
and Laporte (2014a) report that instances of a single-
product IRP with deterministic demands can rarely be
solved to optimality when the number of stores ex-
ceeds 30. By contrast, a typical retail chain in Belgium
(a small country) dispatches over 18,000 (perishable
and dry) products from a central warehouse to more
than 800 stores.

In most real-life IRP settings, demand experienced
at stores is uncertain, giving rise to the more complex
Stochastic IRP (SIRP). In such a setting, information
about inventory levels at stores is periodically transmit-
ted to the central warehouse, where a central decision-
maker uses this information, and any available infor-
mation about anticipated future demand, to determine
the delivery quantities and the delivery routes for the
next period or the next few periods. When the actual
demand from the customers at the stores is observed
and updated inventory levels are transmitted to the
warehouse, new next-period (or short-term) decisions
are made. Because of the complexity of such a distri-
bution system, retail chains frequently use a two-step
decision-making process in which each store deploys
its own inventory management system to place orders
(ignoring any impact these order placements may have
on routing costs), and the centralized decision-maker
uses a vehicle routing model to determine low-cost
delivery routes to serve the placed orders. Such a
two-step decision-making process does not necessar-
ily yield an optimal profit for the retail chain, but
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offers a pragmatic approach for managing this complex
system.

In many real-life IRP settings, product shelf life is
not unlimited. Perishable products constitute over 52%
of sales revenue of grocery retail chains (Chao et al.
2015); roughly 10% of product is wasted before being
sold (Kouki, Jemai, and Minner 2015), while the food
retail profit margin hardly exceeds 2%; see EBRD–FAO
(2009), Government of Canada (2012), and FMI (2014).
Therefore, profitability highly depends on efficient and
effective inventory routing policies. The delivery fre-
quency plays a major role in determining the profit, the
service level, and the freshness. Infrequent deliveries
of large delivery quantities reduces the routing costs,
but also brings loss of freshness and a commensurate
reduction in customer satisfaction (and possibly even
lost sales due to the stochasticity of demand). Con-
versely, smaller quantities delivered more frequently
improves freshness of products (and, consequently, en-
sures customer satisfaction) and reduces the risk of lost
sales, but implies higher routing costs.

In this paper, we study the stochastic inventory rout-
ing problem for a single perishable product (PSIRP) in
which we seek to maximize profit subject to a given
service level requirement. Even though freshness is
considered and evaluated, it is not directly taken into
account in the optimization.

1.2. Problem Statement

Consider a generic retail chain that aims to maximize
the expected net profit generated by the sales of a sin-
gle perishable product. The net profit is measured by
deducting acquisition, distribution, and other miscel-
laneous costs from the total revenue. Acquisition costs
and revenue mostly depend on the quantities delivered
to the stores, whereas distribution costs are a conse-
quence of the way the vehicles are dispatched. Mis-
cellaneous costs are viewed as independent of either
decision and are regarded as constant. As a result, we
do not consider them in the objective function: The
net profit is simply computed as (Revenue, Acquisition
costs, and Distribution costs), and its expected value
defines the objective function.

Assume a finite planning horizon consisting of T
consecutive periods. We consider an implicit complete
graph G � (V,A), whose vertices represent the depot
and the stores, and arcs represent the road segments
between pairs of vertices. The travel cost from vertex i
to vertex j is denoted as ci j . Product is picked up from
the depot and delivered to the stores. Each route starts
at the depot, ends at the depot, and cannot exceed a
predefined length. The demand in period t from end
customers at a store i is an integer random variable Dti

(assuming independence for all periods and all stores)
with a known probability distribution. We define L to
be the deterministic shelf life of the product from the

arrival at the store. The acquisition cost of a unit of
product is a. All units delivered in period t have the
same selling price p during L periods. Unsold units
perish at the end of period t + L − 1 with no salvage
value. Unmet demand leads to lost sales but does not
generate any other cost. The inventory holding cost
is zero. We assume that the depot has an unlimited
supply of product. The capacity of store i is denoted
by Ci . The retail chain deploys a sufficiently large fleet
of vehicles to make deliveries, each with capacity Q.
Each vehicle incurs a fixed cost K per period when it
is used, and a variable cost equal to ci j when traveling
from vertex i to vertex j. Each store is served by at most
one vehicle in each period (i.e., no split deliveries).

The retail chain uses a centralized decision-making
system to determine delivery quantities and routes in
each period. The inventory state in store i at the begin-
ning of period t is denoted by Xti � (x1 , x2 , . . . , xL−1)ti ,
where (xk)ti is the inventory level of product with
remaining shelf life k. At the beginning of each
period t, based on the inventory states, the retail chain
decides about the delivery quantities, yti , and the de-
livery routes, Rt , to be used in the current period. There
is no time window for the delivery to stores, but in each
period each vehicle performs at most one route with a
predefined maximum length. The delivery lead time is
zero, i.e., the delivery quantities yti are available on the
shelves at the beginning of period t, right after the deci-
sion is made. The real demand for period t is observed
during the period and after quantity yti has been deliv-
ered. We assume that the oldest units of product are
sold first (first-in-first-out (FIFO) issuing policy), i.e.,
(xk)ti is stored until (xk−1)ti is used up or perished.

A predefined Target Service Level (TSL) must be res-
pected in every period and in every store. More pre-
cisely, the total inventory available in store i in period t
must be such that the probability of not incurring a
stock-out in period t is at least equal to TSL. In practice,
the average service level of perishables is estimated
to be around 92% in Europe and the United States
(Minner and Transchel 2010).

All notation is summarized in Table 1.

1.3. Scientific Contributions

As outlined above, we investigate a stochastic inven-
tory routing problem for a single perishable product,
denoted PSIRP. Our main contributions are:

• development of four different solution methods
for the PSIRP; the methods differ in sophistication and
emphasis placed on features of the problem, e.g., per-
ishability of the product, stochasticity of the demand or
target service level. The decomposition method and the
decomposition-integration method, presented in Sec-
tions 5–7, rely on an original combination of stochastic
dynamic programming and combinatorial optimiza-
tion techniques.
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Table 1. Indices, Parameters, and Decision Variables

Indices:
i, j Indices for vertices (depot and stores)
k Index for remaining shelf life
r Index for routes
t Index for periods

Parameters:
T Length of the planning horizon
N Number of stores
L Shelf life of the product
TSL Target service level to be respected in every

period and in each store
a Acquisition price of each unit of the

product
p Selling price of each unit of the product
Ci Capacity of store i
(xk)ti Inventory level with remaining shelf life k

in period t in store i before delivery
(x1 , x2 , . . . , xL−1)ti State of the system in period t in store i

before delivery
Iti Total inventory level in period t in store i

before delivery
Dti Random demand of end customers in

period t in store i (integer-valued)
Pr(Dti � d) Probability function of demand in period t

in store i
Q Capacity of each vehicle
ci j Distance and travel cost from vertex i to

vertex j
K Fixed cost of using a vehicle
Fti Estimated cost-to-serve assigned in

period t to store i
Decision variables:

yti Delivery quantity in period t to store i
(integer values)

Rt Set of routes used in period t (index r)
π Expected profit generated by all stores over

the planning horizon

• analysis of the results of an extensive computa-
tional study, which establishes the relative perfor-
mance of the solution methods (and the influence of
their parameter settings) for different classes of in-
stances and on different metrics of interest, e.g., total
profit, average freshness, and simplicity of implemen-
tation; among others, we demonstrate that a simple,
easy-to-implement replenishment policy, derived from
one of the more sophisticated solution methods, is
highly effective in a variety of settings.

• creation of managerial insights related to the im-
pact of store capacity and shelf life on the expected
profit.

The remainder of the paper is organized as follows.
In Section 2, an extensive literature review is presented.
Sections 3–6 introduce the four solution methods, two
elementary methods and two sophisticated methods.
In Section 7, we develop a matheuristic to solve an
optimization subproblem arising in our most sophis-
ticated solution method. Section 8 presents a heuris-
tic algorithm for the case in which full information
about future demand is available; this information will

be used for comparison purposes in the computation
study. Section 9 discusses the set-up of our comprehen-
sive computational study. Results of the computational
experiments are presented and analyzed in Section 10.
Concluding remarks are given in Section 11.

2. Literature Review
Inventory-routing models naturally relate to various
management practices, and in particular, to vendor-
managed inventory (VMI) and to retailer-managed in-
ventory (RMI) systems. The VMI approach relies on
cooperation and information sharing between a sup-
plier and its customers. When VMI is implemented,
the supplier takes over the responsibility of managing
the customers’ inventory by deciding on replenishment
quantities and delivery periods. The consequences
can be beneficial for both parties: Customers can use
fewer resources to control their inventory, and the sup-
plier has more flexibility for integrating the replen-
ishment quantities and periods to different customers
(Desaulniers, Rakke, and Coelho 2016). By contrast,
in an RMI system, the customers decide when and
how much to order, independent of each other, so
that the ability of the supplier to optimize its trans-
portation costs is strongly restricted by the customers’
decisions (Archetti and Speranza 2016; Bertazzi and
Speranza 2012).

2.1. Inventory-Routing

The (classic) IRP deals with deterministic demands and
is concerned with the distribution of a single product
from a single depot to a set of customers with deter-
ministic demands over a given planning horizon. The
objective is to minimize the distribution and inventory
costs during the planning period without causing stock-
outs at any of the customers. As in a VMI system, the
main decisions in an IRP are: (a) when to serve each
customer, (b) how much to deliver to a customer when
it is visited, and (c) which routes to use. The IRP has
a wide range of applications including the distribu-
tion of gas (Campbell and Savelsbergh 2004a; Gronhaug
et al. 2010), fuel (Popović, Vidović, and Radivojević
2012), automobile components (Alegre, Laguna, and
Pacheco 2007; Stacey, Natarajarathinam, and Sox 2007),
perishable products (Federgruen and Zipkin 1984;
Federgruen, Prastacos, and Zipkin 1986), grocery prod-
ucts (Gaur and Ficher 2004), cement (Christiansen et al.
2011), and blood products (Hemmelmayr et al. 2009).

Because the IRP has the flexibility to decide how
much to deliver to each customer and which routes to
use in each period, the decision space becomes enor-
mous even when compared, for instance, with clas-
sic vehicle routing problems (VRPs). Exact approaches
are typically based on mixed integer programming
(MIP) formulations using arc-flow decision variables,
although route-based formulations have also been used
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(Desaulniers, Rakke, and Coelho 2016). Yet finding the
optimal solution of such models is quite challenging,
even for very small instances of the IRP (Campbell
et al. 1998). Therefore, many early algorithms pro-
posed in the literature decompose the IRP into two
stages, i.e., (a) inventory control (determining the deliv-
ery amounts), and (b) vehicle routing (Campbell and
Savelsbergh 2004b; Federgruen and Zipkin 1984; Qu,
Bookbinder, and Iyogun 1999). In some cases, an overall
solution is found by iterating between these two prob-
lems (Federgruen and Zipkin 1984; Qu, Bookbinder,
and Iyogun 1999). Exact algorithms for the IRP are more
recent. They include the branch-and-cut algorithms of
Coelho and Laporte (2013a, b, 2014d), and the branch-
and-price-and-cut algorithm of Desaulniers, Rakke,
and Coelho (2016).

Researchers have also attempted to develop solution
methods for simplified versions of IRP models, rather
than the classic IRP model. Examples of simplifying
assumptions include:

• deliver-up-to-level (UL) replenishment policies;
see, e.g., Bertazzi, Paletta, and Speranza (2002); Archetti
et al. (2007); and Solyali and Süral (2011);

• direct delivery policies; see, e.g., Bertazzi and
Speranza (2012);

• deliveries occurring only when inventory levels
are down to zero; see, e.g., Chan, Federgruen, and
Simchi-Levi (1998) and Jaillet et al. (2002);

• single vehicle; see, e.g., Archetti et al. (2007) and
Solyali and Süral (2011);

• constant demand rate over time; see, e.g., Raa
and Aghezaaf (2008, 2009) and Ekici, Ozener, and
Kuyzu (2015);

• periodic deliveries; see, e.g., Bertazzi and Speranza
(2012) and Campbell and Wilson (2014).

Andersson et al. (2010); Bertazzi and Speranza (2011,
2012, 2013); and Coelho, Cordeau, and Laporte (2014)
provide excellent reviews on IRPs from the application
and methodological points of view.

2.2. Stochastic Inventory Routing

In the SIRP, future customer demands are uncertain,
and are given by their probability distributions. While
the majority of papers on the SIRP assume that de-
mands are fully realized at the end of each period,
some models assume that demands are realized upon
arrival of the vehicle at a customer (Berman and Larson
2001, Huang and Lin 2010).

Demand stochasticity implies that shortages may
occur, and there is often a positive probability that
a customer runs out of stock. To restrict shortages, a
penalty is imposed whenever a customer runs out of
stock, and this penalty is usually taken to be propor-
tional to the unsatisfied demand. Unsatisfied demand
is typically considered to be lost sale (Minkoff 1993;
Kleywegt, Nori, and Savelsbergh 2004), and is rarely

dealt with as backlogging, as in the work by Yu et al.
(2012). In either case, penalties may apply. A prede-
fined service level may apply, too, which imposes a
minimum inventory level at each customer in each
period (Yu et al. 2012). The objective is to choose
a delivery policy that minimizes the expected total
(inventory, distribution, and penalty) costs per period.
Because of the complexity of the SIRP, simplifying
assumptions are frequently made, as in the IRP. These
assumptions may include considering a single capac-
itated vehicle (Coelho and Laporte 2014a; Reinman,
Rubio, and Wein 1999; Schwartz, Ward, and Zhai 2006),
a single uncapacitated vehicle (Qu, Bookbinder, and
Iyogun 1999) or direct deliveries (Barnes-Schuster and
Bassok 1997; Kleywegt, Nori, and Savelsbergh 2002;
Reinman, Rubio, and Wein 1999).

Markov decision processes (MDP) can be used to
model SIRPs over an infinite planning horizon. MDP
models formulate a value function that depends on
inventory levels. When the demand probability dis-
tribution is stationary, a deterministic optimal policy
can be calculated for each state, and the value func-
tion can be optimized by standard techniques such as
policy iteration, value iteration or successive approxi-
mation. These algorithms are practical only if the state
space is small and the optimization problem can be effi-
ciently solved. None of these requirements are satisfied
by real-world instances of the SIRP, as the state space
is usually extremely large, even if inventories are dis-
cretized, and the optimization problem includes a VRP
as a special case (Campbell et al. 1998). Because of the
curse of dimensionality, researchers often use approxi-
mations of the value function (Minkoff 1993, Adelman
2004) or decompose it (Kleywegt, Nori, and Savelsbergh
2004). Based on the linear programming (LP) model
proposed by Puterman (1994), Adelman (2004) formu-
lates and interprets two primal-dual approximations.
Such approximations relax the feasible region of the
dual problem, and provide upper bounds on the orig-
inal dual maximization problem. Kleywegt, Nori, and
Savelsbergh (2004) formulate an MDP model of the
SIRP and propose approximation methods to find good
solutions in reasonable time. This is the extension of an
earlier paper (Kleywegt, Nori, and Savelsbergh 2002) in
which the authors formulated an SIRP with direct deliv-
eries as an MDP and proposed an approximate dynamic
programming approach for its solution.

Solution methods other than MDP have also been
used for solving SIRPs. In Jaillet et al. (2002), for in-
stance, long-term delivery costs are incorporated into
shorter planning horizons. In Yu et al. (2012), rather
than dealing with an exact stochastic model, an ap-
proximate SIRP model is proposed and transformed
into a simplified deterministic one. Then, Lagrangian
relaxation is used to decompose the model into an
inventory problem and a VRP.
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2.3. Inventory-Routing for Perishables
The IRP for perishables (PIRP) is identical to the clas-
sic IRP, except that products have a limited shelf life
after which they lose their value. In the deterministic
case, shortages are not allowed. Moreover, thanks to
the complete knowledge of demand, no products need
to deteriorate. This implies that the cost components
in the PIRP are the same as for non-perishables, i.e.,
total inventory holding costs and routing costs over
the planning horizon. The main difference with the
classic IRP is that the deliveries to customers are now
restricted by the maximum shelf life of the product.
Consequently, delivery frequency plays an important
role. Less frequent deliveries reduce the routing costs,
but result in more units with short remaining shelf
lives in the following periods; these units are subject
to holding cost and deterioration, and their sales may
be reversely affected by their lack of freshness. There-
fore, finding a right trade-off between costs and fresh-
ness is crucial. The main objective in most applica-
tions is to minimize costs (or maximize profit), while
freshness is controlled by imposing additional side
constraints on delivery quantities. Hemmelmayr et al.
(2009) investigate the delivery of blood products to hos-
pitals, where the tour length is restricted, but vehicle
capacity is ignored in view of the small size of blood
bags, and no inventory cost is imposed. The objective
is to minimize travel costs over a finite horizon. The
authors develop and evaluate two delivery strategies,
i.e., (1) using fixed routes but deciding about deliv-
ery days, and (2) repeating delivery patterns for each
hospital. Coelho and Laporte (2014a) consider age-
dependent holding costs and selling prices in a PIRP,
where the supplier has the choice to deliver fresh or
aged products, and each case yields different holding
costs and revenues. The objective function maximizes
the total sales revenue, minus inventory and routing
costs. Le et al. (2013) propose a mathematical model
based on feasible routes that start from the depot, visit
a subset of stores at most one time, and then return to
the depot, without the necessity of respecting the vehi-
cle capacity. The objective function represents the sum
of transportation costs and inventory costs. They use a
column-generation based algorithm to solve the prob-
lem. Their work is extended by Al Shamsi, Al Raisi,
and Aftab (2014) to include the cost of CO2 emissions,
based on the vehicle load and distance. The resultant
model is a mixed integer linear programming problem
that is solved using a commercial solver. In Mirzaei and
Seifi (2015), dependency of the end-customers demand
on the age of the inventory is formulated as a PIRP so
that a portion of the demand is considered as lost sale
if inventory is not as fresh as it could be. The objective
function is the total cost of transportation, lost sale, and
holding inventories. The authors develop a hybrid sim-
ulated annealing and tabu search algorithm for solving
the problem.

2.4. Inventory Control of Perishables in an

RMI System
Recall that in an RMI system, the stores decide when
and how much to order, independent of each other.
Therefore, the main decision variables in an RMI per-
ishable inventory system are the order time and the
order quantity. To place an order, the current inventory
level and age of the stocked products (state of the
system) are observed. In most problem settings, an
MDP provides an exact solution approach. However,
the computation of the optimal order for every state
of the system using classic techniques is in general
intractable because of the curse of dimensionality.
Thus, many researchers turned to effective heuristic
policies to address these problems, mostly for the case
of independent and identically distributed demands
(Chao et al. 2015). The most widely used periodic-
review ordering policies are (R, S) (Chiu 1995; Cooper
2001; Deniz, Karaesmen, and Scheller-Wolf 2010) and
(R, s , S) (Broekmeulen and Van Donselaar 2009; Lian
and Liu 1999), where R refers to the number of peri-
ods between two consecutive reviews of the inven-
tory system, s denotes the inventory level below which
an order is triggered, and S is the order-up-to level
value. When demands are stochastic, obtaining opti-
mal parameters in periodic-review policies even for
a single perishable product with deterministic shelf
life is notoriously complicated. The fixed shelf life per-
ishability problem remains complex when the prod-
uct lifetime is longer than two units of time in a peri-
odic review system (Kouki and Jouini 2015). Hence,
researchers have worked on approximating outdate
costs (Broekmeulen and Van Donselaar 2009; Chiu
1995) or calculating upper and lower bounds on the
number of outdates (Chiu 1995; Cooper 2001). Some
models deal with batch demands (Lian and Liu 1999)
or batch orders (Broekmeulen and Van Donselaar
2009). Finally, service level is regarded as a con-
straint in some papers including Adachi, Nose, and
Kuriyama (1999); Broekmeulen and Van Donselaar
(2009); and Minner and Transchel (2010). See Goyal
and Giri (2001); Karaesmen, Scheller-Wolf, and Deniz
(2011); and Nahmias (2011) for the review works on
perishables.

In conclusion, the IRP and its variants are com-
plex problems. Considering perishable products and
stochastic demands further complicates the model. As
a result, applying existing solution methods is math-
ematically very difficult and computationally very
inefficient.

3. The Expected Value Method
A classic way to reduce the complexity of stochastic
models is to replace random variables by their ex-
pected values. Unfortunately, even deterministic IRPs
are extremely difficult to solve (see, e.g., Coelho and
Laporte 2014a), which is why we settle here for a simple
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heuristic solution. The expected value method (EV) pro-
vides a first benchmark.

In EV, all demands are deterministic, given by E(Dti),
for all i, t. In a first step, each store independently
determines its delivery quantities. Under these assump-
tions, the inventory control problem of a store can be
viewed as a lot sizing problem where routing induces
an implicit ordering cost. The exact routing costs are
determined in a second step. Hence, it is optimal for
each store to place as few orders as possible while satis-
fying demand.

More specifically, assume that the inventory levels in
period t in store i before delivery are given as (x1 , x2 ,
. . . , xL−1)ti , so that the total inventory level is

Iti �

L−1
∑

k�1

(xk)ti . (1)

At the beginning of period t, for each store i, EV de-
termines the delivery quantity as follows: If the cur-
rent inventory level Iti is larger than or equal to the
expected demand E(Dti), the delivery quantity is zero.
Otherwise, EV delivers enough to satisfy the expected
demands of L periods, including the current period,
provided that store capacity Ci is respected. Then,
a VRP based on these delivery quantities is solved
and implemented, real demands are observed, new
inventory levels are calculated for the next period,
and the same decision-making process is repeated in
period t + 1.

All necessary computations can be carried out as fol-
lows: Assume that in period t, yti units are delivered to
store i and the actual demand observed in store i is dti .
Then, the inventory level of the store in period t + 1 is
determined by relation (3), where (z)+ � max(z , 0) and
(xL)ti � yti by convention

((x1 , x2 , . . . , xL−1)ti , yti)
dti
→(x1 , x2 , . . . , xL−1)t+1, i , (2)

(xk)t+1, i �

(

(xk+1)ti −

(

dti −
k

∑

l�1

(xl)ti

)

+
)

+

,

for k � 1, . . . , L − 1. (3)

The algorithm is summarized as follows:

The Expected Value Algorithm (EV).

Begin
Step 0. Set t � 1.
Step 1. For each store i, if Iti ≥ E(Dti), set yti � 0; oth-

erwise, set yti � min{Ci − Iti , ⌊E(Dti)+ · · ·+E(Dt+L−1, i)⌋
− Iti}.

Step 2. Solve a VRP for the delivery quantities yti’s
and serve the stores through the optimal VRP routes.

Step 3. For each store i, observe the actual demand
in period t, i.e., dti . Calculate the state of the system in
period t +1, i.e., Xt+1, i by Relations (3). Set t � t +1 and
go to step 1.
End.

In each period t and store i, the expected value
method can be viewed as a (R, s , S) policy, where R � 1,
s � E(Dti), and S �min{Ci , ⌊E(Dti)+ · · ·+E(Dt+L−1, i)⌋}.

4. A Deliver-Up-to-Level Method
Another simple heuristic is obtained by replacing
step 1 of the EV algorithm with a replenishment rule
that explicitly takes into account the stochasticity of
demand. More specifically, for any λ ≤ L, let us denote
by q

(λ)

ti the smallest integer quantity that suffices to
meet the demand at store i during λ consecutive peri-
ods {t , . . . , t + λ− 1} with probability TSL

Pr(Dti + · · ·+Dt+λ−1, i ≤ q
(λ)

ti ) ≥ TSL, (4)

and consider the deliver-up-to-level method ULλ.

The Deliver-Up-to-Level Algorithm (ULλ).
Begin

Step 0. Set t � 1.
Step 1. For each store i, if Pr(Dti ≤ Iti) ≥ TSL, set

yti � 0; otherwise, set yti �min{Ci − Iti , q
(λ)

ti − Iti}.
Step 2. Solve a VRP for the delivery quantities yti

and serve the stores through the optimal VRP routes.
Step 3. For each store i, observe the actual demand

in period t, i.e., dti . Calculate the state of the system in
period t +1, i.e., Xt+1, i , by Relations (3). Set t � t +1 and
go to step 1.
End.

The algorithm ULλ (greedily) sets yti � 0 when-
ever Iti suffices to satisfy TSL in period t, since a posi-
tive delivery quantity would increase the routing costs
in period t. If the inventory does not suffice to sat-
isfy TSL in period t, ULλ delivers a quantity yti that
should be sufficient to satisfy the demand in the next
λ periods, unless the required quantity would exceed
the store capacity Ci . So, ULλ acts like a (R, s , S) policy
where sUL � q

(1)

ti , SUL � min{Ci , q
(λ)

ti }, and R � 1 so as to
enforce TSL in every period. Note that λ � 1 tends to
provide the freshest products on shelf, thanks to daily
deliveries, whereas bigger values of λ yield lower rout-
ing costs and possibly higher profit.

5. A Decomposition Method
The deliver-up-to-level method ULλ focuses on the tar-
get service level to determine the delivery quantities,
and mostly ignores the importance of revenues and
routing costs. Our next methods rely on a Stochastic
Dynamic Programming (SDP) model, which explicitly
accounts for these aspects.

In the SDP model, the state of the system in
period t is defined by the inventory levels in all stores,
i.e., ((x1 , . . . , xL−1)t1 , . . . , (x1 , . . . , xL−1)tN). The decision
variables are the delivery quantities in period t,
i.e., (yt1 , . . . , ytN), and the routing decisions. Given a
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decision on delivery quantities in period t, the direct
costs (acquisition and routing) and the expected rev-
enue in period t can be formulated, as well as the poten-
tial states of the system in period t +1 and the transition
probabilities. Theoretically, one can set SDP relations
to determine the optimal delivery quantities in each
period based on the state of the system. However, this
can only be applied to very small-size instances. Con-
sidering N stores, a maximum shelf life L, and inven-
tory levels to be integers in the interval [0,C], there are
(C+1)N(L−1) potential states in each period. Therefore, it
is necessary to resort to heuristic methods to solve even
small instances through SDP.

We solve an independent SDP for each store, aiming
to optimize an estimate of the store’s expected revenue
over the planning horizon. Although such a decompo-
sition yields suboptimal solutions, the complexity no
longer depends exponentially on the number of stores.
The number of states in each period for each store
is (C + 1)(L−1), which is computationally tractable for
small values of L. In each period, the SDP relations
allow us to determine a delivery quantity to each store,
based on its current inventory level, while neglecting
the routing costs. Then, we solve a VRP to obtain opti-
mal routes for these delivery quantities. We call this
the decomposition method (DE).

Because the SDP model considers each store inde-
pendently, it does not properly account for the routing
costs. Therefore, in the model associated with store i,
we charge a fixed cost-to-serve Fti if the store is visited
in period t. This cost-to-serve acts as a proxy for the
routing cost for delivery to store i. The choice of Fti is
discussed at the end of this section.

Define Xti � ((x1)ti , . . . , (xL−1)ti), Xt � (Xt1 , . . . ,XtN),
and Yt � (yt1 , . . . , ytN), so that (Xt ,Yt) denotes the com-
plete state of the system at time t after the quantities
yt1 , . . . , ytN have been delivered. Define fti(Xti , yti) as
the total expected profit for store i from period t until
the end of the planning horizon when the state of the
store is Xti and the delivery quantity is yti . The func-
tion fti includes total revenue, acquisition costs, and
the cost-to-serve. The optimal expected profit gener-
ated by store i from period t to the end of the horizon
is denoted f ∗ti(Xti), that is,

f ∗ti(Xti)� max
y
(1)
ti

≤yti≤Ci−Iti

fti(Xti , yti), (5)

where y
(1)

ti is the smallest integer satisfying Inequal-
ity (4). The optimal delivery quantity is specified by
Equation (6)

y∗
ti � y∗

ti(Xti)� argmax
y
(1)
ti

≤yti≤Ci−Iti

fti(Xti , yti). (6)

To determine the optimal delivery quantity y∗
ti , we solve

the recursive Equations (7) by backward induction

fti(Xti , yti)�−Fti · �(yti > 0) − a yti +Pr(Dti > Iti + yti)

·
(

p(Iti + yti)+ f ∗t+1, i(0, . . . , 0, 0)
)

+

Iti+yti
∑

d�0

Pr(Dti � d)(pd + f ∗t+1, i(Xt+1, i)), (7)

where Xt+1, i � (x1 , . . . , xL−1)t+1, i is defined by Equa-
tion (3). The first term in Equation (7) is an estimate
of the routing cost incurred to serve store i; the sec-
ond term is the acquisition cost of yti units; the third
term accounts for the expected revenue collected from
store i when the demand in period t is larger than
the inventory available at i in period t, and for the
expected profit in periods t + 1, . . . ,T; similarly, the
last term expresses the expected revenue in period t
and the expected profit in periods t + 1, . . . ,T when
the demand does not exceed the available inventory.
To solve (7), we use the boundary condition

f ∗T+1, i((x1 , x2 , . . . , xL−1)T+1, i)�
a

2
IT+1, i , (8)

where the right-hand side (RHS) of (8) is an estimate
of the profit generated by the inventory left at the end
of the horizon.

The decomposition algorithm is as follows:

The Decomposition Algorithm (DE).

Begin
Step 0. Set a cost-to-serve, Fti , for each store i and

each period t based on one of the algorithms described
in Appendix A. Set t � 1.

Step 1. Use Equations (6)–(7) to determine a delivery
quantity to each store i in period t, i.e., y∗

ti , given the
state of the system Xti � (x1 , . . . , xL−1)ti .

Step 2. Solve a VRP for the delivery quantities y∗
ti

and serve the stores through the optimal VRP routes.
Step 3. For each store i, observe the actual demand

in period t, i.e., dti . Calculate the state of the system in
period t +1, i.e., Xt+1, i by Relations (3). Set t � t +1 and
go to step 1.
End.

The DE algorithm can yield adequate solutions for
the PSIRP provided that the costs-to-serve Fti are reli-
able estimates of the actual routing costs. For symmet-
ric travel costs satisfying the triangle inequality, a nat-
ural range for the cost-to-serve of store i is [0,K + 2ci0],
where the upper bound represents the cost of a direct
delivery to store i. When we set Fti � 0 for all stores,
we obtain an algorithm that we call DE0. This leads to
a high delivery frequency. It provides very fresh prod-
ucts but ignores, and, implicitly increases, the routing
costs. When the delivery quantity is close to the vehicle
capacity Q, no other store can be served on the same
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route, and Fti � K + 2ci0 is the correct routing cost. In
this case, each store can be dealt with independently.

When more than one store is served by each route,
neither Fti � 0 nor Fti � K + 2ci0 proves to be a good
setting. In Appendix A, we introduce two methods to
calculate an intermediate cost-to-serve to be assigned
to each store. The first approach yields a distance-based
cost-to-serve Fd

ti that focuses on the average distance
between each store and its closest neighbors. The sec-
ond approach produces a route-based cost-to-serve Fr

ti

that allocates the total cost of a route to the stores it
includes.

6. A Decomposition-Integration Method
In this section, we improve our estimate of the expected
profit given in Equation (7), by taking into account the
actual routing costs in period t and by refining the
approximation of the routing costs in period t + 1 (as
compared to the costs-to-serve Fti). The values Fti are
still used from period t +2 onward. Note that given the
state of the system at time t, i.e., Xt , and the vector of
delivery quantities denoted by Yt , a first estimate of the
total profit for periods t to T is simply obtained as

π1
t (Xt ,Yt)�

N
∑

i�1

fti(Xti , yti)

�

N
∑

i�1

fti((x1 , . . . , xL−1)ti , yti). (9)

Now, let R(y1 , . . . , yN) represent the optimal routing
cost with delivery quantities (y1 , . . . , yN). Then, Equa-
tion (9) can be improved by replacing the fixed costs-to-
serve by the true routing cost in period t. This leads to

π2
t (Xt ,Yt)�

N
∑

i�1

fti(Xti , yti)+
N
∑

i�1

Fti · �(yti > 0)

−R(yt1 , . . . , ytN). (10)

To apply a similar correction to the routing costs for
period t + 1, denote by y+

t+1, 1 , . . . , y
+

t+1,N the optimal
delivery quantities in period t + 1. Note that these
quantities depend in a complex way on (Xt ,Yt) and are
actually random variables, since they also depend on
the realization of the demands Dt1 , . . . ,DtN in period t.
With these notations, another estimate of the total
expected profit can be derived from Equation (10), as
follows:

π3
t (Xt ,Yt)�

N
∑

i�1

fti((x1 , . . . , xL−1)ti , yti)

+

N
∑

i�1

Fti ·�(yti > 0)−R(yt1 , . . . , ytN)

+

N
∑

i�1

Fti ·Pr(y+

t+1, i > 0 | Yt)

−
∑

(y1 ,...,yN )

Pr((y+

t+1,1 , . . . , y
+

t+1,N)

� (y1 , . . . , yN) | Yt)×R(y1 , . . . , yN). (11)

In this expression, the fourth term corrects the ex-
pected value of the cost-to-serve in period t+1, and the
last term represents the expected value of the routing
cost in period t + 1, given the delivery decisions Yt .

The optimal delivery quantity y+

t+1, i can be approxi-
mated by the expected value of y∗

t+1, i . Based on Equa-
tion (6), this can be estimated as follows (compare with
Equation (7)):

E(y∗
t+1, i | yti)� Pr(Dti > Iti + yti)y

∗
t+1, i(0, . . . , 0, 0)

+

Iti+yti
∑

d�0

Pr(Dti � d)y∗
t+1, i(Xt+1, i), (12)

where Xt+1, i is defined by Equation (3).
Replace here the random quantities y+

t+1, i by
⌊E(y∗

t+1, i |yti)⌋ turns (11) into a deterministic problem
where the delivery cost in period t + 1 can be approx-
imated by solving a single VRP. This approach has a
drawback, however, of yielding strictly positive values
⌊E(y∗

t+1, i | yti)⌋ for almost all stores i, which is unlikely
to happen for the optimal delivery quantities y∗

t+1, i

because this would result in high routing costs. There-
fore, we further modify our approximation by consid-
ering delivery quantities ( ỹt+1, i | yti) defined by Equa-
tion (13) hereunder, where ǫi is a user parameter whose
value depends on the magnitude of the demand (ǫi �

1
2
E(Dit) proved suitable in our numerical experiments)

( ỹt+1, i | yti)

�

{

⌊E(y∗
t+1, i | yti)⌋ if ⌊E(y∗

t+1, i | yti)⌋ > ǫi ,

0 otherwise.
(13)

The optimal expected total profit is then approxi-
mated by solving the optimization problem (14)

maximize
(yt1 ,...,ytN )

π̃(yt1 , . . . , ytN)

�

N
∑

i�1

fti((x1 , x2 , . . . , xL−1)ti , yti)

+

N
∑

i�1

Fti · (�(yti > 0)+�(( ỹt+1, i | yti)> 0))

−R(yt1 , . . . , ytN)−R(( ỹt+1, 1 | yt1), . . . , ( ỹt+1,N | ytN))

subject to y
(1)

ti ≤ yti ≤ Ci − Iti , i �1, . . . ,N. (14)

This formulation takes into account the routing costs
in period t, the approximated expected routing costs
in period t + 1, and costs-to-serve for the following
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periods. The corresponding algorithm is summarized
as follows:

The Decomposition-Integration Algorithm (DI).
Begin

Step 0. Set a cost-to-serve, Fti , for each store i and
each period t based on one of the algorithms described
in Appendix A. Set t � 1.

Step 1. Solve Problem (14) to obtain the delivery
quantities yti and the corresponding routes in period t.

Step 2. Serve the stores with the delivery quanti-
ties yti through the routes obtained in step 1.

Step 3. For each store i, observe the actual demand
in period t, i.e., dti . Calculate the state of the system in
period t +1, i.e., Xt+1, i by Relations (3). Set t � t +1 and
go to step 1.
End.

In Section 7, we propose a matheuristic algorithm
to solve Problem (14), as required by step 1 of Algo-
rithm DI.

7. A Matheuristic for Problem (14)
In this section, we propose a matheuristic for Prob-
lem (14).

Starting from the initial solution Yt � (y∗
t1 , . . . , y

∗
tN)

proposed by Equation (6), we generate a new fea-
sible solution Y′

t � (y′
t1 , . . . , y

′
tN) as explained below,

and we explore whether π̃(Y′
t ) is larger than π̃(Yt). If

so, we move to the new solution; otherwise, we gen-
erate another solution. The local improvement algo-
rithm stops when a predefined number of consecu-
tively generated new solutions are rejected due to lack
of improvement or infeasibility. Calculating π̃ in Prob-
lem (14) for any new solution involves solving two
VRPs. To avoid these expensive computations, each
new solution is not randomly generated but in a sys-
tematic way that allows us to recompute π̃(Y′

t ) incre-
mentally, by difference with π̃(Yt).

When moving from the current solution (the cur-
rent set of delivery quantities and their optimal routes)
to a new solution, the difference in the approximated
expected total profit is calculated by Equation (15)

∆� π̃(y′
t1 , y

′
t2 , . . . , y

′
tN) − π̃(yt1 , yt2 , . . . , ytN)

�

N
∑

i�1

(

fti((x1 , x2 , . . . , xL−1)ti , y
′
ti)

− fti((x1 , x2 , . . . , xL−1)ti , yti)
)

−
(

R(y′
t1 , . . . , y

′
tN) −R(yt1 , . . . , ytN)

)

−
(

R(( ỹ′
t+1, 1 | y′

t1), . . . , ( ỹ
′
t+1,N | y′

tN))

−R(( ỹt+1, 1 | yt1), . . . , ( ỹt+1,N | ytN))
)

+

N
∑

i�1

Fti · (�(y
′
ti > 0) − �(yti > 0))

+

N
∑

i�1

Fti ·
(

�(( ỹ′
t+1, i | y′

ti) > 0) − �(( ỹt+1, i | yti) > 0)
)

.

(15)

Assume that in every move from the current solution
to a new solution, we change the delivery quantities
in such a way that the routes and the routing costs in
period t + 1 do not change. Moreover, let us indicate
the decrease in the routing costs in period t by δ

δ � R(yt1 , . . . , ytN) −R(y′
t1 , . . . , y

′
tN). (16)

Then, we can rewrite Equation (15) as follows:

∆�

N
∑

i�1

(

fti((x1 , x2 , . . . , xL−1)ti , y
′
ti)

− fti((x1 , x2 , . . . , xL−1)ti , yti)
)

+ δ+
N
∑

i�1

Fti · (�(y
′
ti > 0) − �(yti > 0)). (17)

In the proposed matheuristic, a new solution is gen-
erated in such a way that the routing cost in period t
decreases while the expected routing cost in period
t + 1 does not change. We explain the main idea here.

Assume that in period t, a store j is ejected from its
current route and is inserted into another route, say
route r∗, without modification of the delivery quanti-
ties Yt . Denote by r′ the route in period t derived from
route r∗ after inserting store j into it. If route r′ is fea-
sible for the delivery quantities Yt and if the routing
cost in period t decreases as a result of this ejection-
insertion step, then, clearly, the new VRP solution is
preferred to the previous one. In general, however,
since the routes were optimally selected for the deliv-
ery quantities Yt , route r′ will be infeasible with respect
to its maximum allowed length or the capacity of the
vehicle. In the first case, we simply reject the new solu-
tion. In the second case, we try to determine whether
the delivery quantities Yt can be adapted (presumably,
decreased) in such a way that r′ becomes feasible. How-
ever, modifying Yt also induces an effect on period t+1
(more precisely, on the quantities (Ỹt+1 | Yt) that are
likely to increase). To keep some control over this effect,
therefore, we restrict ourselves to certain modifications
of Yt that do not affect the feasibility of the current
routes in period t and period t + 1.

For an arbitrary set of routes R, we denote by N(R)
the set of stores contained in some route of R (exclud-
ing the depot); when R contains a single route, e.g.,
R � {r}, we simply write N(r) instead of N(R). Then,
we define:

• Rt , Rt+1 are the sets of routes in period t and t + 1,
respectively, after the ejection-insertion step has been
performed on store j;

• D � N(r′) is the set of stores visited on route r′; we
allow their delivery quantities to decrease in period t
to restore feasibility of route r′ (D is for “decrease”);

• R̄t+1 � {r ∈Rt+1 | D∩N(r),�} is the set of routes in
period t+1 that contain at least one store in D; these are
the routes in period t +1 that may be affected when we
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decrease a delivery quantity to a store in D in period t;
we need to make sure that these routes remain feasible.
This can be achieved by decreasing the expected deliv-
ery quantities to some of the corresponding stores in
period t + 1, or indirectly, by increasing the deliveries
to these stores in period t; we model this through the
introduction of the sets R̄t and I;

• R̄t � {r ∈Rt | N(R̄t+1)∩N(r),�} is the set of routes
in period t that contain at least one store in N(R̄t+1); the
routes in R̄t are considered as being potentially affected
in period t;

• I � (N(R̄t+1)∩N(R̄t))\D is the set of stores (exclud-
ing stores in D) in the affected routes in periods t and
t + 1; we allow their delivery quantities to increase in
period t to maintain the feasibility of the routes in R̄t+1

(I is for “increase”).
Moreover, we define the following binary decision

variables:
• for each store i ∈ D, vih � 1 if the delivery quantity

to store i decreases by h units; otherwise, vih � 0;
• for each store i ∈ I, vih � 1 if the delivery quantity

to store i increases by h units; otherwise, vih � 0.
Assume that

¯
mi (resp., m̄i) is an upper bound on the

largest possible decrease (resp., increase) of the deliv-
ery quantity yti in period t. We explain in Appendix B
how such bounds can be computed. Then, an integer
programming (IP) model to determine new delivery
quantities in period t is set as follows:

max

{

∑

i∈D

¯
mi
∑

h�0

fti(Xti , yti − h) · vih

+

∑

i∈I

m̄i
∑

h�0

fti(Xti , yti + h) · vih

}

(18)

subject to
¯
mi
∑

h�0

vih � 1, ∀ i ∈ D , (19)

m̄i
∑

h�0

vih � 1, ∀ i ∈ I , (20)

∑

i∈D

¯
mi
∑

h�0

(yti − h) · vih ≤ Q , (21)

∑

i∈N(r)∩I

m̄i
∑

h�0

(yti + h) · vih +

∑

i∈N(r)\I

yti ≤ Q ,

∀ r ∈ R̄t\r′, (22)
∑

i∈N(r)∩D

¯
mi
∑

h�0

( ỹt+1, i | yti − h) · vih

+

∑

i∈N(r)∩I

m̄i
∑

h�0

( ỹt+1, i | yti + h) · vih

+

∑

i∈N(r)\(D∪I)

( ỹt+1, i | yti) ≤ Q , ∀ r ∈ R̄t+1 ,

(23)

vih ∈ {0, 1}, ∀ i ∈ D , h ∈ [0,
¯
mi] and

∀ i ∈ I , h ∈ [0, m̄i]. (24)

The objective function (18) maximizes the total ex-
pected profit obtained by the new delivery quantities
to the stores in sets D and I, i.e., the stores whose deliv-
ery quantities may change. Constraints (19) and (20)
along with Constraints (24) imply that exactly one of
the decision variables vih takes value 1 for each store
i ∈ D ∪ I. Constraint (21) indicates that the new deliv-
ery quantities to the stores in the expanded route r′

must respect the vehicle capacity. Constraints (22)–(23)
guarantee that for every affected route in period t or
t + 1, the sum of the new delivery quantities does not
exceed the vehicle capacity.

If the IP has a feasible solution, the new delivery
quantities to stores in D and I are calculated using
Equations (25) and (26), respectively. Delivery quanti-
ties to other stores do not change

y′
ti �

¯
mi
∑

h�0

(yti − h) · vih , ∀ i ∈ D , (25)

y′
ti �

m̄i
∑

h�0

(yti + h) · vih , ∀ i ∈ I . (26)

Note that only the routes belonging to R̄t or R̄t+1

appear in the IP formulation. Moreover, to decrease
the current excess load on route r′, we only consider
in (18)–(24) a subset of promising stores (those in
D ∪ I) for which the current delivery quantities can
increase or decrease. Thus, we cannot claim that the
optimal solution of Problem (18)–(24) provides the
optimal adjustment of delivery quantities to restore
the capacity constraint in route r′. In particular, Prob-
lem (18)–(24) may be infeasible, while there exists an
adjustment of delivery quantities such that the capac-
ity of route r′ is not exceeded and all other routes in
periods t and t + 1 remain feasible.

Thus, in summary, our local search approach to
Problem (14) acts as a “large neighborhood search”
framework that explores the neighborhood of the cur-
rent solution by solving the IP subproblem (18)–(24).
The solution of (18)–(24) hopefully yields new delivery
quantities that increase the expected total profit.

The following algorithm must be embedded in step 1
of algorithm DI:

The Matheuristic.

Begin
Step 0. Initial solution: Solve two independent VRPs

for periods t and t + 1 where the delivery quantities
are, respectively, yti � y∗

ti and ( ỹt+1, i | yti) calculated by
Equations (6) and (13).

Step 1. Termination: If steps 2–5 have been repeated
for a predetermined number of iterations, then stop.

Step 2. Ejection-insertion: Choose two random stores j
and j

′
that are served in period tbut are not included
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in the same route. Assume that j is ejected from its
current route and is inserted immediately before or
after j′, whichever leads to a lower cost for the expanded
route r′. If the expanded route r′ is infeasible in terms of
the route length, go to step 1.

Step 3. Saving: Calculate δ as the decrease in the
routing costs in period t resulting from the ejection-
insertion in step 1. If δ ≤ 0, go to step 1.

Step 4. New deliveries: If the sum of the current deliv-
ery quantities on r′ does not exceed Q, go to step 5;
otherwise, solve Problem (18)–(24). If the problem
does not have a feasible solution go to step 1; other-
wise, calculate the new delivery quantities by Equa-
tions (25)–(26).

Step 5. Move: Use Equation (17) to calculate ∆, i.e.,
the difference between the expected total profit for the
new solution and the current solution. If ∆ > 0 move to
the new solution. Go to step 1.
End.

The matheuristic proposed to solve Problem (14)
relies on decreasing the routing costs in period t while
keeping the expected routes in period t +1 unchanged.
We tested the reverse as well, i.e., modifying the deliv-
ery quantities in period t so that the routes in period t
do not change while the expected routing costs in
period t + 1 decrease. Our results show that this strat-
egy does not perform well. This may be due to the fact
that the second strategy tries to decrease the expected
costs of routes that may not be realized at all in
period t + 1.

8. Full Information
When assessing the performance of the above algo-
rithms, it is interesting to consider the value of full infor-
mation, that is, the additional expected profit that could
be reaped if full information about future demands
was available to the decision maker. In that case, the
PSIRP simplifies to a deterministic PIRP. In this section,
we develop a simple heuristic, denoted by FI, for the
resulting PIRP.

From an inventory perspective, FI delivers these
quantities leading to no waste and no lost sales. There
is thus no difference between delivering the demand
of the current period only, the demands of two peri-
ods ahead or the demands of λ periods ahead as long
as λ ≤ L, since no inventory holding cost is charged.
From the routing point of view, however, it can be ben-
eficial to serve all stores in the same periods and with
larger delivery quantities. In this sense, when demands
are deterministic, serving all stores every λ� L periods
sounds like an effective strategy. However, λ < L might
be a better choice than λ � L because the average fill-
ing rate of vehicles could be higher. Therefore, in our
experiments, we tested other λ values.

The algorithm FI is as follows:

The Full Information Algorithm (FI)
Begin

Step 0. Set t � 1 and λ.
Step 1. For each store i, set yti � dti + · · · + dt+λ−1, i ,

where dti is the deterministic demand in period t in
store i.

Step 2. Solve a VRP for period t by considering deliv-
ery quantities yti , and serve the stores with these deliv-
ery quantities through the optimal routes.

Step 3. For each store i, set yt+1, i � · · · � yt+λ−1, i � 0.
Set t � t + λ and go to step 1.
End.

9. Computational Study
All algorithms are coded in Java and the instances are
run on an Intel Core i7 processor with 1.8 GHz CPU
and 8 GB RAM. No time limit is imposed on any of the
algorithms.

To solve the VRP models, we use a fast but effective
heuristic. The heuristic first solves the LP relaxation
of a route-based formulation by column generation
(Righini and Salani 2006). Then, the restricted master
problem obtained at the end of the column generation
process is solved to optimality as an integer program-
ming problem by calling ILOG CPLEX 12.4. Testing
this heuristic on the original random instances cre-
ated by Solomon (1987) showed an average optimality
gap of 0.6% with respect to the exact optimal values.
CPLEX is also used to solve the integer programming
problems (18)–(24) described in Section 7.

9.1. Instances

For the computational experiments, the first N � 40
stores in the R-series random instances created by
Solomon (1987) are considered with some modifica-
tions. Each route length remains limited to 230 time
units, but we remove time window constraints. The
vehicle capacity is Q � 120. Demands are randomly
generated during a planning horizon of T � 30 periods.

Demands from the end customers to the stores, Dti ,
are i.i.d. random variables following a binomial distri-
bution with parameters n � 200 and p � 0.1, i.e., Dti ∼
Bin(200, 0.1). The average demand is E(Dti) � 20 for
each period and for each store. We consider three shelf
lives, i.e., L ∈ {2, 3, 4}. As in the original instances, the
fixed cost of using each vehicle is K � 0, and Euclidean
distances represent the cost ci j of traveling from store i
to store j. The acquisition price and selling price per
unit are, respectively, a � 6 and p � 10. A target service
level of TSL � 90% is to be respected in every period
and every store. We set store capacities such that they
are not restrictive in any solution method. When algo-
rithms ULλ, DE, and DI are applied, Ci � 40 (resp.,
60, 80) is large enough for L � 2 (resp., 3, 4). When
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algorithm FI is applied, Ci � 80 (resp., 100, 120) is con-
sidered for L � 2 (resp., 3, 4). In Section 10.5, we will
analyze the impact of limited store capacity on profit,
freshness, and actual service level. In the next subsec-
tions, we discuss some of the performance measures
that we have collected.

9.2. Simulation

To evaluate the performance of different solution meth-
ods, we use random scenarios to simulate the sequence
of decisions made by each method over a rolling hori-
zon of T � 30 periods. We generate a set of 30 scenar-
ios, where each consists of initial inventory as well as
demands of the stores over the planning horizon. We
use the same scenarios for all solution methods and
all shelf lives. The initial inventory of each store is a
uniform random number in the interval [0, 30] (resp.,
[0, 50], [0, 70]) for L � 2 (resp., 3, 4), and is considered
to have shelf life L − 1.

For each solution method, the expected profit is esti-
mated by averaging the total profit over the 30 ran-
dom scenarios. We also collect other useful information
such as average actual service level and freshness as
additional criteria to measure the performance of each
method.

9.3. Actual Service Level

For each run of the simulation, we calculate the average
actual service level, based on (1) the number of stock-
outs (ξs) and (2) the fill rate (ξ f ). Recall that, according
to Equation (1), Iti indicates the inventory level at the
beginning of period t in store i, i.e., the inventory level
before delivery. The quantity �(dti ≤ Iti + yti) is 1 if no
stock-out happens in period t in store i, and 0 other-
wise. Hence, in Equation (27) hereunder, ξs is the pro-
portion of observations where no stock-outs occurred,
over all stores and all periods. This metric is consistent
with our initial definition of TSL in Equation (4)

ξs �

∑

t

∑

i �(dti ≤ Iti + yti)

TN
. (27)

Our second definition of service level considers the
fill rate of demands. In this case, min{dti , Iti + yti}
shows the demand satisfied in period t in store i. Thus,
Equation (28) calculates the average fill rate of demand
in all stores over the planning horizon

ξ f �

∑

t

∑

i min{dti , Iti + yti}
∑

t

∑

i dti

. (28)

9.4. Actual Freshness

For each run of the simulation, the actual freshness
of products is calculated in two ways. First, the aver-
age actual freshness on shelf φs is calculated by Equa-
tion (29)

φs �

∑

t

∑

i(1x1 + 2x2 + · · ·+ (L − 1)xL−1)ti + Lyti
∑

t

∑

i(Iti + yti)
. (29)

Second, Equation (30) is used to calculate φc , the
average actual freshness from a customer’s perspective.
In this definition, (sk)ti is the number of units with
remaining shelf life k sold in period t in store i

φc �

∑

t

∑

i(1s1 + 2s2 + · · ·+ (L − 1)sL−1 + LsL)ti
∑

t

∑

i(s1 + s2 + · · ·+ sL)ti

. (30)

9.5. Verifying Route Estimations in Period t + 1
In the decomposition-integration method DI, we use
Equation (13) to approximate the expected deliveries
in period t + 1. The main purpose of this approxima-
tion is to estimate the routing costs in period t + 1; see
Equation (14). Therefore, the accuracy of the approxi-
mation is evaluated for each scenario by measuring the
similarity between the set of routes forecasted when
using Equation (13), denoted here by E(Rt+1), and the
set of routes actually used in period t + 1, i.e., Rt+1.

We define the degree of similarity between these sets
by Equation (31)

Similarity�

∑

(i , j)∈(Rt+1∩E(Rt+1))
ci j

∑

(i , j)∈(Rt+1∪E(Rt+1))
ci j

. (31)

9.6. Results

For each scenario, each solution method is applied
over a rolling horizon of T � 30 periods. Table 2
summarizes the results. The first column denotes
the maximum shelf life L ∈ {2, 3, 4}. The second
column indicates the solution methods applied to
determine delivery quantities and routes for each sce-
nario, i.e., the expected value method (EV), deliver-
up-to-level with daily deliveries (UL1), deliver-up-to-
level with large delivery quantities to satisfy TSL
for λ � L − 1 periods (ULL−1), decomposition with-
out costs-to-serve (DE0), decomposition with distance-
based costs-to-serve (DEd), decomposition with route-
based costs-to-serve (DEr), decomposition-integration
without costs-to-serve (DI0), decomposition-integra-
tion with distance-based costs-to-serve (DId), decompo-
sition-integration with route-based costs-to-serve (DIr),
and the full information method (FI).

Column 3 displays the average computation times
over 30 scenarios for each instance. When L � 2, most
of the computation time is spent solving the VRPs, in
that all N � 40 stores are served in every period when
applying ULλ, DE, or DI. When L � 4, however, most of
the computation time is devoted to solving the expen-
sive SDP relations (7). In the latter case, solving the
VRPs takes almost no time because the average number
of stores served in each period is around 15.

The next columns report, respectively, average val-
ues over 30 scenarios of the profit, revenue, acquisition
cost, routing cost, waste cost, average number of vehi-
cles per period, average number of stores per route,
average time between two consecutive visits to stores,
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freshness on shelf, freshness from customers’ perspec-
tive, service level based on the number of stock-outs,
and service level based on the filling rate.

To increase the readability of the table, the values in
Columns 4–8 are normalized with respect to the profit
obtained by EV for each shelf life (the absolute value
of the profit obtained by EV is shown in parentheses).
For ULλ, we obtained the highest profit by setting λ �
L − 1. For FI, we obtained the highest profit by setting
λ � 2 (resp., 3, 3) for L � 2 (resp., 3, 4).

10. Discussion
In this section, we analyze and discuss the results
of the computational study. We demonstrate that the
differences between the profits generated by differ-
ent solution methods are statistically and economically
significant. We also draw some additional managerial
insights.

10.1. Comparing the Solution Methods

Table 2 shows that method UL1 provides the freshest
products, while the other solution methods strive to
reap a higher profit. All methods lead to extremely
high service levels, especially when measured by the
fill rate of demand ξ f . These high service levels are
obtained even for EV (which does not explicitly enforce
the target service level TSL), especially when L is large.
As indicated by ξs , the proportion of stock-outs is
higher with EV and UL1 than with the other methods,
but is still reasonably low. Finally, all solution methods
but EV yield extremely low waste costs.

We now take a closer look at the profit. Recall that
all values are normalized so that the expected profit
generated by EV is 1 in all scenarios. As expected, the
average profit tends to increase when we move from
method EV to UL to DE to DI. Figure 1(a) illustrates the
average additional profit when each of the methods is
applied. When the demand distribution is known, DE0

can be applied, whereby the profit increases on aver-
age by 12.9% (resp., 5.2%, 5.4%) for L � 2 (resp., 3, 4).
This increase can be interpreted as the value of access-
ing the probability distribution and explicitly account-
ing for the uncertainty of demand. The additional gap
filled by DEd shows the value of considering some
aspect of routing when we determine delivery quanti-
ties. On average, it amounts to an additional increase in
profit of 0.1% (resp., 3.0%, 5.7%) for L � 2 (resp., 3, 4).
Then, by using DId , the profit increases again, on aver-
age, by 0.3% (resp., 0.6%, 0.0%) for L � 2 (resp., 3, 4):
This measures the value of further integrating inven-
tory and routing-related decisions. Finally, accessing
full information and applying FI provides some 7.7%
(resp., 4.4%, 2.7%) average additional profit for L � 2
(resp., 3, 4). This can be interpreted as an estimate
of the value of full information. Figure 1(a) also shows
the profit gained by applying ULL−1. Interestingly, the

Figure 1. (Color online) Contribution of Different Solution
Methods to Increasing Profit














 

 

performance of this simple deliver-up-to-level policy
is very close to the performance of the more sophisti-
cated method DE. Figure 1(b) can be interpreted in the
same way as Figure 1(a), when the cost-to-serve Fd is
replaced by Fr .

We have also tested the performance of DI if the profit
function in Problem (14) is replaced by a simpler esti-
mate, i.e., the quantity given by Equation (10). In the
latter estimation, costs-to-serve Ft+1, i are considered for
period t + 1, whereas Problem (14) calculates a VRP
routing cost for period t+1 based on the expected deliv-
ery quantities. Solving (10) is easier than (14), but
our computational results show that the profit gener-
ated by (10) falls between the profits generated by DE
and DI.

10.2. Optimality Gaps

To assess the algorithms performance, it is necessary to
compute a tight upper bound on the optimal value of
the expected profit. Although difficult, we nevertheless
measure the quality of our solutions in various ways.

First, the gap between the best solution value
(obtained by DI) and the value obtained by FI is rela-
tively small. This gap cannot be interpreted as a rigor-
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Table 2. Comparing Different Solution Methods

L Method Time (sec) Pro.� Rev. −Acq. −Rou. Waste Veh. Cus. Bet. φs φc ξs (%) ξ f (%)

2 EV 4 1.000 3.598 2.331 0.267 0.149 8.5 3.2 1.6 1.6 1.4 91 98

(66,542)
UL1 1,626 1.126 3.596 2.175 0.295 0.008 7.7 5.6 1.0 1.7 1.7 93 99

ULL−1 1,626 1.126 3.596 2.175 0.295 0.008 7.7 5.6 1.0 1.7 1.7 93 99

DE0 1,802 1.129 3.623 2.196 0.297 0.011 7.8 5.5 1.0 1.7 1.6 97 99

DEd 1,484 1.130 3.623 2.196 0.297 0.011 7.8 5.5 1.0 1.7 1.6 97 99

DEr 1,482 1.130 3.623 2.196 0.297 0.011 7.8 5.3 1.0 1.7 1.6 97 99

DI0 8,783 1.133 3.622 2.196 0.293 0.011 7.5 5.5 1.0 1.7 1.6 97 99

DId 7,003 1.133 3.621 2.196 0.293 0.011 7.6 5.7 1.0 1.7 1.6 97 99

DIr 7,188 1.133 3.621 2.196 0.293 0.011 7.5 5.5 1.0 1.7 1.6 97 99

FI 7 1.210 3.604 2.170 0.224 0.007 7.8 2.6 2.0 1.6 1.5 100 100

3 EV 3 1.000 3.376 2.164 0.212 0.103 8.5 2.0 2.6 2.3 1.9 95 99

(72,320)
UL1 1,673 1.045 3.310 1.994 0.271 0.000 7.7 5.6 1.0 2.7 2.7 93 99

ULL−1 2 1.082 3.379 2.065 0.232 0.011 8.1 3.1 1.8 2.4 2.0 99 99

DE0 1,575 1.052 3.359 2.032 0.274 0.000 7.7 5.5 1.0 2.6 2.3 99 99

DEd 49 1.082 3.382 2.073 0.227 0.016 8.2 2.8 1.9 2.3 1.9 99 99

DEr 50 1.078 3.384 2.079 0.227 0.020 8.2 2.0 2.0 2.3 1.9 99 99

DI0 7,697 1.057 3.356 2.036 0.263 0.005 7.5 5.5 1.0 2.6 2.3 99 99

DId 98 1.088 3.384 2.073 0.223 0.015 7.8 3.0 1.9 2.4 2.0 99 99

DIr 98 1.085 3.383 2.077 0.221 0.019 7.8 2.0 2.0 2.3 1.9 99 99

FI 1 1.132 3.317 1.995 0.189 0.005 8.0 1.7 3.0 2.3 2.0 100 100

4 EV 0 1.000 3.418 2.182 0.236 0.084 11.7 1.0 3.6 3.0 2.5 97 99

(72,182)
UL1 1,672 1.046 3.315 1.997 0.272 0.000 7.7 5.6 1.0 3.7 3.7 93 99

ULL−1 0 1.109 3.423 2.110 0.205 0.014 8.2 1.0 2.8 3.1 2.5 99 99

DE0 2,568 1.054 3.364 2.036 0.275 0.000 7.7 5.5 1.0 3.6 3.3 99 99

DEd 1,086 1.111 3.425 2.109 0.205 0.012 8.2 1.9 2.8 3.1 2.5 99 99

DEr 1,107 1.106 3.431 2.121 0.204 0.018 8.2 1.4 2.9 3.0 2.4 99 99

DI0 7,716 1.070 3.362 2.039 0.253 0.005 7.4 5.3 1.1 3.5 3.2 99 99

DId 1,365 1.111 3.424 2.104 0.210 0.007 7.9 2.6 2.2 3.2 2.7 99 99

DIr 1,597 1.117 3.426 2.113 0.197 0.014 7.7 2.1 2.6 3.1 2.5 99 99

FI 1 1.138 3.322 1.998 0.186 0.005 8.0 1.7 3.0 3.3 2.9 100 100

ous optimality gap, since FI assumes perfect informa-
tion and relies on a heuristic algorithm. Yet the value of
the gap suggests that DI is performing reasonably well.

Second, consider the generic expression of the
expected profit as E(Profit)� E(Revenue − Acquisition)−
E(Routing). Clearly, the revenue of the retail chain is
maximized when all stores can satisfy the demand of
their customers, that is, when the service level reaches
100%. Under these conditions, the acquisition costs are
minimized when all units bought are sold, that is, when
there is no waste. Table 2 indicates that the solutions
obtained by DId or DIr achieve a very high service
level (fill rate of 99%) and produce little waste (around
1%–2%). This already implies that E(Revenue − Acquisi-
tion) is almost best possible. A more precise calculation
can be carried out as follows: In each period t and for
every store i, E(Revenueti −Acquisitionti) ≤ E(Dti)(p − a).
In our experiments, E(Dti)(p − a) � 80 so that, with
30 periods and 40 stores, E(Revenue) − E(Acquisition)
is bounded by 96,000. For each shelf life L � 2, 3, 4,
respectively, the average value of (Revenue−Acquisition)
achieved by DIr over 30 random scenarios equals 94,869,

94,465, and 94,824, respectively, which is within 1%–2%
of the upper bound.

On the other hand, it is much more difficult to
bound the expected routing costs, since they depend
on the delivery quantities. A rough lower bound on
the expected routing costs can be computed by assum-
ing that each store is served by direct shipments and
with full vehicle capacity. When the total demand of
store i over the planning horizon is d, the resulting
lower bound is 2c0i ⌊d/Q⌋, where c0i is the travel cost
from the depot to the store. Hence, a lower bound on
the expected routing cost incurred by store i during the
planning horizon is

2c0i

nT
∑

d�0

Prob(Di � d)⌊d/Q⌋ .

With our parameter settings, this leads to a lower
bound of 9,040 on the expected total routing costs, as
compared with 19,478, 15,998, and 14,196, respectively,
for the average routing costs obtained by DIr when L �

2, 3, 4, respectively.
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Table 3. Statistical Tests on Profit

L C E(PDId
−PDEd

) Std(PDId
−PDEd

) t-statistic Hypothesis Result Prof. inc. (%)

2 30 192 53 20.0 H0: PDId
≤ PDEd

Reject 0.3
≥40 217 62 19.2 H0: PDId

≤ PDEd
Reject 0.3

3 30 118 48 13.4 H0: PDId
≤ PDEd

Reject 0.2
40 379 96 21.6 H0: PDId

≤ PDEd
Reject 0.5

50 391 147 14.6 H0: PDId
≤ PDEd

Reject 0.5
≥60 408 130 17.2 H0: PDId

≤ PDEd
Reject 0.5

4 30 118 48 13.4 H0: PDId
≤ PDEd

Reject 0.2
40 407 85 21.6 H0: PDId

≤ PDEd
Reject 0.5

50 352 111 17.4 H0: PDId
≤ PDEd

Reject 0.4
60 911 204 24.4 H0: PDId

≤ PDEd
Reject 1.2

70 233 166 7.7 H0: PDId
≤ PDEd

Reject 0.3
≥80 30 230 0.7 H0: PDId

� PDEd
Accept 0.0

Even though this bound is weak, we conclude that
the total average profit generated by DIr is within 13%,
10%, and 7%, respectively, of the optimal expected
profit when L � 2, 3, 4. Note that the actual optimality
gap is probably much better, since our routing algo-
rithm does well, as observed in Section 9.

10.3. Statistical Tests

Algorithm DI takes the solution provided by DE as
an initial solution and improves it by applying a
matheuristic. The average improvement of profit ap-
pears to be small, but actually proves statistically sig-
nificant. When estimating the profit over a sample of
30 scenarios, the standard deviation of the estimate
is about 0.001 times its average value, which shows
that the in-sample variation of the profit is extremely
small and hence, differences between methods quickly
become significant. We also checked that, when com-
puting the profit over two independent samples, the
difference between the average profit obtained for DI
is one order of magnitude smaller than the difference
between methods.

Additionally, we test the statistical hypothesis H0:
PDId

≤ PDEd
, where PDEd

and PDId
indicate the total pro-

fits obtained by DEd and DId , respectively. The results of

Table 4. Statistical Tests on the Number of Vehicles

L C E(VDEd
−VDId

) Std(VDEd
−VDId

) t-statistic Hypothesis Result Veh. dec. (%)

2 30 0.22 0.09 13.4 H0: VDId
≥ VDEd

Reject 2.8

≥40 0.21 0.08 14.4 H0: VDId
≥ VDEd

Reject 2.8

3 30 0.13 0.11 6.5 H0: VDId
≥ VDEd

Reject 1.7

40 0.19 0.10 10.4 H0: VDId
≥ VDEd

Reject 2.5

50 0.32 0.10 17.5 H0: VDId
≥ VDEd

Reject 3.9

≥60 0.34 0.11 16.9 H0: VDId
≥ VDEd

Reject 4.2

4 30 0.13 0.11 6.5 H0: VDId
≥ VDEd

Reject 1.7

40 0.22 0.10 12.0 H0: VDId
≥ VDEd

Reject 2.8

50 0.31 0.09 18.9 H0: VDId
≥ VDEd

Reject 3.8

60 0.91 0.12 41.5 H0: VDId
≥ VDEd

Reject 10.3

70 0.42 0.13 17.7 H0: VDId
≥ VDEd

Reject 5.1

≥80 0.30 0.16 10.3 H0: VDId
≥ VDEd

Reject 3.6

the t-test for paired samples are shown in Table 3. The
threshold for the t-statistic with 29° of freedom (above
which the null hypothesis is rejected with confidence
level 99.99%) is t0.9999; 29 � 4.25. Table 3 shows that H0 is
rejected in all cases but one, which shows that DI domi-
nates DE in terms of profit.

Superiority of DI over DE is not confined to improv-
ing the profit. In particular, DI uses fewer vehicles than
DE, and the difference is statistically significant, as
shown in Table 4. Similar conclusions apply when Fd is
replaced by Fr . These results demonstrate that it makes
sense to use our matheuristic to build on DE.

10.4. Impact of Cost-to-Serve Values on DE and DI
Thus far, we have defined two ways to assign a pos-
itive cost-to-serve to a generic store, i.e., Fd and Fr .
In general, Fr is much larger than Fd . Therefore, we also
tested the sensitivity of the performance of DE and DI
when other values of the cost-to-serve are considered.
The results are shown in Figure 2. It appears that, for
all three shelf lives, DE achieves its best performance
when Fd is set as cost-to-serve. (Note that the horizon-
tal axis is normalized so that Fd

� 1 in all cases, and
the vertical axis shows the relative profit with respect
to EV.) However, when DI is used, the best setting of
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cost-to-serve is not as clear: While Fd provides the high-
est profit for shelf lives L�2 and L�3, Fr ≈2.2Fd results
in the best profit for shelf life L � 4.

Our results show that if the average number of stores
per route, say n̄, is at least 3, then Fd works well for
all values of L. On the other hand, n̄ < 2 implies that
routes rarely include more than two stores. In this
case, Fi � K + 2ci0 proves a better estimation for cost-
to-serve than Fd , and we can adopt a direct delivery
policy for store i. This is consistent with the results
in Gallego and Simchi-Levi (1990) and Bertazzi (2008),
i.e., when the delivery quantity is a large fraction of the
vehicle capacity, direct shipping is preferable in almost
all routing strategies.

Figure 2. Profit Obtained by DE and DI with Different
Costs-to-Serve for Q � 120







  

  

  

Figure 2 also demonstrates that, regardless of the
cost-to-serve value, there is always profit improvement
using DI.

10.5. Managerial Insights

In this section, we discuss the economic significance of
the profit improvements, the impact of shelf life and
store capacity on the profit obtained by the best solu-
tion method, and the interpretation of DE as a (R, s , S)
policy.

Economic interpretation of profit improvements. We
argue that the improvement in profit provided by DI
over DE is not only statistically but also economically
significant. In our experimental setting, profit is about
32% of total revenue, but does not account for a variety
of miscellaneous costs (salaries, buildings, marketing,
administration, etc.). In fact, net profit in the retail food
sector is of the order of 2% of revenue; see EBRD–FAO
(2009), Government of Canada (2012), and FMI (2014).
Miscellaneous costs thus account for about 30% of total
revenue. The corresponding breakdown of the revenue
is depicted in Figure 3.

Our results show an average improvement of 0.6%
in profit when we exploit DI compared to DE while
setting an appropriate cost-to-serve (0.3% for L � 2
with Fd , 0.5% for L � 3 with Fd , and 1.0% for L � 4
with Fr). This translates into 0.19% of the revenue
(�0.6% of 32%), meaning about 10% of the net profit of
a typical retail chain. This is economically significant.

Value of information. We provided an estimate of the
value of information in Section 10.1: The results in
Figure 1 clearly show that perfect information about
future demand potentially leads to significant profit
improvements. Reducing demand uncertainty may be
achieved, for example, by collecting and analyzing
increased amounts of data relating to purchasing hab-
its in different stores. In practice, however, it is unre-
alistic to assume that retail demand can be treated as
completely deterministic. To relax this assumption, we
run a few additional experiments when the demand is
binomial with parameters (n , p) � (40, 0.5), compared
with (n , p) � (200, 0.1) in the initial instances. Observe

Figure 3. Breakdown of the Revenue

61%

7%

30%

2%

Acquisition costs

Routing costs

Miscellaneous costs

Net profit
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Table 5. Comparing Profits When the Variance Decreases

L (n , p) Profit by DIr Improvement

2 (200, 0.1) 75,392
(40, 0.5) 75,588 0.3%

3 (200, 0.1) 78,467
(40, 0.5) 79,407 1.2%

4 (200, 0.1) 80,628
(40, 0.5) 81,067 0.5%

that this modification preserves the mean value of the
demand (�20) but decreases its variance np(1−p) from
18 to 10. Thus, it allows us to investigate modifica-
tion of the “optimal” profit when the uncertainty is
reduced. The results obtained with the algorithm DIr

(using route-based costs-to-serve) are summarized in
Table 5 (they are representative of the general trend).
They show that when the variance decreases, the pro-
fit increases by roughly 0.5%, a significant economic
improvement.

Impact of store capacity. Intuitively, one might expect
that the smaller Fti , the more frequently store i is vis-
ited. However, our experimental results show that the
frequency of visits is relatively insensitive to Fti , pro-
vided that Fti is strictly positive. Therefore, selecting
the value of the cost-to-serve cannot be regarded as a
lever to adjust the frequency of visits and the freshness
of products. On the other hand, store capacity clearly
has an effect on these performance indicators.

Table 6 shows the expected profit obtained by DId

over T � 30 periods, as well as freshness and service
level, when considering a limited store capacity C. We
see that the service level is only influenced slightly by C.
The changes in profit and freshness, however, are sig-
nificant. The results suggest that providing extra store
capacity beyond (L − 1)E(D) + 0.5E(D) does not have
any major impact on profit. Observe that (L − 1)E(D)

can be viewed as the expected required capacity be-
tween two consecutive visits (during L − 1 periods)

Table 6. Comparing the Impact of Different Capacities on
Profit, Freshness, and Service Level

L C Profit by DId φs φc ξs (%) ξ f (%) Similarity (%)

2 30 75,375 1.7 1.6 97 99 70
≥40 75,394 1.7 1.6 97 99 71

3 30 76,216 2.7 2.5 98 99 69
40 76,997 2.5 2.1 99 99 50
50 78,613 2.4 2.0 99 99 53

≥60 78,628 2.4 2.0 99 99 53
4 30 76,216 3.7 3.5 98 99 69

40 77,130 3.5 3.1 99 99 50
50 79,790 3.3 2.9 99 99 53
60 80,108 3.2 2.8 99 99 72
70 80,368 3.2 2.7 99 99 70

≥80 80,368 3.2 2.7 99 99 70

Figure 4. The Best Profit Obtained by DI for Different
Shelf Lives








when the visits are maximally spread, while the quan-
tity 0.5E(D) acts as buffer inventory to respect the target
service level during L − 1 periods, on average.

The last column of Table 6 indicates the similarity
values calculated by Equation (31). The values show
that DI estimates reasonably well the expected routes
in period t + 1.

Impact of shelf life. Figure 4 shows the profits (in abso-
lute value) obtained by DId for L � 2, 3 and by DIr for
L � 4. The numbers indicate a 2.5% decrease in profit
when shelf life decreases from 4 to 3. A further 4.3%
profit loss is incurred when moving from shelf life 3
to 2. These values can be interpreted as the cost of
perishability. Recall that these decreases translate into
2.5 × 16 � 40.7% and 4.3 × 16 � 68.6% decreases in net
profit, which are extremely significant.

Translating DE into a (R, s , S) policy. As illustrated by
Figure 2, the simple algorithm ULL−1 is a strong com-
petitor for DE when L ≥ 3, regardless of the value of
the cost-to-serve. For some cost-to-serve values, ULL−1

even outperforms DE (but not the improved solution
produced by DI). In our instances, the inventory level
triggering a delivery in ULL−1 is sUL � 1.25E(D) for
any L, and the up-to-level point is SUL � 1.3E(D) (resp.,
2.4E(D), 3.45E(D)) for L � 2 (resp., 3, 4) (see Equa-
tion (4) and the end of Section 4). Our computational
experiments reveal that the inventory level triggering
a delivery in method DE is sDE � 1.25E(D) for any L,
independent of the value of Xti , the state of the system
in period t in store i. On the other hand, the deliv-
ery quantities prescribed by DE depend on Xti , but
mostly through the value of the total inventory level
Iti �

∑L−1
k�1(xk)ti . When TSL is high, the up-to-level point

in DE, i.e., SDE � (Iti + y∗
ti | Xti), is quite close to that

in ULL−1, i.e., SUL � (Iti + y∗
ti | Iti), especially when L

is large. The up-to-level point in DE slightly increases
when setting a higher cost-to-serve. Figure 5 shows
the normalized frequency (over all possible states Xti)
of values of the up-to-level point, SDE, when DEd is
applied.

Figure 5 shows that, regardless of the state of the sys-
tem, the up-to-level point determined by DEd is very
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Figure 5. The Normalized Frequency of Up-to-Level Points
in DEd for Different Shelf Lives
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likely to be 1.4E(D) (resp., 2.5E(D), 3.4E(D)) for L � 2
(resp., 3, 4). For example, when L � 3 and the inventory
level does not satisfy TSL in the current period, DE pre-
scribes SDE � 2.5E(D) as the up-to-level point in 88% of
the states, whatever the breakdown of Xti . This implies
that all complex SDP Relations (7) can be developed
once offline and translated into a simple and easy-to-
interpret (R, s , S) policy, where R � 1, s � y

(1)

ti , and S �

1.4E(D) (resp., 2.5E(D), 3.4E(D)) for L � 2 (resp., 3, 4),
without any major impact on the performance of DE.

10.6. Summary

All solution methods have their advantages and lim-
itations, and each has proven to perform for certain
settings. The main features of EV, ULL−1, DE, and DI
are summarized in Table 7.

Table 7. Features of the Different Solution Methods

Method Feature

EV Extremely simple
Does not take the stochasticity of demands into

consideration
Leads to the lowest profit, service level, and freshness
Leads to the highest waste cost and to the highest

number of vehicles used

ULL−1 Extremely simple
Its special case, UL1, provides freshest products
Useless when TSL is not defined or is low
A strong competitor for DE, especially when TSL is

high
Applicable to multiple products

DE Fd performs best if n̄ ≥ 2; otherwise Fr performs better
Performs similarly to the deliver-up-to-level policy

DI Fd delivers the best results provided that n̄ ≥ 3

Superior to DE statistically and economically, in terms
of profit and number of vehicles per period

Superiority over DE applies for a range of values of
store capacity and different estimates of Fti

Slightly higher freshness but the same actual service
level compared to DE

Superior to ULL−1 even when ULL−1 dominates DE

10.7. Extensions

All solution methods presented above can be extended
to account for inventory holding costs or for decaying
products, i.e., products that lose their quality gradually
over their shelf life. This is straightforward for methods
EV and UL, but less so for DE and DI. Let us define h as
the inventory holding cost per unit per period. More-
over, let us assume that the value of each unit of the
product decreases by h′ monetary units in each period.
The parameter h′ can alternatively be considered as
a self-imposed penalty with the objective to increase
freshness when modeling perishable products. In other
words, even if the selling price is actually constant dur-
ing the shelf life (perishable products), the retail chain
may assume that the value of the product decreases lin-
early over time (decaying products) to enforce higher
freshness. To incorporate these elements in DE and DI,
we can add the term eti defined by Equation (32) here-
under to the profit function given in Equation (7)

eti �−(h+ h′)Iti + h′(L−1)
xt1−1
∑

d�0

Pr(Dti � d)(xt1 − d). (32)

The first term in (32) charges the total inventory at
the beginning of period t with costs h and h′, since
this inventory is carried from the previous period. The
second term cancels out the charged costs h′ during
L − 1 periods for the units that are completely deterio-
rated at the end of period t.

11. Conclusions
By considering uncertainty and combining inventory
with routing decisions for perishable products, retail
chains can obtain a significant increase in net profit.
We have shown how such benefit can be gained and
we have quantified it.

The expected value method, where only the ex-
pected demands are taken into consideration in retail
chain’s decisions, serves as a benchmark. We then show
how the knowledge of the demand distribution can
add to the profit. To this end, we first propose a sim-
ple up-to-level method that explicitly takes the target
service level into account. Our numerical results show
that this naïve policy performs reasonably well when
the target service level is high. Next, a decomposition
method is applied to independently determine deliv-
ery quantity to each store. Assigning virtual costs-to-
serve to stores whenever they are visited accounts for
some aspects of routing in the method. This leads to a
significant increase in profit. Finally, we integrate the
decisions independently made by each store, and we
slightly divert from the latter delivery quantities to de-
crease the routing costs. Though the routing costs only
comprise a small portion of the total costs, we showed
that the final improvement in total profit is statistically
and economically significant.
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Our approach considers the real (expected) routes
for only two periods ahead in the decomposition-
integration method. This is justifiable when routing
decisions cannot be made for a large number of peri-
ods and deliveries cannot be synchronized to be car-
ried out in the same periods. This is the case when
(1) demands are highly stochastic, and (2) shelf life is
short or store capacity is limited for long-term deliver-
ies. We show how further profit improvement is pos-
sible when accessing full information about the future
demands.
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Appendix A. Cost-to-Serve Estimation
Distance-based cost-to-serve. The first approach to estimate
costs-to-serve looks at the average distance between each
store and its “closest neighbors.” Defining Ji as a set of stores
near store i, a distance-based cost-to-serve for store i is calcu-
lated by Equation (A.1)

Fd
ti �

∑

j∈ Ji
ci j

| Ji |
. (A.1)

Observe that Fd
ti does not depend on t. Our experimental

results show that the size of the set Ji should increase with
the maximum shelf life L. The reason is that for large L, stores
are served less frequently. Thus, there is a smaller chance to
serve store i and its nearest neighbors in the same period,
and, consequently, it is more likely that store i will be served
together with some of its farther neighbors. We set | Ji | � 2L
in our experiments.

Route-based cost-to-serve. Our second approach is inspired
by the work of Özener, Ergun, and Savelsbergh (2013). These
authors introduce several methods to allocate a cost to each
store in an IRP. Based on the same underlying concepts, we
assign the whole cost of a route to the stores it includes. How-
ever, we must estimate the cost of the routes before solving
any IRP. This can be done by calculating and comparing the
average routing cost plus the average deterioration cost for
different frequencies of deliveries. Assuming that the ideal
periodicity of delivery is λ periods, that store i is served
in period t, and that the store capacity is large enough, the
delivery quantity in period t to store i can be estimated by
Equation (A.2)

αti � E(Dti)+ · · ·+E(Dt+λ−1, i). (A.2)

Then, the average delivery quantity in period t to store i and
to its neighbors is

ᾱti �

αti +
∑

j∈ Ji
αt j

1+ | Ji |
. (A.3)

Given the average delivery quantity ᾱti and vehicle capac-
ity Q, we approximate the average number of stores included
in the route serving store i in period t as

n̄ti �
Q

ᾱti

, (A.4)

and the cost of the route serving i as

Rti � 2ci0 + (n̄ti − 1)Fd
ti . (A.5)

Finally, the portion of the estimated cost of the route allocated
to store i is

Fr
ti �

αti

αti +
∑

j∈ Ji
αt j

· Rti . (A.6)

In our experiments, we determined that the best setting for
the frequency of deliveries is λ � L−1. We also observed that
the costs Fr

ti computed by this approach are high, compared
to the former costs Fd

ti .

Appendix B. Maximum Decrease and Increase in

Delivery Quantities
Following the notations given in Section 7, we determine the
maximum decrease (resp., increase) in delivery quantity to
the stores in D (resp., I), i.e., we determine

¯
mi for i ∈ D (resp.,

m̄i for i ∈ I). This helps us to restrict the number of decision
variables in the IP formulation. Let us define qtr as the current
load on route r in period t, and qt(i) as the current load on
the route that includes store i in period t.

The delivery quantity to store i ∈ D can decrease as long as
it respects TSL, i.e.,

¯
mi ≤ yti − y

(1)

ti , where y
(1)

ti is, as before, the
smallest integer delivery quantity satisfying Inequality (4).
Moreover, there is no need to decrease the delivery quan-
tity to store i ∈ D by more than the excess load on route r′,
i.e.,

¯
mi ≤ qtr′ − Q. The decrease must not cause vehicle load

violation in any of the routes in R̄t+1. To analyze the lat-
ter constraint, consider two cases. In the first, store i ∈ D
is not included in any route in R̄t+1, i.e., i ∈ D\N(R̄t+1).
For such a store, the delivery quantity in period t, yti ,
can decrease as long as the expected delivery quantity in
period t + 1, ( ỹt+1, i | yti), remains zero; otherwise, the rout-
ing costs in period t + 1 would increase. This translates into

¯
mi ≤ min0≤y≤yti

{y | ( ỹt+1, i | y) � 0}. Hence, for every store
i ∈ D\N(R̄t+1), the maximum decrease of the delivery quan-
tity yti is determined as

¯
mi �min

{

yti − y
(1)

ti , qtr′ −Q ,

yti − min
0≤y≤yti

{y | ( ỹt+1, i | y)� 0}
}

. (B.1)

The second case considers stores i ∈ D that are also served
in period t + 1, i.e., stores i ∈ D ∩ N(R̄t+1). A similar reason-
ing about the necessity of respecting TSL and the uselessness
of decreasing a delivery quantity more than the excess load
on r

′
applies for these stores and leads to the same con-

straints as in the previous case. Constraints (23) in the IP for-
mulation guarantee that a decrease of the delivery quantity
to i ∈ D ∩ N(R̄t+1) does not cause any vehicle capacity viola-
tion in period t + 1. Therefore, for all stores i ∈ D ∩ N(R̄t+1),
the maximum decrease of delivery quantity is simply deter-
mined as

¯
mi �min{yti − y

(1)

ti , qtr′ −Q}. (B.2)

A maximum increase of delivery quantity, say m̄i , for any
store i ∈ I can also be determined. On one hand, the increase
cannot be so high as to exceed the vehicle capacity, i.e., m̄i ≤
Q − qt(i) must hold. On the other hand, store capacities must
be respected, i.e., m̄i ≤ Ci − Iti − yti . As a result, the maxi-
mum increase of delivery quantity to any store i ∈ I is deter-
mined as

m̄i �min{Q − qt(i),Ci − Iti − yti}. (B.3)
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