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SUMMARY 
We have examined acoustic, density resistivity, gamma-ray and neutron logs from a 
number of boreholes in both sedimentary and igneous sequences. We show that the 
power spectra of these geophysical variables obey a scaling law, that is, the power 
spectra are proportional to some power of the frequency. In general, the power 
spectra are approximately inversely proportional to the frequency. This suggests that 
frequency-dependent noise models are more appropriate for modelling the spatial 
variation of geophysical parameters than the widely assumed white noise 
(frequency-independent) model and should be incorporated into the inversion for 
these variables, through a priori parameter covariances. The covariance of a scaling 
variable is simply obtained from the power spectrum. It is independent of the 
absolute value of the lag, that is, there is no preferred length scale, but is 
dependent upon the sample length. 

We demonstrate the advantage of scaling noise covariances with the inversion of 
DC resistivity sounding data both with the exact covariance and with the 
approximate case of inverse proportionality. Adoption of a frequency-dependent 
noise model leads to a reduction in the a posteriori parameter variances and to 
solutions exhibiting a degree of smoothness commensurate with measured spatial 
variations of these parameters. 

Key words: a priori constraints, inversion, scaling geology. 

INTRODUCTION 

The use of white noise models in the interpretation and 
processing of geophysical data is widespread. The 
assumption that members of a sequence or distribution are 
uncorrelated and hence exhibit a flat power spectrum has 
been made for mathematical simplicity and because, in 
many cases, little or no information about the true statistics 
of the population is available. For example, a random 
uncorrelated distribution of magnetic or gravitational 
sources is postulated for the spectral estimation of average 
source depth in the interpretation of potential field data 
(Spector & Grant 1970). Similarly, in the deconvolution of 
reflection seismic data, the assumption that the reflection 
coefficient sequence possesses a flat power spectrum is 
fundamental to the solution of this problem (Robinson 
1957). 

The benefits of a better statistical model are two-fold: 
first, it provides greater insight into the geological processes 
involved in rock formation and second, interpretation 
methods can be tailored to exploit the extra information the 
model provides. As an example of the latter, Todoeschuck 

& Jensen (1988, 1989) derived prediction error filters 
applicable to non-white reflection coefficient spectra and 
found the resulting rms error of deconvolution to be 
significantly reduced when the whiteness assumption was 
abandoned. Similarly, the correct statistical model has 
important consequences for generalized linear inversion 
methods in which the inclusion of a priori data in the form 
of parameter covariance matrices usually assumes the 
standard white noise model (Tarantola 1987). Even the 
whiteness assumption for spatial variation of parameters of 
interest assists in reducing the non-uniqueness of the final 
models and can reduce the error of fit between observed and 
calculated data (e.g. Parker 1988). Therefore we can expect 
that the use of improved parameter covariances will 
significantly enhance the precision and accuracy of 
calculated solutions. 

In the following, we present evidence from borehole 
measurements that the use of the white noise model to 
describe the spatial variation of several geophysically 
important variables is inadequate. For the specific case of 
seismic measurements, we add to the growing number of 
observations that support a non-white reflection coefficient 
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206 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sequence. Consequently, the possibility of Gaussian scaling 
noises (Jensen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1990) being a more appropriate 
statistical model is investigated using the particular case of 
DC resistivity sounding inversion. 

M .  Pilkington and J .  P.  Todoeschuck 

SCALING NOISES A N D  COVARIANCE 

Scaling noises (Mandelbrot 1983, p. 351; Jensen et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. 1990) 
are stochastic series with power spectral density P,  

proportional to some power a, of the frequency f: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P a f "  

If the probability density function (pdf) of the series is 
Gaussian, we then have a Gaussian scaling noise. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
Gaussian scaling noise is fully described by just three 
parameters: a, mean p and the variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE'. Hosken (1980) 
proposed a scaling noise model for reflection coefficients 
with 0.5 5 a 5 1.5. He showed that this corresponds to an 
acoustic impedance with a of about -1. Walden zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hosken 
(1985, 1986) have elaborated this model and Todoeschuck, 
Jensen & Labonte (1990) provide additional evidence based 
on 21 wells from various locations in Canada with similar 
values of a. 

The scaling noises receive that name because of the 
following property. If a scaling noise is originally sampled at 
an interval At and then resampled at At', and the amplitude 
rescaled by multiplying by (At' /At)-(1+m)'2,  the resultant 
sub-sampled sequence will appear the same as the first. The 
sequence is said to be self-similar after the rescaling. There 
is then no preferred length scale for scaling noises and they 
are therefore suitable for geological processes which have 
few typical lengths and a wide range of length scales. 
Self-similarity is, of course, a feature of fractals. 

One of the most intriguing properties of fractals is the 
concept of fractal dimension. It is easy to construct fractals 
which are not well characterized by the normal units of 
length, length' or length3 but can be measured in lengthD, 
where D is not an integer. There are several more or less 
natural definitions of dimension for geometric fractals. It 
appears that natural boundaries such as coastlines have this 
property. The coast of Vancouver Island, for example, has 
D = 1.17. A scaling noise in x-y coordinates has 
D = 2 - (1 + a) /2 for -3 < a < -1. However, the power 
spectrum and the rescaling can be defined for all real a. For 
a =  -1, D reaches its limiting value of 2; however, cases 
where a >  -1 are met with in nature, most notably 
reflection sequences, therefore D may not be a good 
parameter for characterizing geology. Moreover, we will 
shortly consider the case where our x axis is depth but our y 
axis is some variable such as density. The general property 
of self-similarity in the broad sense is still there but there is 
no longer a clear notion of dimension. Cases of this sort are 
said to be not self-similar but self-affine (Feder 1988, p. 
168). Restricting our attention to a, the slope of the power 
spectrum on log-log paper, keeps us out of the 
mathematical deep water. Indeed, the extreme sceptic can 
take the position that everything looks like a straight line on 
log-log paper without affecting the arguments we will 
present. 

Two more properties depend upon the value of a. The 
first is the degree of correlation between successive values. 
The case a = 0 is the familiar one of white noise. Values are 

completely uncorrelated and interpolation forbidden. When 
a > 0, the values are anticorrelated. This is reasonable for 
reflection coefficients. If there is a transition from, say, a 
region of high velocity to a region of low velocity, it is likely 
that the next transition will be from low to high rather than 
low to lower, and the reflection coefficients will therefore 
have opposite signs. When a<O, the values are correlated 
to a degree depending on a. The second property is 
stationarity. If a>  -1 the sequence is stationary in the 
sense that two separated samples will have the same mean. 
That is we can define a mean for the process. If a < - 1 the 
process wanders away from its initial value and we cannot 
define a mean or truly define the power spectrum. 

For this reason we ought strictly speaking to have referred 
to power spectra of samples of scaling noises. As we will 
always be dealing with samples this is not a serious 
restriction. We can calculate the expected autocovariance 
function from the power spectra. We will find that the 
autocovariance for a given lag interval depends, in a manner 
that is not intuitively obvious, upon the sample size and the 
sampling interval. 

Suppose we consider a sample from a scaling noise 
process N points long taken at an interval At. Its discrete 
power spectrum will run from -wo = - n / A t  to wo = n / A t  

at intervals of A w  = 2n/N At. The autocorrelation function 
is the Fourier transformation of this. The autocovariance of 
a non-zero mean sample is the Fourier transform of this with 
the w = O  term set equal to zero, that is, with the mean 
removed. To examine the behaviour of the autocovariance 
at lagt, cp(t), we will replace the summation by an 
integration. Since our model is symmetric about w = 0 we 
integrate over one side and multiply by 2 so that 

cp(t) = lw' ( w / w J a  cos wt d o ,  
n A o  

Po w@ 
cp(t)  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ( w t ) P  cos wt dwt, 

where Po is the power at wo. However, for the discrete 
autocovariance, the lag comes in units of At, i.e. we 
calculate the lag at n A f .  Then 

nW:t'+' Awr 

Let us examine the behaviour of the integral 

I =  uacosudu 

as the lower limit a approaches zero from above. For a > 0 
the integrand obviously remains finite and I is well behaved 
in the limit a+O. We may integrate I by parts: 

I 

I =  - sin u du. 

For 0 > a> -1 the first term and the integrand of the 
second term remain finite as a+O, but for a<  -1, I 
diverges as N-m. This means that the value of the 
autocovariance depends on the sample length for a < - 1. 
For a > -1 we can assume N is large and replace the lower 
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Density for example would never approach infinity. 
Alternatively, we may view the local geology as a sample of 
a very long time sequence of rock types at any one point. In 
other words we might imagine that geology is stationary in 
the mean in the sense described above. The most correlation 
with stationarity is for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -1. This argument was applied in 
Todoeschuck & Jensen (1988) to acoustic impedances and 
there is no reason against it for other variables. 

Measurements presented below are from the borehole 
geophysics test area at Bells Comers, Ottawa, Canada. The 
six holes are spaced up to 100 m apart with the three longer 
holes reaching a depth of 300111 and the three shorter, 
approximately 150m. In this area, the top 65m of Upper 
Cambrian and Ordovician sandstones and dolomites of the 
Nepean Formation are separated from the underlying 
Precambrian granite and gneisses of the Grenville Complex 
by a thick weathered alteration zone. Several fracture zones 
exist through the section (Bernius 1981). For the spectral 
calculations, the data from each hole were partitioned into 
sedimentary and igneous sections and the weathered zone 
avoided. Fig. 2 shows a representative log taken from well 
BH5 where the sampling interval for all parameters is 
0.1 m. 

Power spectra were estimated using the periodogram 
method. For each original digital log, the average was 
removed, the data tapered to zero with a taper length of 25 
samples and padded with zeros such that the final data 
length was equal to a power of 2. A total of 512 values were 
used for the sedimentary section and up to 2048 for the 
igneous. After Fourier transformation, the raw periodo- 
grams were then smoothed by three passes of a standard 
three-point smoothing filter (coefficients: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). Fig. 3 
shows representative log-log power spectral plots for the 
various parameters taken from well BH5 and Table 1 shows 
the results of least-squares line fitting to the spectra. 

Power spectra for acoustic impedance were calculated 
using velocity and density information, and velocity data 
alone. Walden & Hosken (1985) have found scaling noise 
behaviour in reflection coefficient spectra calculated from 
velocity data alone for seven out of eight logs studied. The 
effects of including density data in the computation of 
acoustic impedance were found to be minimal and do not 
effect the observed scaling behaviour. Values of a range 
from 0.55 to 1.5 (both in igneous rocks) with averages of 
0.86 for sediments and 0.92 for igneous rocks. Since the 
results are based on such a small sample, this difference is 
not expected to be significant. The above values for 
sedimentary rocks fall within the range of Walden & 
Hosken (1985) and are close to those of Todoeschuck et al. 
( 1990). 

Importantly, igneous rocks sampled also show scaling 
behaviour over these length scales zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1-100 m). This suggests 
the use of scaling-type prediction error filters (Todoeschuck 
& Jensen 1988, 1989) for the deconvolution of deep 
reflection seismic data such as that collected for regional 
lithospheric studies e.g. COCRUST, Lithoprobe. Although 
igneous structure is more closely 3-D than sedimentary, we 
can expect a significant improvement using the scaling 
hypothesis. Additionally, well-log data extend the range of 
scaling behaviour which has been observed over length 
scales of 20 m to 1 km as evinced from seismic wave 
scattering (Wu & Aki 1985). 

POWER 
SPECTRUM 

Frequency 

p A U T O C O V A R I A N C E  

I ,  I I ,  I I I I I I , , , ,  

-7 -6 -5 -4  -3  -2  -1 0 1 2 3 4 5 6 7 
Lag 

Fire 1. Power spectrum and autocovariance functions for 
a= -1. 

limit by zero. Then the lag term qo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(0)  is given by 

Po% 
q0=- n( a + 1)' 

while in general 

~ ( I I  Af) = qn =- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6" u u  cos u d u )  

nya+l a+1 n 

This means that the autocovariance normalized by dividing 
by qo is independent of the absolute or physical lag, 
depending for a given a only on n. No concept such as 
correlation length can be defined. This is perhaps the 
clearest indication of scaling characteristics. 

In any event, it is very easy to determine the expected 
autocovariance for a given model sample size and interval 
by calculating the discrete inverse Fourier transform of the 
appropriate power spectrum. Fig. 1 shows a typical case. 

BOREHOLE DATA 

Before examining the actual data it is worth asking if there 
is any argument for a having a particular value for variables 
such as resistivity or density. Geology is clearly correlated, 
therefore we might expect (Y < 0. Furthermore, if we neglect 
gravity and compressibility we can conceive of an infinite 
formation of rock types which would vary from place to 
place but never to some drastically different substance. 
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ln zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. Representative log (BHS) from the Bells Comers area. The weathered zone between the sedimentary and igneous sections 
(60-65 m) is clearly outlined on all logs. Note the resistivity measurement scale is logarithmic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Resistivity data were obtained using a standard short 
normal configuration in which the current and measurement 
electrodes are placed 0.4m apart. In a homogeneous 
isotropic medium, 50 per cent of the potential drop towards 
zero occurs within a sphere of radius equal to the 
measurement-current electrode spacing. Equating this 
distance with the resolving limit of the logging tool, the 
vertical resolution limit of the data possible is then 0.8m. 
Even though the spectra are plotted up to the Nyquist 
frequency (5 cycles m-' for a sampling interval of 0.1 m), 
only that part of the spectrum below the resolving limit of 
the logging tool is used for the estimation of the scaling 
exponent. This limit is indicated by a dashed line in Fig. 3. 
Power spectra of resistivity logs show average values of the 
scaling exponent, LY = -1.0 for the sediments and -1.4 for 
the igneous section. 

Density data were collected with a single detector 
gamma-gamma logging tool. The depth of investigation of 
the tool increases with decreasing formation density but 
usually does not exceed 0.15 m. Therefore the vertical 
resolution possible is limited by the detector-source 
separation of 0.4 m. Fig. 3 shows an average (Y = -1.2 for 
sediments and a I= - 1.1 for igneous rocks. All of the density 
logs show spectra indicative of more than one slope, i.e. 
multiscaling behaviour. Specifically, the logs show relative 

increases in power at low frequencies. This suggests that (at 
least) two different geological/physical processes were 
active, each with a characteristic bandwidth and value of (Y. 

Wu & Aki (1985) observed similar behaviour with respect 
to lithospheric inhomogeneities detected by seismic wave 
scattering. In the case of density variations, it is probable 
that an increase in low-frequency power results from 
compaction effects superimposed on an apparent linear fall 
off in power at higher frequencies. 

Natural gamma radiation was recorded with a NaI crystal 
scintillation counter which measures the total contribution 
(total count) due to the presence or uranium, thorium and 
potassium. The total count in sediments is usually indicative 
of shale content while in igneous rocks, it correlates with the 
level of K-feldspar. The tool only responds to a small area 
around the detector due to the attenuating effects of the 
medium, which increase with density and a decrease in the 
gamma radiation energy level. In a homogeneous medium, 
the contribution of the sphere centred on the detector falls 
to 50 per cent at a radius of 0.2m. Hence, the vertical 
resolution of the tool can be taken as 0.4m. The power 
spectra of the gamma-ray logs give an average of (Y = -0.72 
for the sediments and -0.91 for igneous rocks. 

Neutron logs were measured with a sidewall neutron 
porosity tool which senses the epithermal neutron density of 
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N 

m- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’0 
l o g  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 

I 
I 

Figure 3. Power spectra of (a) reflection coefficients (b) resistivity data (c) density data (d) natural gamma radiation and (e) neutron density 
for the sedimentary section of the Bells Corners log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABH5. Dashed vertical lines indicate the resolving limit of each logging tool. 

the formations. Neutron logs measure the apparent 
concentration of hydrogen atoms per unit volume 
(hydrogen index), which is a direct measure of porosity. As 
with the resistivity and gamma-ray log, there exists a sphere 
of influence throughout which the log responds to. This 
decreases with increasing porosity and if the limit is defined 
as that radius at which 90 per cent of the total measurement 
responds to, this is equal to 0.35 m for 10 per cent porosity. 
Generally, the vertical resolution is slightly larger than the 
source-detector spacing, which for the sidewall neutron log 
is 0.4m. Neutron log spectra show average scaling 
exponents of -0.99 for the sedimentary section and -1.2 
for the igneous. 

Thus, power spectra of several important geophysical 
variables show scaling noise behaviour over at least some 
range of spatial frequencies in the logs we have exaimined 
and in particular favour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa =  -1. The implications of the 
non-zero (Y are clearly far-reaching, in particular the extra 
information and stabilizing effects of a when utilized as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
priori data in the inversion of geophysical data. 

Fitting a single straight line to the spectra is probably an 
oversimplification of the whole geological problem. There is 
a definite temptation to fit the spectra with more 

complicated functions [a ‘multifractal’ approach: Feder 
(1988, p. 66)] or at least with several line segments [comer 
frequencies: Walden & Hosken (1989, for the reflection 
sequence, and an anonymous reviewer for the rest]. We 
resist the temptation. All we have are estimates of the 
power spectrum and rather noisy ones at that. In particular, 
the low frequencies, exaggerated in importance by a log-log 
plot, are only represented in our data by a few cycles. 
Furthermore, we are looking for the minimum number of 
extra a priori assumptions for the inversion problem. One 
extra parameter seems about right but other models are 
certainly possible. A fit to a white spectrum below a corner 
frequency prevents the divergence of the autocovariance 
with sample length but we would still have to take into 
account the sample interval. Of necessity, we are concerned 
with finite examples and, as explained above, when we 
calculate our expected model covariances, the question of 
divergence does not arise. 

There are many other interesting questions to be asked. 
Are the probability distribution functions adequately 
described as Gaussian? In the case of reflection sequences 
for a different data set, Todoeschuck er al. (1990) showed 
that this was bound up intimately with the question of 
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INVERSION AND A PRZORZ DATA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Scaling exponents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) and associated correlation 
coefficients (R) resulting from least-squares line fitting to 
the observed spectra for wells BH1-6 at Bells Corners. The inversion of any geophysical data requires the 
Spectral estimates above the resolution limit indicated in undertaking of two interrelated ptoblems: solution con- 
Fig. 3 were excluded from the line fitting. struction and solution appraisal. The former involves the 
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Sedimentary Igneous 

a R a R 

-1.42.08 -.93 -1.1f. 06 -.92 
-1 .32 .09  -. 90 - 1 . 7 t .  06 -.97 
-1.32.10 - .a9 -1.12.06 -.93 
- .87+.09  - .a2 - .71+.07 - . a 3  
-1.22.09 - .93 - .912.06 -.YO 
-1.2f.08 -. 90 -1 .1 f .07  -.a2 

REFLECTION COEFFICIENT 

Sedimentary Igneous 

a R a R 

.73+.  07 0 .83  . 5 5 t .  07 0.76 

.842. 09 0.80 . 8 7 t .  05 0.91 

. 6 6 f .  07 0.78 .77 f .10  0 .76  
1.Of. 08 0.88 1 . 5 f . 0 9  0.94 
1.12.09 0.88 1 . 3 f .  07 0.92 
. 8 4 f .  05  0 .92  1.32.08 0.92  

NEUTRON 

Sedimentary Igneous 

a R a R 

-1.12.05 -.94 -1 .2 f .  08 - . 9 1  
-.93?.06 -.92 -1 .4 t .  08 -.94 
- .98?.05 -.93 -1.52.08 -. 93 

- .97 f .  07 -.89 -. 9 4 t .  10 -.so 
- .972.08 - .a7 - .91+.05  -.94 

----- ----- --- ----- - - - - - - - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
GAMMA 

Sedimentary Igneous 

a R a R 

stationarity. The geological interpretation of the spectra is 
unclear. Should we regard ourselves as sampling from 
‘Geology’ as a whole, from geology of a certain type, or of a 
geological province? How are lithologies represented or the 
divisions drawn by geologists on a section? Fortunately, we 
do not have to answer these questions to deal with the 
problem at hand. Our only interest is in the power spectra 
and what they imply for the covariances. 

determination of a set of model parameters which, based on 
known theory, predict the observed data to within a 
prescribed degree of accuracy. No matter how sophisticated 
the methodology for finding an acceptable solution, nor how 
much information concerning our prior knowledge of the 
problem at hand is incorporated into the inversion, the 
single model thus determined only represents the first step 
to a more complete answer to the problem. In order to 
achieve a fuller understanding of the solution e.g. through 
estimates of its precision and accuracy, we must also address 
the problem of solution appraisal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A priori data, whether in the form of statistics of 
parameters and data or parameter bounds imposed by 
physical arguments plays a pivotal role in both the 
construction and appraisal of the solution to a given 
inverse problem. A large number of inverse problems are 
ill-posed in that small changes in the model parameters may 
cause correspondingly large variations in the predicted data. 
Constructing a suitable inverse operator to recover 
parameter estimates from observed data requires some form 
of stabilization or regularization (Tikhonov 1963). For 
non-linear problems, the regularization or damping of 
successive parameter corrections in an iterative search for a 
solution ensures that the linear approximations adopted still 
hold and unwanted oscillatory effects in the model are kept 
to a minimum. This is an ad hoc approach and therefore 
permits flexibility in choosing the appropriate amount of 
damping for a particular problem. Generally, as the severity 
of regularization increases, convergence of the iterative 
search decelerates and the final model becomes smoother 
(possibly at the expense of a poorer fit to the data). The 
commonest approaches to damping either involve adding a 
constant to the problem eigenvalues (Marquardt 1963) or 
removing the effects of near-zero and zero eigenvalues from 
the solution (Wiggins 1972). The use of regularization in 
solution construction can be regarded merely as a 
computational convenience to ensure the existence of one 
solution to the problem, although damping has a 
probabilistic interpretation which will be discussed below. 

Returning to the second part of the inverse problem, the 
appraisal of a given solution, regularization provides a 
means of incorporating all available prior information about 
the problem. This has the effect of reducing the degree of 
non-uniqueness of the final model estimates. Additionally, 
the extra information content of the prior data can be 
expected to reduce the final parameter errors and provide a 
more complete and realistic description of their behaviour as 
measured by the a posteriori covariances than that provided 
by the data alone. Two methods of incorporating prior 
information which differ in their philosophical approach but 
may lead to similar computational methods are Bayesian 
inference (Backus 1970; Tarantola & Valette 1982) and 
stochastic inversion (Franklin 1970; Jackson 1979). 

Bayesian inference (BI) has found geophysical applica- 
tions ranging from computation of regional stress tensors 
(Angelier et al. 1982) to determining magnetic fields at the 
Earth’s core (Gubbins & Bloxham 1985). Based on Bayes’ 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is an n-vector of data values, x is an m-vector of 
model parameters, e is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan n-vector of data errors and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf() is 
a non-linear functional through which the effects of model x 
can be calculated. The solution to equation (1) is achieved 
by the minimization of the misfit between observed and 
calculated data and some norm of the model, i.e. 

rule, BI quantifies the modification of the a priori of the 
parameters by information provided by the measurements 
resulting in an a posteriori pdf which constitutes the 
solution to the inverse problem (Duijndam 1988). The a 

priori information can be derived from physical arguments 
e.g. non-negative densities or propagation velocities, which 
lead to linear or quadratic constraints on the parameters. 
These bounds are ‘hard’ (Jackson 1979) because the pdf of 
the parameters outside the bounds is zero. Softer bounds 
can also be used; these usually take the form of a pdf such 
that the same physical reasoning can be used but there is 
now a non-zero probability that the parameters may take on 
some value outside the original bounds. BI has the 
advantage of allowing subjective priori beliefs to be included 
in the inversion, that is, personal choices can be made in 
constructing the a priori parameter pdf (Backus 1988). Note 
that the non-trivial decision of how the model is 
parametrized (e.g. thickness of layers) is equivalent to 
imposing a prior belief on the behaviour of the final model 
character. 

Stochastic inversion (SI), on the other hand, is a more 
objective approach to inverse problems and provides the 
same results independent of the interpreters prior 
knowledge. As formulated by Franklin (19701, the model 
parameters are assumed to be the realization of a 
second-order Gaussian process whose mean and variance 
are known. The stochastic inverse then minimizes the 
variance of the parameter estimation errors and represents a 
rational way of estimating a random vector of parameters 
from measurements whose error statistics are known. 
Jackson (1979) showed that the Gaussian assumption is not 
necessary and that the stochastic inverse is insensitive to the 
pdf of the parameters. Obviously, if covariance information 
for the model is available from some independent source, 
such as a previous inversion in a similar geological 
environment or from direct measurements of some physical 
property e.g. through well-logging, SI provides the most 
natural method of inverting the data. It will result in an 
objective level of regularization used in the construction of a 
solution in that the model is not smoothed to some arbitrary 
degree but has properties in keeping with previous 
measurements. Similarly, the important questions of how 
the model estimate is determined by the combination of 
prior data and observations and what the relative 
contribution of the two is can be addressed in a meaningful 
way. 

In the following, we use stochastic inversion with a 
particular type of a priori parameter covariance based on 
direct measurements of rock properties from borehole 
measurements: the scaling noise model. Importantly, we 
show that this class of covariance function has important 
consequences for both the existence and uniqueness of the 
computed solutions. Additionally, we find that using this 
type of information, the final model naturally exhibits the 
appealing property of smoothness. 

STOCHASTIC INVERSION 

For the general non-linear inverse problem, the relation 
between model parameters and data can be written 

Y =fW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ e (1) 

(2) m;1” [y -f(x)]*D-’[y -f(x)] + (x - x ~ ) ~ P - ’ ( x  - xg) 

where x, is the a priori estimate of the model parameters 
which have covariance P and D is the data error covariance 
matrix. In equation (2) the second term minimizes the 
quadratic norm with respect to the a priori model. The 
effects of D and P reduce the influence of data and 
parameters that have large variances and also scale 
parameters to a dimensionless form. The solution of 
equation (2) leads to the iterative algorithm (Tarantola & 
Valette 1982) 

‘k+l = % + PAz(AkPAz + D)-l[y - f (xk) + - %)] (3) 

where xk is the current model estimate at iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and 

(4) 

An equivalent form of equation (3) can be derived for 
overconstrained systems (Tarantola & Valette 1982); 
however, we will only consider the underdetermined 
problem, i.e. n <<m. This is a more appropriate form since 
in theory we are attempting to model a continuous function 
from a finite set of data. Also, by effectively overpara- 
metrizing the problem, the role played by the a priori 

information is not obscured by the effects of the particular 
model parameterization chosen. The a posteriori covariance 
of the parameters determined from equation (3) is given by 

( 5 )  

where %, contains the partial derivatives of the data with 
respect to the parameters evaluated at the acceptable final 
solution. Equation (5) is only strictly true for linear 
problems, but if the non-linearity is not strong in the vicinity 
of the final model then C can be found approximately in this 
fashion. 

If P and D have neither null variances nor perfect 
correlations they will both be positive definite and the 
inverse in equation (5) will exist. Hence, the a posteriori 
variances will be smaller or equal to the priori variances. By 
examining the reduction in the variance of individual 
parameters, the amount of information provided by the 
measurements can be assessed and the relative contribution 
of a priori and observational data to the final parameter 
values found. 

Two extreme situations occur concerning the covariance 
C. When the data do not contribute to the solution of the 
problem, C = P, and there is no reduction in the parameter 
variances. If the a priori covariances are infinite, then 
C = (ATDA)-’ and the variance of the model is merely the 
result of propagation of data uncertainty into the solution. 
A tool similar to covariance analysis used in solution 
appraisal is the resolution matrix R defined by 

- % = W x ,  - 4 (6) 

where x, is an acceptable solution and xr is the true model 
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we are seeking. Using equations (1) and (3) we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  Pilkington and J .  P. Todoeschuck zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= PA:(A,PA: + D)-'A,. (7) 

Backus & Gilbert (1970) showed that the correction to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
priori model in equation (6) is a filtered or averaged version 
of the true correction, with the rows of R (resolving kernels 
or averaging functions) quantifying the type of averaging. If R 
is close to the identity matrix then x, approaches the true 
solution, otherwise we must be satisfied with some 
(smoother) linear combination of the true model para- 
meters. From equations (5) and (7) the a posteriori 
parameter covariance can be written (Tarantola 1987, p. 
494) 

C = (I - R)P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) 

It is clear that as R+O, the parameters are poorly 
determined by the data and C-+ P, resulting in no reduction 
of the model variance by the measurements. However, if 
R = I (parameters perfectly resolved by the data), then 
C-tO only if D-0, otherwise the standard least-squares 
estimate of covariance should be used (Nowack & Lutter 
1988). Equation (8) illustrates the trade-off between 
resolution and variance of the model parameters. As P 
increases (our prior information becomes poorer), more 
weight is placed on the data misfit term in equation (2) and 
the resolution improves at the expense of greater variance in 
the final solution as measured by C. Obviously, from the 
above discussion, the measures used in appraising the 
solution are only meaningful to the degree of how realistic 
our P is. 

Estimated data errors have long been incorporated into 
the inversion of geophysical data, however, only recently 
has any attempt been made to exploit the extra information 
provided by a priori parameter covariances. Most studies 
have then only used uncorrelated covariance functions, 
resulting in a diagonal P (van de Meulebrouck, Bayer & 
Burg 1984; Gubbins & Bloxham 1985; Bloxham 1987). 
Jackson (1979) argues that for problems with a small 
number of parameters the off-diagonal elements in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP can be 
neglected as long as the diagonal terms are increased in 
compensation. However, when dealing with an overpara- 
metrized problem, the significance of the off-diagonal 
elements increases. 

Constable, Parker & Constable (1987) and Meyerholtz, 
Pavlis & Szpakowski (1989) introduced off-diagonal terms in 
P with a view to deriving smooth solutions. The rows of P 
are specified to be finite difference approximations to first or 
second derivative operators so that the quadratic norm 
xTP-'x becomes a measure of model roughness which is 
minimized in a similar fashion to equation (2). The 
incorporation of smoothness constraints on final models has 
recently found increasing use in addressing the problem of 
non-uniqueness in the inversion of geophysical data (Parker 
& Shure 1982; Constable et al. 1987; Meyerholtz et al. 

1989). Originally suggested by Backus (1970) as a method 
for ensuring that the linear functionals making up A were 
members of a Hilbert space, smoothing or quelling is 
particularly necessary when constraints on the model 
imposed by the chosen parametrization are weak e.g. the 
sub-surface is divided into a large number of layers whose 
individual thickness is smaller than that resolvable by the 
data. Then, rather than investigating the non-uniqueness by 

computing a number of models which all fit the data and 
finding features in common (which are likely to be shared by 
the true model), the smoothest model permissible by the 
data is calculated. This solution has the maximum simplicity 
demanded by the data and is less likely to be corrupted by 
small-scale variations of which we are unsure whether they 
exist in the true model. Additionally we can be confident 
that the true model must be at least as, but never less 
complex than this smooth solution (Constable et al. 1987). 

Using the philosophy of Bayesian inference, Tarantola & 
Valette (1982), Tarantola & Nercessian (1984) and 
Montagner & Jobert (1988) have used a priori covariance 
functions of a Gaussian form: 

p(xl, x2) = 02 exp [ - ( x ,  - (9) 

which implies a variance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 at position x 1  and a 
correlation between parameters x1 and x2 dependent on the 
length L. Since L acts as a trade-off parameter in the sense 
of Backus & Gilbert (1970), Montagner & Jobert (1988) 
increase L until the improvement in resolution is 
accompanied by a much larger increase in parameter 
variance. This L is then used in the final inversion. So, 
although the inclusion of off-diagonal terms in P is more 
realistic, the a priori information is arbitrarily vaned to suit 
the needs of the interpreter. This is not acceptable within 
the framework of stochastic inversion where there should 
only be one correct measure of the a priori covariance (the 
same for all interpreters)-that based on samplings of the 
distribution in which the true model lies. 

Using the scaling noise covariance functions discussed 
earlier, the process variance E~ takes on the role of a 
trade-off parameter. The a priori parameter covariance 
matrix can be written explicitly in terms of (Y and .c2, 

P = E'E*FE, (10) 

where E and E* are the matrix equivalents of Fourier and 
inverse Fourier transformation (Kanasewich 1981) and F is a 
diagonal matrix whose ith element is f:, where f is 
frequency. Equation (10) decomposes P into eigenvalues 
and eigenvectors. Thus, decreasing E increases the 
eigenvalues of P-' and more weight is placed on the 
quadratic term in equation (2). From equation (7), 
parameter resolution is then degraded but the parameter 
variances in equation (8) are also decreased. When using P 
of the form in equation (10) with (Y < 0, the quadratic norm 
x7'P-'x gives a measure of solution roughness, since for 
(Y= -1, equation (3) is equivalent to minimizing the first 
derivative of the parameter vector x. For (Y = -2, equation 
(2) minimizes the second derivative of x, and so on. For 
variables such as resistivity, density and acoustic impedance 
(Table l ) ,  well-log measurements show that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw<O, so the 
norm in equation (2) imposes a smoothness constraint on 
the solution. However, for reflection coefficients, which 
show a>O, the solution is constrained to be rough, in 
keeping with observed characteristics of these types of 
sequences. 

Importantly, knowledge of (Y determines the correct 
amount of smoothing to be used in inversion, rather than 
specifying some ad hoc or favourite level. Consequently, the 
solution may be smoother or rougher than we would 
normally deem fit. However, no subjective constraints have 
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equal to the logged resistivity at a depth of 100111. In the 
following examples, the models are parametrized as log,,, 
(layer resistivity) with the layer thickness held constant 
throughout the inversion. 

The scaling exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa was determined from a 
least-squares straight line fit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the power spectrum of the 
resistivity log. Fig. 5 shows the spectrum and the best fitting 
line with a =  -1.5. Using this value of a, P was 
constructed in the manner of equation (10). For 
comparative purposes, inversions with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y = 0 (white noise 
covariance function) and a = -1.5 (scaling noise) were 
carried out. The same value of the process variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(E’ = 28 600 Q2m2) was used for each inversion. Fig. 6 shows 
the results of inverting the data of Fig. 4 using the algorithm 
of equation (3) along with the true (logged) resistivities. 
The borehole data exhibits small-scale structure beyond the 
resolving power of the simulated sounding data; however, 
we can expect to recover the gross features of the true 
resistivity distribution. Fig. 5 shows that with the white noise 
assumption, inversion recovers the true structure well down 
to 20 m but deeper the match is relatively poor even though 
the calculated resistivities exhibit some fine-scale features 
such as the resistivity low at 38-50 m depth. 

In comparison, the scaling noise inversion (a = -1.5) 
recovers the main features of the true resistivity well but is 
much smoother than the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa=O model. Both inversions 
resulted in similar levels of data misfit but the scaling model 
represents that model with a degree of smoothness in 
keeping with the correlation lengths determined from the 
borehole data. For this reason, and because the rougher 
white noise model may contain features that are not 
required by the data, the scaling inversion results are to be 
preferred. 

In addition to solution smoothness, the scaling noise 
model provides more useful information in terms of the 
accuracy and reliability of the solution than the white noise 
model. Fig. 7 shows resolving kernels for parameters equal 

been imposed on the model and the calculated solution is 
only that supported by the observational and a priori data. 

RESULTS 

In this section, an example of the use of scaling noise 
covariance functions is illustrated for the case of DC 
resistivity sounding data. The data consist of borehole 
resistivity measurements from well BH3 of the Bells Corners 
logging test site discussed earlier. For inversion purposes, 
the original log was resampled at a 1 m interval and 
apparent resistivities calculated for a simulated Schlumber- 
ger spread starting at AB/2 = 1 m with eight samples per 
decade using the algorithm of Koefed (1979). A total of 25 
data was generated from the 100 layer model (Fig. 4). The 
model is terminated below by a half-space of resistivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h 

Frnl 

T- ‘“! J ” b . O  3- 0 . 5  1 . 0  1 . 5  2.0 2 . 5  3.0  

Log10 E l e c t r o d e  S p a c i n g  ( m l  

Figure 4. Sounding data generated from well BH3 assuming 100 
layers of thickness 1 m for a Schlumberger spread starting at an 
electrode spacing ( A E / 2 )  of 1 m. 

10 

P 

\ 
\ 

I I I I 
0 1 2 3 4 5 6 

l o g  f 

Figure 5. Power spectrum of the BH3 resistivity log and the best fitting straight line in a least-squares sense. Line slope is (a) -1.5. This value 
of (Y is used to construct the (I priori parameter Covariance matrix for inversion. 
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m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo 37.5 5b.o 62.5 7 b . o  a i . 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1bo.o 
Depth (m) 

Figure 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInversion results for the BH3 simulated sounding: longer dashed line represents the true (logged) resistivities, solid line is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf' 
inversion (white noise covariance model), dotted line is f-"' inversion (scaling noise covariance model). Note that the f" inversion does not 
match the true resistivities well. The scaling noise model produces a smooth fit to the logged resistivities. The starting model for all inversions 
is a half-space of resistivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3000 Q m. 

* 

01 
1 

0 

* 
0 I 
' 0 . 0  12.5  25.0 37.5 50.0 62.5 75.0 87.5 100.0 

Depth (m) 

Figure 7. Resolving kernels (rows of the resolution matrix R) for layers at 23 (upper part of figure) and 61 rn depth. Arrows indicate the 
positions of the layers. Dashed line is f" inversion, solid line is f - ' . 5 .  

- 
I 

l 0 .0  12.5 25.0 37.5 50.0  62.5 75.0 87.5 100.0 
Depth (m) 

Fwre 8. Correlation functions (rows of the a posteriori parameter covariance matrix standardized to have unit variance) for layers at 23 
(upper part of figure) and 61 m depth. Arrows indicate the positions of the layers. Dashed line is f" inversion, solid line is f-'.'. 
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Stochastic inversion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor scaling geology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA215 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
E 
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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ul 
0 
J 

- 
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0' 

-. 
" ! 1 

12 5 25 0 37 5 50 0 62 5 75 0 87 5 100 0 
D e p t h  (ml 

Figure 9. Standard deviations of layer resistivities: horizontal dashed line is the u priori parameter standard deviation (169 8 m), solid line 
CY = 0 inversion and dashed line CY = -1.5 inversion. 
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I I "b'. 0 12.5 25.0  37.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5b.0 62.5 75.0 67.5 100.0  
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Figure 10. Inversion results for the BH3 simulated sounding: longer dashed line represents the true (logged) resistivities, solid line is fo 
inversion (white noise covairance model), dotted line is f-' inversion (scaling noise covariance model using the approximate inverse 
proportionality relationship). The starting model for all inversions is a half-space of resistivity 3000 Q m. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the layer resistivities with bases at 23 and 61 m depth. 
The kernels for a = 0 and - 1.5 are similar, especially in the 
vicinity of the parameter that the kernels are centred on. 
The scaling noise model leads to some oscillatory behaviour 
at shallow depths, a phenomenon noted by Oldenburg 
(1978) who used Backus-Gilbert theory for resistivity 
inversion. As expected, the width of the main peak of the 
kernels increases with layer depth, indicating that only the 
larger scale features in the solution are to be trusted as the 
depth of investigation of the sounding is increased. Fig. 8 
shows the a posteriori parameter correlations for the two 
selected layers at 23 and 61 m depth. Using a = 0 results in 
virtually uncorrelated layer parameters indicated by the 
sharply peaked covariance functions. This is unrealistic 
because the sounding data cannot resolve such small-scale 
structure at such depths. Using a = -1.5, gives correlation 
lengths of 3 m for the resistivity at 23 and 4 m for the 61 m 
layer. This increase in width of the zone in which 
parameters are highly correlated (correlation coefficient 
>0.5) increases with depth due to the decreased resolving 
power of the data. Tarantola & Valette (1982) have 
advocated use of the matrix C instead of R for solution 
appraisal, since measures of the parameter resolution can be 

taken from the correlation lengths between parameters. 
However, as the above example illustrates, the use of C for 
such a purpose will only be successful to the degree of how 
realistic the a priori information is. 

Figure 9 shows the reduction in the standard deviation of 
the parameters provided by the measurements as a function 
of the scaling exponent a. For a=O, the improvement is 
only significant for the first few (shallow) layers and the 
lower half-space, while the remaining parameters show only 
a small reduction in variance. In contrast, using the 
appropriate value of a = -1.5, even the poorly determined 
lower layers generally show a greater than two-fold decrease 
in parameter standard deviation. 

The clustering of values of a around -1 (Table 1) 
suggests that if the exact value of a is not known, a = -1 
can be used. As Fig. 10 illustrates, this yields results very 
similar to those using the exact a. Again, the improvement 
over the case a = 0 is notable. 

CONCLUSIONS 

It is remarkable that power spectra of a variety of 
geophysical variables show scaling noise behaviour over at 
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least some range of spatial frequencies in the logs we have 
examined. It is even more remarkable that the scaling 
exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa determined from the spectra is approximately 
-1, varying from -1.9 t o  -0.42 if we exclude the reflection 
coefficients. The geological origins of this behaviour are 
unclear. Only study of more logs and the associated geology 
can tell us to  what extent the values we have found are 
typical of a given geophysical variable in a particular 
geological setting. W e  have given reasons for preferring a 
value of -1. The departure from -1 may be a second-order 
problem but it is clearly an important one. 

The implications of non-zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y are clearly far-reaching 
and, in any event, the common assumption of whiteness of 
parameters is inadequate. We have shown that the use of 
the exact value of (Y in resistivity sounding inversion leads to  
reliable statistics for the final parameter estimates and 
solutions that are structurally simple, containing the 
minimum amount of complexity demanded by the data. In 
the case when the exact value of (Y is unknown, using 
a = -1 yields satisfactory results. 

Inversions for other variables in the I-D case would show 
similar improvements but the greatest benefit of these 
observations is likely to lie in higher dimensional inversions. 
There is good evidence that rock porosity shows scaling 
behaviour in 3-D on the basis of multiple logs in oil fields 
(Hewett 1986) and it is likely that other geophysical 
variables will show the same behaviour, an important key t o  
the 3-D structure of the Earth. Higher dimensional 
inversions of EM and MT data, for example, suffer from a 
lack of realistic constraints which must be artificially 
introduced, such as an arbitrary smoothing of the model. 
The scaling noise covariance may provide the constriants 
needed to derive a realsitic model. 
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