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Stochastic joint inversion of 2D seismic and seismoelectric signals
in linear poroelastic materials: A numerical investigation

Abderrahim Jardani

ABSTRACT

The interpretation of seismoelectrical signals is a difficult
task because coseismic and seismoelectric converted signals
are recorded simultaneously and the seismoelectric conver-
sions are typically several orders of magnitude smaller than
the coseismic electrical signals. The seismic and seismoelec-
tric signals are modeled using a finite-element code with per-
fectly matched layer boundary conditions assuming a linear
poroelastic body. We present a stochastic joint inversion of
the seismic and seismoelectrical data based on the adaptive
Metropolis algorithm, to obtain the posterior probability den-
sity functions of the material properties of each geologic unit.
This includes the permeability, porosity, electrical conduc-
tivity, bulk modulus of the dry porous frame, bulk modulus of
the fluid, bulk modulus of the solid phase, and shear modulus
of the formations. A test of this approach is performed with a
synthetic model comprising two horizontal layers and a res-
ervoir partially saturated with oil, which is embedded in the
second layer. The result of the joint inversion shows that we
can invert the permeability of the reservoir and its mechani-
cal properties.

INTRODUCTION

The electroseismic (electric-to-seismic) and seismoelectric (seis-
mic-to-electric) phenomena correspond to coupling between elec-
tromagnetic disturbances and seismic disturbances in a porous mate-
rial (Frenkel, 1944; Pride, 1994). Any mineral in contact with water
is the setting of electrochemical reactions at its surface. A surface
charge is formed, which is fixed in a Lagrangian framework attached
to the solid phase. This charge is shielded partly by the sorption of
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counterions in the Stern layer coating the surface of the minerals
(Stern, 1924; Revil and Leroy, 2001; Leroy and Revil, 2004). Global
electroneutrality at the scale of a representative elementary volume
requires an excess of electrical charges located in the vicinity of the
mineral/water interface, in the so-called electrical diffuse layer
(Bokris and Reddy, 1970; Pride, 1994). The diffuse and Stern layers
form the electrical double layer. The Stern layer is part of the total
fixed charge attached to the solid phase, whereas the diffuse layer
can be dragged by the flow of the pore water relative to the mineral
framework. The electroseismic and seismoelectric couplings are
controlled by the relative displacement between the charged solid
phase (with the Stern layer attached to it) and pore water (with its dif-
fuse layer and consequently an excess of electrical charges per unit
pore volume).

In this paper, we are interested only in the seismoelectric coupling
corresponding to electromagnetic conversion of mechanical energy
during the propagation of seismic waves in poroelastic media. We
want to know how the coupled seismic and seismoelectric informa-
tion can be used, for instance, to determine the permeability of an oil
reservoir. The same type of methodology could be applied to image
nonaqueous phase liquid (NAPL)/dense nonaqueous phase liquid
(DNAPL) plumes for shallow groundwater remediation problems.
When seismic waves propagate in a linear poroelastic porous materi-
al, two types of electrical disturbances are observed. The propaga-
tion of seismic waves (P- and S-waves) generates an electrical cur-
rent associated with the displacement of the electrical diffuse layer
in a Lagrangian framework attached to the solid phase. These coseis-
mic electrical signals travel at the same speed as the seismic waves
(Pride, 1994). The amplitudes of the coseismic electromagnetic sig-
nals are controlled by the properties of the porous material (the for-
mation factor) and by the properties of the pore fluid/solid interface
(the zeta potential in the theory of Pride [ 1994] the excess charge per
unit pore volume in the formulation developed by Revil et al. [2003]
and Revil[2007]).
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N20 Jardanietal.

In addition to the coseismic signals, another phenomenon occurs
when a seismic wave moves through a sharp interface characterized
by a change in the textural properties or a change in salinity or clay
content/mineralogy. In this situation, a fraction of the mechanical
energy is converted into electromagnetic energy and a dipolar elec-
tromagnetic excitation is produced. The resulting electromagnetic
disturbances diffuse very quickly through the geologic strata and can
be recorded, nearly instantaneously, by electrodes or antennas locat-
ed at the ground surface, in boreholes (Mikhailov et al., 1997; Butler
etal., 1997), or at the seafloor, for instance. This seismoelectric con-
version can be used as a tool to diagnose and locate oil reservoirs be-
cause this information can be used in principle to determine remote-
ly their permeability and electrical conductivity (hence possibly the
saturation of oil in the reservoir) as shown below.

Thompson and Gist (1993) present a case study for the explora-
tion of oil and gas using seismoelectric converted electrical signals.
They used adapted data processing and common midpoint (CMP)
techniques to produce a seismoelectric image of the subsurface to
depths on the order of a few hundred meters. They concluded that
seismoelectric conversions could be detected from a depth of 300 m.
Thompson et al. (2007) suggest that these methods could be used for
much greater depths (several kilometers in the case of the elec-
troseismic method). The seismoelectric method also has been used
for a variety of applications in near-surface geophysics (Migunov
and Kokorev, 1977; Fourie, 2003; Kulessa et al., 2006). Mikailov et
al. (2000) describe crosshole seismoelectric measurements in a
small-scale laboratory experiment with vertical and inclined frac-
tures located between the source and receivers. They recorded not
only the coseismic electric signals generated by the seismic wave ar-
riving at the receivers, but also the EM-wave associated with the
Stoneley wave excited in the fracture. They claimed a tomography
image with traveltimes extracted from the seismoelectric measure-
ments possibly could be constructed. Other studies, such as Block
and Harris (2006), have been focused to understand the influence of
the salinity on the magnitude of the coseismic signals.

The model developed by Pride (1994) couples Biot’s theory to the
Maxwell equations via a source current density of electrokinetic ori-
gin. A sensitivity analysis of this model can be found in Haartsen et
al. (1998). This model has opened the door to numerical modeling of
the coseismic and seismoelectric conversions using finite-difference
or finite-element methods and to assess the usefulness of these meth-
ods for application to the field (Butler et al., 1997; Haartsen and
Pride, 1997; Garambois and Dietrich, 2002; Dupuis et al., 2007;
Haines et al., 2007; Strahser et al., 2007). Haines and Pride (2006)
use a finite-difference algorithm to simulate the 2D seismoelectric
response of a heterogeneous medium taking into account all the po-
roelastic waves modes (fast waves, slow waves, and shear waves)
and their coseismic electrical signals plus the seismoelectric conver-
sions. They were interested by the possibility to use the seismoelec-
tric method for shallow seismoelectric investigations (tens to hun-
dreds of meters) using a frequency range from 10 Hz to 1 kHz.
Their algorithm can be used to obtain an idea about the sensitivity of
the seismoelectric signal with respect to the reservoir geometry. Pain
etal. (2005) present a 2D mixed finite-element algorithm to solve the
poroelastic Biot equations including the electrokinetic coupling to
study the sensitivity of the seismoelectric method to material proper-
ties, such as porosity and permeability of geologic formations sur-
rounding a borehole.

We propose below a methodology to invert the mechanical, trans-
port, and electrical properties of a reservoir with an arbitrary geome-
try using a stochastic joint inversion of seismograms and seismo-
electrograms (electrograms). The electrodes can be collocated with
the geophones to facilitate the separation of the coseismic electrical
signals from seismoelectric (converted) signals. The section entitled
“Forward Problem” is focused on the description of the forward
modeling using a finite-element code. The section entitled “Stochas-
tic Joint Inversion” describes the stochastic algorithm used to per-
form the joint inversion. The section entitled “Application to a Syn-
thetic Case Study” shows a validation of the algorithm to a synthetic
case.

FORWARD PROBLEM

Wave equations in a poroelastic body

Biot’s theory (Biot, 1956a and 1956b) provides a starting frame-
work to model the propagation of seismic waves in linear poroelastic
media. The theory predicts the existence of an additional compres-
sional wave by comparison with the P- and S-waves found for elastic
materials. The existence of this slow P-wave was first confirmed by
Plona (1980). The physical interpretations of the elastic constants in
Biot’s theory are given by Biot and Willis (1957) and Geertsma and
Smit (1961).

According to Biot’s theory and neglecting the electro-osmotic
contribution in the Darcy velocity, the equations of motion in a 2D
statistically isotropic, fully saturated, heterogeneous, and porous
elastic medium are given, in the frequency domain, by (e.g., Haart-
senetal., 1998)

—wz(pu+pfw)=V-T+F, (1)

T=[A\V-u+CV-wll+G[Vu-+ Vu], (2)

— wz(pfu + pw) — jbow = — Vp, (3)

and
—p=CV-u+MV.-w+S, (4)
where j2 = — 1, uis the averaged displacement vector of the solid, w

is the averaged displacement vector of the fluid relative to the solid
(called the filtration displacement), T is the stress tensor, I is the
identity matrix, F is the body force on the elastic solid phase, F;is the
body force on the viscous fluid phase, S is a pressure source acting on
the pore fluid, p represents the mass density of the saturated medium,
pyand p, are the mass density of the fluid and the solid, respectively,
pyis an apparent density of the pore fluid, p is the averaged fluid pres-
sure, A, = K, — (2/3)G is the undrained Lamé modulus of the po-
rous material, b is the mobility of the fluid, G is the shear modulus of
the porous frame, and C and M are elastic moduli. A time depen-
dence of exp (—j wt), with angular frequency w, is assumed.
Equation 1 corresponds to Newton’s law, whereas equation 2 rep-
resents a constitutive expression for the total stress tensor as a func-
tion of the displacement (Hooke’s law). This constitutive equation
comprises the classical term of linear elasticity plus an additional
term related to the expansion/contraction of the porous body to ac-
commodate the flow of the pore fluid relatively to a Lagrangian
framework attached to the solid phase. Equation 3 is the Darcy con-
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Inverse modeling of seismoelectric signals N21

stitutive equation in which the bulk force acting on the fluid phase
has been neglected and equation 4 is one of the classical Biot consti-
tutive equations of poroelasticity. The mass density of the porous
material is givenas p = ¢p; + (1 — ¢p)p,.

The material properties entering equations 1-4 are given by Pride
(1994) and Rafiada Shaw et al. (2000),

7
b=-1, 5
ko ®)

_ _ pr®
f: pa s (6)

K= KA1 — ¢ — K,/K,) + K, @®
KA1 — ¢ — K;/K,) + ¢K
m=C_ KK, , (10)
a Kl —¢—K;/K) + ¢K;

where K, (in Pa) is the (undrained) bulk modulus of the porous medi-
um, K, is the bulk modulus of the dry porous frame (skeleton), Kis
the bulk modulus of the fluid, K| is the bulk modulus of the solid
phase, and «a is the Biot-Willis coefficient. Equation 8 is the Gas-
sman equation, 7, is the dynamic viscosity of the pore fluid, k, the
permeability of the medium, ¢ the porosity, and a is the tortuosity.
The ratio a/ ¢ corresponds to the electrical formation factor F, also
defined by Archie’s law F = ¢~ where m is called the cementation
exponent. In the following, we consider the tortuosity equal to ¢~ /2,
which is equivalent to take a cementation exponent equal to 1.5.

The classical formulation described above in equations 1-4 is
based on solving partial differential equations for two unknown
fields u and w. For a 2D discretized problem, four degrees of free-
dom per node are therefore present. All the studies dealing with the
modeling of the seismoelectric problem use this type of formulation
(e.g., Haarsten and Pride, 1997; Haartsen et al., 1998; Garambois
and Dietrich, 2002; Haines and Pride, 2006). Atalla et al. (1998) in-
troduce an alternative approach using u and p as unknowns (see also
Karpfinger et al., 2009). This implies three unknown parameters (u;,
u, and p) to solve at each node. After some algebraic manipulations
described in Appendix A, the equations of motion can be written in
terms of the two new unknown fields (u, p) as

—w’plu+6,Vp=V.-T+F, (11)
T=AV-wI+G[Vu+ VuT], (12)
T=T - apl, (13)

i(p+S) + Vik, [Vp— wzpfu]}= —aV-u. (14)

Equation 11 corresponds to Newton’s law applied to the solid
skeleton of the porous material. This equation is similar to Newton’s
equation of elastic bodies except for the coupling term 6,V p, which
represents the coupling between the solid and fluid phases. The
stress tensor defined by equation 12 corresponds to the stress tensor
with the porous material in vacuum (i.e., it corresponds to the stress
acting on the solid phase if the pore fluid is replaced by vacuum).
Equation 13 describes the relationship between the total stress tensor
and effective stress tensor. The material properties entering into
equations 11-14 are given by

1

ko=—S—"7, (15)
0 pp+ job

2
A=K- -G, (16)

3
P, = p — wplk,, and (17)
6&) =a— wzpfkw’ (18)

where k,, is not the dynamic permeability of the porous material (the
dynamic permeability is given in Appendix A), p;is an effective flu-
id density, A is the Lamé coefficient, and p;, corresponds to the appar-
ent mass density of the solid phase at a given frequency w.

Description of the seismic source

In the following example, we use a source generating P-waves
only. This force creates a net force on the solid phase of the porous
rock. Because the source generates a displacement of pore water rel-
ative to the grain framework, it creates an electromagnetic distur-
bance. This disturbance diffuses nearly instantaneously to all receiv-
ers and has quite a strong amplitude. Because this contribution can
be removed easily from the electrograms, we will not model it be-
low.

Using the Fourier transformation of the first time derivative of the
Gaussian function for such a source yields the following expression
for the bulk force acting on the solid phase

F(x.y,w) = F(@) V[d(x = x0)6(y = yo)]. ~ (19)

F(w) = FT[(t — to)exp{ — [7fo(t — ) }],  (20)

where FT[ f(1)] is the Fourier transform of the function f(¢), t, is the
time delay of the source, and f} is its dominant frequency. This force
is a source term acting on the right-hand side of equation 11. In the
following, we will neglect the pore fluid pressure source term S,
which is equivalent to neglecting the electromagnetic effects associ-
ated with the seismic source itself. A complete analysis of the elec-
tromagnetic effects associated with elementary sources can be found
in Pride and Haartsen (1996).
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Description of the electrokinetic conversion

The electrokinetic coupling at work in the seismoelectric re-
sponse is the result of the relative displacement of the pore water
with respect to the solid phase. The drag of the charge density con-
tained in the pore water is responsible for a net source current density
in a framework attached to the solid phase (Revil et al., 1999; Leroy
and Revil, 2004). The model developed by Pride (1994) is an exten-
sion of the classical streaming potential theory and takes the form of
the Biot equations coupled to the Maxwell equations via the source
current density. This formulation has a drawback of the required
knowledge of the zeta potential, a microscopic potential of the elec-
trical double layer at the pore water/solid interface. Recently, a new
formulation of the streaming potential has been developed and test-
ed on experimental, sandbox, and field data (see Boleve et al., 2007,
Revil etal., 2007 and references therein). We use this alternative the-
ory here, which has the advantage to require knowledge of only the
permeability as shown below.

In addition, we consider below the electromagnetic disturbances
in the quasi-static limit of the Maxwell equations as in the study of
self-potential signals (Suski et al., 2006; Jardani et al., 2007). This
assumption is valid because the target is assumed to be close enough
(less than 1 km) from the receivers (antennas, nonpolarizing elec-
trodes, and magnetometers). In such a case, we can neglect the time
required by the electromagnetic disturbances to diffuse between the
reservoir and receivers (see Revil et al. [2003] for a discussion of the
diffusion time associated with the diffusion of low-frequency EM
disturbances).

Using the model developed by Revil and Linde (2006) with the
previous assumptions, we can model the problem by solving only
the quasi-static Poisson-type problem

Vi(oVip)=Vjs 21
is= 0w = — jwQvk,(Vp — o’pu).  (22)
where ¢ is the electrostatic potential (E = —V ¢ in the quasi-static

limit of the Maxwell equations), o is the electrical conductivity of
the medium, js is the source current density of electrokinetic nature,
and Qy is the excess of charge (of the diffuse layer) per unit pore vol-
ume (in C m~3). For saturated rocks, Qy can be computed directly
from the DC permeability &, through a semiempirical formula de-
rived by Jardani et al. (2007), which is valid for any type of texture
and mineralogy. Therefore, we consider below that Qy and k, are not
independent parameters. The model proposed by Linde et al. (2007)
and Revil et al. (2007) predict, that for a partially water-saturated
reservoir, Qy should be replaced by Ov/ Sy where Sy is the partial
saturation in water.

Regarding the electric problem, we use PML boundary conditions
keeping the same values for the damping coefficients ., o, and k.,
(see Appendix B). The reason for this choice is that the amplitude of
the seismoelectric conversions in the PML layer is tied to the ampli-
tude of the seismic waves. Therefore, the attenuation of the seismo-
electric conversions is warranted by the attenuation of the seismic
waves.

Regarding seismoelectric conversions, they are associated with
drops in the value of the electrical conductivity and volumetric
charge per unit volume. Because the porosity influences the electri-
cal formation factor, hence the electrical conductivity, and because
permeability is connected strongly to the volumetric charge per unit

volume, the porosity and permeability also influence the existence of
interfacial seismoelectric conversions. This implies, in turn, that the
seismoelectric conversions bear some information on the permeabil-
ity of the formations.

STOCHASTIC JOINT INVERSION

We propose a general algorithm to invert the material properties
of the formations (the intrinsic permeability ko, the porosity ¢, the
electrical conductivity o, the bulk modulus of the dry porous frame
K., the bulk modulus of the fluid K/, the bulk modulus of the solid
phase K|, and the shear modulus of the porous frame G) using a joint
inversion of seismic and seismoelectric signals. We use a probabilis-
tic framework to map the distribution of errors in observed data into
the model space. In addition, a probabilistic framework can handle
easily the nonuniqueness of the inverse problem, which is reflected
in the probability distribution of model parameters.

The first criterion for joint inversion requires that the predicted
seismic and electroseismic data fit their observed counterparts.
Therefore, we perform a Bayesian approach to estimate the material
properties m = [m(ko). m(¢).m(co),m(K;,). m(K,),m(K;),m(G)]
from seismograms and electrograms where m(m) refers to the loga-
rithm of the different material properties m,, except for the porosity,
which is defined as log[ ¢/ (1 — ¢)]. Indeed, porosity is a concentra-
tion of connected voids and is the only material property that is com-
prised between 0 and 1. This type of transformation is known as the
logit transformation. Logit is often used for linearizing sigmoid dis-
tributions of proportions (Berkson, 1951). Ghorbani et al. (2007)
uses this type of transform to invert induced polarization data in
terms of a parameter called the chargeability, which corresponds to a
concentration of polarizable elements.

Another point is that we consider the set of material properties (ko,
¢, 0, K, Ky, K, and G) as corresponding to independent properties,
and ko and Qy as two completely interrelated properties. We also
could add additional petrophysical relationships between the porosi-
ty on one side and the permeability, electrical conductivity, and bulk
modulus of the skeleton on the other side. These relationships could
be defined in a probabilistic sense, which would improve the conver-
gence of the inversion. However, we prefer to stay conservative be-
low and to consider these above-mentioned properties as indepen-
dent.

The Bayesian solution to an inverse problem is based on combin-
ing the information coming from geophysical data with some a priori
knowledge. In the Bayesian approach, we consider the acquisition of
geophysical data as an experiment E. The Bayesian analysis consid-
ers the data vector d and model parameter vector m of a model M as
random variables. Several geometric or petrophysic models M are
possible to explain the data. Random variables are characterized
with distributions and we assume that all distributions are character-
ized by probability density functions (Tarantola, 2005).

The objective of inverse modeling is to update the information on
m, assuming a petrophysical model or a geometric model M, given
the data d and a priori information regarding m. The a priori infor-
mation can come from independent observations and petrophysical
relationships. In a probabilistic framework, the inverse problem cor-
responds to maximize the conditional probability of occurring m of
M given the data vector d. We note Po(m|M) the a priori probability
density or belief of parameters m of model M, and such a model gen-
erates the probability density of likelihood P(d|m,M) correspond-
ing to the data fit.
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In a Bayesian approach, the posteriori probability density
m(m|d) of the model parameters m given the data d is obtained by
using Bayes formula

P(dm,M)P,(m|M
mld) = (d|m, M) Py(m| )’ 23)
P(d|M)
where P(d|M), the evidence, is defined as,
P(d|M) = f Po(m|M)P(djm,M)dm. (24)

This marginal likelihood usually is ignored because it is not a func-
tion of the parameters m. For any given model M, the evidence will
have a constant value. Consequently, the nature of the evidence is
not needed if we are interested only in the nature of the variation of
the a posteriori distribution rather than its exact value.

In the following, we assume that the model M is certain. (For ex-
ample, we know the position of the sedimentary layers and reservoir
from seismic data, and we know that the petrophysical model de-
fined by equations 5-10 is exact.) Therefore, we drop the term M
from equations 23 and 24. The posteriori probability density
a(m|d) of the model parameters m given the data d is written as

7 (m|d) = P(d|m)Py(m). (25)

The Bayesian solution of the inverse problem is the whole posterior
probability distribution of the material properties. An estimate of un-
known parameters can be computed, e.g., as the expectation value
with respect to the posterior distribution (i.e., as the mean value) or
as the maximum a posteriori value, which can be understood as the
most likely value.

As usually accepted, the likelihood function used to assess for the
quality of a model m is Gaussian distributed

1

P(d|lm) = [2m)" det C,]2

1
Xexp| — 2 (gm) - d)’C; '(g(m) —a) |,

(26)
d=(dsdp)’, 27

where g(m) is the forward modeling operator for the seismic and
seismoelectric semicoupled problem. It nonlinearly connects the
generation of seismograms and electrograms to the variation of ma-
terial properties of the ground, and d is an N-vector of the observed
seismic data dg and seismoelectric data dg. The (NN)-covariance

matrix is given by
0'§ 0
C= (28)

2
0 o3

(where S stands for seismic and E for electrical data). This matrix
comprises the measurement errors for the seismic and electrical
data, which usually are uncorrelated and assumed to obey Gaussian
distributions.

The a priori distribution on the model parameters, if available,
also is taken as Gaussian

1
[2m) det C,,]"*

Py(m) =

1
Xexp| — E(m - mprior)TCr; l(m - mprior) >

(29)

where m,,;,, is the prior value of distribution of the three petrophysi-
cal parameters in the ground, and C,, is the model diagonal covari-
ance matrix incorporating the uncertainties related to the a priori
model of material properties. In the example shown in the section en-
titled “Application to a Synthetic Case Study,” we will use a null pri-
or as information on the model parameters.

In the classical Bayesian approach, the model parameters m that
fit the geophysical observations d maximize the posterior probabili-
ty density 7r(m|d). The problem is to explore the posterior probabil-
ity density 7(m|d) expressed by equation 23. The denominator of
equation 23 is the normalizing factor required for the integral of the
probability density function to be one. Normalizing is not required to
perform the inversion, except if we want to compute explicitly the
probability for a given parameter to be in a given interval. In addi-
tion, the normalization can be done at the end of the computation of
the probability density function (restricting to the numerator) just by
normalizing it (dividing it by its integral) (Grandis et al., 1999).

The Markov Chain Monte Carlo (MCMC) family of algorithms is
well suited for Bayesian inference problems (Mosegaard and Taran-
tola, 1995; Malinverno and Torres-Verdin, 2000; Malinverno,
2002). MCMC algorithms consist of random walks where different
states (i.e., different values of a model vector) are visited, and the
choice of the next state depends only on the value of the current state.
After an initial period in which the random walker moves toward the
highest a posteriori probability regions, the chain returns a number
of model vectors sampling the a posteriori probability density
mr(m|d). The characteristic of the probability density 7r(m|d), such
as the mean and standard deviation or the number of extrema in the
probability density, therefore can be determined easily. Memory
mechanisms of the MCMC algorithms (that make the chain staying
in the high a posteriori probability regions of the model space) are re-
sponsible for a greater efficiency of the algorithm in comparison
with the Monte Carlo methods for which models are chosen inde-
pendently and tested against the observations (Sternberg, 1979).

The basic Metropolis-Hastings algorithm is a two-step procedure.
In the first step, the current model parameter vector m in the Markov
chain is modified randomly to obtain a candidate vector. This candi-
date is drawn from a proposal distribution ¢(m,m’) where the choice
of m’ depends on the current vector m. The proposal distribution
could be, for example, a multidimensional Gaussian distribution.
We denote g(m,m’), the probability density of proposing a model
m’, when a model m and the target density function for sampled
model by 77(m|d) is the posterior density evaluated at model m. In
the second step, the candidate model is accepted with the acceptance
probability (Malinverno, 2002),
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m(m'|d) q<m|m'>]

lmm’) = mi“{l’ (m]d) q(m’[m)

in[l Po(m’)P(dIm’)q(mlm’)}
> Po(m) P(djm) g(m’|m) |

= min[ 1,(Prior ratio).

(Likelihood ratio) . (Proposal ratio)]. (30)

If the candidate is accepted, the state of the chain is changed to m’,
otherwise the chain stays at m. The acceptance probability depends
only on the proposal, likelihood, and prior functions at the current
and candidate models, all of which can be computed easily. Assum-
ing that the proposal distribution is symmetric, g(m’|m)
= g(m|m’) (e.g., a Gaussian distribution centered at the current
point), the acceptance probability reduces to:

!
P<m_|d>] | -

a(m;m’) = min{ 1, P(m|d)

This algorithm is known as the original Metropolis algorithm (Me-
tropolis et al., 1953).

To improve the performance of the standard Metropolis-Hasting
algorithm, Haario et al. (2001) introduce an algorithm called the
adaptive-Metropolis algorithm (AMA) to find the optimal proposal
distribution. This algorithm is based on the traditional Metropolis al-
gorithm with a symmetric Gaussian proposal distribution centered at
the current model m’ and with the covariance C’ that changes during
the sampling in such a way that the sampling efficiency increases
over time (Haario et al., 2001, 2004). The AMA algorithm, though
not Markovian, simulates correctly the posterior probability distri-
butions of the model parameters. An important advantage of the
AMA algorithm is that it starts using the cumulating information
right at the beginning of the simulation. The rapid start of the adapta-
tion ensures that the search becomes more effective at an early stage
of the simulation, which diminishes the number of iterations to reach
the convergence of the chain.

Table 1. Material properties for the numerical benchmark
test.

Parameter Meaning Value

o Conductivity of the medium 0.0l Sm™!
O Excess of charge per unit pore volume 1 Cm~3

Py Bulk density of the solid phase 2650 kgm 3
pr Bulk density of the fluid phase 1000 kgm 3
[0 Porosity 0.30

K, Bulk modulus of the solid phase 35X 10° Pa
K, Bulk modulus of the fluid phase 2.25%10° Pa
Gy, Shear modulus of the frame 11X 10° Pa
Ky, Bulk modulus of the frame 5% 10° Pa
ko DC permeability 101" m?

7y Dynamic viscosity of the pore fluid 1073 Pas

The AMA algorithm is described as follows. Let us assume that
we have sampled the states (m°,...,m'~') where m° corresponds to
the model vector of the initial state. Then a candidate point m’ is
sampled from the Gaussian proposal distribution g with mean point
at the present point m'~ ' and with the covariance

iz c’, if i=ny, (32)
B s, K' + s,el,, if i>n,

where I, denotes the n-dimensional identity matrix, K
= Cov(m°,...,m' ') is the regularization factor (a small positive
number that prevents the covariance matrix from becoming singu-
lar), C° is the initial covariance matrix that is strictly positive (note
that the AMA algorithm is not too sensitive to the actual values of
C%), and s, = (2.4)?/n is a parameter that depends only on the di-
mension of the vector m e 3" (Haario et al., 2001). According to
Gelman et al. (1996), this choice of s, yields an optimal acceptance
in the case of a Gaussian target’s distribution and a Gaussian propos-
al distribution. The candidate model vector m’ is accepted with the
acceptance probability:

a(m~'m’) = min[l,

7(m’|d) } o)

w(m'~!d)

If the candidate model vector is accepted, we consider that m' = m’,
otherwise we choose m' = mi~ 1.

The AMA algorithm was written in a MATLAB routine that is
coupled with the forward modeling made in Comsol Multiphysics
3.5. This algorithm is applied in the next section to the synthetic seis-
mograms and electrograms data to invert the material properties as-
suming that the position of the geologic units is known.

APPLICATION TO A SYNTHETIC CASE STUDY
Benchmark of the code

The perfectly matched layer (PML) boundary conditions used for
the seismic problem are described in detail in Appendix B. We first
propose a benchmark test of the reliability of the finite-element code.
We simulate the fast and slow P-waves associated with an explosive
source in a homogeneous porous material filled with a Newtonian
fluid. The dimensions of the 2D domain are 800 X 800 m?. The refer-
ence of the Cartesian coordinate system O(0, 0) is at the bottom left
corner. The time dependence of the source F(7) is a Ricker wavelet
with a dominant frequency of 10 Hz. It is located at the source point
S(x,y) = (400 m, 400 m). The position of the receiver (observation
point) is P(x,y) = (200 m, 300 m). The four edges are absorbing
boundaries for which we use PML boundary conditions. The materi-
al properties used for this simulation are reported in Table 1. Figure 1
shows the two components (horizontal and vertical) of the displace-
ment of the solid skeleton and the two components of the relative
displacement w. The results are shown at 15 Hz. Figure 2 shows the
resulting electrical potential distribution. To benchmark the numeri-
cal code, we compare the numerical solution with the analytical so-
lution given by Dai et al. (1995). As shown in Figure 2, both solu-
tions are in excellent agreement.
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Numerical simulation

To check the usefulness of a joint inversion of seismic and seismo-
electric data, we test this approach using a numerical case study. We
consider two flat layers plus a rectangular reservoir embedded in the
second layer (Figure 3). The geophones and electrodes are located at
the top surface of the system to simulate an onshore acquisition. The
takeout for the electrodes and geophones is 10 m. The source wave-
let is a first-order derivative of a Gaussian as defined in equation 20,
with dominant frequency f, = 30 Hz and with a time delay factor 7,
= 0.1 s, see equation 20. The seismic source is located at a depth of
20 m (Figure 3). The true values of the material properties used for
the simulation are reported in Table 2. With these values, the velocity
of the P-fast wave is 1972 ms~! in the first layer (labeled L1),
2188 m s~ ! in the second layer (labeled L.2), and 3118 m s~ in the
reservoir (labeled R). The receiver located with an offset of x
= 150 m from the source, the time required for the P-wave to reach
this receiver is therefore 0.076 s in agreement with the numerical
simulations (see below). The finite-element modeling based on
Comsol Multiphysics 3.5 is used to simulate seismograms and elec-
trograms at the ground surface.

In Figure 4d, the electrograms show the two
types of seismoelectric signals described in the
introduction. The first type of signals corresponds
to the coseismic electrical signal associated with 700
the propagation of the P-wave. The coseismic
electric field related to the direct field wave from
the source to the receiver is labeled CS. Other 500
coseismic signals are associated with the reflect- 400
ed P-waves at the various interfaces such as the
L1-L2 interface, L2-reservoir interface, and res-
ervoir-L2 interface. These coseismic signals are 200
labeled RCS1, RCS2, and RCS3, respectively. A 100
coseismic signal occurs when a seismic wave
travels through a porous material creating a rela- 0
tive displacement between the pore water and the
solid phase. The associated current density is bal-
anced by a conduction current density. It results in
an electrical field traveling at the same speed as
the seismic wave. Because shear waves are
equivoluminal, they are not responsible for any
source current density in a homogenous medium
and therefore they have no coseismic electric
field associated with them (Haines and Pride,
2006).

The second type of seismoelectric signals cor-
respond to converted seismoelectric signals asso-
ciated with the arrival of the P-waves at each in-
terface (between the two layers and at the surface
of the reservoir). These converted seismoelectric
signals are labeled IR1, IR2, IR3, IR4, and IRS
(see Figures 3-5). When crossing an interface be- 0
tween two domains characterized by different
properties, a seismic wave generates a time-vary-
ing charge separation, which acts as a dipole radi-
ating electromagnetic energy. In our approach,
we neglect the time used by this electromagnetic

a) 800

600

Y(m)

300

-8 -6 -4

b) s00

100 200 300 400 500 600 700 800 0

Solid displacement horizontal component

100 200 300 400 500 600 700 800 0

8 -6 4 -2 0 2 4 6 8 2 0 1

Solid displacement vertical component

good for investigations to the first kilometers below the ground sur-
face. Because of constructive interferences, a significant portion of
the first Fresnel zone acts as a disk of electric dipoles oriented nor-
mal to the interface. These dipoles oscillate with the waveform of the
seismic wave (Figure 4b). Because the electromagnetic diffusion of
the electrical disturbance is very fast, the seismoelectric conversions
are observed nearly at the same time by all the electrodes, but with
different amplitudes. The seismoelectric conversions appear there-
fore as flat lines in the electrograms. Also note that the polarity of the
converted seismoelectric signals depends on the contrast of electri-
cal material properties (volumetric charge density and electrical
conductivity) at the interface where they are generated. On the con-
trary, the polarity of the coseismic electrical signals depends on the
value of the streaming potential coupling coefficient at the position
of the electrode and the polarity of the seismic waves.

Figure 5 shows the electric potential for a given electrode. In this
figure, we clearly can discriminate the coseismic signals from seis-
moelectric conversions. Also note that amplitudes of the signals are
small. However, they can be measured easily in the field using the
type of ultrasensitive equipment discussed by Crespy et al. (2008).

¢) 800

700

100 200 300 400 500 600 700 800

X(m) X(m)

[ SIaaEaeasec

0 2 4 6 8 -2 =1 0 2
x107%(m) x10(m)

Fluid displacement horizontal component

100 200 300 400 500 600 700 800
X(m) X(m)
[ IaaaEaneaaase |

2
x107°(m)
Fluid displacement vertical component

x10°(m)

energy to diffuse from the geologic interface,
where it is generated, to the receiver (quasi-static
field approximation). This assumption is very

Figure 1. Horizontal and vertical components of the solid displacement vector and rela-
tive fluid displacement in the frequency domain (real components). Note the efficiency of
the C-PML approach at the boundaries to attenuate the seismic waves.
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This equipment can be used to record electrical potential using up to
256 simultaneous channels at several kHz and with a sensitivity of
10 nV.

Fast P-wave

Slow P-wave

Normalized amplitude

——— Analytical
-1.5F -
——-- Numerical
50 . . . .
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure 2. Comparison between analytic and numerical solution of
the seismic problem in an homogeneous medium (benchmark test)
with properties summarized in Table 1. The figure shows a snapshot
of the vertical-component of the macroscopic solid displacement at
t = 0.58 s. The two P-waves can be observed. The synthetic numeri-
cal seismograms (solid black line) and analytical solution calculated
by Dai etal. (1995) are in very close agreement.

REF Receiver  Offset (m)
—300 -200 p -100 0 100 200 300
0@ 1 P 1 1 1 1
{Z source
1005 ‘\ Down-going energy
L1 IR1 atOJSs\\
200 \
IR4at0.28 s
= L2
Z Reato2ds ' \ Reflection
2 300
3 IR52at0.30's
400 Reflection
IR3at0.27s 1
500
600

Figure 3. Sketch of the model used for the simulations. The geo-
phones and electrodes are collocated at the top surface of the system.
All the electrodes are assumed to be connected to a reference elec-
trode. The REF corresponds to the position of the reference elec-
trode. Labels L1 and L2 correspond to the two layers of sediments
and R stands for the reservoir. Arrows indicate raypath for seismic
energy that creates seismoelectric interface response labeled IRi. In
addition to this energy, the direct field and reflected seismic arrivals
are recorded as coseismic electric field. The seismic source is located
atadepth of 20 m below the top surface.

Result of the joint inversion

We use the AMA algorithm described in the section entitled “Sto-
chastic Joint Inversion” to generate 25,000 realizations of the 21 pa-
rameters of the material properties of the different geologic units, us-
ing the data recorded in 60 geophones and 60 electrodes at only four
frequencies (25, 30, 35, and 40 Hz). The position and characteristic
of the source are assumed to be perfectly known. The posterior prob-
ability distribution functions of the material properties of the three
units (layers L1 and L2 and the reservoir R) are shown in Figure 6 us-
ing the last 5000 iterations. We observe that, except for the porosity,
our algorithm is performing a very good job in inverting properly the
seismic and seismoelectric data in terms of getting the mean value of
the material properties. We believe that a better estimate of the po-
rosity can be obtained through the use of additional petrophysical re-
lationships between the porosity, electrical conductivity, and bulk
modulus of the skeleton.

DISCUSSION

In this section, we want to answer the following questions: Is the
sensitivity of existing tools high enough to record the seismoelectric
conversions? Is the present approach directly useable to invert real
data? And if not, what needs to be added?

Crespy et al. (2008) show that electroencephalographic equip-
ment can be used to provide reliable electrograms with a sensitivity
better than 0.1 wV up to a frequency of few kHz. In marine CSEM,
the measurement of the electrical field is often made with sensitivity
on the order of 1 nV once the spurious electromagnetic effect of ex-
ternal origin has been filtered out. A new generation of electrodes ex-
ist, developed for EM studies, that couple with the ground or seafloor
by capacitance rather than resistance. These electrodes show usually
five times lower noise than nonpolarizing Ag/ AgClin the frequency
range 110 Hz. So we believe that, although difficult, accurate mea-
surements of seismoelectric conversions produced at a depth of a
few hundred meters below the sensors, or for cross-hole investiga-
tions, is possible. Consequently, seismoelectric investigations made
onshore could benefit from all the recent developments made in

Table 2. True values of the material properties used for the
synthetic model shown in Figure 3. L1 and L2 stand for the
two layers and R for the reservoir (see Figure 3). Layer L1
corresponds to a clean sand, L2 to a clayey sand, and R to a
sand reservoir partially filled with oil.

Parameter Units Unit L1 Unit L2 Unit R
ko m? 10-12 10716 10~
1) GPa 0.25 0.10 0.33
K, GPa 36.50 6.90 37.00
K; GPa 0.25 0.25 2.40
K, GPa 2.22 6.89 9.60
G kgm~3 4.00 3.57 5.00
Ps kgm~3 2650 2650 2650
pr Pa s 1040 1040 983
ny Sm~? IX107% 1X1073 8X10°!
o LogCm™3 0.01 0.1 0.001
Log Qv 0.203 3.49 32
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measuring small electrical fields at the seafloor for controlled source
EM methods (CSEM) (see Ellingsrud et al., 2008).

The second point concerns the direct application of the present ap-
proach to real data. Because our approach is based on full waveform
modeling of the seismoelectric and seismic wavefields, it requires
seriously taking into account the problem of wave attenuation ex-
cept at low frequencies (few Hertz) for which attenuation can be ne-
glected. Our approach needs just to be modified slightly to account
for real attenuation mechanisms that are not described by the classi-
cal Biot theory. The trick usually is to replace a perfect poroelastic
behavior by a viscoelastic behavior to match the attenuation of the
various mechanical waves (see Morency and Tromp [2008] for a
complete development). With such a modified theory, we can apply
our approach to real data and add the intrinsic attenuation mecha-
nisms in the inversion algorithm as additional unknown parameters.

One should note that surface waves have been discarded in the
modeling proposed in the sections above. In reality, these impose a

N27

real constraint on the measurement system in terms of dynamic
range because they are orders of magnitude larger than the interfa-
cial signals. However, as for the electromagnetic disturbance related
to the source itself, the electromagnetic disturbance associated with
the passage of the surface wave can be filtered out of the signals. The
idea is to ignore the data recorded at the time of the passage of the
surface wave from the record. Also note that for onshore records, the
intensity of the electrical field associated with the passage of the sur-
face waves depends on the value of the streaming potential coupling
coefficient at the position of the recording dipoles. Because the cou-
pling coefficient decreases linearly with the effective saturation, this
depends in turn on the water content near the dipoles of electrodes.
Water content below the residual water saturation would not create
an electrical field. Finally, we want to draw the attention of the read-
ers to the large amount of technologies that have been developed in
medical sciences (the use of capacitive electrodes for instance to
measure the electrocardiogram of a human heart without electric

a) x107 ¢) x107 —200 -100 0 100 200  Figure 4. Snapshots of seismic and seismoelectric
0 0 ..
£ R— —~10 ——— phenomena. (a and b) Snapshots of the seismic and
= 4 100 R e il et s £ 8 o1 L electrical fields at time f= 0.24 s. This corre-
S i E ’ sponds to the time when the P-wave reaches the top
g 2 200! ‘g 6 0.2 of the reservoir, which acts as a dipole radiating
5 — £ o 2 PPr1 electromagnetic energy. (c) The seismograms re-
§ of - E300 g 2 go3 4 constructed by the geophones (with a take out of
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tions of the P-wave (labeled RCS1, RCS 2, RCS 3)
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Figure 6. Posterior probability density functions of the material properties for the three geological units (the two layers L1 and L2 and the reser-
voir R). The vertical bars indicate the real value of the material properties (see Table 1).

contact with the skin, see Oehlerm et al. [2008] or in electroencepha-
lography, see Okazaki and Nakazoe [2005]), which have not yet
been applied to seismoelectric signals despite many common char-
acteristics for these problems.

CONCLUSIONS

We have developed a stochastic algorithm to perform the joint in-
version of seismic and seismoelectric data in heterogeneous systems
to retrieve the value of the material properties of individual units
(e.g., sedimentary layers, faults, or geologic reservoirs). The model
is based on the classical equations of poroelasticity and an electroki-
netic formulation that was developed initially to model the quasi-
static self-potential response associated with the flow of groundwa-
ter. We have reached the following conclusions: A stochastic inver-
sion algorithm can be used to invert jointly seismic and seismoelec-
tric data; the permeability of the formation can be recovered within
one order of magnitude; porosity is not well constrained by the in-
version; we also can invert the electrical conductivity of the forma-
tions and poroelastic mechanical formation properties. The ability to
invert for electrical conductivity is good news because electrical
conductivity usually depends strongly on the oil saturation in the res-
ervoir. Therefore, this can be a way to determine the in situ oil satura-
tion.

The next step will be also to include in the inversion of the electro-
grams and seismograms, the position of the boundaries between the
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different formations and to extend the code to multiphase conditions
in3D.
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APPENDIX A

THE FIELD EQUATIONS

We start with the Darcy equation with the electro-osmotic cou-
pling term neglected,

T Ny = — Vp — pjii + Fp, (A-1)

k(w)

where F/ is the body force acting on the pore fluid phase. The fact
that the electro-osmotic term can be neglected safely has been dis-
cussed by a number of authors (see, for instance, Revil et al., 1999).
The dynamic permeability is written as (e.g., Morency and Tromp,
2008)
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1 _1 — jlo/w,)
ko) ko

; (A-2)

which follows from the low-frequency approximation to the dynam-
ic permeability given by Pride (1994). The critical frequency is w.
= 5l (kopF) = b/ pywhere b = 7,/ kyand p; = pF. Neglecting the
body force acting on the fluid phase, equation A-1 can be used to ex-
press the filtration displacement w as a function of the pore fluid
pressure p and the displacement of the solid phase u,

w=k,(Vp— wzpfu), (A-3)
where k,, is defined by
k= % (A-4)
0 pr+ job
Equation A-3 can be used in Newton’s law to give
—w’plu —wzpfkap =V-T, (A-5)
P, =p — &’pk,, (A-6)

where p;, is an apparent mass density for the solid phase. Equation
A-5 is a partial differential equation between u and p, but the stress
tensor T also depends on w. Using the relationships between the
stress and strain, we obtain the following relationship between the
divergence of the filtration displacement V - w and the divergence of
the displacement of the solid phase V -u,

1
V-w= —A—4(p+S)—aV~u, (A-7)

where « is the classical Biot coefficient of poroelasticity, defined by
equations 7 and 10. We use this equation A-7 in the stress/strain rela-
tionships to remove the dependence of the stress tensor w. This
yields

T=AV-w)I+G[Vu+ Vu']—apl, (A-8)

2
A=K — EG, (A-9)

where A is the Lamé modulus of the skeleton. The effective stress
tensor is written as

T=AMV-wl+G[Vu+ VuT], (A-10)

T=T- apl. (A-11)

The effective stress tensor is the equivalent stress tensor of the skele-
ton without fluid (in vacuo). Using equations A-6—A-9 and A-3, we
obtain an equation connecting the solid displacement and the fluid
pressure assuming that the Biot coefficient is constant,

—w’plu+60,Vp=V-T, (A-12)

0,=a— pwk,, (A-13)

where 6, is a volumetric hydromechanical coupling coefficient.
Equation A-12 corresponds to Newton’s law for a poroelastic body.
This equation is similar to the classical Newton’s law for an elastic

solid except the coupling term 6,,V,,, which accounts for the dynam-
ic coupling between the pore fluid and solid phase.

Regarding the description of the filtration displacement, the use
of equations 11 and 12 yields the following relationship between w,
u, and p:

1
E(p +8)+ Vdk [Vp — wzpfu]} = —aV-u.

(A-14)

Equation A-12 is the diffusion equation for the pore fluid pres-
sure with a source term related to the harmonic change of displace-
ment of the solid phase.

APPENDIX B

PERFECTLY MATCHED LAYER
BOUNDARY CONDITIONS

Equations 11, 12, and 14 describe the propagation of seismic
waves in an infinite unbounded medium. However, when one per-
forms numerical simulations, the domain investigated is always
bounded. Acommon approach to limit reflection at the boundaries of
the domain is to use the one-way wave equation based on the paraxi-
al approximations of the seismic wave equations (Clayton and En-
gquist, 1977). The perfectly matched layer (PML) method has been
proposed later by Berenger (1994), first for electromagnetic prob-
lems. Then it has been applied successfully to various wave propaga-
tion problems (Chew and Weedon, 1994; Zeng and Liu, 2001; Zeng
et al., 2001). With PML boundary layers, almost no reflection is ex-
pected to occur at the interface between the physical domain and ab-
sorbing layer for any frequency and any angle of incidence of the
seismic waves.

In this study, we use the convolution-perfectly matched layer (C-
PML) approach. The C-PML method, for the first-order system of
partial differential equations, has been developed for electromagnet-
ic waves by Roden and Gedney (2000) and in simulation of elastic
waves propagation by Bou Matar et al. (2005). It has never been used
for the problem of poroelastic waves, and we adapted this method for
this type of problem. This method is extended for second-order sys-
tems written in terms of displacements. The main advantages of the
C-PML approach over the classical PML approach concerns its nu-
merical stability and its high efficiency. Using the concept of com-
plex coordinates (Chew and Weedon, 1994) in the frequency domain
(with a time dependence of e /"), the complex coordinate stretching
variables are

X

X = J'sxi(x’)dx’, i=1,2, (B-1)
0

o-xi(-xi)

sxi = kxi(xi) + (B-2)

axi+jw’

where a,, o, are positive real damping coefficients and , are real
and positive-definite numbers that are equal or larger than unity. In
this paper, we consider k, = 1 to keep the waves continuous (for de-
tails see Collino and Tsogka, 2001). To determine the value of the
two other damping coefficients, we use the following formula:
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3¢ 1\ [ i min = %7\
_IOg(_><M> s AS X g = X
2L, \R Lo

;= ] 09 as x; minSxini max»
3
3¢ 1 <1>(xi_ximax) -
——log\ — |\ /|, aSXi=Xjpan
(20, \R L,
(B-3)
-
Ximin — Xi
Wfo(— +1], asx; min= Xjs
Ly
o; = < 7Tf0’ a8 X yin =X; =X maxs
Xi = Xi max
77'f()(— +1]), as Xi = X maxs
\ Lo

(B-4)

where c is the highest velocity in the domain, R = 1/1000 represents
the amount of reflected energy at the outer boundary of the PML lay-
er, Lyis the thickness of the PML, and f;, is the dominant frequency of
the source.

The derivative d( - )/ dX; can be expressed in terms of the regular
coordinate stretching variables d(-)/dx; = (1/ Sx,.)( d(+)/dx;). Final-
ly, after replacing d( - )/ dx; by d( -)/ dX; and after some algebraic ma-
nipulations, the reduced set of equations for the modified poroelastic
formulation is:

—wpu+0,Vp=V.T, (B-5)
~ awsxz 0
0, = , (B-6)
O ewsxl
ﬁfv = pivstSXQ’ (B'7)
- (T, T
T— ~11 ~12 ’ (B-8)
Ty Ty
~ Sx, d du
Tro=(\+26) 221 4 )\ 22, (B-9)
Sx, ax; dxy

~ du Sx, du
Tyy= A— + (A +2G)——2, (B-10)
dxy Sy, 0%3
~ Sy, du du
T,=G| ——+ =2, (B-11)
Sx, dx,  dx
~ du Sx, du
T, =Gl —+—=—), (B-12)

dx, Sx, 0x;

SXISXZ

- =, o .
M p+VIk,Vp-—kyopu]=—ass. V-u

(B-13)
ka,s)Cz/sXl 0
ki, = , and  (B-14)
0 kwsxl/s,c2
ka = . (B—15)
0 kysy,

For the electrical problem, we solve the following modified equa-
tions:

V-(GVy) =V s (B-16)
jS = (jxlsxz;jxlsxl s and (B-17)
S
O'ﬁ 0
~ le
o= (B-18)
Sy,
0 il
Sy,
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