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Oft,en, decision makers have to deal with uncertain factors when faced with a decision problem. It is 

important that during the process of selecting the most suitable alt,ernative, the decision maker is 

provided with as rnucll infornlation about the nature and consequences of this uncertainty. The 

analytic hierarchy process is a frequently used decision support tool for select,ing the most preferred 

solut.ion froin a discrete set of alternatives. The presence of uncertainty in a decision analysis based on 

analytic hierarchies is that the pairwise preference ratios are iiit,erval judgnients, rather than single 

values. One consequence of having st,ochast,ic judgment intervals is the phenornenon of rank reversal, 

z.e., the possibility that the final ranking of the solutions in t,ernls of their relat,ive preference is 

incorrect. This pa,per addresses the implications of having stochastic judgment intervals, and rises 

multivariate ~t~atistical methods to derive point estimates and confidence iritervals for the rank reversal 

probabilit.ies, providing relevant information to bot8h t,he decision analyst and decison maker allout the 

robust.ness of the rankings of the altjernatives. 



STOCHASTIC JUDGMENTS IN THE AHP: 
THE MEASUREMENT OF RANK REVERSAL PROBABILITIES 

ABSTRACT 

Recently, the issue of rank reversal of alternatives in the Analytic Hierarchy Process (AEIP) has 

capturrd the attent.ion of a number of researchers. Most of the research on rank reversal has addressed 

t,he case where t,he pairwise comparisons of the alternatives are represented by single values, focusing on 

mat.helnatica1 properties inherent t,o the AHP methodology t.hat can lead t,o rank reversal if a new 

alternat,ive is added or an existing one is deleted. A second situat.ion. completely unrelated to  the 

mathernat~ical foundations of the AHP, in which rank reversal can occur is the case where t,he pairwise 

judgments are st.ochast ic, rather than single values. 

If t.he relative preference ratlings are uncert,ain? one has judgment int.ervals, and as  a 

consequelice there is a possibility tha t  the rankings resulting from an AHP analysis are reversed, i . e . ,  

incorrect. It is important for modeler and decision maker alike t.o be aware of the likelillood t,hat this 

sit.uation of rank reversal will occur. In t.his paper, we introduce methods for assessing t,he relative 

preference of the alt.ernatives in t.erms of their rankings, if t,he pairwise comparisons of the alternatives 

are st'ocl~astic. 

\Ye develop m ~ l t ~ i v a r i a t e  stat,ist.ical techniques to obtain point. est i~nates and confidence 

intervals of the rank reversal probabilities, alld show how simulat.ion experiments can t)r used as  an  

effective a ~ ~ d  acc~lrat~e t,ool for analyzing the siahilily of the preference rankings under rlncert.ainty. This 

i n f o r m d o n  about t,he extent, to  which the ranking of the alternat.ives is sensitive t,o t.he st.ochastic 

nature of the pairmise j~ t t lgmen t ,~  shortld be valual)le infornlatjion int,o the decision making proc:ess. 

1nucl1 like variabilit,y and confidence intervals are crucial tools for st.at.ist.ical inferel~ce. Although t,he 

focrls of our analysis is on st.ochastic preference judgments, our sampling n~ethod for estimat,ing rank 

reversal probabilitirs can be extended to  the case of non-st,ochast.ic imprecise fuzzy judgnients. 

We provide simulat.ion experinients and tiumerical examples comparing our met,lrod wit,h t.hat, 

proposed previously by Saaty and Vargas (1987) for imprecise interval judgment.~.  

Keywords: Mr~lticriteria Decision Alaking. Decision Analysis, Analytic Hierarchy Process. IT~icertainty,  

Jodgmen ts. 
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STOCHASTIC JUDGMENTS IN THE AHP: 
THE MEASUREMENT OF RANK REVERSAL PROBABILITIES 

1. INTRODUCTION 

The Analytic IIierarclly Process (AIIP),  developed by Thomas Saaty (1977, 1980. 1982a). is a 

widely used multicriteria decision making method which is based on the decomposition of a complex 

decision problem into several smaller and easier to handle sub-problems. These sub-problems are 

organized in different levels of a hierarchy. The overall objective of the AIlP is t o  find a relative 

importance (or preference) scale for the set of discrete alt.ernatives under consideration. Using the 

"relat,ive comparison* method of the AHP, pairwise comparisons are used to  derive the relative 

att,ract,iveness or preference of the criteria. and the degree of preference of each alternative with respect 

to  each criterion, resulting in a set of weights representing the relative importance of each alternative. 

A number of methods can be used to derive a preference ratio scale based on pairwise 

comparisons. for instance the geometric mean method (Barzilai. Cook and Golany 1987: Crawford and 

Williams 1085) or ordinary and logarithmic least squares. However, Saaty and Vargas (1987, p. 108) 

note that regression-based methods fail to allow for inconsistencies between the pairwise judgments 

(Saaty 1980. 1986). and can lead to  misleading results (Saaty and Vargas 1984a. 1984b). IIarker 

(1989) states that. even though logarithmic least squares methods have their advantages. ..... the 

eigenvector method has the interpretation of being a simple averaging process by which the final 

weights w are taken to be the average of all possible ways of comparing a l ternat i~es .  Thus. the 

eigenvector is a '.natural"  neth hod for computing the weights. Furthermore, some theoretical evidence 

(Saaty 1987: Saaty and i'argas 1984) suggests that this method is the best at uncovering the true rank- 

order of a set of nlternatives." Similarly, Saaty (1980. 1986) and Saaty arid Vargas (1987) recommend 

using the eigenvector procedure of the AHP. as this rnelhod expressly allows for the possibility of 

inconsistencies between the elicited preference judgments. In the AHP, the normalized right principal 

eigenvector w of A is used a s  the vector of weights representing the importance of the alternatives (or 

criteria). For a detailed justification of this procedure and the mathematical co~icepts used in the 

AIIP, we refer the reader to Saaty (1977, 1980, 1982a). 

A l t h o ~ ~ g h  the l\Hl' ~nethodology has been applied succt~ssfully to  many complex real-life 

decision problems (Zahedi 1986: Golden. Wasil and IIarker 1989), the theoretical soundness of this 

method has recently been criticized on a number of grounds (Dyer 1990; Winkler 1990: Trout 1988; 

Schoner. LVedley and Choo 1993. 1993), notably the use of a ratio scale in the AlIP comparisons, 

rather than the interval scale comnlonly used in XIr~ltiattribute litility Theory (h lAUT),  and the rank 

reversal problern, I . c . ,  the phenomenor~ that the preferer~ce ranhings produced by the AIIP can change 

signiricantl l ~ y  i~itroducing a riew or deleting an  csisting alternative. 
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The purpose of our research is itof to study the appropriateness of the AHP versus competing 

methodologies such as MAUT, nor is it to  address the issue of rank reversal under deterministic 

pairwise preference judgments, and me will not concern ourselves with this - admittedly interesting - 

phenome~ion. Rather. we will focus on a second. completely unrelated. source of rank reversal, namely 

rank rcversal in the presence of stochasfzc pairwise colnparison judgments, and offers a rigorous 

statistical approach to  analyzing outranking and rank reversal properties of the  A R P  methodology 

under these conditions. Having noted the potential drawbacks of the AHP methodology and the 

central role played by the phenomenon of rank reversal in the ongoing discussion of the AHP, we will 

take the overall AHP methodology as the basis for our analysis below. rather than focusing on the 

differences in viewpoint between its proponel~ts and critics. However. our method is equally applicable 

if the priority weights are calculated using some variant of the original AHP. We next review the 

concept of judgment intervals. 

2. JUDGMENT INTERVALS 

In t.he original AIIP methodology, t,he decision maker is assumed t o  be able t o  provide single 

values when making t'he pairwise preference judgments. The process of deriving the scale and 

corrcsponding weights within a particular level of an AHP hierarchy with single-valued pairwise 

judgment's can be summarized as follows. Suppose there are k decision alternatives under 

consideration. In the XIIP, a nine point rat,io scale, implying a possible range for the pairwise 

j~ ldgment  ratios froill 1/9 to  9. is used to  pairwise compare each alt,ernative (or criterion) with the 

other alternatives (or crit,eria), resulting in a lnatris  A = { a i j )  of preference ratios. The  entry ai j  of A 

representas the relat,ive preference of alt.ernative i over alternative J ( i  < J) with respect. t o  the 

subprobleni in question. 'l'l~e ~ l l a t r i s  A is assumed to  be reciprocal. so that  a - .  1 2  = ]/a,., for i, j = 1, ..., 
'3 

k. Thus,  a t.ot,al of k ( k -  1 ) / 2  pairwise judgments are needed to  fully determine A. Extensions of the 

AHP methodology csist for t.he cast where not all of tmhe pairwise judgments are available. In the case 

of a decision problem with mult.iple criterion levels. a rnatrix of pairwise judgments is constructcd for 

each sub-problem, after which the overall weights are calculated by synt.llesizing t,he information of the 

sub-problems. Witllout. loss of generality we will restrict our analysis to  a single matrix of pairwise 

judgments A. 

Noting that  the assumption (hat. thc decision maker is capable of providing meaningful single- 

valued judgments may be an  over-simplifi~at~ion of reality, several researchers have recently extended 

the .4HP rncthodology I.o allow for irnprecise  airw wise preference judgments. Some have represented 

this uncertainty as  stochastic, using subjective probabilities (Vargas 1982), others in terms of 

sensit.ivity analysis, fuzzy set,s, and interval j~ ldgments  (Saaty and Vargas 1987: Arbel 1989: Boender, 

De C;raan arld 1,oot.srlla 198!): Zahir 1991: Arbel and Vargas 1!192. 1!)93: H.5lnalZinr.n arid 1,auri 1993; 
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Salo 1993: Salo and IIamalZinen 1993. 1994; AIoreno-Jimenez and Vargas 1993). 

In the remainder of our paper. we distinguish between imprecise and stochastic judgments. 

Both cases imply judgment intervals, hilt whereas in the case of imprecise or frizzy judgments the 

intervals reflect an  inability on the part of the decision maker to express his/her relative preferences as 

a single \ d u e ,  stochastic judgments imply a probability distribution over the range of each judgment 

interval. 

2.1. Imprecise Pairwise Comparisons: Judgment Lntervals 

Most previous at tempts to  incorporate imprecise jr1dgment.s in the A H P  were based on pairwise 

comparisons that  are restricted to certain finite intervals, deriving intervals of variation for the 

components of the principal eigenvector from these intervals ( S a a t ~  and Vargas 1987: hrbel  1989: 

Arbel and Vargas 1991; Zahir 1991: Salo and IIZrnalZinen 1992, 1994). Zahir (1991. p. 207) remarks 

that  "... in many cases absolute measurements have inherent uncertainties due to  stat.ist.ical errors 

which in turn translate into relative measurements," and that. once uncertainties affect the  matrix A of 

preference ratios, t)here must be uncertainties in the result,ing priorities of the decision elements a s  well. 

Zahir (1991, pp. 310-313) derives analytically and shows by exanlple how uncertainty about the 

pairwise judgments can affect the relat,ive rankings in the case of two and t,hree alternatives, and 

presents a nunterical algorithm for comput.ing approximate lower and upper bound for the priority 

weights in t.he general case ( k  2 2).  Ilowever, Zahir does not provide a statistical analysis of the rank 

reversal problem. 

Arbel (1989) and Arbel and i 'argas (1992. 1993) propose an  optimizat,ion approach to  obtain 

the intervals spanned by each elenlent of t,he principal cigenvector, in order to  determine dominance 

st,ruct,ures i l l  t,he preference rankings of the alt,ernatives. \Vltile t,heir approach red~ices to  a linear 

program in t,he case of t,ransit,ive and consist,ent judgment intervals, it requires solving a generally non- 

convex nonlinear programming prol~lem in t.he presence of inconsist,e~lcy. In a simi~lation st,udy that  

draws on Arbel (1989) and Arhel and j'argas (1991), hloreno-dimenez and Vargas (1993) note tha t  if 

some j i~dg tnen t ,~  are inconsistent .'... the reciprocal constraints are not, convex, and,  hence, t.he optimum 

obtained by t.raditional met,hods rnay not be t,he global optirnum" (1). $0). and conclude t.hat "... the 

more general optimization problems posed for t.he i~lconsistent case are  intractable because convexity is 

violated." As we will focus on t,he general case of inconsistent preference matrices, the 

above-mentioned linear programming representat,ions are of limited use for our purposes. 

Salo and IItim2lZinen (1992) and Hamalainen and Lauri (1993) use preference programming, a 

user-interactive approach to  modify and fine-tune t.he initially specified interval  judgment,^ to  a final 

conlbination of intervals for which transit.ivity and consistency are completely achieved. This approach 

is consistent witah the pract.ice in traditional dt:cision atlalysis of q~lerying the tlecision maker SO as t,o 
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rniriirnize inconsistency and ambiguity of the preference judgme~its. Ilowever, while this approach may 

work in many decision situations, it is conceivable that the decision maker will he unable to fine-tune 

the judgment intervals to the point that full consistericy or a fully specified dominance structure is 

achieved. Yoreover. one of the attractive aspects of the original .4IIP methodology is tha t  it allolvs for 

some (reasonable level of) inconsistency. ~vhich appears to be compatible with the way in which 

humans make tlecisions (Saaty 1980). T h ~ l s .  within the ABP philosophy it is reasonable tha t  some 

inconsistency remains in the final decision matrix a t  the conclusion of an interactive session aimed a t  

reducing inconsistency between the judgment intervals. 

LVllile Salo and I-Iamalainen (1993) seek to rrduce the conflict between the judgment intervals, 

Saaty and j'argas (1987) take the jugment intervals as gzven. and use a sampling experiment to  study 

the impact of imprecise pairwise judgments on rank reversal. As in most other previous research, the 

nature of the interval judgments in their approach is non-stochastic, reflecting that  the tiecision maker 

is unable to  select single-valued pairwise preference ratings. Arhel and Vargas (1993) study fuzzy 

priorit,y derivation by simulation and preference programming. 

Altho~igh the non-stochastic approach to  interval judgments is interesting and reasonable in 

many decision problems, and provides a flexible analysis that  offers valuable information to  the 

decision maker. it has some limitations. For instance, it is difficult t o  use a non-stochastic approach to  

clerive meaningful measures for interesting properties of the interval matrices, srlch as probabilities of 

rank reversal. probabilities of particular rankings. and probabilities tha t  a given alternative will be 

ranked first. from the resulting saii~pled intervals of the principal eigenvector components. Even 

though Saaty and Vargas (1987) a t tempt  to  nunierically approsinrate some of tliese measures t h r o ~ ~ g h  

a sampling experiment, their interpretation is somewhat problematic. as they try to estimate 

probabilistic quantities from r~on-probabilistic concepts. 

2.2. Stochastic Judgment Intervals 

We believe that  many decision situations exist wherc tlie nature of the judgment intervals can 

be considered to  I>e stochastic, justifying a probabilistic approach that  uses standard statistical 

methodologies to study rank reversal likelihoods. The stochastic nature of pairwise judgments can 

reflect eit,her subject,ive probabilities t8hat a part'icrilar alt,ernativt. better achieves a given goal, or 

objective pr~babil i t~ies t,hat reflect, uncertain conseqriences of select.ing a part,ic~llar alt,ernative. 

As an example of a decision situation ~vhere st,ochastic jrldgrnents may I)e reasonable, consider 

the situation where t.he decision maker has 1.0 choose bct.ween t,wo different investment opportunities, Il 

and 12. that. require an  identical one-t,ime investmcrit a t  the beg i~~n ing  of t.he planning period. Assume 

t,hat tlie goal of tlie decision problem is 1.0 ~iiasiniize net. present, valuc ovpr t,he planning period, and 

t.hat. the ilitcrcst rat.e ovcr tlie ~ ) l ann i~ ig  pcriod is collstant 1)rlt u~lknowrl a t  I.he t,irne of t,lic invest.ment. 
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decision. Of course. most realistic in~es t~ment  decision problems are more complex than t,his simple 

example, which merely serves as an illustration. Suppose that  the break-even point of the net present 

value of Il ant1 I2 over the planning period occurs a t  an interest rate of r*, and that  I ,  will I)e preferrrd 

if the int,erest. rat,e exceeds r*. while I2 mill be more attaractive i f  r < r'. Thus,  the probability t.hat II is 

preferrrd to I2 equals t,he likelihood t.hat t,he interest rat,e will exceed r*. As t,he t,rue int.crest rate is 

uncertain a1 the time of the in~es t~n len t  decision. a stochastic interval for the relative a t t ra~t~iveness  of 

Al  and A 2  appears appropriate. 

In our paper we choose t,o represent the uncertainties in t,he pairwise comparisons by subject,ive 

probability distributions. A rigorous analysis of stochastic judgments requires more than a sensitivity 

analysis, because the latter ignores important information (e.g., the "confidence" attributed to each 

scenario) that  should be taken into consideration. .iltliorigh we will treat the interval judgments as 

stochastic, it may be possible to  apply part of our methodology of determining rank reversal 

probabilities to the case of imprecise judgments. provided of course tha t  the underlying assumptions 

and definitions of the decision process and the interpretation of the resulting preference ratings are 

adjristed accordingly. For the sake of a clear focris. we refrain from including such an  extension in our 

paper, and relegate these issues to  future research. 

The  remainder of our paper is organized as follo~vs. In Sectior~ 3 tve s ~ ~ m t n a r i z e  a sampling and 

estimation methotl developed by Saaty ant1 I7argas (1987) for the case of imprecise jridgn~ents. ant1 

discuss some properties of their estimator of rank reversal probabilit!. In Section 3, we introduce two 

measures of rank reversal probability that are irell-suiteti for the case of stochastic judgments. Section 

5 offers cornpr~tational examples that illr~strattl our proposetl tnrthod, and explores several desirable 

properties associated will1 our measures of rank reversal probability. The  paper concludes in Section (i 

with final remarks and potential averlrles of future research. 

3. IMPRECISE JUDGMENTS IN THE AHP AND RANK REVERSAL 

3.1. Saaty and Vargas' Method 

In t,heir 1987 article, Saaty and Vargas propose t.he followir~g approacll for estimat.ing rank 

reversal probabilities of t.he alt,crnatives in the case of imprecise prcferrnc:e judgments. Insteati of a 

single judgment value when cornparing t,wo alternatives (or crit.eria), t,he decision ~llaker is asked to  

specify a finite interval which covers t,he relevant. range of values for idhe relative ilnportance of the 

alternatives. Such interval estimates, called -interval judgments" by Saaty anti Vargas (1987, p. 108), 

are collected for each pairwise comparison. 

\Ve will n7rit.e r~nivariate random variables in r1ppc.r case it,alics, and realizations of random 

variables a s  well i ls non-stochast,ic variables i l l  lower case italics. Matric:es will be denoted in upper 

case and 1)olclface. and vectors of rand or^^ variates in upper case it.alics and I)ol(lface. Suppose t.he 
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decision problem under consideration I~as  a total of P  alternatives. Der~ot,e t,he pairwise cornparison of 

alternatives i and j ( 2 .  j = I. ..., R )  hy mil, and let, M = (m,,}. I f  the judgments are imprecise. we will 

L u dcnot,e rn.. i n  M hy the finite rarlgt: [rn.., m..] of its dornain. v V V 

In order to  calculate estirnates for the rank reversal probabilities using the AIIP methodology, 

T we i~ced ii~forlnat~ior~ about the true principal right eigenvector w = (wl, ..., tvk) associated wit,h t,he 

int,erval judgments. Within the AIIP framework, the component toi is interpreted a s  the relative 

irnport,ance weight for alt,ernative i. In the presence of int.erval  judgment.^, the exact nature of w is 

generally intractable, but. approximate informat.ion can be gathered through simulation experimenls. 

As in Zahedi (1984). Saaty and Vargas (1987) sample pairwise judgments from a uniform 

distribution over the interval specified in M, reflecting the assu~nption that  the decision maker is 

unable t,o select a single value from the interval and considers each point wit.hin t,he interval equally. 

The  purpose of their sampling experiment is to  derive a p p r o ~ i m a t ~ e  properties of the likelihood of rank 

reversals a ~ ~ d  out-ranking. Saaty and \:argm (1987) show that t.he range of possible values for rci 

( i =  I , ..., P )  is bounded and closed in the set of positive real numbers, since the principal eigenvector is 

a cont.inr~ous function of the Ini j  and t.he jr~tlgment int,ervals are b o ~ ~ n d e d  and closed. Let the range of 

L L' possible values of mi associatctl 1vit.11 M I,e defined by [u;. to i  1. Realizations aij are generat,ed 

(simr~lated) for each entry of M above t,he diagonal ( i . e . .  i < j), aft.er which t.he remaining entries are 

specifietl s~icli t.hat. n . .  = l l a ,  for all i and j, coniplet.ing the reciprocal matrix A = { a , . } .  As in the 
I L J V 

original AIIP analysis, where M  consist,^ of singlet,on values only, inconsistencies between the pairwise 

co~nparisons are allowed. Once A has heen compr~ted.  its principal right eigenvector w is calculated. 

As t.he sampling experiment introduces stochasticity in the 111easurement of the principal eigenvector. 

we deuotc: t l ~ c  ra.ndom variatc represcnti~ig (he  i"' colr~pont ,~~t  of t i l t .  vector t.l~at is being measurtld I)y 

IFi. Replicat.ing the above a i n ~ u l a t i o ~ ~  t,xperiment 12 tiinrs. a sample wl, ..., wn of principal eigenvectors 

is ol>t,air~ecl. T,ct 11s denote the t l h  c o n ~ p o ~ l e n t  of the nrfh eigei~vector generated by toy, and the stantlard 

deviat,ion of tl:;, ..., wy by s,. T l ~ e  properties of t.11i.s sample of eigenvectors are used t o  e s t in~a t~e  t,he 

rank reversal probabilities. 

It, can be shown that if t.he pairwise coiliparisons are sampled from a uniform distribution over 

the judgment. interval. the principal eigenvector components are beta distributed and can be 

approximated hy a trr~iicated normal di~t~ribri t ion if the number of alternatives is sufficient,ly large 

(Saaty and \'argas 198'7: Zahedi 1984). For purposes of st8atist.ical ii~fercnce, Saat.y and Vargas (1987) 

rlse the Kolinogorov-S~riir~~ov test and \.' goodness-of-fit t.est.s to  verify whether we can assume that  the 

sample d, .... w;R for each individual component, i ( i  = I .  .... k) of the principal eigenvector is drawn 

from a nor~na l  dist.ribut,ion. Since Saat.y and Vargas a~~a . lyze  the lVi ( i  = I, ..., P )  separately, wit,hout 

considering their i ~ ~ t . e r d c p e n d ~ ~ ~ c e ,  and t l ~ e n  inrrlt,iply pairwise rank reversal probabilities to calculate 

t.he overall rank rt.vrrsa2 probabilit,y, t.l~eir ~nct,hod implicitly assumes t,hat these comporlent,~ are 
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statistically independent. If the individual rlorma1it.y I~ypotlieses cannot be reject,ed, a ( I - t r )  level 

'interval of variation' (IOC?) is constructed for each coniponel~t LC'; ( i  = I ,  ..., n )  of the principal 

eigenvector. The interval shown in ( 1 )  is centered a t  t,he maximu~ll likelihood estimat,e of IVi, the 
- 

sample mean I.tri = 7 y/n; and ha? a length of J 2a/, ,n-l  Sir where Si is the sample st,andard deviation 

of IVi and is l , l~e percer~tilr value for t,lie Student, T distribution with n-I degrees of 

freedom. Sote that t,he width of this interval is determined in part by the predefined probability level 

The interval I O Y  can be interpreted as a central probability statement abor~t  t,he weight LVi. 

Define the int.ersect,ion of I 0  C'T and I 0 1 7  (i  # j )  by I 0  l.7. Saat.?; and Vargas determine t.he est.imat,e 

RR; of tlie bhprobabilitly of rank rnersal' nij associated rit,li each pair of alternat,ives ( i  and j), in t,lle 

case of imprecise judgments, by ( 5 ) :  

The superscript "r' in R R L  indicates that this rank rebersal probability is based on the 

ass~lrnptiori of imprecise (oon-stocl~astic) pairwise judgments. Equatior~ ( 2 )  implies that given intervals 

of level (1-tr), alternative5 r a l ~ d  j will never reverse ranks i f  I0 l .T  is empty, whereas in the case where 

this interkal is not erlipty, the rank reversal probability equals the likelihood that both IY1 and IV3 are 

contained in I0l.T;. Unless there exists a potential for co~lfusion, ~ v c  nil1 not include tlie a-level in the 

notation of R R ~ .  

Saaty arid Vargas (1987. p. 110) note that their measure of rank reversal " ... is a measure of 

the stability of the cigenvcctor conlpo~ients to changes i r ~  IOI/T;. It is not a rneasrire of the true ranks 

of the alternatives. because the true answer lrlay not be known." Several approximate measures of the 

probability of rank reversal n ,  can 1% derived. The approximation RR; i l l  ( 2 )  selected by S a t y  and 

I'argas defines the phenomenon of rank reversal ill terms of the stabrlzty  of tlie principal eigenvector 

components as measured 1,y IOIT;, the intersection of the "interbals of variation" for principal 

cigenvector components I I r ,  and It7,. Vargas and Arbel (1992) show that the measure RR; has a 

theoretical justificatior~, as i t  conberge? to tlte average of the vertices of the linear program in Arbel 
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(1989). i f  the judgment intervals are fully consistent. Of course. a s  mentioned above. in the presence of 

inconsistencl between the judgment interials the problem becomes non-convex, with a n  untractable 

solution. 

In addit io~l to pairwise rank reversal probabilities R R ~ ,  Saaty and \'argas (1087) also 

determint. expressions for the probal)ilit\.. that  a t  least one rank reversal occurs in the eigenvector (II) 

and the likelihootl that  a given alternati le L mill reverse rank with some other alternative (Hz). 

Assuming independent events (as we will see below, this assumption is erroneous). Saaty and Vargas' 

(1987) formulas for these probabilities are given in (3) and (4). 

As the probabilities I1 and Hi are composite measures of the more detailed njj, the rank 

reversal proljability of specific alternatives i and j, we mill focl~s only on est,imat,ing II.. in this paper. 
23 

3.2. Propertics of R R ~  

In  this section we will s l~ow how Saat > and I'argas' ( 1987) method can be improved i l l  the case 

of r~on-stocliastic imprecise judgemetits. In Section 4 Ice ol~tl inc how RR; can be extended to the case 

of storhast ic judgments. 

O i ~ e  issue in Saat) and Vargas' (1987) method is the way in which the "intervals of \ariation'' 

I 
(IOI:) ill ( I )  are constructed. First, the \ \ i t l t l i  of IOL;, ancl as a r e s ~ ~ l t  the estimated baluc RRt2, 

depeiids on the particular la luc  of a sc1ectc.d. I'l~us, it is always possible to  lncrpnse t h ~  ~stzmntcd 

rank r r l r r rn l  p rnbnb l l~ t i~ r  ER: 1)y i t lcreasi~~g the level of a. and to clccreae then1 by reducing a, so 

that  i t  nia) 1 x 3  clifficr~lt to give a useful interpretatloll to these prot)abilitics for a given level of cr. 

Secol~d, ill the construction and use of the I O I T  we can tliakc a more complete use of all 

I 
sample i~lformatio~i rcleb ant to the calculation of rank reversal probabilit ics. For exa~rrple, RRzl in (2) 

represents t l ~ e  likelihood [hat  that  IV, and L C ;  are both contained i l l  the intersection of their "intervals 

of variation" IOl;, without taking into collsideration where (l.r.,  11ow deep) ill IOIT; the c o r l ~ p o ~ ~ e n t s  

will be located. Ilo\vever, this information nla) be relevant for dcterminilig the strength of the 

difference in preference bet!\-cen alternatives I a ~ ~ d  j ,  and thus of the rank reversal likelihood. I t  is 

~)ossil)le, for example. to build a (I-tr) = 99 percent "interval of variatior~," suggesting that  we are 99 

percent c e r t a i ~ ~  that  LC', is includcd in the interkal, but a t  the same time have a relatively high 

probabilit\. t l ~ a t  a realization ~ 1 ,  of CV, within the interval will I,? locateti close to the boundary of the 
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In addition. lor cach principal eigenvector component Iy t.he interval 10y is computed 

illdependently of the other conlponents. after which the rank reversal probabilities R R ~ .  are calculated 

by multiplying t.he relevant. pr~babil i t~ies related to IF', and IC; ( i  # j). Thus, in t,he construction of t,he 

loby it is implicitly assunled that, the different  component,^ of W a r e  mutually independent. and the 

informaifion contained in the correlation I~etween the components of W is ignored. Saaty and \'argas 

(1987, p. 108) remark that  "...the eigenvector is an  n-tlimensional variable, and statistical measures can 

be developed for each of its colnponents. but not for t,he entire vector. Thus,  one must derive 

statistical measures t o  study rank reversal for single components and then use t.hem to  derive one for 

the entire vector." However, a s imul t aneo~~s  anal!.sis of the entire vector can (and should) be 

conducted using multivariate st.atistical t'echniques. In Section 5 we will use simulation experiments to  

show t.hat t,he assumption of independently distribut,ed eigenvector components (weights) is de facto 

false, a s  all the ~veight,s are  s i rnu l faneo~ l s l y  derived from a single matrix A of simulated pairwise 

 judgment,^. In fact., from t,he sampling experiments in Sectio~l 5 we will see that. some of the 

components of Ware  strongly correlated. 

4. STOCHASTIC JUDGMENTS IN THE AHP AND RANK REVERSAL 

In this section, we will draw upon t,he conceptually appealing and int,erest,ing met.hod developed 

hy Saat,y and Vargas (1987) (taking into account and correcting its prohlems as described above), 

ext,ending t.lieir measures to  t.he case of st.ocliastic  judgment,^. Specifically, we will introduce estimators 

of n,, derive t,heir st,at.ist.ical propert.ies and build confidence intervals for nij t.o meas~lre the s t ab i l i t ,~  

of tile preference ~ ~ n d e r  uncert.aint.y. 

In ollr stocl~ast,ic approach to  cllaract.erizing the l~ilt,llre of the judgment intervals. we ask t,he 

decisior~ maker for informati011 t,hat, car1 be used t,o constrllct a probability distribut,ioli over t,he range 

of t.ach jlrdgment interval. While Saaty and Vargas (1987) llse uniformly distrib11t.ed random variates 

t.o sample values from t.lleir non-st.ocl~ast.ic judgnient. intervals. we s a ~ n p l e  from t,lle assumetl probability 

dist,ributions over the interval of j ~ ~ d g m e n t s ,  resulting in a st,ochastic est,imate of t,lie principal 

eigenvect,or, which is in t,urn used t o  est,imat.e t.hr true ~,robabilit,ies of rank revrrsal. Therefort,. the 

statistical properties of our estimators of rank reversal probability are  based on pr~babil ist~ic concepts 

inlierer~t t o  the nat.ure of t.he jr~dglne~lt .  int,ervals, whert,as t,he st,atistical analysis in the niet'hod of 

Saaty and Vargas (1987) derives only from t,he sampling esperiment it.self. The  stochastic nat,ure of 

the  judgment,^ t.hrlnselvrs enables us t.o ronduct a more rigorous st,at,ist,ical analysis of t,he rank reversal 

likelihoods. Moreover. since the derivation of Saaty and Vargas' LLint,ervals of variationn and 

hypot,hesis t,est.s are based direct.1~ on t,lleir samplillg horn uniformly dist,ributed randorn variates, a 

direct appl ica t , io~~ of ~ 1 2 :  in it,s original form to  st.oc1iastic judgments may not he appropriate for 

ge~leral types of distribut.ions over t,he j ~ ~ d g n l c n t  i~rt.ervals. For general dist .r ib~~tions tlhe r~ull liypot.llesis 
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of approxinlately normally d is t r ib~~t 'ed  eigcnvector components may be untenable, in which case the 

Student T distribution cannot be used to  determine .'intervals of variation." 

Tlle  roba ability distributions over the judgment intcrvals can be assessed in nurnerous different 

ways, and any  roba ability distribution can be used to  characterize the stochastic nature of the 

preference judgments. Here. we describe two such ways. If a discrete distribution is appropriate, one 

may ask t,lle decision maker to  select, a d e g r e e  o f  c o n f i d e n c e  for several different discrete pairwise 

comparison ratio levels. These confidence levels can then be used to  derive a probability distribution 

over the range of each judgment interval, for instance by normalizing t,he sum of the confidence levels 

to unity. Alternatively, if a continuous distribution is appropriate. one may elicit the most optimistic, 

rnost pessimistic and most likely values for the preference ratios from the decision maker, after which a 

(continuous) beta distribution is constructed for the ratio values, assuming that t,he logarithms of t,he 

preference ratings follow a beta distribution (in order to maint,ain a valid ratio scale). T h e  preference 

elicitation procedures are not limited t o  uniformly distributed judgment intervals, whereas the amor~n t  

of information required from the decision maker to  build the probability distributions outlined above is 

quite modest and should not, be difficult t,o obtain - the preference elicit,ation is cert,ainly not mucli 

more involved than t,he effort, of specifying non-stochastic interval judgments. Our replicated sampling 

procedure explained below uses t,he probability distributions over [.he judgment intervals t o  obtain a 

representative sample of principal eigenvectors u r l .  ..., ton from their respect.ive sampled pairwise 

comparison matrices, in a way similar t,o Saaty and Vargas (1987). 

Before deriving our measures of rank reversal probabilities. we need t,o ext,end the not'ation to 

the stoc1iast.i~ case. Denote the random variate represent,ing the pairwise comparison of alt,errlatives i  

L 
a n d  j (i. J = I, ..., k) by .Ifij, and let M = { ! I f i j } .  Again. ,Ifij  in M is denoted by t,he finite range [mi? 

m!] of its tlonlain. Sillce the JIij are now st,ochast,ic, the principal eigenvect.or W is random as well? 
ZJ 

and our sampling experiments are desiglled t o  derive probability statementas about W. In contrast, in 

the experiments by Saaty and Vargas (1987) the only stochastic aspects derive from the sampling 

experiment itlself. 

We adopt the following definit.ion of rank reversal. \Ve will assume that  rank reversal between 

two alternatives i and j occurs. if alternative i tiiould be preferred over J under perfect information ( i . e . ,  

i > J), b r ~ t  is c a l c t ~ l a t e d  to  be less preferred based on t,he sample information on the interval judgments 

(i.e., wi < wj) .  Let us assume the true probability t.hat the decision nraker prefers alternative i  over 

alternative j is given by nij = P(i > 3). In addition, let n[l = P( LV, > W,), where as before Wi and W, 

are the stochastic weights determined using the eigenvector approach of the AHP. Then, the 

probability of rank reversal I I i j  according t,o our definition is given by ( 5 ) :  



\Ve next use ( 5 )  to  develop two point estimates. R R ~  and N R R ~ ,  for II,], and use these 

estimates to construct confidence intervals for II 
'I' 

4.1 Probability o f  Rank Reversal Based on Sample Frcqueocies of Preferences: RR$ 

The  first estimate of Ilij, R R ~ ,  is based on simple sample frequencies. The  superscript u597 

indicates t.hat t8his estimate is based on s to~has t~ ic  judgment int,ervals. Neit,her sij nor sf. in ( 5 )  is 
'I 

known, but, if we can assume t,hat in a given simulation trial the probability that  CVi > Wj is 

approxi~nately tqual t,o trlle probability that  alt.ernat,ive i is preferred t,o alt.ernat,ive j under complet,e 
S S 

informatioll, then sf. + sip and both can be estimat,ed by iif!RR = 5?RR = Pip the relative sample 
41 V ?1 

1 freclwncy of t.he event tha t  IV, exceeds TCJ. Hence. assuming T . .  = ;rij, (5) implies that IIij can be 
'I 

e ~ t ~ i m a t e d  Ily RR; in (6): 

From (6) we see t.hat RR; ranges from 0. when one alternative is always preferred to  the other, 

t,o (I.;?. when each alt,ernat.ive is equally likely t.o be preferred. Rrsitles its simplicitmy and intuit.ive 

appeal. R R ; ~  ha5 the advantage t,hat it is neither based on an  cr priori definition of the distribution of 

t,he principal eigenve~t~or component's. nor on an ass~impt,ion t,hat these cornponent,~ are independent. 

An esact confidence interval for 71 is defined by [ p k ,  p$ (see Cooper and Pearson 1934). 

L where p - .  and p'r are defined by (7) and (8): 
1.1 'I 

n is the sample size, and Fa/?, n l ,  n? is t.he % - I h  percc~lt.ilc value of t 11e F-di~t~ribution with (n l r  n,) 

degrees of freedom. The  int,erval defined by ( 7 )  and (8) provides valuable i n f o r m d o n  about the likely 

L r range of P( CVi > W j ) .  The  end-p0int.s p . .  and p . .  can l ~ e  used t.o construct the (I-tr) confidence interval 
'1 '1 

for IIij shown in (9): 



[? p " ( 1 - ~ 3  11 , 0.4,  if pi,, cr pi, 2 0.,5 and p . .  L < 0.5. 
'3 - 

L 
[ 2  p" v (1-p? v , 2 -6 (1-pi,)], if p L  >_ 0.5. 

13 I 
Since RR: = BPij(l-Pi,) is bounded by 0 and 0.5, and the relat,ive magnitude of p:.(l-pi) and 

L cr pu(l--p&) depends on which of pi, and pij is closer to 0.5, we need t,o distinguish several different cases 
21 

L L 1' u in (9). First, when ZJ < - pU< 11 - 0.5, plJ  is closer to  0.5 than pL,  so t,hat ?pi,(l-p,,) < ?p;(l-p..) < 0.5, 
13 Y V 

L u whereas the case 0.5 5 p . .  < p . .  irnplies 2 ' ~ ~ ( 1 - ~  u, < 2pL(1-pL) < 0.5. Note that t.he confidence 
21 - V 'I 11 " 31 

int~erval for JI i j  is not necessarily symniet~ric about the point est i~rlate RR$ 111 tjwo out of the four cases 

in (9), t,he int.erval is enlarged to ensure tha t  the confidence interval indeed includes 0.,5, tthe upper 

lirnit of J I G  (which occurs when irk = 0.5). 

AII at,t.ract.ive aspect. of using RR; t'o approxi~nat,e IT,, is t . l~at  it, does not. require arl n priori 

assun~pt,ion regarding the dist,ribiitioi~ of W. hloreover, R ~ $  irnplicit,ly takes the correlation between 

t,he conlponent,~ i11t.o considerat,ion, sirice each IVi is compared wit.h the [.Vj measured in t.he sarnr 

replication. Its tfrawback. however. is h a t  RR; only provides a.n indicat,ioii of Iiow freq~iently in the 

sa~np le  alternative i is preferred to alt,ernative j, and ignores thc intensify of the preference a s  reflect'ed 

I)y tlie relat,ive values of CVi and I.5. 
Nest,. we develop alternat,ive ra.nk reversal measures which t,ake advant'age of tlie illformation 

contained the variance-covariance structure of IG',. ..., Irk. 

4.2. Probability of  Rank Reversal Hased on Magnitude of  Prcfcrcnce Diffcrcnces: N R R ~  

,~'RR:, our second approxi~nabion for nij, explicitly t,akc.s i11t.o acconnt the inagnit.~idc of 

D.. = LVi- LV., tlie difference between tlie relat,ive preference weights for alternatives i and j. R.ather 
23 I 

than est,i~rlat,i~ig ni j  and a*. from their respect,ive saml,lr: proport.iol~s, we now derive t,t~eir erpressio~is 
V 

from the distribut.ion of Dij. Provided t,hat t,he principal eigenvector W is approxinlately rnultivariate 

normally distributed, Dij is also approxiniat.ely norn~ally dist#ribut.ed, wit.h rnea.11 ~ L D , ,  = $ji-Jjj and 
' I  

variance u;,, = u$+ (T:-2u . .  where L~~ and +, are t,he ( h u e )  inean eigenvector conlponelit,s associated 
11 

1 11' 

with at.t.ribut,es i and ,, u: and (T' arc (,he (t.rrle) varialices of t,he weig1it.s I.Vi and Ili, respectively, and 
3 

u . .  is tlie (true) covariance of [tii and IV,. Note that  while this approach does require t.hat the principal 
'1 

cigenvrctor is approsiii~ately 1nu1t~ivariat.e normally distribr~ted (so that  it, is less general t.lian R R ~  in 

t,liis respect,), its cornponelits are iiot assrimed to  be independellt. I11 Section 5 ,  our simulation 

experime1it.s will show that  some of the co~nponents lVi are in fact. st,rongly correla.l,ed. so t,hat the 
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independence ass~lmption implicitly made in the calculation of R R ~  and RR: may lead to inferior 

estimation results. This remark holds true for a sampling-based analysis of imprecise judgments as 

well a s  stochastic judgments. ~VRR:. is now given by (10): 

The probabilities P(Djj < 0) and P(Dij > 0) in (10)  are estimated using the maximum 

likelihood estimators Dij = (vi-W,) and S D , ,  of p D ,  and O D . , ,  respectively. For example, 
V '1 11 

where Z is standard normally distributed. Thus. while Pi, is the relative sample frequency of t,he event 

t'hat I/'; esceeds W, for the RR: method, Qij is its counterpart for the IL'RR: method. We determine a 

( I - a )  level confidence interval for nk by construct,ing a simultaneous confidence interval for p D  ant1 
?I 

uD.,, .  Using t,he Bonferroni method (Neter, Wasserman and Kutner 1985, p. 582), we can derive a 
' 21 

conservative simultaneous int,erval for from the individual (I-a/?) level confidence intervals for 

p D . ,  and u D , .  These individual intervals are given in (12) and (13) .  respectively. 
21 '1 

Denoting P ( Z <  I*) hy Z(z*), respectively. and using ( l l ) ,  a ( I - t r )  confidence interval for si is 

L 
then defined by [qk  , y:], where q j j  is t,he lowest possible value of Z(fi,/i?,) for any rombinat,ion o i  

V ?I 
I/ 

L ,  [ p , ,  . f i  a n  r D  [ , a : ] ,  and si11,ilarly q ,  is tlie l l ighnt value of Z ( F D , / B D , )  for any 
V 11 '1 V 11 11 '1 

values of y o  and u  satisfying (12)  and (13).  He~rcc, a conservative ( 1 - 0 )  conficience interval for n f .  
D i j  v 71 

is a s  shown in (14): 

Sinlilar to t,he case of  B R R ~  = RH;, itssllnring i,hat n!. = n  we can use (10)  t , ~  calct~late the 
'I V 'I 

point esI.irnatc. :VRR: of Iljj in (15): 



A ( I -a )  confidence interval for II i j  is fol~nd in a a a y  sinlila,r t,o (8) ,  but now using Q,, a ~ d  

L I '  of p.., Pij and p.:. 
?I 11 

'Tl~e derivation of ~ V R R ~  assumes a multivariate norlllal rJist.ribution for the principal 

eigenvedors, and t,akes the difference between the values of t,lieir components - and t , l~us in a sense the 

strength of the relative preferences - into account. Hence. the tradeoff between RR& and :VRR& is t,hat 

the former is of a simpler nature and can be used regardless of which distribution the eigenvector 

 component,^ follow. whereas the latter utilizes more sample information and may therefore yield more 

accurate estimates provided t,hat. t.he eigenvector components are approximately normally d i~ t~r ib r~ ted .  

However, XRR; may not be appropriate for tlistributions of eigenvector coniponents which differ 

substantially from t,he normal. 

In this section, we have developed two e~ t ima t~es  for t,he most. detailed measure of rank 

reversal, nil. The corresponding measures for Il and ni can easily be derived, analogous t,o Saaty and 

Vargas (1987). Estimates of Il and ni based on the same principles as RR! can easily be derived. using 

the frequencies of each ranking of the c o r n p o ~ ~ e i ~ t , ~  of W inst,ead of tlie frequency of the event, that. 

iYi > LC;. Estimates of n a l ~ d  11, baseti on the same principles as N R ~  can be derived using integrals 

of t,he rnult.ivariat,e r~orrnal dist,rib~~t.iori. IIowever, t.heir comput,at,ion is not trivial. 

It should I,e elnpl~asized t8hat tlie issue of why rank reversal in t,lie AHP weight,s occurs ill t.lie 

case of singlt,-valr~ed pair\vise comparisons is substantially different from t.hat of assessing the rank 

reversal pr~babili t~ies \\,hen t,he pairwise j ~ ~ d g r ~ ~ e r ~ t s  are  t i i h t r  irrrprecise o r  stochaslic, and introtl~~cing 

~lncertaint,y illto the analysis does not alleviat,e t , l~e frlndament.al pro1)lelns associat.ed wit,h t.he 

phenornenol~ of rank reversal i n  the AIIP itself. 111 pract.ice. it. may Ije tlifficult t.o discern wliether in a 

given sit.uat,ion rank reversal occurs due t,o the stocliastic nature of t,he pairwise con~parisolis or as a 

result of t,he l~nderlying rna.tthelnalics of t.he AHP procedurt, itself. By combining sampling procedures 

for deriving point est.in~at,es of t.lle st.ochast,ic relat,ive import,ance \veight,s wit,Ii t,he t.raclit.iona1 AHP 

~nethodology, ollr ~netliotl of deriving measures for t , l~e "probabilit,y of rank reversal" may est,ablish an 

interesting rationale for the occurrence of c ~ r t a i n  t8ypes of rauk reversal in pract,ice. 

5. NUMEItICAL EXAMPLES 

111 this section. we \\.ill llse two sirnulation experiments to  exemplify our proposed ~nelhotl  and 

compare the cornp~ltational results for RR: and NRR: wit11 R R ~  As the interval judgments in Saaty 

and Vargas (19137) arc non-stocl~astic. bul Lheir sampling experiment yields a statistical analysis of 

rank revtmal pro1)abilitit~s similar to ours, our comparison with their method is limited to the 
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computat,ional aspects only. The  interpretation of both methods cannot be compared direct,ly. 

Suppose that  a tlecision maker decides to use the A H P  methodology to  compare four 

alternatives! ant1 arrives at, the following nlat.rix of pairwise int,erval judgments: 

The matrix M in (16) is ident,ical to t'hat used in t,he experiment,al study reported by Saaty and 

Vargas (1987) for t,heir analxsis of imprecise  judgment,^. 

5.1 Experimental Design 

5.1.1. Saaty and Vargas' (1987) Experiment Evaluating R R ~  

First, we describe the simulation experiment conducted by Saaty and Vargas (1987) in order to  

illust,rate t . l~e use of R R ~ .  Saat,y and Vargas sirnulat.ed a t,otal of n = 100 nlat,rices A from unifornily 

d i~t r ibut~ed variatcs over the judgment intervals of M specified in (16). Tlie respective principal right 

eigenvect,or for each A was cornp~ited using t,lie procedure out,lined in Saat? (1980, l982b), yielding t,he 

estimated principal eigenvect.or w in Equation (17): 

where e is an appropr ia t ,e l  tlin~erlsio~ied unit column vector, and e T  is the transpose of e. In t,heir 

st,udy, Saat,y and Vargas verified approximate univariate normality of each component of W rising the 

Iiolmogorov-Smirnov test and the goodness-of-fit test, finding that  the uorrnality assumption could 

not be rejected for any Il l ,  a t  the rr = 5 percent significance level. Summary statistics of the sample 

results obt,ained by S a t y  and Vargas (1987) are presented in Table 1. 

'Table 1 About Here 

5.1.2. Two Experiments to Evaluate R R ~  a d  N R R ~  

We perform t,wo separat.e cxperi~rle~its  to evaluat,e RR; arld . V R R ~ ,  ant1 co~nputationally 

compare t . l~e results wit,h R R$ I11 Experilnellt A, we generate 100 samples from a matrix M with 

uniforrr~ stochast,ic j~ l t lgrnc~~t .  intervals of t,hc same form its (16). Thus. Experiment, A racilit.at,es a 
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direct cornput,at.iollal cornpa,risorl 1,etweerl R ~ I -  and our proposed rneasrires for t,he case of st.ochast,ic 
' I  

judgments. In Experiment R,  we again generate 100 samples from judgment intervals, but this tinle 

the rariates are generated from skewed discrete distributions over three specific pairwise judgment 

values, wit.11 probabilities proportional to the confidence levels. In pract,ice. this information would be 

provided by t'he decision maker. The ext,ension to more than three levels of ratio  judgment.^ is 

straight,forma.rd. Matrix C in (18) gives t.he pairwise comparison ratios used in Experiment R ,  followed 

wit,hin parentheses by their associated normalized confidence levels. Yote that  the normalized 

confidence levels in C cover the same range of values as the matrix M used in both Saaty and Vargas' 

original study and Experiment A.  

While t.lle range of each judgment, irit,erval in C corresponds with that of M in (16). we 

const,rricted the problem such that. those discret,e valr~es which are closer to t,he nleciia~~ of t.he int,erval 

are  more likely t.han t,he ext.reme points. I t  appears t,hat. in practice. distributions over the interval 

judgment ,~  with a mode )]ear t,Iie rnean or median value rnay often be more releva.nt t,Ilan uniform 

distribut,ions. Addit,ionally, in contrast. ~v i th  the uniform distribution. which requires a reciprocal or a 

logarit,l~mic tran~fornlat~iori ( h ~ o r e n e ~ i ~ n e n e z  and Yargas 1993), it is easy to select discret,e probabitit,y 

valr~es t,hat are consisterlt with t.lle use of a rat,io scale. Whether it is bett,er to represent the values 

wit.llin each judgment, interval by a discrete or a continrious dist.ribr11,ion will depend on the per~ept~ions 

of the decision maker. We selected a discret,e clistribution for Experi~nent R because it offers an  

int,erest,ing con~parison with t , l~e u~iiform intervals in Esperiment A. 

Using t,he expression in (17). we approximate Win  our  experiment.^ by ~ ' ~ e / e ~ ~ " e .  Raising 

A  t,o t,he power 64 proved more t,han sufficient for convergence. 111 most rases, a power of k = was 

enough for convergeilce. For bot,h Esperimcllt A and Experiment R we will compl~t,e the point 

t>stirnat,es R R ; ~  arld NRR?, and const,ruct 99 percent, confidellce intervals for t , l~e  prol)abilities of rank 
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reversal II,,. T o  distinguish t~et~ween the two  experiment.^, me will den0t.e the point estimates for 

Experiment A by RR$-' and T R R ~ ~ ~ ,  and those for Experiment B by RR;.' and SRR$~'. We also 

calculated RR; for Esperiments h arid B. and denote the resulting rank reversal probability measures 

by RR" and R R ~ , !  For not,at,ional convenience. the superscript, indicat,ing to shicti experiment (A or 
'3 

B) t,he estimate pertains is replaced by a dot (i .r . .  RRU .', .VRRij ,', RRij !I) if the discussion applies t,o 

bot,h esperiment.~. Whenever possible. we \\-ill compare t.he results from our  experiment.^ with the 

estimates RRI. obtained in Saaty and \'argase original study (1987). 
v 

5.2 Results of Experiments A and B 

We first determine whether it is reasonable to assume that  the estimates of IYl, ..., 1.5 
generated in our e~per i rnent~s  are approxin~ately multivariate riormally distributed. It is well-known 

that  if W is normally distributed wit.11 mean vector y5 and variance-covariance matrix C, then 

V =  ( w - $ ) ~  C-I ( W-y5) follows a x* distribution with four degrees of freedom. Following 3lalkovich 

and Affifi (1973), we perform the Iiolmogorov-Smirnov test for goodness-of-fit between V and the X2 
4 

dis t r ibut io~~.  j-irlding a Kolgomorov-Smirnov statist.ic (h;S) equal t,o 0.085 for Experiment. A, with a 

p-value of 0.471, and KS = 0.142, with a p-value of 0.09,5 for Experiment B. Hence. for Experiment 

A t,he null l~ypothesis that  W is mu1tivariat.e normally distriljuted cannot he rt!ject,ed a t  any reasonable 

o-level. so t,hat the rank reversal nleasurer RR:.' and :L.RR"~' (which both assume ~iormalit,y of W) 
'1 

are indeed a.pplicable. IIowever, the validity of the normality hypot,llesis for Experiment B is doubtful. 

Recall that  the estinlat,ion of RRij does not require any tlistributio~lal assurnption of lVi. 

Table 1 gives t,lie mean weight values % = ( Z l ,  ..., Zi), t,lie st,andard tfeviat,ions of t,he 

estimated weights and t,he minimum and max imun~  weight realizations, w , , , , ~ ~ ~  ancl w,,,,, for the 

sanlples of 100 principal cigrnvect,ors generated in each of the t,hree experin~ents (Experiments h and 

H,  and the original one by Saat,y and Vargas (1987). From (.his table we see that  Lhe summary 

st.at,istics are quite similar across experi~i~erits, ~ r i t l ~  slightly larger st,anda,rd deviations for the weights 

in Experiment B t.han those in Experiment A. \vhich in turn tend t,o be somewhat larger than the 

st,andard deviat,ioris report,ed in t,he original Saat,y and Vargas (1987) experiment.. Overall, t,he 

eigenvect.or cornponent.~ associated with t.l~e three s a m p l i ~ ~ g  experi~nents are of st.at.ist,ically co~nparable 

nature, on an  average basis as well as ill t e r n ~ s  of t.he range of t.hr sample valr~es. It. is of interest t,o 

study how sensi t i se  t,he t,l~ree measures of rank reversal probabilit,) (RR.' .  s', i R R ,  .'. R R -  l') are to 
13 81 

the d i f f f i ~ n c c s  i n  distributions between the experiments over t.he judgrnent intervals. Presumably, an  

estimator gives more stable and reliable resu1t.s if the point estimates and confidence intervals are 

similar across distriI,ut~iorls and estimation met.hod. The  number of t.irnes uli exceeds nlj ( i  < j )  is given 

in Table 2. These figures are only ava.ilablr for  experiment.^ and TI. as Saat.y a ~ i d  \'argas (1987) do 

not report this information for t,heir e s p c r i ~ ~ l t ~ n t .  



........................................ 

Tables '2 and 3 About Here 

Table 2 shows t,llat for the vast majority of samples in Experiments A and B. the weight for 

alternative i exceetis that  for alternat,ive j ( i  < j ) .  120r instance? lul exceeds w2 for all 100 samples in 

both experiments. and w:, is larger t,han to4 in 94 out of 100 samples taken in Experiment A and in 69 

of the 100 samples in Experiment B. The corresponding con~put~ational results of the original Saaty 

and Vargas (1987) experiment should closely correspond to those of Experiment A? because the 

sampling distribut.ions were ident,ical for t.llese two e~perirnent~s. 

As mentioned above, Saaty and Vargas (1987) use univariate techniques to  analyze the sample 

~igenvect~or comp0nent.s. implicitly assuming that t,he weight values are independently distribut,ed. The 

sample correlation mat.rices of the weights given in Table 3 indicate that  t,his assumption is erroneous, 

and several of the principal eigen~ect~or component,s are indeed strongly correlated. For inst.ance. in 

Experiment A weights II/; and W2 have a correlation of -0.786. Even though the correlat.ion matrix 

for their original experiment, is not given in Saaty and C'argas (1087), it is clear that  the weight.s in 

their st.udy must have heell correlated as well, because the sampli~lg distributions and experimental 

designs of t.heir experiment and Experiment A are ider~t.ical. Note t,hat t,he correlation bet,ween t,he 

eigenvector components is due only to the sampling proctdure used: and in no way deprnds on whet,her 

the original judgment intervals were stochast,ic or 11ot.. 

........................................ 

Tables 4 and 5 Aborlt licre 

We use t.l~e infor~nat~ion in Tables 1-3 and 5 t,o calc111at.e r8he point. est.imates and confidence 

intervals for a*. for Experiments A ( p i $  and B ( q , , )  in Table 4 .  For instance, Table 3 shows that (u3 
V 

exceeds t1l4 in 94 out. of the 100 sa~rlples in Experiment A. so that  the  corresponding value of pJ4 in 

Tahle 4 equals ll.94. Table ,5 prcsents [.he sa,mple nleans 7 . .  and st.andard deviat,ions s D , .  of the 
V 

'3 

pairwise differer~ces I,et,ween the weights. and confidence int,ervals for t.he mean differences / L  and t,he 
i, 

standard deviation of the differences U D , , .  For inst,ancc, frorn this table we see t,hat 2, = 0.0747 and 
Y 

Sd24 
= o.ll4l in Experiment B, yielding qZ4 = % ( p D , y 4 / u , 2 4 ~  + 2(0.0728/11.0~1) = Z(1.78) + 11.96 (see 

- 
Table 4). The result's in Table 4 show that the point cst,imates pij  and qij  are generally quitse close to  

one, which is consist,ent with t,he figures ill Table ? which exhibit a near-dominance of a t t r i b ~ ~ t ~ e  i ovcr j 

for most i < j. An exception is pair (3, 4 )  in Experiment B, in which case pij  = 0.69 and qi j  = 11.64. 

Similarly, 111e 9.9 percent confidence intervals for a*. ill Tahle 4 are close to one For botzh a l t ,er~~at ive  
13 

mc:asurc>s. Not,e t, hat these in t,ervals are not r~cccssarilg syrnnlet.ric about t' he point, cbstinlat.cs. 
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measures. Note that t.hese intervals are not necessarily symmetric about the point estimates. 

In addition to providing informlation needed for for t,lie calculation of NRR: and the confidence 

intervals [q$,  for .r$ Table 5 also contains interesting statistics on t,he magnitude of the differences 

in the relative preferences. For example, this table shows that on average attribute I clearly out-ranks 

t,he ot,her attributes. with 99..5 percent confidence intervals for pD , ranging from 0.3060 to 0.4063 in 
11 

Experiment A and from 0.2911 to 0.4051 in Experiment B. The mean sample difference Jij between 

the weights is much smaller for attributes i, j E  ( 2 ,  3, 4). The corresponding standard deviations for 

these pairs of attributes, however. are somewhat smaller as well, and none of the 99.5 percent intervals 

in Table 5 includes p D , ,  = 0. Therefore, for each attribute pair t,he null hypothesis of no difference 
11 

between the mean weights is rejected, so that it is highly unlikely t,hat the mean difference is negative 

for any pair. 

.............................. 

Table 6 About Here 

Table 6 reports 99 percent Uintervals of variation" IOG? for the attribute weights LVi, 

calculat.ed for Experiments A and R using the Saaty and \Jargas (1987) method outlined in Eqr~at~ion 

(1) of Section 2 .  The intervals report.ed by Saat,y and Vargas (1987. p. 113, Table 5) for t,heir original 

experiment are included in Table 6 as well. From Table 6 it is seen t,hat, as was to be expected since 

the interval distribut,ioiis and the e~perirnent~al design of Experiment A and the original experiment 

cond~.~ct,ed by Saat.y and \'argas (1987) are identical, t,he ranges of the I O Y  are quite similar for t,llese 

two experiments. 1Ioreover. the "int,ervals of variation" obtained in Experiment B are remarkably 

similar t,o Experiment A and the S&V Experiment, prol>ably clue to the fact that the finite ranges of 

t.he discrete pairwise judgment dist,ribnt,ions of Experiment B are identical to those in t,he ot,her two 

experiments. IIowever. as we will see below, the estimat,ed rank reversal probabilities for Experiment B 

are substant,ially different,. 

Of course, the prirnary purpose for the calcr~latiolls underlying Tables 4 and 5 is to derive t,he 

intermediate stcatistics necessary for det,ermining t.he point est,iniates R R . ' . S ~ =  ?P. - ( I -P . . )  and 
'J V V 

NRR.' .*S = 2Q- . ( I -Q . . )  of the unknown rank reversal probabilit,ies nij, and to construct (I-cu) = 99 
1J V ' I  

percent confidence int,ervals for the rank reversal probabilit,ies for Esperiment,~ A and R. These values 

are sumniarized in Tables 7 and 8. A direct comparison of t,he conlidcnce intervals for nij in Table 8 

with the Saaty and Vargas (1987) method is not possible, because t,hey do not discuss or calculat,e these 

entities in their paper. 



........................................ 

Tables 7 and 8 About Here 

Table 7 summarizes the estimated rank reversal prol,abilities (point estimates) as calculated as 

our proposed measures (RRiir%nd S R R ~ ~ J ~ )  and the Saaty and ITargas (1987) measure ( R R ~ ~ , ' )  for 

Experiments A and B. In this table, we also report the estimated probabilities ohtained by Saaty and 

Vargas (1987) in their original study ( R R ~ ) .  Table 7 shows that  in both Experiments A and B, each of 

the  three measures (RR ' pS, NRR ' .S and RR ' J') yields a zero probability of rank reversal between 

at,tribut,e I and any of the other a t t r i b ~ t ~ e s .  The  same is true for the original experiment by Saaty and 

Vargas (1987). This finding is consist,ent wit,h Table 3, where at tr ibute 1 was seen to  dominates the 
b 

other a t t r i b ~ t ~ e s  in all 100 samples taken in  experiment,^ A and B, with Table 5, which - as mentioned 

above - indicates tha t  the confidence interval for the mean pairwise difference between attribut,e 1 and 

the other at,tribut,es is strictsly positive, and with Table 6 which shows no overlap of IO? wit,h any of 

the other "intervals of variation.' As noted in Table 3, Saaty and Vargas d o  not report the 

corresponding information for their nper iment ,  but based on t,he values of R R : ~  (i. j =  2, S 4) we 

suspect tha t  the stcatistics for their study are similar. For t.he att.ribute pairs not involving att,ribute 1, 

the RRijlS and NRRijlS estimates are similar, but differ considerably from RR;~.! Typically, the 

N N R , ~  estimates are between the corresponding RRijqS and RR:.' values, albeit much closer to 
' I  

RR,vS than t,o RRij3! In several cases, RR::' differs ~ignificant~ly fro111 the other two estimates. For 
' I  

instance, Table 7 indicat,es tha t  for alternatives (3, 4), RR&' = 0.1128. ~ v R R ~ ~ ~ =  0.1486 while R R ~ ~ '  

is mrich higher a t  0.5494. I~lteresti~iglg, t8he est,irnates ( R R ~ )  reported in t,he original stutiy by Saaty 

and Vargas (1987) differ considerably from those obtained in Experiment A ( R R ~ . ' ) .  even tllougll tjhe 

rintierlying dat.a conditio~is were ident.ical for t,hesc experimerit,~. 

Overall, t,he results in Table 7 indicate t.hatl not surprisingly, the Xi; est,itnat,es are less st.able 

than RRij v S  and NRRV qS ,  since the R i j r  figures varied considerably when tlie d a t a  conditiorls were 

only slightly changed, while the RRjjpS and N R R ; > ~  measures appear less sensitive 1.0 the particular 

sample. Again, we st,ress t,hat t'he comparison of our st,ochast~ic nleasurt3s wit.11 Saaty and Vargas' 

measure is limit,ed 1.0 compulat.ional properties orlly, ZLS the latter was dvsignetl for t.he case of imprecise 

(non-stochast,ic) pairwise judgments. 

As mentioned above, an advant.age of R R ~  and N R R ~  is tha t  both easily facilit.ate the 

~onst~ruct ion of t,ight (precise) confiticnce intervals for t.he rank reversal probability. Inspecting Table 

8, we observe that  a[, t.he cost of t,he normality assurnpt.ion, the confidence intervals derived for the  

second measurc of rank reversal ( N R R ; ~ ~ ~ )  are tight.er than thosc of the first measurc ( R R ; I . ~ ~ ) .  

Therefore, XRR: is preferred t,o RR;. r~nless the tlistribution of the at#rribut.e weigl~ts is clearly non- 

normal. 



2 1 

Summarizing, it appears tha t  r,he measures developed in this paper (RR; and I V R R ~ )  yield 

attract'ive and robust estimates of tlie true rank reversal probabilities nij, in the case of stochastic 

judgment. intervals. 

6. CONCLUDING REMARKS 

In t'his paper, we propose two measures of rank reversal probabilities in the Analytic IIierarchy 

Process resulting from pairwise  judgment,^ which are stochastic in nature. These measures are based, in 

part.. on a previously proposed measure of rank reversal probability by Saat,y and Vargas (1987) in the 

case of imprecise judgments. We  introduce straightforward yet statist,ically rigorous procedures for 

deriving both theoretically sound point estimates and tight confidence intervals for the rank reversal 

probabilit.ies. One of t,he measures (RR:.) is based on relative sample frequencies and does not require 

any assunlption on the distribution of t.he at,tribute weights, while the other ( L ~ ~ ~ : )  is based on the 

assumption of multivariate normality of the attribute  weight,^. 

Using two simulation experiments. we have shown that  our proposed measures provide robust 

est,imat.es of rank reversal probability. Specifically, as long as tthe normality assun~pt~ion for W is 

reasonable. we recommenti using the second measure ( I V R R ~ ) ,  which is based on a multivariate 

a n a l ~ s i s ,  ant1 t.akes advanbage of t.he variance-covariance struct.ure of t.he at tr ibute weights and of the 

st.rength of the information of the difference in preference between tlie alternatives to  achieve more 

accurate rst imatior~ results. If t,he normalit,? ass~imption for the weights is rqiecteti. R R ~  is t,he method 

of choice. CVe have also shown that, our approach is flexible in that  it is possible t,o elicit the preference 

inforniation in t,he form of discrete confidence levels associated witah several values of t'lie pairwise 

j~idglneiits (ratios). 

Arbel and \:argas (1903) remark that  exploring the sensit#ivit,y of rank order t,o the range of 

preferences and providing flexible ways for dealing with articulation of non-t.ransitive preference 

structures are areas of pot,ential ave~iucs of future research. Their remark was i i ~ a d e  in the context of 

imprecise judgments. An ext,ension of our current methodology t o  non-~tocllast~ic judgment intervals 

may prove promising, for instance modifying our rank reversal measures in order t,o analyze rank 

reversal pr~babil i t~ies for fuzzy (non-st,orl~ast.ic) judgment int.ervals where not all point,s in t,he iriterval 

are coiisidered equally by t.he decision maker. 



TABLE 2: Number of Times wi Exceeded w, Among the 100 Eigenvectors Simulated, 
Experiments A and B, and the Original Saaty and Vargas (1987) (S&V) Experiment 

I I I I 
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TABLE 1: Descriptive Statistics for the Simulated Principal Eigenvector Components (Weights), 

Experiments A and R, and the Original Saaty and Vargas (1987) (SEV) Experiment 

I Experiment A I Experinlent R I Sb;V Experiment 1 

N r g t  

W i  

211, 

w2 

w3 

w4 

TABLE 3: Sample Correlation Matrix for the Principal Eigenvector Components (Weights), 
Experiments A and n, and the Original Saaty and Vargas (1987) (SkV) Experiment 

a: These values were reported in Table 3 of Saaty and Vargas (1987, p. 113). 

Experiment A 

Mean STD Min Max 

- 
W; s wi 'mi, 'maz 

.5211 ,0305 ,4386 ,5750 

.2005 ,0211 ,1567 .2482 

.I526 ,0138 .I228 .I848 

,1258 ,0129 .lo07 ,1586 

1 - 100 100 100 

i 2 - 99 100 
3 - 94 

I - 

I Experiment. A I Experi~iie~rt B I S&V Experiment ( 

Experiment B 

Mean STD 31in Max 

- 
W i  'w; 'mjn 'ma, 

.5215 ,0378 ,4077 ,5895 

.2041 .0303 .I568 ,2815 

.I431 ,0160 ,1107 .I901 

.I313 ,0237 ,0890 .I919 

1 - 100 100 100 

3 - 98 98 

3 - 69 
4 - 

S&V Experimenta 

,Clean STD Min Jlax 

- 
W i  'wi m 'ma, 

.5093 .0273 ;4374 ,5696 

.2131 ,0219 .I654 .2708 

.I496 .0175 .I111 .I971 

.I280 ,0151 .lo11 .I633 

Sot Reported 

w, rv, cc:, rv4 

Wl 1 - . i s6  -.56S -.472 

w2 
1 ,149 ,059 

w3 1 ,023 

" 4  1 

w, rr; r w, 

Wl I -.7.52 -.336 -.400 

bv2 1 ,088 -.I40 

% 1 -.268 

1 

Not Reported 



'WDLE 4: Point Estimates and 99 Percent Confidence Intervals for rk = rij. 

Experiments A and B 

First Proposed Measure ( R R ~  4 

I I Experiment A 

Pair (i,j) 

Experiment B 

Second Proposed Measure ( N R R i i 9 )  

Qjj  I L "  

Experiment A Experiment B 



TABLE 5: Sample Means ( d i j ) ,  Standard Deviations (sD.) and 99.5 Percenl Confidence Intervals (CI) 
'J 

for the Weight Differences and their Standard Deviations, 

Second Proposed Measure (i.e., using NRR:), Experiments A and B 

Pair (z,j) I I CI for pD,, 
V 

CI for aD.. 
7 1  

Experiment D 

- 

a ( j 1 d SD.. 
' I  

CI for a 
'ij ~ 

TABLE 6 

Applying the Saaty and Vargas (1987) Measures t o  Experiments A and 11, and 

to  the Original Saaty and Vargas (1987) (SkV) Experiment: 
99 Percent 'Intervals of Variationn for Wi 

I I Esperi rne~t  A Experiment B S k V  Experinlent 

1 ~i 1 10 C? for L V ~  101.7 for LV, I0 1.7 for IYi 

W~ 
w2 

lv3 

w4 

[0.4401,0.6021] [0.4212.0.6218] [0.1388,0.5798] 

[0.1443,0.%67] [0.1238.0.2845] [0.1567,0.2695] 

[O. 1160,O. 18921 [0.0996.0.1865] [O. 1043,O. 19491 

[0.0917,0.1599] [0.0683,0.1943] [0.0890,0.1669] 



TABLE 7: Summary of Estimated Rank Reversal Probabilities, 

for the Saaty and Vargas (1987) Probability Measure and our Proposed Measures, 

Experiments A and €4, and the Original Saaty and Vargas (1987) (S&V) Experiment 

I Pair (i,j) 1 Experiment A 1 Experiment B ( SLV Experimentn I 

a: These values are reported by Saaty and Vargas (1987), p. 114. 

a: The corresponding figures have not been reported in (.he Saaty and Vargas (1987) study. 

TABLE 8 
99 Percent Confidence Intervals for Probabilities of Rank Reversal,' 

Experiments A and B 

P a i r ( i )  

Experiment A 

RR;~' i t r ~ ~ :  f "  

Experiment B 

nRSss  ,VRR:,~ R R ~  
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