
Stochastic Kriging

for Efficient Nested Simulation
of Expected Shortfall

Ming Liu
Ph.D. Candidate

Department of Industrial Engineering and Management Sciences
Robert R. McCormick School of Engineering and Applied Science

Northwestern University
Evanston, IL 60208-3119, U.S.A.

ming-liu@northwestern.edu
(847) 467-6260

Jeremy Staum
Associate Professor

Department of Industrial Engineering and Management Sciences
Robert R. McCormick School of Engineering and Applied Science

Northwestern University
Evanston, IL 60208-3119, U.S.A.

j-staum@northwestern.edu
(847) 491-2405

February 1, 2010

This paper is based upon work supported by the National Science Foundation under
Grant No. DMI-0555485. The authors are grateful for the assistance of Hai Lan, discussions
with Barry Nelson, and comments from Lisa Goldberg and Michael Hayes. Portions of this
paper were published in the Proceedings of the 2009 Winter Simulation Conference under
the title “Estimating Expected Shortfall with Stochastic Kriging.”

mailto:ming-liu@northwestern.edu
mailto:j-staum@northwestern.edu

Abstract

We use stochastic kriging, a metamodeling technique, to speed up nested simulation of ex-
pected shortfall, a portfolio risk measure. Evaluating a risk measure of a portfolio that
includes derivative securities may require nested Monte Carlo simulation. The outer level
simulates financial scenarios and the inner level of simulation estimates the portfolio value
given a scenario. Spatial metamodeling enables inference about portfolio values in a scenario
based on inner-level simulation of nearby scenarios, reducing the required computational
effort: it is not necessary to perform inner-level simulation in every scenario. Because ex-
pected shortfall involves the scenarios that entail the largest losses, our procedure adaptively
allocates more computational effort to inner-level simulation of those scenarios, which also
improves computational efficiency.

Keywords: simulation, stochastic kriging, expected shortfall, conditional value at risk, tail
conditional expectation, conditional tail expectation

1 Introduction

Evaluating risk measures of a portfolio may require nested simulation, especially when the
portfolio contains derivative securities. In a two-level nested simulation framework, outer-
level simulation generates possible future scenarios. These scenarios may arise from historical
simulation or Monte Carlo sampling from the distribution of future changes in risk factors.
Inner-level simulation of the more distant future conditional on each scenario yields an es-
timate of the portfolio’s value, or profit and loss (P&L), in each scenario. For example,
inner-level simulation of derivative securities’ payoffs in the distant future provides Monte
Carlo estimates of these derivatives’ values in a given scenario (Glasserman, 2004). Con-
structing a stochastic model of the financial markets that is adequate for risk management,
and estimating its parameters, can be challenging. In this article, we assume that this task of
modeling and estimation has already been performed, and we propose a remedy for another
principal obstacle to successful implementation of nested risk management simulations—the
large computational cost of simulating many payoffs in each of many scenarios.

In this article, we focus on expected shortfall (ES) as the risk measure. ES can be inter-
preted as the average of the largest losses, in the tail of the loss distribution. In particular,
suppose there are K equally probable scenarios in which P&L is Y1, . . . , YK , and we are
interested in a tail of probability p, where Kp is an integer. Then ES at the 1 − p level is

ES1−p = −
1

Kp

Kp∑

i=1

Y(i), (1)

where Y(i) is the ith smallest P&L. We refer to the scenarios whose P&L is among the Kp
smallest as tail scenarios : they belong to the tail of the loss distribution and appear in
Equation (1). We refer to the other scenarios as non-tail scenarios. For further background
on ES, we refer to Acerbi and Tasche (2002) or Liu et al. (2008).

The literature on computational efficiency of nested risk management simulations, ad-
dressing estimation of value at risk (VaR) and ES, has two branches. One branch focuses on
choosing the number of inner-level simulation replications. The number of replications may
depend on the scenario, but it must be strictly positive for each scenario. This branch of
the literature also deals with quantifying and reducing the bias that arises due to inner-level
sampling error. For a brief literature review, see Liu et al. (2008). The other branch of the
literature, exemplified by Frye (1998) and Shaw (1998), proposes to reduce computational
cost by performing zero inner-level simulation replications in many of the scenarios. In this
approach, inner-level simulation occurs only for a set of scenarios called design points. These
authors estimate the P&L of other scenarios by interpolating among the simulation esti-
mates of P&L at design points. Interpolation makes sense when there is a spatial structure
of scenarios. For example, in Figure 1 below, a scenario consists of the prices of two stocks,
and it lies in the positive orthant of the real plane. The present article draws upon ideas
from both branches of the literature.

We improve upon the pioneering work on interpolation-based methods for risk manage-
ment simulation in three ways.

1

1. Instead of ordinary interpolation, we use stochastic kriging (Ankenman et al., 2008).
This method is more powerful because it interpolates using simulation outputs from all
the design points, not just those nearest to the scenario under consideration. Stochastic
kriging can also be more accurate because it takes into account the inner-level sampling
error.

2. We create a two-stage experiment design suited for estimating ES. An experiment

design is a way of choosing the design points. After the first stage of the simulation,
our procedure learns which scenarios are most likely to entail the large losses that
contribute to ES. It adds these scenarios to the set of design points used at the second
stage. The related but different methods of Oakley (2004), who created a two-stage
experiment design for a kriging procedure that estimates a quantile (VaR), inspired
this aspect of our procedure.

3. We allocate a fixed budget of inner-level replications to the design points unequally, in
a way that is optimal according to the framework of stochastic kriging.

The result is a procedure that attained a root mean squared error (RMSE) dozens of times
smaller than a standard simulation procedure in experiments that we ran. In these ex-
periments, our procedure was also significantly more accurate in estimating ES than the
advanced simulation procedure of Liu et al. (2008). Our procedure’s advantage over that
of Liu et al. (2008) is particularly great when the number of scenarios is large or when the
computational budget is small—in such examples our procedure’s RMSE was three or four
times smaller than that of Liu et al. (2008).

The rest of the paper is structured as follows. First we give a motivating example of a risk
management simulation problem in Section 2. In Section 3, we review stochastic kriging and
show how to use it to estimate ES. We present our new simulation procedure in Section 4. In
Section 5, we provide the results of simulation experiments in which we applied our procedure
to this example, and we demonstrate its advantages over other simulation procedures that
estimate ES. We offer some conclusions and directions for future research in Section 6.

2 Motivating Example

The example is almost identical to the one we considered in Liu et al. (2008), to which
we refer for details about the model and the data sources. We consider a portfolio of call
options on the stocks of Cisco (CSCO) or of Sun Microsystems (JAVA), shown in Table 1.
The example differs from that of Liu et al. (2008) only in the portfolio’s positions in the
options; we explain the reason for considering a different portfolio in Section 4.3. In the
table, the position is expressed as the number of shares of stock the option owner is entitled
to buy, where a negative position means a short position in the call option.

The simulation problem is to estimate the ES of this portfolio for a one-day time horizon.
The scenario is the pair of tomorrow’s stock prices. The model for P&L is that tomorrow,
each option’s value is given by the Black-Scholes pricing formula evaluated at the implied

2

Table 1: Portfolio of Call Options.

Underlying Maturity Risk Free Implied
Stock

Position Strike
(years)

Price
Rate Volatility

CSCO 200 $27.5 0.315 $1.65 4.82% 26.66%

CSCO -400 $30 0.315 $0.7 4.82% 25.64%

CSCO 200 $27.5 0.564 $2.5 5.01% 28.36%

CSCO -200 $30 0.564 $1.4 5.01% 26.91%

JAVA 900 $5 0.315 $0.435 4.82% 35.19%

JAVA 1200 $6 0.315 $0.125 4.82% 35.67%

JAVA -900 $5 0.564 $0.615 5.01% 36.42%

JAVA -500 $6 0.564 $0.26 5.01% 35.94%

volatility given in Table 1. Figure 1 plots portfolio loss versus scenario; the vertical axis mea-
sures loss, the negative of P&L, so that the regions with the largest losses, which contribute
to ES, are highest and most visually prominent.

When P&L is a known function of scenario, as in this example, there is no need for
inner-level simulation. However, the purpose of our procedure is to handle problems in
which inner-level simulation is necessary, so in applying our procedure to this example, we
use inner-level simulation and not the Black-Scholes formula. An advantage of considering
a simple example in which P&L is a known function of scenario is that it is easy to compute
ES and thus to evaluate the accuracy of ES estimates.

We consider two versions of this example, with different kinds of outer-level simulation.
In one version, the outer-level simulation is historical simulation, with a fixed set of one
thousand scenarios, portrayed in Figure 2. The other version uses Monte Carlo simulation,
specifying a bivariate lognormal distribution for the pair of stock prices. For details, see Liu
et al. (2008).

3 Stochastic Kriging

Interpolation is one kind of simulation metamodeling (Barton and Meckesheimer, 2006; Klei-
jnen, 2008). The strategy of metamodeling is to run computationally expensive simulations
only of certain scenarios, the design points, then use the simulation outputs to build a
metamodel of the simulation model. In risk management simulation, the metamodel can
be thought of as an approximation to the unknown loss surface depicted in Figure 1. The
metamodel can quickly provide an estimate of P&L in a scenario even if there has been no
inner-level simulation of that scenario.

Stochastic kriging (Ankenman et al., 2008) is an interpolation-based metamodeling tech-

3

Figure 1: Portfolio Loss as a Function of Scenarios for Tomorrow’s Stock Prices of Cisco
(CSCO) and Sun Microsystems (JAVA).

nique. It takes account of the variance that arises from inner-level simulation. Therefore, the
metamodel, when evaluated at a scenario, may not equal the inner-level simulation estimate
of that scenario’s P&L: stochastic kriging knows that the inner-level simulation estimate may
not be exactly correct. The significance of this property is that we can afford to use small
sample sizes for inner-level simulation of some scenarios, because stochastic kriging smooths
out the resulting noise. The following summary of stochastic kriging is based on Ankenman
et al. (2008).

We model the P&L Y(x) in a scenario x as

Y(x) = β0 + M(x)

where the scenario x = [x1, x2, . . . , xd]
⊤ is a vector of risk factors, M is a stationary Gaussian

random field with mean zero, and β0 represents the overall mean. Treating M as a random
field captures our uncertainty about P&L before running simulations. Ankenman et al.
(2008) call this extrinsic uncertainty. We adopt a model frequently used in kriging, under

4

Figure 2: Scatter plot of 1000 scenarios from historical simulation.

which M is second-order stationary with a Gaussian correlation function. This means

Cov[M(x), M(x′)] = τ 2 exp

(
−

d∑

j=1

θj(xj − x′

j)
2

)
.

That is, τ 2 is the variance of M(x) for all x, and the correlation between M(x) and M(x′)
depends only on x−x′, with the parameter vector θ = [θ1, . . . , θd]

⊤ governing the importance
of each dimension.

In addition to extrinsic uncertainty, there is also the intrinsic uncertainty that is inherent
in Monte Carlo simulation: even after running an inner-level simulation for a scenario x, we
remain uncertain about the P&L Y(x) in that scenario. The model for simulation replication
j at design point x is

Yj(x) = β0 + M(x) + εj(x),

where ε1(x), ε2(x), . . . are normal with mean zero and variance V(x), and independent of

5

each other and of M. The simulation output at xi after ni replications is

Ȳ(xi) :=
1

ni

ni∑

j=1

Yj(xi),

which is an estimator of the P&L Y(xi). Let Ȳ := [Ȳ(x1), . . . , Ȳ(xk)]
⊤ represent the vector

of simulation outputs at all k design points, where ni inner-level simulation replications are
run for scenario xi.

We use the metamodel to estimate P&L at K scenarios X1, . . . ,XK , referred to as predic-

tion points. Before presenting the stochastic kriging predictor that provides these estimates,
we define some notation. The vector of P&L at the design points is Y

k := [Y(x1), . . . , Y(xk)]
⊤

and the vector of P&L at the prediction points is Y
K := [Y(X1), . . . , Y(XK)]⊤. Let Σkk

denote the covariance matrix of Y
k, ΣkK denote the k×K covariance matrix of Y

k with Y
K ,

and ΣKk be its transpose. Because simulations at different design points are independent,
the covariance matrix of the intrinsic noise Ȳ − Y

k is diagonal. It equals V N
−1 where

V and N are diagonal matrices whose ith elements are respectively V(xi) and ni. Define
Σ := V N

−1 + Σkk, the sum of intrinsic and extrinsic covariance matrices for the design
points. Let 1K and 1k be K×1 and k×1 vectors whose elements are all one. The stochastic
kriging prediction is the Bayesian posterior mean of Y

K given observation Ȳ ,

Ŷ
K

= β01
K + ΣKkΣ−1(Ȳ − β01

k). (2)

Ankenman et al. (2008) also give the covariance matrix of the Bayesian posterior distribution
of Y

K , which we use in Section 4.3.
Equation (2) involves parameters which are unknown in practice: β0, τ 2, θ1, . . . , θd, and

V(x1), . . . , V(xk). As detailed by Ankenman et al. (2008), after running simulations, we
compute maximum likelihood estimates of β0, τ 2, and θ, and we estimate V(x1), . . . , V(xk)
with sample variances. The output of the metamodel at X1, . . . ,XK is given by Equation (2)

with these estimates plugged in. Let Ŷi represent the metamodel output at Xi.
We use the metamodel as the basis for an estimator of ES. In the examples we consider

here, we estimate ES at the 1 − p level using a number K of scenarios such that Kp is an
integer. Our methods are applicable when Kp is not an integer; for details on this case, see
Liu et al. (2008). Our estimator of ES based on the kriging metamodel is

ÊS1−p = −
1

Kp

Kp∑

i=1

Ŷ(i) (3)

where Ŷ(i) is the ith lowest value among the stochastic kriging predictions Ŷ1, . . . , ŶK at the
prediction points; cf. Equation (1).

We summarize the most important notation here for convenient reference:

• We want to learn about P&L in K scenarios X1, . . . ,XK . We use stochastic kriging

to compute Ŷ
K

as a prediction of the P&L Y
K := [Y(X1), . . . , Y(XK)]⊤. Therefore

we also call X1, . . . ,XK “prediction points.”

6

• We run simulations at k design points x1, . . . ,xk.

• At first, we run n0 simulation replications at each design point. In the end, there are
ni replications at design point xi, and Ȳ(xi) is the average of these ni replications. The
simulation output is Ȳ := [Ȳ(x1), . . . , Ȳ(xk)]

⊤.

• The variance of the simulation output for a single replication at design point xi is
V(xi), and V is a diagonal matrix containing the variances V(x1), . . . , V(xk).

• The sum of the sample sizes
∑k

i=1 ni = C, the computational budget.

4 Procedure

In this section, we present our simulation procedure for estimating ES using stochastic
kriging. We provide an outline in Section 4.1 and supply the details in subsequent sections.

4.1 Outline of the Procedure

Our procedure uses stochastic kriging metamodels three times, so we split the description
of the procedure into three stages. The estimator in Equation (3) uses only the third meta-
model. The purpose of the first two metamodels is to guide the allocation of computational
resources during the simulation procedure: deciding where to add design points and how
many simulation replications to run at each design point.

The user must specify some parameters that govern the behavior of the procedure. The
most important parameter is the computational budget C, which is the total number of
inner-level simulation replications that the procedure can use. In the applications that we
envision, inner-level simulation dominates the computational cost. Then, given the com-
puting platform available, the computational budget roughly determines the time that the
simulation procedure takes, so the user can set the computational budget to fill the time
available before an answer is required. The other parameters are the target numbers k1 of
Stage I design points and k2 of Stage II design points, the number n0 of replications to use
at each design point during Stages I and II, and the number M of times to sample from
the posterior distribution of Y

K during Stage II. We provide some guidance about choosing
these parameters after outlining the procedure.

In the outline, we refer to figures that illustrate the performance of our procedure. These
figures are based on one run of the procedure on the historical simulation example of Sec-
tion 2, using a computational budget C of 2 million replications, K = 1000 prediction points,
a target of k1 = 50 Stage I design points and k2 = 30 Stage II design points, n0 = 5000
replications per design point in Stages I and II, and sampling M = 300 times from the
posterior distribution of P&L at the design points. Figure 3 lists the procedure’s steps.

The performance of the procedure, that is, the accuracy of the ES estimator it produces,
depends on the target numbers k1 and k2 of design points and the number n0 of replications
at each design point in Stages I and II. It is not easy to optimize the procedure’s performance

7

Stage I.

1. Generate K prediction points through outer-level simulation (historical or Monte
Carlo). See Figure 2.

2. Given these prediction points, generate Stage I design points. See Section 4.2 and
Figure 4.

3. Simulate n0 replications for each of the Stage I design points. Based on the
simulation outputs, create a stochastic kriging metamodel (Figure 5).

Stage II.

1. Sample a vector of P&L at each prediction point from its posterior distribution
given the data generated in Stage I simulation. Based on M such samples, select
the prediction points that seem likeliest to be tail scenarios, and add them to the
set of design points. See Section 4.3 and Figure 6.

2. Simulate n0 replications for the new Stage II design points. Based on the simula-
tion outputs, create a stochastic kriging metamodel (Figure 7).

Stage III.

1. Allocate the remaining computational budget to all design points. See Section 4.4
and Figure 8.

2. Perform further simulation at the design points. Based on the simulation outputs,
create a stochastic kriging metamodel (Figure 9).

3. Compute the ES estimator in Equation (3) using the final metamodel.

Figure 3: Outline of the procedure.

by choosing these parameters. Lan (2009) studies the problem of choosing such parameters
for a related procedure, not based on stochastic kriging, for simulating ES. Ankenman et al.
(2008, §3.3) discuss how to structure an experiment design for stochastic kriging, but not in
the context of ES. We find that, with a little experience in applying the procedure to a class
of problems, it is not too hard to choose parameters that result in good performance. Here
we merely provide some guidelines based on our experience:

• There should be enough Stage I design points that, if P&L were known for all these sce-
narios, interpolation could provide a fairly accurate metamodel—sufficiently accurate
to identify the region in which the tail scenarios lie. If there are too few Stage I design
points to do this, the procedure’s performance may be poor. The requisite number of
design points is smaller in lower dimension d and when P&L is a smoother function of
the scenario.

8

• It can be beneficial to add at least Kp design points in Stage II, which makes it possible
for all Kp tail scenarios to become design points.

• In order to estimate the inner-level variance V well enough, the number n0 of replica-
tions must be at least 10, or more if there is high kurtosis in inner-level sampling.

• We found that it worked well when (k1 + k2)n0, the number of replications planned
for simulation during Stages I and II, is a substantial fraction of the computational
budget C, but less than half.

• In general, it is desirable to use a large number of design points, subject to two lim-
itations. It may be counterproductive to use so many design points that n0 needs to
be too small. Also, if there are too many design points, the computer time required to
perform stochastic kriging may become significant, or one may encounter difficulties
with memory management because some matrices involved in stochastic kriging have
size proportional to the square of the number of design points. This effect depends on
the computing environment.

• As the number M of samples from the posterior distribution increases, the choice of
Stage II design points converges to the set of scenarios that are likeliest to be tail
scenarios, according to stochastic kriging. It is desirable to let M be large as long as
this does not use up too much computer time, but M can also be much smaller than
the values we use without causing major problems.

4.2 Choosing Stage I Design Points

As is standard in simulation metamodeling, we begin with a space-filling experiment design;
the goal is to make sure that the prediction points are all near design points. In particular,
we use a maximin Latin hypercube design (Santner et al., 2003). The space that we want
to fill with design points is the convex hull X of the prediction points X1, . . . ,XK . Kriging
should not be used for extrapolation (Kleijnen and Beers, 2004), so we include among the
design points all prediction points that fall on the boundary of the convex hull. Let kc be
the number of such points, and let G be the smallest d-dimensional box containing all the
prediction points. In the absence of an algorithm for generating a space-filling design inside
the convex set X , we use a standard algorithm for generating a maximin Latin hypercube
design in the box G (Santner et al., 2003). We only use the points in this design that fall
inside X , because the other points are too far away from the design points.

We want to have k1 − kc such points. The fraction of the points in the maximin Latin
hypercube design falling in X will be approximately the ratio of the volume of X to the
volume of G. The volume of a convex hull can be calculated efficiently (Barber et al., 1996),
so we can calculate this ratio f . Therefore we choose the number of points in the maximin
Latin hypercube design to be ⌈(k1 − kc)/f⌉. However, the fraction of these points that
actually falls in X may not be exactly f . Consequently, the number of Stage I design points
may not be exactly k1.

9

Figure 4 shows the Stage I design points chosen on one run of the procedure. The number
of design points is 48, which is close to the planned number k1 = 50. Compare Figure 4 to
Figure 2, which shows the prediction points.

Figure 4: Design points chosen in Stage I on one run of the procedure.

Figure 5 shows the absolute value of the error Ŷ−Y of the stochastic kriging metamodel
built in Stage I on this run of the procedure. At this stage, the error is substantial in many
regions; compare the magnitude of the error in Figure 5 with the magnitude of P&L in
Figure 1. We will see how the error shrinks after subsequent stages of the procedure.

4.3 Choosing Stage II Design Points

By comparing Equations (1) and (3), we see that our goal in experiment design for metamod-
eling should be to identify the tail scenarios and make the metamodel accurate in estimating
their P&L. In Stage II, we attempt to identify the prediction points that are tail scenarios.
We then add these points to the set of design points, and perform inner-level simulation of
these scenarios, to learn more about their P&L.

10

Figure 5: Absolute value of the error of the Stage I metamodel on one run of the procedure.

After performing stochastic kriging in Stage I, we have the posterior distribution of Y
K ,

the vector of P&L for all prediction points, which is multivariate normal (Ankenman et al.,
2008). Because we are uncertain about Y

K , we are uncertain about which prediction points

are tail scenarios. Using a vector Ỹ sampled from the posterior distribution of Y
K , we could

try to guess which scenarios belong to the tail. We would guess that scenario i belongs
to the tail if Ỹi is among the Kp lowest components of Ỹ. However, for two reasons, this
strategy of guessing would be likely to miss tail scenarios. One reason is that, if we select
only Kp scenarios, we are unlikely to guess all the tail scenarios correctly. The other reason
is that a single sample from the posterior distribution of Y

K may be unrepresentative of that
distribution. Therefore, we proceed as follows in selecting up to k2 additional design points;
we envision that k2 > Kp, which improves the chances of selecting tail scenarios. We sample
M vectors Ỹ

(1), . . . , Ỹ(M) independently from the posterior distribution of Y
K . Let T

(j)
i be an

indicator function that equals one if Ỹ
(j)
i is among the Kp lowest components of Ỹ

(j), that is,

scenario i is in the tail for the jth sample from the posterior distribution; otherwise, T
(j)
i = 0.

Our estimated probability that scenario i is a tail scenario is q̂i :=
∑M

j=1 T
(j)
i /M . We will

11

use these estimated probabilities again in Stage III. In Stage II, we select the scenarios with
the k2 highest estimated probabilities, judging them likeliest to be among the tail scenarios,
and make them design points. However, if fewer than k2 scenarios have positive estimated
probabilities, we only select these.

Figure 6 shows the design points chosen on one run of the procedure. Although k2 = 30,
only 17 design points were added in Stage II: the other scenarios’ values were never among
the Kp = 10 lowest in M = 300 samples from the posterior distribution of Y

K . On this run
of the procedure, all 10 tail scenarios were selected as design points, which is a success for
the procedure.

Most of the additional design points are near each other and near the tail scenarios, but
two are in a different region with a higher stock price for Cisco. Given the data available
after Stage I, the procedure judges it possible that this other region might contain one of
the tail scenarios, so it allocates computational resources to exploring this region. Indeed, in
some risk management simulation problems, the tail scenarios may occupy multiple distant
regions, and one tail scenario can be isolated from the others. The portfolio that we used
as an example in Liu et al. (2008) has this type of structure, which is more challenging for
an interpolation-based procedure. Although our procedure works on that portfolio, we use
a different portfolio here so as to show the procedure’s performance on the type of problem
for which it works best, which is a common type.

Figure 7 shows the absolute value of the error Ŷ−Y of the stochastic kriging metamodel
built in Stage II on this run of the procedure.

4.4 Allocating the Remaining Computational Budget

In Stage III we allocate the remaining computational budget to inner-level simulation of the
k design points chosen in Stages I and II. (The target number of design points is k1 + k2,
but because of the way we choose design points, k may not exactly equal k1 + k2.) We
choose an allocation with the aim of minimizing the posterior variance of the ES estimator in
Equation (3). In Appendix A, we show how to solve a simplified version of that minimization
problem by solving the optimization problem (4), in which the decision variable is the vector
n specifying the number of replications at each design point. Because these numbers are
large, we relax the integer constraint and allow them to be real numbers, without worrying
about rounding. Recall from Section 3 that V is a diagonal matrix with ith element V(xi),
the intrinsic variance at the design point xi, N is a diagonal matrix with ith element ni,
and Σkk and ΣkK are extrinsic covariance matrices. ES can be written as w

⊤
Y

K where wi is
−1/Kp if scenario i is a tail scenario, and 0 otherwise. Define U := (Σkk + V /n0)

−1ΣkK
w.

The optimization problem is to

minimize U
⊤
V N

−1
U subject to n

⊤1k = C, n ≥ n0. (4)

In practice, we use maximum likelihood estimates of Σkk and ΣkK and we use sample
variances in estimating V , as discussed in Section 3. Likewise, we substitute −q̂i/Kp for wi,
where q̂i is the estimated probability that scenario i is a tail scenario, explained in Section 4.3.

12

Figure 6: Design points chosen in Stages I and II on one run of the procedure.

The optimization problem (4) can be solved by a variable pegging procedure (Bitran and
Hax, 1981; Bretthauer et al., 1999):

Step 1. Initialize the iteration counter m = 1, the index set I(1) = {1, . . . , k}, and the
unallocated budget C(1) = C.

Step 2. For all i ∈ I(m), compute ni(m) = C(m)Ui

√
V(xi)/

∑
j∈I(m) Uj

√
V(xj).

Step 3. If ni(m) ≥ n0 for all i ∈ I(m), the solution is n(m) and we are done. Otherwise,

• the set of indices of design points that may yet receive more than n0 replications
is I(m + 1) = {i : ni(m) > n0},

• all other design points will receive n0 replications: ni(m+1) = n0 for i /∈ I(m+1),

• and the unallocated budget is reduced to C(m + 1) = C − (k − |I(m + 1)|)n0.

Let m = m + 1 and go to Step 2.

13

Figure 7: Absolute value of the error of the Stage II metamodel on one run of the procedure.

To get sample sizes from this procedure, we round the results to the nearest integers.
Figure 8 shows the allocation on one run of the procedure. The computational budget is

spent primarily on design points that are tail scenarios or are near tail scenarios. Simulation
replications run at design points near the tail scenarios are not wasted: stochastic kriging
uses them to improve the inference about the P&L in tail scenarios.

Figure 9 shows the absolute value of the error Ŷ−Y of the stochastic kriging metamodel
built in Stage III on this run of the procedure. Comparing Figure 9 with Figure 7, we see
that the error in estimating P&L of the tail scenarios has shrunk dramatically because of
Stage III, and is now reasonably small. The error is still large in some regions, but this does
not affect the quality of the ES estimation.

5 Numerical Study

To illustrate the performance of our procedure, we use the example described in Section 2.
We present the results of simulation experiments to compare our procedure, which we call

14

Figure 8: Number of simulation replications allocated to each design point on one run of the
procedure.

the “SK procedure,” to two other procedures. One is the procedure, based on methods of
statistical ranking and selection, that we proposed in Liu et al. (2008), which we call the “RS
procedure.” The other is a standard procedure, involving an equal allocation of inner-level
simulation replications to each scenario. It is described in detail in Liu et al. (2008). We do
not include the methods of Frye (1998), Shaw (1998), Oakley (2004), or Gordy and Juneja
(2008) in the comparison. Frye (1998) and Shaw (1998) provide strategies for simulation,
not a detailed specification of a concrete procedure. Oakley (2004) and Gordy and Juneja
(2008) specify simulation procedures that are tailored to estimation of VaR; although their
approaches are relevant to estimating ES, construction of such procedures remains for the
future.

5.1 Historical Simulation Example

In this section we consider the version of the example that uses historical simulation in the
outer level. We first estimate ES at the 1 − p = 99% level. For the SK procedure we target

15

Figure 9: Absolute value of the error of the Stage III metamodel on one run of the procedure.

k1 = 50 design points in Stage I and k2 = 30 design points in Stage II, use M = 300 samples
from the posterior distribution of P&L, and take sample sizes of n0 = 5000 in Stages I and
II. For the RS procedure, we use sample sizes that start at n0 = 30 in the first stage and
grow by R = 1.1 per stage; see Liu et al. (2008). We run 1000 macro-replications of the
simulation experiments. Figure 10 shows the resulting estimate of the relative root mean
squared error (RRMSE) of the three procedures’ ES estimators, with error bars representing
95% confidence intervals for RRMSE.

From Figure 10, we see that both the SK and RS procedures are far more accurate
than the standard procedure for this example. For small computational budgets, the SK
procedure is much more accurate than the RS procedure. It is possible to fit a straight line
passing through the four error bars that describe the performance of the SK procedure, with
slope roughly -0.5. The RMSE of ordinary Monte Carlo simulation procedures converges as
O(C−0.5) as the computational budget grows, but the convergence rate can be less favorable
for two-level simulation procedures (Lee, 1998; Lan et al., 2008). We have observed this
behavior only over a moderate range of budgets and do not know under what conditions, if

16

Figure 10: Accuracy in estimating expected shortfall at the 99% level for the historical
simulation example.

any, the SK procedure has this behavior asymptotically.
Next we estimate the ES at the 1 − p = 95% level. The parameters of RS procedure are

the same as before. Because Kp = 50 is now much larger than in the previous experiment, in
which it was 10, we adjust the parameters of the SK procedure. We still target k1 = 50 design
points in Stage I, but we allow for k2 = 60 > Kp additional design points in Stage II. We also
increase the number M of samples from the posterior distribution of P&L to 600 because it
is more difficult to identify the tail scenarios in this simulation problem. We still use sample
sizes of n0 = 5000 in Stages I and II when the budget C is at least 1 million. However,
(k1 + k2)5000 > 0.5 million, so when C = 0.5 million, we choose n0 = 2000 instead. We run
1000 macro-replications of the simulation experiments, and show the resulting estimates of
the procedures’ RRMSE in Figure 11.

Comparing Figure 10 and Figure 11, we see that the advantage of the SK procedure
over the RS procedure is greater when estimating ES0.95 than ES0.99 in this example. This
happens because there are more prediction points whose P&L is around the 5th percentile of

17

Figure 11: Accuracy in estimating expected shortfall at the 95% level for the historical
simulation example.

P&L than around the 1st percentile. The RS procedure tries to “screen out” as many non-tail
scenarios as possible, so as to devote the remaining computational budget primarily to tail
scenarios (Liu et al., 2008). When there are many prediction points whose portfolio losses
are around the pth percentile of P&L, it is hard to screen them out, so the RS procedure
tends to use a lot of simulation replications in attempting to do so. Because it does not
use that data in estimating ES, fewer simulation replications can be allocated to estimating
ES, leading to larger error (Liu et al., 2008). The SK procedure does not suffer from this
shortcoming: all of the simulation replications contribute to the ES estimator. The curse of
two-level risk management simulation is a bias that arises because, when we use simulation
output to guess which scenarios entail large losses, we are likely to choose a scenario whose
estimated loss is larger than its true loss (Lee, 1998; Lan et al., 2007; Gordy and Juneja,
2008). Stochastic kriging mitigates this problem by smoothing the estimated P&L across
neighboring scenarios.

18

5.2 Example with Outer-Level Monte Carlo Simulation

In this section we consider the version of the example that uses Monte Carlo simulation in
the outer level. We investigate the effect of changing the number K of scenarios sampled at
the outer level. In a two-level simulation with Monte Carlo at the outer level, K must grow
for the simulation estimator to converge to the true value; however, if K is too large relative
to the computational budget C, the estimator is poor due to excessive inner-level noise (Lee,
1998; Gordy and Juneja, 2008; Lan et al., 2008).

Figure 12 shows the results of 1000 macro-replications of a simulation experiment to
estimate ES at the 1 − p = 99% level. The computational budget C is 2 million in each of
these experiments. The parameters of the RS procedure are the same as before. For the
SK procedure, once again we target k1 = 50 design points in Stage I and take sample sizes
of n0 = 5000 in Stages I and II. We allow for k2 = 40 design points in Stage II because
40 exceeds Kp even for the largest number K of scenarios we consider here, K = 3000.
Compared to the version of this simulation with historical simulation in the outer level, it
is more difficult to identify the tail scenarios, so we increase the number M of samples from
the posterior distribution of P&L to 400.

In Figure 12, we see that, given the budget C = 2 million, the best choice of K for
the standard procedure and the RS procedure is around K = 2000, and they become much
less accurate when the number of scenarios increases to K = 3000. When K is small, the
empirical distribution of the K scenarios is far from the true outer-level distribution; when
K is large, there is a lot of inner-level noise in estimating each scenario’s P&L, resulting in
large bias in estimating ES (Lan et al., 2008; Lan, 2009). It is challenging to choose K well,
and the procedure’s performance depends greatly on this choice (Lan, 2009). By contrast,
in the SK procedure, we can increase the number of K outer-level scenarios, i.e. prediction
points, without increasing the number k of design points. Therefore the inner-level sample
size for each design point can stay the same as we increase K. As Figure 12 illustrates,
the RRMSE of the SK procedure’s ES estimator decreases in K. Arguments in Oakley and
O’Hagan (2002) suggest that the RRMSE converges to a positive value as K goes to infinity
with computational budget C fixed.

We do not explore this effect in Figure 12 because, when K is very large, our MATLAB

implementation of stochastic kriging encounters memory constraints on a PC with 3.4 GB
of RAM. When K is very large, the RS and SK procedures have significant space and time
requirements for operations other than inner-level simulation. These have to do, respectively,
with comparing many scenarios to each other, and with operations involving large matrices.
Because these effects depend greatly on the computing environment, we do not explore them
here, instead treating inner-level simulation replications as the primary computational cost.

This experiment suggests two advantages of the SK procedure over the standard and RS
procedures when using outer-level Monte Carlo simulation. The user need not worry about
finding an optimal, moderate number K of outer-level scenarios, where the optimal K varies
greatly from one simulation problem to another (Lan, 2009). Instead, one can always use the
largest K such that stochastic kriging does not impose an excessive computational burden.
Also, we believe that, as in Figure 12, for many simulation problems, the SK procedure with

19

Figure 12: Accuracy in estimating expected shortfall at the 99% level for the two-level
simulation example.

large K performs better than the standard and RS procedures with optimal K.

6 Conclusions and Future Research

Stochastic kriging enables better estimation of expected shortfall. Our simulation procedure
is well suited to dealing with small computational budgets. It works especially well compared
to other procedures when the spatial structure of the simulation problem is such that most
tail scenarios lie near other scenarios and P&L is a smooth function of the scenario, but it
also works even when the problem does not have these properties. Another advantage of
our procedure over its competitors is that it makes it far easier for the user to choose the
number of outer-level Monte Carlo simulation replications. There are several opportunities
for further investigation and improvement of risk management simulation procedures based
on stochastic kriging.

We used two-dimensional examples to illustrate our method. It remains to be seen how

20

well it performs for higher-dimensional examples. Higher-dimensional problems are more
challenging for kriging methods: it is more difficult to find a good experiment design, and
the error of the metamodel tends to increase. Dimension-reduction methods, such as those
proposed by Frye (1998) and Shaw (1998), should help. However, kriging methods are
capable of handling significantly higher-dimensional examples.

When the number of prediction points is very large, stochastic kriging may take up a
great deal of memory and CPU time. This happens when stochastic kriging considers the
influence of simulation at all design points on predictions at each prediction point, or the
posterior covariance between P&L at every pair of prediction points. Using spatial correlation
functions that imply zero correlation between sufficiently distant points (Santner et al., 2003)
reduces the number of pairs that must be considered and should help to make it feasible to
use more prediction points.

In our study, we used the simplest version of stochastic kriging, which builds a metamodel
purely by interpolation. However, stochastic kriging can incorporate regression methods in
simulation metamodeling (Barton and Meckesheimer, 2006; Kleijnen, 2008). Many portfolios
have structure that regression can capture (e.g. an increasing trend in P&L with the level of
a global equity index), in which case regression will lead to lower error in metamodeling.

Our procedure uses a simple first-stage experiment design, which could be improved. In
some simulation problems, there would be too many prediction points on the convex hull.
A modification of the experiment design would find a larger convex polytope, with fewer
vertices, still containing all the prediction points.

The second-stage experiment design worked well in the problems we studied, in which
there were relatively few tail scenarios. This allowed us to aim to include all the tail scenarios
among the design points and to ignore the spatial relationships among the scenarios that
seemed likely to be tail scenarios. When there are many tail scenarios, it might be better to
create a second-stage experiment design with a different goal: to aim to have some design
point near every scenario that is likely to be a tail scenario.

References

Acerbi, C., Tasche, D., 2002. On the coherence of expected shortfall. Journal of Banking and
Finance 26 (7), 1487–1503.

Ankenman, B., Nelson, B. L., Staum, J., 2008. Stochastic kriging for simulation metamod-
eling. Operations Research, forthcoming.

Barber, C. B., Dobkin, D. P., Huhdanpaa, H. T., 1996. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software 22 (4), 469–483.

Barton, R. R., Meckesheimer, M., 2006. Metamodel-based simulation optimization. In: Hen-
derson, S. G., Nelson, B. L. (Eds.), Handbooks in Operations Research and Management
Science: Simulation. Elsevier, New York, Ch. 19.

21

Bitran, G. R., Hax, A. C., 1981. Disaggregation and resource allocation using convex knap-
sack problems with bounded variables. Management Science 27, 431–441.

Bretthauer, K. M., Ross, A., Shetty, B., 1999. Nonlinear integer programming for optimal
allocation in stratified sampling. European Journal of Operational Research 116, 667–680.

Frye, J., November 1998. Monte Carlo by day. Risk 11, 66–71.

Glasserman, P., 2004. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New
York.

Golub, G. H., Van Loan, C. F., 1996. Matrix Computations (3rd edition). Johns Hopkins
University Press, Baltimore.

Gordy, M. B., Juneja, S., April 2008. Nested simulation in portfolio risk measurement.
Finance and Economics Discussion Series 2008-21, Federal Reserve Board.

Kleijnen, J. P. C., 2008. Design and Analysis of Simulation Experiments. Springer-Verlag,
New York.

Kleijnen, J. P. C., Beers, W. C. M., 2004. Application-driven sequential designs for simulation
experiments: Kriging metamodeling. Journal of the Operational Research Society 55, 876–
883.

Lan, H., 2009. Tuning the parameters of a two-level simulation procedure with screening.
Working paper, Dept. of IEMS, Northwestern University.

Lan, H., Nelson, B. L., Staum, J., 2007. Two-level simulations for risk management. In:
Chick, S., Chen, C.-H., Henderson, S. G., Yücesan, E. (Eds.), Proceedings of the 2007
INFORMS Simulation Society Research Workshop. INSEAD, Fontainebleau, France, pp.
102–107, available via http://www.informs-cs.org/2007informs-csworkshop/23.pdf.

Lan, H., Nelson, B. L., Staum, J., 2008. Confidence interval procedures for expected shortfall
via two-level simulation. Working paper 08-02, Dept. of IEMS, Northwestern University.

Lee, S.-H., 1998. Monte Carlo computation of conditional expectation quantiles. Ph.D. thesis,
Stanford University.

Liu, M., Nelson, B. L., Staum, J., 2008. An efficient simulation procedure for point estimation
of expected shortfall. Working paper 08-03, Dept. of IEMS, Northwestern University.

Oakley, J., 2004. Estimating percentiles of uncertain computer code outputs. Applied Statis-
tics 53, 83–93.

Oakley, J., O’Hagan, A., 2002. Bayesian inference for the uncertainty distribution of com-
puter model outputs. Biometrika 89(4), 769–784.

22

http://www.informs-cs.org/2007informs-csworkshop/23.pdf

Santner, T. J., Williams, B. J., Notz, W. I., 2003. Design and Analysis of Computer Exper-
iments. Springer-Verlag, New York.

Shaw, J., 1998. Beyond VAR and stress testing. In: Dupire, B. (Ed.), Monte Carlo: Method-
ologies and Applications for Pricing and Risk Management. Risk Books, London, pp.
231–244.

A Optimal Budget Allocation in Stage III

In Stage III of our procedure, we want to minimize the posterior variance of the ES estimator
in Equation (3) by allocating C inner-level simulation replications among the k design points,
subject to the constraint that we have already allocated n0 replications to each of the design
points. ES is −

∑Kp

i=1 Y(i)/p, where Y(i) is the ith lowest component of the vector Y
K of P&L

at each prediction point. In a Bayesian interpretation of the stochastic kriging framework,
ES is a random variable because Y

K is a random variable. Its posterior variance, given the
simulation data observed in Stages I and II, is difficult to analyze, because uncertainty about
Y

K means there is uncertainty about the order of its components. We simplify the problem
by supposing, for the moment, that the order is known. That is, we consider the random
variable w

⊤
Y

K where the weight wi is −1/Kp if i is a tail scenario and 0 otherwise, treating
the vector w as though it were known.

We refer to Section 3 for definitions of the notation in the following derivation of pos-
terior variance. The prior distribution of the P&L and the simulation output

[
Y

K ; Ȳ
]

is
multivariate normal with mean vector and covariance matrix

[
β01

K

β01
k

]
and

[
ΣKK ΣKk

ΣkK Σ

]

(Ankenman et al., 2008). Therefore
[
w

⊤
Y

K ; Ȳ
]

also has a multivariate normal prior distri-
bution with mean vector and covariance matrix

[
−β0

β01
k

]
and

[
w

⊤ΣKK
w w

⊤ΣKk

ΣkK
w Σ

]
.

Then the posterior variance of w
⊤
Y

K given Ȳ is

Var
[
w

⊤
Y

K |Ȳ
]

= w
⊤
(
ΣKK − ΣKkΣ−1ΣkK

)
w. (5)

The dependence of the posterior variance on the decision variable n, which specifies the
number of simulation replications for each design point, is buried in the matrix Σ.

The dependence on the decision variable through the inverse of a matrix makes the
optimization problem difficult to analyze. To make it more tractable, we resort to a further
approximation that is justified if n0 is large. The sum of intrinsic and extrinsic covariance
matrices for the design points, Σ, can be written as

Σ = Σkk + V N
−1 = Σkk + V /n0 − (V /n0 − V N

−1) = Σkk + V /n0 − BB

23

where B is a diagonal matrix whose ith element is
√

V(xi)(1/n0 − 1/ni). By the Sherman-
Morrison-Woodbury formula (Golub and Van Loan, 1996), where I is the identity,

Σ−1 =
(
Σkk + V /n0 + B(−I)B

)−1

=
(
Σkk + V /n0

)−1

−
(
Σkk + V /n0

)−1
B

(
B
(
Σkk + V /n0

)−1
B − I

)−1

B
(
Σkk + V /n0

)−1
.

When n0 is large enough, V /n0 and hence B will be small. Because the extrinsic covariance

matrix Σkk does not depend on n0, B
(
Σkk + V /n0

)−1
B is negligible compared to I. This

leads to the approximation

Σ−1 ≈
(
Σkk + V /n0

)−1
−
(
Σkk + V /n0

)−1
B(−I)B

(
Σkk + V /n0

)−1

=
(
Σkk + V /n0

)−1
+
(
Σkk + V /n0

)−1 (
V /n0 − V N

−1
) (

Σkk + V /n0

)−1
. (6)

Substituting Equation (6) into Equation (5), we get the following approximation for the
posterior variance:

Var
[
w

⊤
Y

K |Ȳ
]

≈ w
⊤ΣKK

w − w
⊤ΣKk

(
Σkk + V /n0

)−1
ΣkK

w

−w
⊤ΣKk

(
Σkk + V /n0

)−1
(V /n0)

(
Σkk + V /n0

)−1
ΣkK

w

+w
⊤ΣKk

(
Σkk + V /n0

)−1
V N

−1
(
Σkk + V /n0

)−1
ΣkK

w. (7)

Only the third line of Equation (7) depends on the decision variable n, through the matrix
N

−1. Therefore, our goal is to minimize this term, which is the objective U
⊤
V N

−1
U in

the optimization problem (4).

24

	Introduction
	Motivating Example
	Stochastic Kriging
	Procedure
	Outline of the Procedure
	Choosing Stage I Design Points
	Choosing Stage II Design Points
	Allocating the Remaining Computational Budget

	Numerical Study
	Historical Simulation Example
	Example with Outer-Level Monte Carlo Simulation

	Conclusions and Future Research
	Optimal Budget Allocation in Stage III

