Stochastic Latent Actor-Critic: Deep Reinforcement
Learning with a Latent Variable Model

Alex X. Lee!?  Anusha Nagabandi' Pieter Abbeel' Sergey Levine!
!University of California, Berkeley
?DeepMind
{alexlee_gk,nagaban2,pabbeel,svlievine}@cs.berkeley.edu

Abstract

Deep reinforcement learning (RL) algorithms can use high-capacity deep networks
to learn directly from image observations. However, these high-dimensional obser-
vation spaces present a number of challenges in practice, since the policy must now
solve two problems: representation learning and task learning. In this work, we
tackle these two problems separately, by explicitly learning latent representations
that can accelerate reinforcement learning from images. We propose the stochastic
latent actor-critic (SLAC) algorithm: a sample-efficient and high-performing RL
algorithm for learning policies for complex continuous control tasks directly from
high-dimensional image inputs. SLAC provides a novel and principled approach
for unifying stochastic sequential models and RL into a single method, by learning
a compact latent representation and then performing RL in the model’s learned la-
tent space. Our experimental evaluation demonstrates that our method outperforms
both model-free and model-based alternatives in terms of final performance and
sample efficiency, on a range of difficult image-based control tasks. Our code and
videos of our results are available at our website[[]

1 Introduction

Deep reinforcement learning (RL) algorithms can learn to solve tasks directly from raw, low-level
observations such as images. However, such high-dimensional observation spaces present a number of
challenges in practice: On one hand, it is difficult to directly learn from these high-dimensional inputs,
but on the other hand, it is also difficult to tease out a compact representation of the underlying task-
relevant information from which to learn instead. Standard model-free deep RL aims to unify these
challenges of representation learning and task learning into a single end-to-end training procedure.
However, solving both problems together is difficult, since an effective policy requires an effective
representation, and an effective representation requires meaningful gradient information to come
from the policy or value function, while using only the model-free supervision signal (i.e., the reward
function). As a result, learning directly from images with standard end-to-end RL algorithms can in
practice be slow, sensitive to hyperparameters, and inefficient.

Instead, we propose to separate representation learning and task learning, by relying on predictive
model learning to explicitly acquire a latent representation, and training the RL agent in that learned
latent space. This alleviates the representation learning challenge because predictive learning benefits
from a rich and informative supervision signal even before the agent has made any progress on the
task, and thus results in improved sample efficiency of the overall learning process. In this work, our
predictive model serves to accelerate task learning by separately addressing representation learning,
in contrast to existing model-based RL approaches, which use predictive models either for generating
cheap synthetic experience [S1} 22} 132] or for planning into the future [[L1} 13} 46,9, 55 [26].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

"https://alexlee-gk.github.io/slac/


https://alexlee-gk.github.io/slac/

Our proposed stochastic sequential model models the high-dimensional observations as the
consequence of a latent process, with a Gaussian prior and latent dynamics. This model represents a
partially observed Markov decision process (POMDP), where the stochastic latent state enables the
model to represent uncertainty about any of the state variables, given the past observations. Solving
such a POMDP exactly would be computationally intractable, since it amounts to solving the decision
problem in the space of beliefs [, 33]]. Recent works approximate the belief as encodings of latent
samples from forward rollouts or particle filtering [8}, 30], or as learned belief representations in
a belief-state forward model [21]. We instead propose a simple approximation, which we derive
from the control as inference framework, that trains a Markovian critic on latent state samples and
trains an actor on a history of observations and actions, resulting in our stochastic latent actor-critic
(SLAC) algorithm. Although this approximation loses some of the benefits of full POMDP solvers
(e.g. reducing uncertainty), it is easy and stable to train in practice, achieving competitive results on a
range of challenging problems.

The main contribution of this work is a novel and principled approach that integrates learning
stochastic sequential models and RL into a single method, performing RL in the model’s learned
latent space. By formalizing the problem as a control as inference problem within a POMDP, we show
that variational inference leads to the objective of our SLAC algorithm. We empirically show that
SLAC benefits from the good asymptotic performance of model-free RL while also leveraging the
improved latent space representation for sample efficiency, by demonstrating that SLAC substantially
outperforms both prior model-free and model-based RL algorithms on a range of image-based
continuous control benchmark tasks.

2 Related Work

Representation learning in RL. End-to-end deep RL can in principle learn representations implicitly
as part of the RL process [45]. However, prior work has observed that RL has a “representation
learning bottleneck™: a considerable portion of the learning period must be spent acquiring good
representations of the observation space [50]]. This motivates the use of a distinct representation
learning procedure to acquire these representations before the agent has even learned to solve
the task. A number of prior works have explored the use of auxiliary supervision in RL to learn
such representations [41} [14, 31} 29| 23] 147, 48, [19} [10]. In contrast to this class of representation
learning algorithms, we explicitly learn a latent variable model of the POMDP, in which the latent
representation and latent-space dynamics are jointly learned. By modeling covariances between
consecutive latent states, we make it feasible for our proposed algorithm to perform Bellman backups
directly in the latent space of the learned model.

Partial observability in RL. Our work is also related to prior research on RL under partial observ-
ability. Prior work has studied exact and approximate solutions to POMDPs, but they require explicit
models of the POMDP and are only practical for simpler domains [33]]. Recent work has proposed
end-to-end RL methods that use recurrent neural networks to process histories of observations and
(sometimes) actions, but without constructing a model of the POMDP [28| [15| 156]. Other works,
however, learn latent-space dynamical system models and then use them to solve the POMDP with
model-based RL [54} 153} 134} 35, 155, 26, 136]. Although some of these works learn latent variable
models that are similar to ours, these methods are often limited by compounding model errors and
finite horizon optimization. In contrast to these works, our approach does not use the model for
prediction, and performs infinite horizon policy optimization. Our approach benefits from the good
asymptotic performance of model-free RL, while at the same time leveraging the improved latent
space representation for sample efficiency.

Other works have also trained latent variable models and used their representations as the inputs to
model-free RL algorithms. They use representations encoded from latent states sampled from the
forward model [8]], belief representations obtained from particle filtering [30]], or belief representations
obtained directly from a learned belief-space forward model [21]]. Our approach is closely related to
these prior methods, in that we also use model-free RL with a latent state representation that is learned
via prediction. However, instead of using belief representations, our method learns a critic directly on
latent state samples, which more tractably enables scaling to more complex tasks. Concurrent to our
work, Hafner et al. [27]] proposed to integrate model-free learning with representations from sequence
models, as proposed in this paper, with model-based rollouts, further improving on the performance
of prior model-based approaches.



Sequential latent variable models. Several previous works have explored various modeling choices
to learn stochastic sequential models [40, 4} 134, [16, 17, [12, [20]. They vary in the factorization of the
generative and inference models, their network architectures, and the objectives used in their training
procedures. Our approach is compatible with any of these sequential latent variable models, with the
only requirement being that they provide a mechanism to sample latent states from the belief of the
learned Markovian latent space.

3 Preliminaries

This work addresses the problem of learning policies from high-dimensional observations in POMDPs,
by simultaneously learning a latent representation of the underlying MDP state using variational
inference, as well as learning a policy in a maximum entropy RL framework. In this section, we
describe maximum entropy RL [57} 24} 42] in fully observable MDPs, as well as variational methods
for training latent state space models for POMDPs.

3.1 Maximum Entropy RL in Fully Observable MDPs

Consider a Markov decision process (MDP), with states s, € S, actions a; € A, rewards 7, initial
state distribution p(s1), and stochastic transition distribution p(s¢1|st, a;). Standard RL aims to
learn the parameters ¢ of some policy 74 (a¢|s;) such that the expected sum of rewards is maximized
under the induced trajectory distribution p,. This objective can be modified to incorporate an entropy
term, such that the policy also aims to maximize the expected entropy H (74 (+|s;)). This formulation
has a close connection to variational inference [57, 24} 42], and we build on this in our work. The
resulting maximum entropy objective is Zle E(s;,a:)~p, [7(St;at) + aH(my(+[s¢))], where r is the
reward function, and « is a temperature parameter that trades off between maximizing for the reward
and for the policy entropy. Soft actor-critic (SAC) [24]] uses this maximum entropy RL framework
to derive soft policy iteration, which alternates between policy evaluation and policy improvement
within the described maximum entropy framework. SAC then extends this soft policy iteration to
handle continuous action spaces by using parameterized function approximators to represent both the
Q-function @y (critic) and the policy 74 (actor). The soft Q-function parameters ¢ are optimized to
minimize the soft Bellman residual, )

JQ(G) = % (QG(Staat) - ( T + ’Ya E - (Qg(st41,a141) — @10g71'¢(at+1|5t+1)] )) , (D

t+1~VTT g
where -y is the discount factor, and # are delayed parameters. The policy parameters ¢ are optimized
to update the policy towards the exponential of the soft Q-function, resulting in the policy loss
Jx(@) = E_[alog(mo(arls:)) — Qolse.ar)]. @
T

SLAC builds on top of this maximum entropy RL framework, by further integrating explicit represen-
tation learning and handling partial observability.

3.2 Sequential Latent Variable Models and Amortized Variational Inference in POMDPs

To learn representations for RL, we use latent variable models trained with amortized variational
inference. The learned model must be able to process a large number of pixels that are present in the
entangled image x, and it must tease out the relevant information into a compact and disentangled
representation z. To learn such a model, we can consider maximizing the probability of each observed
datapoint x from some training set under the entire generative process p(x) = [ p(x|z)p(z) dz.
This objective is intractable to compute in general due to the marginalization of the latent variables z.
In amortized variational inference, we utilize the evidence lower bound for the log-likelihood [38]]:

log p(x) = Eyng [log p(x|2)] — D (q(2[x) || p(2)) - 3)
We can maximize the probability of the observed datapoints (i.e., the left hand side of [Equation (3))
by learning an encoder ¢(z|x) and a decoder p(x|z), and then directly performing gradient ascent on

the right hand side of the equation. In this setup, the distributions of interest are the prior p(z), the
observation model p(x|z), and the variational approximate posterior ¢(z|x).

In order to extend such models to sequential decision making settings, we must incorporate actions
and impose temporal structure on the latent state. Consider a partially observable MDP (POMDP),
with latent states z; € Z and its corresponding observations x; € X'. We make an explicit distinction
between an observation x; and the underlying latent state z,, to emphasize that the latter is unobserved
and its distribution is unknown. Analogous to the MDP, the initial and transition distributions are p(z1 )
and p(2z;y1|z¢, a;), and the reward is r;. In addition, the observation model is given by p(x;|z;).



As in the case for VAEs, a generative model of these observations x; can be learned by maximizing
the log-likelihood. In the POMDP setting, however, we note that x; alone does not provide all
necessary information to infer z;, and prior observations must be taken into account during inference.
This brings us to the discussion of sequential latent variable models. The distributions of interest are
p(z1) and p(z¢41]|2¢, a;), the observation model p(x:|z:), and the approximate variational posteriors

q(z1]x1) and q(2¢+1|X¢+1, Zt, a¢). The log-likelihood of the observations can then be bounded,

logp(X1rs1lan:) > E | > logp(Xi1|zip1) — Dy (q(zesr [Xesr. 26 ) || p(zeg|ze,a0)))|-
Z1:7+179q =0
4

For notational convenience, we define ¢(z1|x1,%o,a0) = ¢(z1|x1) and p(z1|zo,a0) = p(z1).
Prior work [18, 130} 21} 126 20} 36, [12} I55]] has explored modeling such non-Markovian observation
sequences, using methods such as recurrent neural networks with deterministic hidden state, as
well as probabilistic state-space models. In this work, we enable the effective training of a fully
stochastic sequential latent variable model, and bring it together with a maximum entropy actor-critic
RL algorithm to create SLAC: a sample-efficient and high-performing RL algorithm for learning
policies for complex continuous control tasks directly from high-dimensional image inputs.

4 Joint Modeling and Control as Inference

For a fully observable MDP, the control problem can be embedded into a graphical model by
introducing a binary random variable O, which indicates if time step ¢ is optimal. When its
distribution is chosen to be p(O; = 1|s;, a;) = exp(r (s, a¢)), then maximization of p(Oy.7) via
approximate inference in that model yields the optimal policy for the maximum entropy objective [42].

In this paper, we extend this idea to the POMDP setting, where
the probabilistic graphical model includes latent variables, as @ @
shown in[Figure 1] and the distribution can analogously be given
by p(Or = 1|z, a;) = exp(r(z¢, a;)). Instead of maximizing e e @ @
the likelihood of the optimality variables alone, we jointly

model the observations (including the observed rewards of ' e
the past time steps) and learn maximum entropy policies by
maximizing the marginal likelihood p(x1.74+1, Or41.7|a1.7).
This objective represents both the likelihood of the observed
data from the past 7 + 1 steps, as well as the optimality of
the agent’s actions for future steps, effectively combining both
representation learning and control into a single graphical model. We factorize our variational
distribution into a product of recognition terms q(z4.1|X¢+1, Zt, at), dynamics terms p(z;y1 |2+, at),
and policy terms m(a;|X1.¢,a81.4-1):

Figure 1: Graphical model of POMDP
with optimality variables for ¢ > 7+ 1.

T T-1 T
q(z17, Arg7 X1, A1) = H Q(Ze41]Xe41, 2, at)Hp(Zt+1 |z, at)HW(at|X1:t7 ar—1).(5)
t=0 t=7+1 t=7+1

The variational distribution uses the dynamics for future time steps to prevent the agent from
controlling the transitions and from choosing optimistic actions, analogously to the fully observed
MDP setting described by Levine [42]]. The posterior over the actions represents the policy 7.

We use the posterior from to obtain the evidence lower bound (ELBO) of the likelihood,

logp(X1:T+17 OT+1:T|a1:T)

> E {logp(xlﬂl, Or41.7,21.1, arp1.7|a17) — log ¢(z1.r, 8ry1.7| X107 41, am)]
(ZI:T7aT+1:T)Nq
.

= E > (IOgP(XtH\ZtH) — Dio (q(Ze41[%e11, 2, ar) || p(Zet1|2e, at)))

(zr:r,ar41:7)~q t=0

model objective terms

T
+ Z (T(Zt, a;) +logp(ar) — IOgW(at|X1:taaI:t—l))] )
t=74+1

(6)

where r(z;,a;) = logp(O; = 1|z, a;) by construction and p(a;) is the action prior. The full

derivation of the ELBO is given in

policy objective terms



5 Stochastic Latent Actor Critic

We now describe our stochastic latent actor critic (SLAC) algorithm, which maximizes the ELBO
using function approximators to model the prior and posterior distributions. The ELBO objective in
[Equation (6)] can be split into a model objective and a maximum entropy RL objective. The model
objective can be optimized directly, while the maximum entropy RL objective can be optimized via
approximate message passing, with messages corresponding to the Q-function. We can rewrite the
RL objective to express it in terms of these messages, yielding an actor-critic algorithm analogous to
SAC. Additional details of the derivation of the SLAC objectives are given in[Appendix Al

Latent variable model. The first part of the ELBO corresponds to training the latent variable
model to maximize the likelihood of the observations, analogous to the ELBO in for
the sequential latent variable model. The generative model is given by py(2z1), py(2z141|2¢, a),
and py (x¢|z;), and the inference model is given by gy (z1|x1) and gy (Z+1|Xe+1, 2, a;). These
distributions are diagonal Gaussian, where the means and variances are given by outputs of neural
networks. Further details of our specific model architecture are given in{Appendix B| The distribution
parameters ¢ are optimized with respect to the ELBO in only terms that
depend on v, and therefore constitute the model objective, are given by

JuW)= E [Z —log py (Xt+1]ze41) + DKL(W(ZtHXt+17Zt7at)||pw(zt+1|ztaat))], (7
Zur 419y | )

where we define gy (2z1|x1, 20, ag) = gy (z1]x1) and py (21|29, a9) = py(z1). We use the reparam-

eterization trick to sample from the filtering distribution ¢y, (21.7+1|X1:7+1, @1:7).

Actor and critic. The second part of the ELBO corresponds to the maximum entropy RL objective.
As in the fully observable case from and as described by Levine [42]), this optimization
can be solved via message passing of soft Q-values. However, in our method, we must use the latent
states z, since the true state is unknown. The messages are approximated by minimizing the soft
Bellman residual, which we use to train our soft Q-function parameters 6,

Tol0)= E_ |3@lerar)~ (re Vi) ®)
Vo(zr41) = E  [Qo(zr41,ar41) — alogmy(arii|Xirt1,a1:7)], )
ar 1~V

where Vj is the soft state value function and 6 are delayed target network parameters, obtained as
exponential moving averages of 6. Notice that the latents z, and z, 1, which are used in the Bellman
backup, are sampled from the same filtering distribution, i.e. z, 1 ~ ¢y (Zr+1|Xr+1,2-,a;). The
RL objective, which corresponds to the second part of the ELBO, can then be rewritten in terms of
the soft Q-function. The policy parameters ¢ are optimized to maximize this objective, resulting in a
policy loss analogous to soft actor-critic [[24]:

J7r(¢) - E |: E |:04 log 7T¢(a7‘+1|xlzr+1;a1:'r) - QO(ZT+1;aT+1):| :| . (10)

Z1:r 417Gy |Ar 41T

We assume a uniform ac't 100 PrIor, 50 I.ng (at> 15a Algorithm 1 Stochastic Latent Actor-Critic (SLAC)
constant term that we omit from the policy loss. This - —
loss only uses the last sample z, 1 of the sequence Require: Environment £ and initial parameters
for the critic, and we use the reparameterization trick ¥+ ¢» 95 02 for the model, actor, and critics.
to sample from the policy. Note that the policy is not %1 : ( fes;‘()
conditioned on the latent state, as this can lead to X1 .
. . . . for each iteration do
over-optimistic behavior since the algorithm would

1 lues f licies that h f for each environment step do
earn Q-values for policies that have perfect access ay ~ To(ar X, ati—1)

to the latent state. Instead, the learned policy in T, X141 ~ Buep(ar)

our algorithm is conditioned directly on the past D+ DU (ag,rt,Xet+1)

observations and actions. This has the additional for each gradient step do

benefit that the learned policy can be executed at Xlir41,81ir,Tr ~ D

run time without requiring inference of the latent Ziir41 ~ Gy (Z1or41 | X141, @107 )
state. Finally, we note that for the expectation over =Y — AV Ju ()

latent states in the Bellman residual in[Equation (9)] 0; + 0; — AgVo,Jq(0;) fori € {1,2}
rather than sampling latent states for all z ~ Z, we ¢4 ¢ — AV Jr(9)

sample latent states from the filtering distribution 0; < v0i + (1 —v)0; fori € {1,2}

qy(Z1:741|X1:741, @1.7 ). This design choice allows
us to minimize the critic loss for samples that are most relevant for (), while also allowing the critic
loss to use the Q-function in the same way as implied by the policy loss in|[Equation (10)




Figure 2: Example image observations for our continuous control benchmark tasks: DeepMind Control’s
cheetah run, walker walk, ball-in-cup catch, and finger spin, and OpenAl Gym’s half cheetah, walker, hopper,
and ant (left to right). These images, which are rendered at a resolution of 64 x 64 pixels, are the observation
inputs to our algorithm, i.e. to the latent variable model and to the policy.

SLAC is outlined in [ATgorithm I} The actor-critic component follows prior work, with automatic
tuning of the temperature o and two Q-functions to mitigate overestimation [18],24],25]]. SLAC can
be viewed as a variant of SAC [24]] where the critic is trained on the stochastic latent state of our
sequential latent variable model. The backup for the critic is performed on a tuple (z,,a,,7,,2,4+1),
sampled from the filtering distribution gy, (241, Z|X1.741, a1.7). The critic can, in principle, take
advantage of the perfect knowledge of the state z;, which makes learning easier. However, the policy
does not have access to z;, and must make decisions based on a history of observations and actions.
SLAC is not a model-based algorithm, in that in does not use the model for prediction, but we see in
our experiments that SLAC can achieve similar sample efficiency as a model-based algorithm.

6 Experimental Evaluation

We evaluate SLAC on multiple image-based continuous control tasks from both the DeepMind
Control Suite [52] and OpenAl Gym [7]], as illustrated in[Figure 2] Full details of SLAC’s network
architecture are described in[Appendix B} Training and evaluation details are given in

and image samples from our model for all tasks are shown in|Appendix E| Additionally, visualizations
of our results and code are available on the project website ]

6.1 Comparative Evaluation on Continuous Control Benchmark Tasks

To provide a comparative evaluation against prior methods, we evaluate SLAC on four tasks (cheetah
run, walker walk, ball-in-cup catch, finger spin) from the DeepMind Control Suite [52], and four tasks
(cheetah, walker, ant, hopper) from OpenAl Gym [7]. Note that the Gym tasks are typically used
with low-dimensional state observations, while we evaluate on them with raw image observations.
We compare our method to the following state-of-the-art model-based and model-free algorithms:

SAC [24]: This is an off-policy actor-critic algorithm, which represents a comparison to state-of-the-
art model-free learning. We include experiments showing the performance of SAC based on true
state (as an upper bound on performance) as well as directly from raw images.

D4PG [6]: This is also an off-policy actor-critic algorithm, learning directly from raw images. The
results reported in the plots below are the performance after 10% training steps, as stated in the
benchmarks from Tassa et al. [52]].

MPO [2,[1]]: This is an off-policy actor-critic algorithm that performs an expectation maximization
form of policy iteration, learning directly from raw images.

DVRL [30]: This is an on-policy model-free RL algorithm that trains a partially stochastic latent-
variable POMDP model. DVRL uses the full belief over the latent state as input into both the actor
and critic, as opposed to our method, which trains the critic with the latent state and the actor with a
history of actions and observations.

PlaNet [26]: This is a model-based RL method for learning from images, which uses a partially
stochastic sequential latent variable model, but without explicit policy learning. Instead, the model is
used for planning with model predictive control (MPC), where each plan is optimized with the cross
entropy method (CEM).

DrQ [39]]: This is the same as the SAC algorithm, but combined with data augmentation on the image
inputs.

*https://alexlee-gk.github.io/slac/


https://alexlee-gk.github.io/slac/

Cheetah, run Walker, walk Ball in cup, catch Finger, spin
1200
1200 1200

1000

- 1000 1000 1000

00
800 800 800

600 = 600
600 600
100
400 00
400 00

Average Return

200

200 200

200 0

0 —200

00 05 10 15 20 00 02 04 06 08 10 00 01 02 03 04 05 00 01 02 03 04 05
Environment Steps (Millions) Environment Steps (Millions) Environment Steps (Millions) Environment Steps (Millions)

---- SAC (state) -=== MPO (107 steps) —— SAC PlaNet —— SLAC (ours)
DAPG (10% steps) ~ —— MPO —— DVRL —— DrQ
Figure 3: Experiments on the DeepMind Control Suite from images (unless otherwise labeled as “state"). SLAC
(ours) converges to similar or better final performance than the other methods, while almost always achieving
reward as high as the upper bound SAC baseline that learns from true state. Note that for these experiments,
1000 environments steps corresponds to 1 episode.

HalfCheetah-v2 Walker2d-v2 Hopper-v2 Ant-v2
3500

6000 5000

. 3000 1500
5000 1000

2500

4000 1000

g . 3000 2000
g, o
. 51 500
E 2000 2000
g 1000
<0 1000 1000 0
500
0 semml
0 0 -
500
0.0 0.2 0.4 0.6 08 L0 00 05 10 15 20 25 30 35 40 00 05 10 L5 20 00 05 10 15 20 25 30 35 40
Environment Steps (Millions) Environment Steps (Millions) Environment Steps (Millions) Environment Steps (Millions)
= MPO (107 steps) —— MPO —— SAC PlaNet —— SLAC (ours)

Figure 4: Experiments on the OpenAl Gym benchmark tasks from images. SLAC (ours) converges to higher
performance than both PlaNet and SAC on all four of these tasks. The number of environments steps in each
episode is variable, depending on the termination.

Our experiments on the DeepMind Control Suite in show that the sample efficiency of
SLAC is comparable or better than both model-based and model-free alternatives. This indicates that
overcoming the representation learning bottleneck, coupled with efficient off-policy RL, provides
for fast learning similar to model-based methods, while attaining final performance comparable to
fully model-free techniques that learn from state. SLAC also substantially outperforms DVRL. This
difference can be explained in part by the use of an efficient off-policy RL algorithm, which can
better take advantage of the learned representation. SLAC achieves comparable or slightly better
performance than subsequent work DrQ, which also uses the efficient off-policy SAC algorithm.

We also evaluate SLAC on continuous control benchmark tasks from OpenAl Gym in[Figure 4] We
notice that these tasks are more challenging than the DeepMind Control Suite tasks, because the
rewards are not as shaped and not bounded between 0 and 1, the dynamics are different, and the
episodes terminate on failure (e.g., when the hopper or walker falls over). PlaNet is unable to solve
the last three tasks, while for the cheetah task, it learns a suboptimal policy that involves flipping
the cheetah over and pushing forward while on its back. To better understand the performance of
fixed-horizon MPC on these tasks, we also evaluated with the ground truth dynamics (i.e., the true
simulator), and found that even in this case, MPC did not achieve good final performance, suggesting
that infinite horizon policy optimization, of the sort performed by SLAC and model-free algorithms,
is important to attain good results on these tasks.

Our experiments show that SLAC successfully learns complex continuous control benchmark tasks
from raw image inputs. On the DeepMind Control Suite, SLAC exceeds the performance of prior
work PlaNet on the four tasks, and SLAC achieves comparable or slightly better performance than
subsequence work DrQ. However, on the harder image-based OpenAl Gym tasks, SLAC outperforms
PlaNet by a large margin. We note that the prior methods that we tested generally performed poorly
on the image-based OpenAl Gym tasks, despite considerable hyperparameter tuning.

6.2 Ablation Experiments

We investigate how SLAC is affected by the choice of latent variable model, the inputs given to the
actor and critic, the model pretraining, and the number of training updates relative to the number of
agent interactions. Additional results are given in[Appendix D] including experiments that compare
the effect of the decoder output variance and using random cropping for data augmentation.



Cheetah, run Cheetah, run Cheetah, run Cheetah, run
1000 1000

800 800

600

600 600

age Return

100 & 400 100

Average Return
Average Return

Aver

200

) o ) '8 20 00 s i) 15 20 00 s o 15 20 0 I3 10 [ 20
Environment Steps (Millions) Environment Steps (Millions) Environment Steps (Millions) Environment Steps (Millions)

— 1

(a) Latent variable model (b) Actor and critic inputs (¢) Model pretraining (d) Train steps per iteration

Figure 5: Comparison of different design choices for @) the latent variable model, (’@) the inputs given to the
actor and critic, either the history of past observations and actions, or a latent sample, (c) the number of model
pretraining steps, and (d) the number of training updates per iteration. In all cases, we use the RL framework of
SLAC. See[Figure 8 [Figure 9] [Figure T0] and [Figure T1|for results on 5 additional tasks.

Latent variable model. We study the tradeoffs between different design choices for the latent
variable model in [Figure 5al and [Figure 8| We compare our fully stochastic model to a standard
non-sequential VAE model [38]], which has been used in multiple prior works for representation
learning in RL [29] 23],47]], and a non-sequential factored VAE model, which uses our autoregressive
two-variable factorization but without any temporal dependencies. We also compare to a sequential
filtering model that uses temporal dependencies but without the two-variable factorization, the
partially stochastic model used by PlaNet [26]], as well as two additional variants of our model: a fully
deterministic model that removes all stochasticity from the hidden state dynamics, and a partially
stochastic model that adds deterministic paths in the transitions, similar to the PlaNet model, but with
our latent factorization and architecture. All the models, except for the PlaNet model, are variants of
our model that use the same architecture as our fully stochastic model, with minimal differences in
the transitions or the latent variable factorization. In all cases, we use the RL framework of SLAC
and only vary the choice of model for representation learning.

Our fully stochastic model outperforms all the other models. Contrary to the conclusions in prior
work [26, 18]], the fully stochastic model slightly outperforms the partially stochastic model, while
retaining the appealing interpretation of a stochastic state space model. We hypothesize that these
prior works benefit from the deterministic paths (realized as an LSTM or GRU) because they use
multi-step samples from the prior. In contrast, our method uses samples from the posterior, which
are conditioned on same-step observations, and thus it is less sensitive to the propagation of the
latent states through time. The sequential variants of our model (including ours) outperform the non-
sequential VAE models. The models with the two-variable factorization perform similarly or better
than their respective equivalents among the non-sequential VAE models and among the sequential
stochastic models. Overall, including temporal dependencies results in the largest improvement in
performance, followed by the autoregressive latent variable factorization and using a fully stochastic
model.

Actor and critic inputs. We next investigate alternative choices for the actor and critic inputs as
either the observation-action history or the latent sample. In SLAC, the actor is conditioned on the
observation-action history and the critic is conditioned on individual latent samples. The images in
the history are first compressed with the model’s convolutional network before they are given to the
networks. However, the actor and critic losses do not propagate any gradient signal into the model
nor its convolutional layers, i.e. the convolutional layers used for the observation-action history are
only trained by the model loss.

[Figure 5b|and [Figure 9show that, in general, the performance is significantly worse when the critic
input is the history instead of the latent sample, and indifferent to the choice for the actor input.
This is consistent with our derivation—the critic should be given latent samples, but the actor can
be conditioned on anything (since the policy is the variational posterior). However, we note that
a latent-conditioned actor could lead to overconfident behaviors in uncertain environments. For
generality, we choose to give the raw history directly to the actor.

Model pretraining. We next study the effect of pretraining the model before the agent starts learning
on the task. In our experiments, the agent first collects a small amount of data by executing random
actions, and then the model is pretrained with that data. The model is pretrained for 50000 iterations
on the DeepMind Control Suite experiments, unless otherwise specified. [Figure Sc|and [Figure 10|




show that little or no pretraining results in slower learning and, in some cases, worse asymptotic
performance. There is almost no difference in performance when using 100000 instead of 50000
iterations, although the former resulted in higher variance across trials in some of the tasks. Overall,
these results show that the agent benefits from the supervision signal of the model even before the
agent has made any progress on the task.

Training updates per iteration. We next investigate the effect of the number of training updates per
iteration, or equivalently, the number of training updates per environment step (we use 1 environment
step per iteration in all of our experiments). [Figure 5d| and [Figure 11| show that, in general, more
training updates per iteration speeds up learning slightly, but too many updates per iteration causes
higher variance across trials and slightly worse asymptotic performance in some tasks. Nevertheless,
this drop in asymptotic performance (if any) is small, which indicates that our method is less
susceptible to overfitting compared to methods in prior work. We hypothesize that using stochastic
latent samples to train the critic provides some randomization, which limits overfitting. The best
tradeoff is achieved when using 2 training updates per iteration, however, in line with other works,
we use 1 training update per iteration in all the other experiments.

7 Conclusion

We presented SLAC, an efficient RL algorithm for learning from high-dimensional image inputs that
combines efficient off-policy model-free RL with representation learning via a sequential stochastic
state space model. Through representation learning in conjunction with effective task learning in the
learned latent space, our method achieves improved sample efficiency and final task performance as
compared to both prior model-based and model-free RL methods.

While our current SLAC algorithm is fully model-free, in that predictions from the model are not
utilized to speed up training, a natural extension of our approach would be to use the model predictions
themselves to generate synthetic samples. Incorporating this additional synthetic model-based data
into a mixed model-based and model-free method could further improve sample efficiency and
performance. More broadly, the use of explicit representation learning with RL has the potential to
not only accelerate training time and increase the complexity of achievable tasks, but also enable
reuse and transfer of our learned representation across tasks.

Broader Impact

Despite the existence of automated robotic systems in controlled environments such as factories or
labs, standard approaches to controlling systems still require precise and expensive sensor setups
to monitor the relevant details of interest in the environment, such as the joint positions of a robot
or pose information of all objects in the area. To instead be able to learn directly from the more
ubiquitous and rich modality of vision would greatly advance the current state of our learning systems.
Not only would this ability to learn directly from images preclude expensive real-world setups, but
it would also remove the expensive need for human-engineering efforts in state estimation. While
it would indeed be very beneficial for our learning systems to be able to learn directly from raw
image observations, this introduces algorithm challenges of dealing with high-dimensional as well as
partially observable inputs. In this paper, we study the use of explicitly learning latent representations
to assist model-free reinforcement learning directly from raw, high-dimensional images.

Standard end-to-end RL methods try to solve both representation learning and task learning together,
and in practice, this leads to brittle solutions which are sensitive to hyperparameters but are also
slow and inefficient. These challenges illustrate the predominant use of simulation in the deep
RL community; we hope that with more efficient, stable, easy-to-use, and easy-to-train deep RL
algorithms such as the one we propose in this work, we can help the field of deep RL to transition to
more widespread use in real-world setups such as robotics.

From a broader perspective, there are numerous use cases and areas of application where autonomous
decision making agents can have positive effects in our society, from automating dangerous and
undesirable tasks, to accelerating automation and economic efficiency of society. That being said,
however, automated decision making systems do introduce safety concerns, further exacerbated
by the lack of explainability when they do make mistakes. Although this work does not explicitly
address safety concerns, we feel that it can be used in conjunction with levels of safety controllers
to minimize negative impacts, while drawing on its powerful deep reinforcement learning roots to
enable automated and robust tasks in the real world.



Acknowledgments and Disclosure of Funding

We thank Marvin Zhang, Abhishek Gupta, and Chelsea Finn for useful discussions and feedback,
Danijar Hafner for providing timely assistance with PlaNet, and Maximilian Igl for providing timely
assistance with DVRL. This research was supported by the National Science Foundation through
IIS-1651843 and IIS-1700697, as well as ARL DCIST CRA W911NF-17-2-0181 and the Office of
Naval Research. Compute support was provided by NVIDIA.

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(171

(18]

A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa, D. Belov, N. Heess, and M. A.
Riedmiller. Relative entropy regularized policy iteration. arXiv preprint arXiv:1812.02256, 2018.

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. A. Riedmiller. Maximum a
posteriori policy optimisation. In International Conference on Learning Representations (ICLR), 2018.

A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy. Fixing a broken elbo. In
International Conference on Machine Learning (ICML), 2018.

E. Archer, I. M. Park, L. Buesing, J. Cunningham, and L. Paninski. Black box variational inference for
state space models. arXiv preprint arXiv:1511.07367, 2015.

K. J. Astrom. Optimal control of markov processes with incomplete state information. Journal of
mathematical analysis and applications, 1965.

G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, A. Muldal, N. Heess, and T. Lilli-
crap. Distributed distributional deterministic policy gradients. In International Conference on Learning
Representations (ICLR), 2018.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAl
Gym. arXiv preprint arXiv:1606.01540, 2016.

L. Buesing, T. Weber, S. Racaniere, S. M. A. Eslami, D. J. Rezende, D. P. Reichert, F. Viola, F. Besse,
K. Gregor, D. Hassabis, and D. Wierstra. Learning and querying fast generative models for reinforcement

learning. arXiv preprint arXiv:1802.03006, 2018.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of trials
using probabilistic dynamics models. In Neural Information Processing Systems (NeurIPS), 2018.

R. Dadashi, A. A. Taiga, N. L. Roux, D. Schuurmans, and M. G. Bellemare. The value function polytope
in reinforcement learning. In International Conference on Machine Learning (ICML), 2019.

M. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach to policy search.
In International Conference on Machine Learning (ICML), 2011.

A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal, M. Toussaint, and S. Trimpe. Probabilistic
recurrent state-space models. In International Conference on Machine Learning (ICML), 2018.

C. Finn and S. Levine. Deep visual foresight for planning robot motion. In International Conference on
Robotics and Automation (ICRA), 2017.

C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoencoders for visuomotor
learning. In International Conference on Robotics and Automation (ICRA), 2016.

J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson. Learning to communicate with deep multi-agent
reinforcement learning. In Neural Information Processing Systems (NIPS), 2016.

M. Fraccaro, S. K. Sonderby, U. Paquet, and O. Winther. Sequential neural models with stochastic layers.
In Neural Information Processing Systems (NIPS), 2016.

M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. A disentangled recognition and nonlinear dynamics
model for unsupervised learning. In Neural Information Processing Systems (NIPS), 2017.

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic methods. In
International Conference on Machine Learning (ICML), 2018.

10



(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

(38]

(391

(40]

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. Deepmdp: Learning continuous
latent space models for representation learning. In International Conference on Machine Learning (ICML),
2019.

K. Gregor, G. Papamakarios, F. Besse, L. Buesing, and T. Weber. Temporal difference variational auto-
encoder. In International Conference on Learning Representations (ICLR), 2019.

K. Gregor, D. J. Rezende, F. Besse, Y. Wu, H. Merzic, and A. v. d. Oord. Shaping belief states with
generative environment models for rl. In Neural Information Processing Systems (NeurIPS), 2019.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep g-learning with model-based acceleration.
In International Conference on Machine Learning (ICML), 2016.

D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International Conference on Machine Learning (ICML),
2018.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,
and S. Levine. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

D. Hafner, T. Lillicrap, 1. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent dynamics
for planning from pixels. In International Conference on Machine Learning (ICML), 2019.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent imagination.
In International Conference on Learning Representations (ICLR), 2020.

M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially observable MDPs. In AAAI Fall
Symposium on Sequential Decision Making for Intelligent Agents, 2015.

I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel, M. Botvinick, C. Blundell, and A. Lerchner.
DARLA: Improving zero-shot transfer in reinforcement learning. In International Conference on Machine
Learning (ICML), 2017.

M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson. Deep variational reinforcement learning for
POMDPs. In International Conference on Machine Learning (ICML), 2018.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Reinforce-
ment learning with unsupervised auxiliary tasks. In International Conference on Learning Representations
(ICLR), 2017.

M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy optimization.
In Neural Information Processing Systems (NeurIPS), 2019.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic
domains. Artificial intelligence, 101(1-2):99—134, 1998.

M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsupervised learning
of state space models from raw data. In International Conference on Learning Representations (ICLR),
2017.

M. Karl, M. Soelch, P. Becker-Ehmck, D. Benbouzid, P. van der Smagt, and J. Bayer. Unsupervised
real-time control through variational empowerment. arXiv preprint arXiv:1710.05101, 2017.

T. Kim, S. Ahn, and Y. Bengio. Variational temporal abstraction. In Neural Information Processing
Systems (NeurlPS), 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on Learning
Representations (ICLR), 2014.

I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep reinforcement
learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint arXiv:1511.05121, 2015.

11



[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

(561

[57]

S. Lange and M. Riedmiller. Deep auto-encoder neural networks in reinforcement learning. In International
Joint Conference on Neural Networks (IJCNN), 2010.

S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environ-
ments: Scaling up. pages 362-370, 1995.

L. Maaloe, M. Fraccaro, V. Liévin, and O. Winther. Biva: A very deep hierarchy of latent variables for
generative modeling. In Neural Information Processing Systems (NeurlPS), 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Playing
Atari with deep reinforcement learning. In NIPS Deep Learning Workshop, 2013.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. In International Conference on Robotics and
Automation (ICRA), 2018.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with imagined
goals. In Neural Information Processing Systems (NeurIPS), 2018.

A. v.d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

A. Razavi, A. v. d. Oord, and O. Vinyals. Generating diverse high-fidelity images with VQ-VAE-2. In
Neural Information Processing Systems (NeurlPS), 2019.

E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell. Loss is its own reward: Self-supervision for
reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART Bulletin,
2(4):160-163, 1991.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, T. Lillicrap, and M. Riedmiller. DeepMind control suite. arXiv preprint arXiv:1801.00690,
2018.

N. Wahlstrom, T. B. Schon, and M. P. Deisenroth. From pixels to torques: Policy learning with deep
dynamical models. arXiv preprint arXiv:1502.02251, 2015.

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally linear latent
dynamics model for control from raw images. In Neural Information Processing Systems (NIPS), 2015.

M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S. Levine. SOLAR: Deep structured latent
representations for model-based reinforcement learning. In International Conference on Machine Learning
(ICML), 2019.

P. Zhu, X. Li, P. Poupart, and G. Miao. On improving deep reinforcement learning for POMDPs. arXiv
preprint arXiv:1804.06309, 2018.

B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal entropy. 2010.

12



