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Abstract: We introduce a sensitivity-based view to the area of learning and optimization
of stochastic dynamic systems. We show that this sensitivity-based view provides a unified
framework for many different disciplines in this area, including perturbation analysis, Markov
decision processes, reinforcement learning, and identification and adaptive control. Many results
can be simply derived and intuitively explained by using two performance sensitivity formulas.
In addition, we show that this sensitivity-based view opens up new directions for future
research. For example, the event-based optimization, which has advantages over the state-based
approaches, may be developed with this sensitivity-based view.

1. INTRODUCTION

Performance optimization plays an important role in the
design and operation of modern engineering systems in
many areas, including communications (Internet and wire-
less networks), manufacturing, logistics, robotics, and bio-
informatics. Most engineering systems are too complicated
to be analyzed, or the parameters of the system models
cannot be easily obtained. Therefore, learning techniques
have to be applied.

Learning and optimization of stochastic systems is a multi-
disciplinary area that has attracted wide attention from
researchers in many disciplines including control systems,
operations research, and computer science. Areas such
as perturbation analysis (PA) in discrete event dynamic
systems (DEDSs), Markov decision processes (MDPs) in
operations research, reinforcement learning (RL) in com-
puter science, neuro-dynamic programming (NDP), iden-
tification, and adaptive control (I&AC) in control systems,
share a common goal: to make the “best decision” to
optimize a system’s performance.

Different disciplines take different perspectives and have
different formulations for the problems with the same goal.
In this paper, we introduce a sensitivity point of view to
the area of learning and optimization, which provide a
unified framework for the different disciplines, including
PA, MDPs, RL, and I&AC. We show that the many
results can be derived simply and explained clearly and
intuitively from two performance sensitivity (difference
and derivative) formulas. In addition, we show that with
this sensitivity-based view, new approaches such as the
event-based optimization can be developed.
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2. AN OVERVIEW OF LEARNING AND
OPTIMIZATION

The goal of learning and optimization is to make the “best”
decisions to optimize, or to improve, the performance of
a system based on the information obtained by observing
and analyzing the system’s behavior. A system’s behavior
is usually represented by a model, or by the sample paths
(also called trajectories) of the system. A sample path is a
record of the operation history of a system.

In this talk, we mainly discuss stochastic dynamic systems.
A dynamic system evolves as time passes. It is generally
easier to explain the ideas with a discrete time model, in
which time takes discrete values denoted as l = 0, 1, 2, . . . .
In addition to its dynamic nature, a stochastic system is
always subject to random influences caused by noise or
other uncertainties.

States, Actions, and Observations

To study the system behavior, we need to describe pre-
cisely the system’s status. A system’s status at any time
l = 0, 1, . . . can be represented by a quantity called the
system’s state at time l, denoted as Xl, l = 0, 1, . . . .
The state space (i.e., the set of all states) is denoted
as S, which may be either discrete or continuous. For
simplicity, in this talk we assume it is finite and denote
it as S = {1, 2, . . . , S}. A sample path of a system is a
record of state history denoted as X = {X0, X1, . . .}. In
stochastic dynamic systems, Xl, l = 0, 1, . . . , are random
variables (may be multi-dimensional random vectors). A
system’s dynamic behavior is then represented by its sam-
ple paths. We denote a “finite-length” sample path as
Xl := {X0, X1, . . . , Xl}.

In optimization problems, at any time l, we can apply an
action, denoted as Al ∈ A, l = 0, 1, . . . , where A is an
action space, to the system. In this talk, we assume that
A contains a finite number of actions, but in general it may
contain infinitely many actions, or may even be a continu-
ous space. The actions A0, A1, . . . may affect the evolution
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Fig. 1. A Model of Learning and Optimization

of the system. Because the actions affect the system behav-
ior, the operation history of a system should include the
actions. Let Al−1 := {A0, A1, . . . , Al−1} denote an action
history with a finite length and A := {A0, A1, . . .} denote
an infinitely long action history. Taking the actions into
consideration, we denote a sample path as H := (X, A),
or Hl := (Xl, Al−1).

In many cases, the system’s state cannot be exactly
observed, and we can only observe a random variable
Yl at time l that is related to Xl, l = 0, 1, . . . . The
observation history is denoted as Y := {Y0, Y1, . . .}, or
Yl := {Y0, Y1, . . . , Yl}. In such cases, we say that the
system is partially observable. The information history
up to time l is Hl := (Yl, Al−1). When Yl = Xl, for
all l = 0, 1, . . . , we say that the system is completely
observable. In such cases, we have Hl = (Xl, Al−1). Note
that even for partially observable systems, we reserve the
word “sample path” for Hl = (Xl, Al−1), or H = (X, A).

Rewards and Performance Measures

Associated with each sample path HL = (XL, AL−1),
there is a reward denoted as ηL(HL). Because the states
XL and the actions AL−1 are generally random, ηL(HL)
is usually a random variable. For finite-length problems,
ηL(HL) represents the total reward received when the
system is going through the sample path HL. The per-
formance measure η (or simply called the performance) is
defined as the mean of the sample-path-based rewards

η = E[ηL(HL)]. (1)

For sample paths with infinitely long lengths, the per-
formance measure η is defined as the limit of the mean
rewards

η = lim
L→∞

E[ηL(HL)], (2)

in which we assume that both the expectation and limit
exist. In this case, ηL(HL) usually represents the average
reward per step received by the system during the opera-
tion.

The Learning and Optimization Problem

A general description of the learning and optimization
problem is illustrated by Figure 1. In the figure, the
shaded area represents a stochastic dynamic system. The
system is essentially a black box and it can only interact
with the outside through its inputs and outputs. The
inputs provide a vehicle to intervene or to control the
operation of the system, and/or to affect the reward of
the operation. The inputs are usually the actions taken
that will affect the future evolution of the system. In

some other cases, an input can also control the system
operation modes, or tune the values of system parameters,
etc. In this terminology, setting different values for system
parameters is viewed as taking different actions. It is
usually assumed that the available actions are known to
us (e.g., we know that we can accept or reject a packet
in a communication system, or we can tune the rate of
a transmission line to θ megabit/second). The outputs
provide a window for observing the system. That is, the
outputs are the observations Yl, l = 0, 1, . . . . Associated
with every system, there is a performance measure η.

The goal of an optimization problem is to answer the
following question: Based on the information we know
about the system, i.e., the output history learned from
observation and the input (action) history, what action
should we take at a particular time so that we can obtain
the best possible system performance?

The information history Hl = {Yl, Al−1}, with Yl =
{Y0, Y1, . . . , Yl} being the observation history and Al−1 =
{A0, A1, . . . , Al−1} being the action history (with A−1 :=
∅), represents all the information available at time l before
an action is taken at l, l = 0, 1, . . . . Based on this
information, an action can be chosen by following some
rules, called a policy, denoted as dl : Al = dl(Hl), Al ∈ A.
(This is called a deterministic policy.)

The optimization problem now becomes to find a policy
that maximizes the system performance. Such a policy is
called an optimal policy. When the number of policies is
finite, such optimal policies always exist and may not be
unique.

If we have a mathematical model for the system in Figure
1, the optimal policies might be found analytically; in
many cases, however, mathematical model does not exists,
and we need to observe and analyze the sample paths
of the system to determine the performance and/or to
make improvement decisions. This is called “learning”. In
engineering applications, at the design stage, sample paths
can only be obtained by simulation following a system
model; and while a system is operating, the paths can
also be obtained by direct observation. If learning and
optimization is implemented by simulation, the approach
is called a simulation-based approach. With simulation,
we may even let the system operate under policies that
are not feasible in a real system. For real systems, per-
formance optimization (or improvement) decisions can be
made through learning the system behavior by observing
its sample paths recorded while the system is operating
without interruption; we call such an approach an on-line
approach.

The Markov Model

The optimization problem formulated with the black-box
system (its structure is completely unknown) shown in
Figure 1 is too difficult to solve (see discussions in the next
section). To develop specific optimization approaches, we
need to introduce some structures into the system model.
Perhaps the most widely used model for systems with
discrete time and discrete states is the Markov model.

The word “state” is used in a strict sense in the Markov
model (Çinlar [1975]). This means that given the current
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state Xl, the system’s future behavior {Xl+1, Xl+2, . . .} is
independent of its past history {X0, X1, . . . , Xl−1}, l =
1, 2, . . .. This is called the Markov property, and a stochas-
tic process X = {X0, X1, . . .} satisfying Markov property
is called a Markov chain. Intuitively, a state in a Markov
chain completely captures the system’s current status in
regard to its future evolution.

The evolution of a Markov chain is determined by its
transition probability matrix P = [p(j|i)]Si,j=1, where
p(j|i) = P (Xl+1 = j|Xl = i) is the transition probability
that the system moves to state j at time l+1 when it is in
state i at time l. We assume that the system is homogenous
so p(j|i), i, j ∈ S, do not depend on l. A (homogenous)
Markov chain is called irreducible, if starting from any
state i, the system can reach any other state j ∈ S in
a finite number of steps. A Markov chain with a finite
number of states is called ergodic, if it is irreducible and
aperiodic (Çinlar [1975]). For an ergodic Markov chain,
the steady-state probabilities

π(i) = lim
l→∞

P (Xl = i|X0 = j), i, j ∈ S,

exist, which do not depend on the initial state j ∈ S.
Let π := (π(1), . . . , π(S)) denote the (row) vector of the
steady-state probabilities. Then we have

π = πP, πe = 1, (3)

where e = (1, 1, . . . , 1)T is a vector with all components
being 1, and the superscript “T” denotes transpose.

With the Markov model, the actions control the transition
probabilities of the state process. If action α ∈ A is taken
at time l (i.e., Al = α), then the transition probabilities
at time l are denoted as pα(Xl+1|Xl), Xl, Xl+1 ∈ S, l =
0, 1, . . . . With the Markov model, we further assume that
there is a reward function denoted as f(i, α), i ∈ S, α ∈ A.
At time l, if the system is in state i and action α ∈ A is
taken, then the system receives a reward of f(i, α). With
the reward function, many performance measure can be
defined, including the discounted reward, total reward, etc.
We mainly discuss the long-run average reward defined as

η = lim
L→∞

1

L
E

{
L−1∑
l=0

f(Xl, Al)

∣∣∣∣∣ X0 = i

}
, (4)

If the state process is an ergodic Markov chain (depending
on Al and pα(Xl+1|Xl)), the long-run average reward does
not depend on the initial state and we have

η := lim
L→∞

1

L

L−1∑
l=0

f(Xl, Al), w.p.1.

In this talk, for simplicity, if not mentioned otherwise, we
assume that the state Xl, l = 0, 1, . . . can be observed ex-
actly. The information history becomes Hl = (Xl, Al−1),
and a policy becomes Al = dl(Xl, Al−1), Al ∈ A. Because
of the Markov property, if a state process is Markov,
the current state Xl contains all the information in the
system’s history in regard to its future behavior. We may
expect that in many cases a policy depending on only
Xl may do as well as a policy depending on the entire
history Hl = (Xl, Al−1) for controlling the system’s fu-
ture behavior. Therefore, we may only consider the policies

Al = dl(Xl), l = 0, 1, . . . .

Stationary and Randomized Policies

A policy Al = dl(Xl), Xl ∈ S, Al ∈ A, l = 0, 1, . . . , is
called a stationary policy if it does not depend on time l;
such a policy is denoted as A = d(X), X ∈ S, which is
a mapping from the state space S to the action space A.
The action d(i), i ∈ S, controls the transition probabilities
of state i. With a stationary policy d, the transition
probabilities when the state is i ∈ S are denoted as
pd(i)(j|i), j ∈ S. The system under policy d(X) is Markov,
and the corresponding transition matrix is denoted as
P d := [pd(i)(j|i)]. The reward function can be expressed
as a column vector fd = (f(1, d(1)), . . . , f(S, d(S)))T .
The effect of a policy d to the system can be completely
described by (P d, fd); therefore, we may refer to a policy as
(P d, fd). In addition, we will simply use (P, f) as a generic
notation for a policy. It is known (Puterman [1994]) that
there exists a stationary policy that is optimal.

A (stationary) randomized policy ν = d(X) assigns a
distribution ν over the action space A for every state
X = i ∈ S; it is a mapping from the state space S to
the space of the distributions over the action space. For
example, suppose that A = {α1, α2, . . . , αM}. For any
state i ∈ S, a randomized policy assigns a distribution ν =
(p1(i), p2(i), . . . , pM (i)) on A. When the system state is i,
we take action αk with probability pk(i), k = 1, 2, . . . , M ,

i ∈ S and
∑M

k=1 pk(i) = 1. A deterministic policy is a
special case of a randomized policy ν where pk(i) = 1 for
some k ∈ {1, 2, . . . , M}, with k depending on i, i ∈ S.

3. FUNDAMENTAL LIMITATIONS AND SEARCH
METHODS

An optimization problem is to find an optimal policy in
a given policy space A. First, we observe that even for
a small problem, the policy space is too large for us to
handle. For example, for a (small) system with S = 100
states and M = 2 actions available in each state, the
number of stationary policies is MS = 2100 ≈ 1030! With
the fastest PC (10Ghz) currently available to count the
policies at a speed of 1 policy/hz, it requires 3×1012 years
to finish!

Learning

To develop efficient algorithms for performance optimiza-
tion, we need to explore the special features of a system.
This process is called learning. For dynamic systems, learn-
ing may involve observing and analyzing a sample path
of a system to obtain necessary information; this is in
the normal sense of the word “learning”, as it is used in
research areas such as reinforcement learning. Simulation-
based and on-line optimization approaches are based on
learning from sample paths. On the other hand, we may
also analytically study the behavior of a system under a
policy to learn how to improve the system performance.
In a wide sense, we shall also call this analytical process
“learning”.

Fundamental Limitations

Obviously, the task of learning and optimization is com-
plicated and we are facing a vast forest and wish to
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find a path in it to reach our destination at the top of
a peak. It is wise to pause for a short while and take
an overview of the forest from the outside to see which
directions may possibly lead us to our goal quickly. Indeed,
we are constrained by some philosophical and logical facts
that significantly limit what we can do. These facts are
simple and intuitively obvious, yet they provide general
principles that chart the paths in our journey of developing
optimization theories and methodologies. Because of the
importance as well as the simplicity of these facts, we state
them as the “fundamental limitations”:

The Fundamental Limitations of Learning and Op-
timization

A. A system can be run and/or studied under only one
policy at a time.

B. By learning from the behavior of a system under one
policy, we cannot obtain the performance of other
policies, if no structural information of the system
is available.

C. We can only compare two policies at a time.

These simple rules describe the boundaries in develop-
ing learning and optimization approaches. First of all,
if there is no structural information about the system,
from the fundamental limitations A and B, we need to
observe/analyze every policy to get or to estimate its per-
formance. In such cases, the search methods are the only
approaches for optimization. On the other hand, if we have
some knowledge about the system structure, we may infer
some information about the performance of the system
under other polices while analyzing its behavior under
one policy. More efficient approaches may be developed
to identify optimal policies.

Search Methods

With search methods, we estimate or compute the perfor-
mance of each individual policy and from the fundamental
limitation C, for M policies we need to make M − 1
comparisons. This is the exhaustive search method.

Exhaustive Search
Given M policies di, i = 1, 2, . . . , M . Let ηdi be the
performance of policy di, i = 1, 2, . . . , M .

i. Set d̃ := d1, and η̃ := ηd1 ;
ii. For i := 2 to M , do

if ηdi > η̃ then set d̃ := di and η̃ := ηdi .

The algorithm outputs an optimal policy and the optimal
performance. In the algorithm, we may randomly order
the policies. However, in many problems the number
of policies increases exponentially with respect to the
number of states. Therefore, exhaustive search, which
requires computing and comparing the performance of
every policy, is not computationally feasible for most
practical problems.

Moreover, if there is no additional information about the
mapping ηd : A → R (such as its shape, or continuity if
the policy space is continuous, or other similar properties
regarding how the performance ηd distribute over A, etc),
any optimization scheme is no better than blind (random)

searching. This is formulated as the “No Free Lunch
Theorem”, see Ho et al. [2003].

Various search methods have been developed; among them
are simulated annealing (Kirkpatrick et al. [1983]), genetic
algorithms (Srinivas and Patnaik [1994]), and the recently
proposed cross-entropy method (Rubinstein and Kroese
[2004]), model reference adaptive search (Hu et al. [2007]),
and nested partition method (Shi and Olafsson [2000]).
These methods may work better than blind random search
when policy space A and/or the mapping ηd : A → R have
some special features (e.g., policies near a good policy are
also good).

The recently developed “Ordinal Optimization” approach
deals with the trade-off between accuracy and efficiency of
random search. It proposes an interesting idea of a “soft
goal” and opens up a new perspective for optimization.
The main ideas are two folds: First, the search algorithm
depends on the comparison of the performance of two
policies, ηdi > η̃. It is important to note that to verify this
relationship we may not need to obtain the exact values of
the performance of these two policies. For example, if the
performance of two policies is quite different, then we may
need only run a short simulation for each policy to verify
this relationship. Second, we may not need to sample and
compare all the policies (impossible); it can be shown that
even we sample only a small set of policies, we are able
to get a “good enough” policy with a reasonably large
probability. See Ho et al. [2003, 2007] for details.

In summary, if we have no information about the sys-
tem dynamics or structure, by observing/analyzing the
system under one policy, we cannot know the system’s
performance under other policies. Search methods, which
requires us to know only the performance of the system un-
der each policy, are the only approaches for optimization.
Exhaustive search is not computationally feasible for most
practical problems. Ordinary optimization searches for a
good enough policy with significantly reduced computa-
tion. Other search methods may work better than random
search if the performance does distribute “nicely” over the
policy space.

If we know something about the structure/dynamics of
the system, we may obtain some information about the
performance of the system under other polices while an-
alyzing its behavior under one policy. These additional
information may lead to optimization approaches that are
more efficient than the search methods. This is the focus
of the rest of the paper.

4. A SENSITIVITY-BASED VIEW OF LEARNING
AND OPTIMIZATION

To develop more efficient approaches than the search
methods, we need to explore the special feature of a
system. Naturally, we wish to develop approaches that
require as little structural information and can be applied
to as many systems as possible. The question is “HOW”.
These fundamental limitations also provide us with some
hints.

Performance Gradient
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As indicated by the fundamental limitations A and B, if
we analyze a system’s behavior under one policy, we can
hardly know its behavior under other policies. It is natural
to believe that if two policies are “close” to each other,
then the system under these two policies may behave
similarly. If this is the case, when we are analyzing a
system under a policy, it might be easier to “predict” the
system behavior under a “close” policy and to calculate
its performance than to do the same for a policy that is
“far away”. In other words, to predict the performance for
a “close” policy may require as little knowledge about the
system structure as possible.

If a policy space can be characterized by a continuous
parameter θ, then two policies are “close” if their cor-
responding values for θ are close. Such a policy space is
called a continuous policy space. For example, for Markov
systems, policies correspond to transition probability ma-
trices. Therefore, two policies can be viewed as “close”
if their transition probability matrices are close (item-
by-item). In modeling manufacturing or communication
networks, policies may be characterized by production
rates or transmission rates. Two policies are close if their
corresponding rates are close. In randomized policies, the
distributions (p1, p2, . . . , pM ) over the action space A =
{α1, α2, . . . , αM} are continuous variables. Two random-
ized policies are close if their corresponding distributions
are close.

Therefore, a reasonable step towards developing efficient
and generally applicable approaches is to look at a “neigh-
borhood” of a policy. The neighborhood must be small
enough, so that the behavior of the system under the
policies in this neighborhood of the policy can be predicted
with as little knowledge about the system structure as pos-
sible. In mathematical terms, “small enough” is precisely
described by the word “infinitesimal”. When the perfor-
mance of the policies in an infinitesimal neighborhood of
a policy is known, we can further get the gradient of the
performance in the policy space at this policy.

We may summarize the above discussion by the following
statement:

Statement A:

With some knowledge about the system structure
under different policies, by studying the behavior of
a system under one policy, we can determine the
performance of the system under the policies in a
small neighborhood of this policy; i.e., determine the
performance gradient.

The prediction of the performance for other (neighboring)
policies while analyzing the system under one policy can
be done analytically, if we can describe the structure
mathematically (usually based on a model) and know
the values of its parameters. However, in many cases, we
always start by analyzing a sample path of the system.
This is because

1. A sample path clearly illustrates the system dynam-
ics, and sample-path-based analysis stimulates intu-
itive thinking.

2. In many practical problems, the size of the problem
is too large for any analytical solution, or we may

A small
change

in
parameters •

•
•

•
•
•

•
•

•
•

Perturbation 1

Perturbation 2

Perturbation N

Effect 1

Effect 2

Effect N

+

A change in parameters
generates perturbations

on a sample path

Each perturbation
has an effect

on performance

Total
effect
of the

parameter
change

Fig. 2. The Basic Principles of Perturbation Analysis

have only partial information about the system; for
example, in some cases, we may only know the struc-
ture of the system but do not know the values of its
parameters, and in some other cases, we know the
values of the parameters, but the system structure
is too complicated to model. Sample-path-based al-
gorithms may be implemented easily even with these
constraints.

Of course, the results obtained by the sample-path-based
approach can also be expressed in an analytical form.

Perturbation Analysis (PA)

PA estimates the performance derivatives with respect to
system parameters by analyzing a single sample path of
a stochastic dynamic system. Because PA emphasizes the
dynamic nature of a stochastic system, such a system is
also called a discrete event dynamic system (DEDS) (Ho
and Cao [1991], Cassandras and Lafortune [1999]). PA was
proposed in the late 1970s and early 1980s (Ho and Cao
[1991], Cao [1994], Cassandras and Lafortune [1999]). The
early work on PA focused on queueing systems. Later, the
basic principles of PA were extended to Markov systems
(both discrete- and continuous-time models) (Cao [2007]).

The basic principles of PA are: a small change in a
system parameter induces a series of perturbations on a
sample path. The average effect of a perturbation on the
system performance can be measured by a fundamental
quantity called a perturbation realization factor, which can
be estimated by observing and analyzing a single sample
path of the current system. Finally, the effect of a small
change in a system parameter on the system performance
equals the sum of the effects of all the perturbations
induced by the parameter change on a sample path. These
basic principles are illustrated in Figure 2.

The PA principles illustrated in Figure 2 can be applied
to estimate the performance derivatives with respect to
the transition probabilities of Markov a system. In this
approach, the behavior of the black box in Figure 1 is
described by a Markov model with transition probability
matrix P and the performance measure η is defined in (4).
We assume that the states Xl are observable, i.e.; Yl = Xl,
l = 0, 1, . . . . In this model, a policy d corresponds to a
transition probability matrix denoted as P d. We wish to
get the performance sensitivity around a policy P d in the
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policy space by analyzing the system’s behavior under this
policy P d.

Let P h be another policy, and we assume that the perfor-
mance function f is the same for both policies P d and P h,
and let ΔP = P h − P d. Define Pδ = P d + δ(ΔP ) = (1 −
δ)P d + δP h, 0 ≤ δ ≤ 1. Pδ is a randomized policy:
With policy Pδ, in any state k ∈ S the system moves
according to ph(k)(j|k), j ∈ S, with probability δ, and
moves according to pd(k)(j|k), j ∈ S, with probability
1 − δ. Let πδ and ηδ be the steady-state probability and
the performance measure associated with Pδ. We have
P0 = P d, P1 = P h and η0 = ηd. The performance
derivative at policy P d along the direction ΔP (from P d

to P h) is dηδ

dδ
|δ=0 = limδ→0

ηδ−η
δ

. Different P hs correspond
to different directional derivatives in the policy space.

The performance derivatives are obtained by predicting
how the system would behave if we slightly perturb the
transition probability matrix from P d to Pδ, δ << 1.
Small changes in P d induce a series of perturbations on
a sample path of P d. A perturbation on a sample path
is a “jump” from one state i to another state j, i, j ∈ S
(i.e., at some time l, the Markov chain with P d was in
state i, Xl = i, however, because of the slight change
in the transition probabilities, the Markov chain with Pδ

is in state Xl = j). The average effect of such a jump
on the system performance ηd can be measured by the
perturbation realization factor, denoted as γd(i, j). It can
be shown that γd(i, j) = gd(j) − gd(i), for all i, j ∈ S,
where gd(i) is called the performance potential (or simply
the potential) of state i (Cao [2007]).

The performance potential is the main concept of perfor-
mance optimization of Markov systems. Intuitively, the
performance potential of state i, g(i), of a policy P mea-
sures the “potential” contribution of state i to the long-run
average reward η in (4). It is defined on a sample path of
P as

g(i) := E

{
∞∑

l=0

[f(Xl) − η]
∣∣∣X0 = i

}
. (5)

From this, we can easily derive

g(i) = contribution of the current state i

+ expected long-run “potential” contribution

of the next state

= (f(i) − η) +
∑
j∈S

p(j|i)g(j).

This can be written in a matrix form called the Poisson
equation:

(I − P )g + ηe = f, (6)

where g = (g(1), . . . , g(S))T is the potential vector.

From the definition of g(i) in (5), we can see that the
effect of a jump from state i to j on the long-run average
reward (4) can be measured by γ(i, j) = g(j) − g(i).
Finally, the effect of a small (infinitesimal) change in a
Markov chain’s transition probability matrix (from P d to
Pδ) on the long-run average reward (4) can be decomposed
into the sum of the effects of all the single perturbations

δ
P

d
Pδ P

h

Fig. 3. The Directional Derivatives Along Any Direction

(jumps on a sample path) induced by the change on a
sample path. With these principles, we can intuitively
derive the formulas for the performance derivative along
any direction (from P d to any P h) in the policy space:

dηδ

dδ

∣∣∣
δ=0

= πd(ΔP )gd = πd(P h − P d)gd. (7)

(This formula can be also easily derived from the Poisson
equation; however, the PA principles provide a clear and
intuitive explanation that can be easily extended to other
non-standard problems for which the Poisson equation
usually does not exist.)

From (7), knowing the steady-state probability πd and the
potential gd of policy P d, we can obtain the directional
derivative dηδ

dδ
|δ=0 along any direction (ΔP ) pointing to

any given policy P h from P d. This is illustrated in Figure
3. The potentials in (7) can be estimated (or “learned”)
from a sample path of the Markov chain. Optimization can
be carried out using the performance derivatives together
with stochastic approximation (Marbach and Tsitsiklis
[2001]). It is explained in the next subsection that the
potentials also play a key role in policy iteration.

The extension of (7) to the case where the transition
matrix depends arbitrarily on any parameter θ (denoted
as Pθ with P0 = P ) is straightforward. Replacing ΔP in

(7) with (dPθ

dθ
)|θ=0, we have

dηθ

dθ

∣∣∣
θ=0

= π
dPθ

dθ

∣∣∣
θ=0

g.

Therefore, without loss of generality, we need only to
discuss the linear case (7).

Now suppose policy P h has a different reward function
fh. Let ΔP = P h − P d and Δf = fh − fd. Define
Pδ = P d + δ(ΔP ) and fδ = fd + δ(Δf), 0 ≤ δ ≤ 1.
Then the directional derivative from (P, f) to (Pδ, fδ) is

dηδ

dδ

∣∣∣
δ=0

= πd[(ΔP )gd + Δf ]. (8)

There are a number of advantages of PA: It can estimate
performance derivatives along all directions based on a
single sample path of a Markov chain; the derivatives can
be estimated as a whole without estimating each potential
for every state, and thus the “curse of dimensionality”
issue disappears; it can be implemented on line without
disturbing the operation of a system; and, furthermore,
the approach applies to any policy space or subspace with
constraints. However, PA-based approaches may reach a
local optimal point.
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Efficient algorithms were developed by PA principles for
queueing systems (Ho and Cao [1991], Cao [1994]); re-
cently fluid model of queueing systems was introduced
into PA, which provided good approximations (Cassandras
et al. [2003]).

Performance Differences

The gradient method does not apply to discrete policy
spaces. For discrete policy spaces, we need to compare the
performance of different policies that may not be close to
each other.

The fundamental limitation C implies more than it seems
on the surface. It says that all we can do in terms of
optimization is based on a simple comparison of two
policies. In other words, if we cannot compare two policies,
then we have no way to do optimization. Furthermore, in
some cases, we may even emphasize that the performance
difference formula contains almost all the information
about what we can do in performance optimization. This
simple philosophical point guides the direction of our
research in optimization: We should always start with
developing a formula for the difference of the performance
measure of any two policies and then to investigate what
we can learn from this performance difference formula. In
many cases, it is not difficult to derive such a difference
formula for a particular problem, yet the insights provided
and the results thus obtained can be remarkable.

How much we can get from the performance difference
formula depends on the system structure. So far, the
best result is that with some assumptions such as the
independent-action assumption in Markov decision pro-
cesses, by analyzing the system’s behavior under one pol-
icy, we can find another policy that performs better, if such
a policy exists (see the discussion below).

We may summarize the above discussion by the following
statement

Statement B:

With some assumptions on the system structure, by
studying the behavior of a system under one policy,
we can find a policy that performs better, if such a
policy exists.

Markov Decision Processes (MDPs)

The MDP theory (Bertsekas [1995,2001,2007], Puterman
[1994]) can be developed based on the performance dif-
ference formula. MDPs use the Markov model and policies
defined in Section 2; in addition, it assumes that the action
at different states d(i), i ∈ S, can be chosen independently
(the independent-action assumption). Thus, for any policy
d, we have transition probability matrix P d, reward vector
fd, steady-state probability πd, and performance ηd. The
goal of MDPs is to find a policy d∗ such that its perfor-
mance is the best among all policies.

Policy iteration is one of the main solutions to MDPs.
Its basic principle is the same as Statement B: With the
independent-action assumption, by analyzing the behavior
of the system under one policy, we can always find another
policy under which the system performs better, if such a

policy exists. This can be shown by following the perfor-
mance difference formula.

Consider two policies (P d, fd) and (P h, fh) with steady-
state probabilities πd, πh and performance ηd and ηh,
respectively. Let gd be the potential of policy (P d, fd).
Left-multiplying both side of the Poisson equation (6)
(I−P d)gd +ηde = fd with πh, we obtain the performance
difference formula

ηh − ηd = πh[(ΔP )gd + Δf ], (9)

where ΔP = P h−P d and Δf = fh−fd. This equation can
be also derived with a sample-path-based argument by first
principles (Cao [2007]). The sample-path-based argument
provides a clear intuition that can be extended to problems
where the Poisson equation does not exist.

In (8), both πd and gd can be obtained from analyzing
the system with policy (P d, fd). Thus, given P d, we can
obtain the directional derivatives along any given direction
ΔP = P h − P d without analyzing the system under
(P h, fh). However, to obtain the performance difference
with (9), we need to solve for both πh and gd. This is
the same as a comparison in exhaustive search because we
need to analyze both systems to compare the performance
of the two systems.

Fortunately, all is not lost. The particular factorized form
of (9) can be utilized. In fact, the updating procedure in
policy iteration is based on (9) and the following simple
fact: πh > 0 (i.e., πh(i) > 0 for all i ∈ S) for any ergodic
P h. Thus, for any given P d, if we can find a P h such that
(ΔP )gd+Δf = (P hgd+fh)−(P dgd+fd) ≥ 0 with at least
one positive component, then ηh > ηd. In particular, there
is no need to solve for πh in the procedure. Conventionally,
in state i we choose the action that maximizes the ith
component of P hgd+fh as h(i); i.e., we choose h(i), i ∈ S,
such that

S∑
j=1

ph(i)(j|i)gd(j) + f(i, h(i))

= max

{
S∑

j=1

pα(j|i)gd(j) + f(i, α) : α ∈ A(i)

}
. (10)

In words, we choose the action such that after the next
transition with this action the expected potential is max-
imized. Let h be the policy determined by (10). We have
ηh > ηd if P d is not the optimal policy; however, h may
not be optimal even if (10) holds.

The above discussion leads to the following policy iteration
algorithm:

(1) Guess an initial policy d0, set k = 0.
(2) (Policy evaluation) Obtain the potential gdk by solv-

ing the Poisson equation (I − P dk)gdk + ηdke = fdk .
(3) (Policy improvement) Choose

dk+1 ∈ arg

{
max
d∈D

[
fd + P dgdk

]}
, (11)

component-wisely (i.e., to determine an action for
each state). If in state i, action dk(i) attains the
maximum, set dk+1(i) = dk(i).

(4) If dk+1 = dk, stop; otherwise, set k := k + 1 and go
to step 2.
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Fig. 4. Policy Iteration for nth-Bias and Blackwell Optimal
Policies

In the algorithm, we need to choose actions independently
at each state. It is easy to prove that this algorithm out-
puts an optimal policy (Puterman [1994], Cao [2007]). The
fundamental quantity in (9) is the performance potential.
From a learning point of view, we need to analyze the be-
havior of a system under one policy to “learn” its potential
of each state to determine how to make the system perform
better. Potential is equivalent to the bias or the relative
cost in the MDP literature, up to an additive constant. We
use the word “potential” because of its physical meaning.
Roughly speaking, the performance potential of a state i,
i ∈ S, measures the “potential” contribution of the state
i to the system performance; the difference between the
potentials of two states measures the effect of a jump
(perturbation) from one state to the other state on the
system performance; and to improve the performance, in
any state we should choose an action that leads to the
best expected potential with this action (i.e., the largest
P hgd + fh in (9)).

The only difference between (9) and (8) is that πd in
(8) is replaced by πh in (9). This leads to an interesting
observation: policy iteration in MDPs in fact chooses the
policy with the steepest directional derivative as the policy
in the next iteration.

A Complete Theory for MDPs with the Long-Run Average
Criteria

As shown above, with the performance difference formula
(9), the policy iteration procedure for ergodic chains can
be derived simply and intuitively. This sensitivity-based
approach also applies to multi-chain Markov systems,
systems with absorbing states, and problems with other
performance criteria such as discounted performance and
even bias. The idea that many results can be derived
simply from the performance difference formulas is further
verified by the recently proposed approach with the nth-
bias optimality (Cao [2007]). Essentially, starting with
the performance difference formulas, we can develop a
simple and direct approach to derive the results that
are equivalent to the sensitive discount optimality for
multi-chain Markov systems with long-run average criteria
(Puterman [1994], Veinott [1969]); and no discounting is
needed in the approach.

The main results about the nth-bias optimality are as
follows. The transition probability matrix of a multi-chain
takes the following canonical form:

P =

⎡⎢⎢⎢⎣
P1 0 0 · · · · 0
0 P2 0 · · · · 0
· · · · · · · ·
0 0 0 · · · Pm 0

R1 R2 R3 · · · Rm Rm+1

⎤⎥⎥⎥⎦ , (12)

where P1, P2, . . . , Pm are all irreducible square matrices.
This form indicates that the state space of a Markov
chain consists of m closed subsets of recurrent states;
each subset corresponds to one of the sub-matrices Pk,
k = 1, 2, . . . , m. The states corresponding to the last row,
R1, R2, . . . , Rm+1, are transient.

In this formulation, a policy is still denoted as (P, f), where
f is the reward function. The long-run average reward is
called the 0th bias, which is defined as a vector g0 with
components

g0(i) := η(i) = lim
L→∞

1

L
E

{ L−1∑
l=0

f(Xl)
∣∣∣X0 = i

}
, i ∈ S,

where {Xl, l = 0, 1, . . .} is a sample path of the Markov
chain with P . The performance depends on the initial state
i. The bias or the 1st bias is denoted as g1 := g, its ith
component is

g1(i) := g(i) =

∞∑
l=0

E [f(Xl) − η(i)|X0 = i] .

The nth bias, n > 1, of policy (P, f) is defined as a vector
gn whose ith component is

gn(i) = −
∞∑

l=0

E[gn−1(Xl)|X0 = i], n > 1.

The nth bias, n ≥ 0, associated with a policy d ∈ D (with
(P d, fd)) is denoted as gd

n.

A policy d̂ is said to be gain (0th bias) optimal if

gd̂
0 ≥ gd

0 , for all d ∈ D.

Let D0 be the set of all gain-optimal policies. A policy d̂

is said to be nth-bias optimal, n > 0, if d̂ ∈ Dn−1 and

gd̂
n ≥ gd

n, for all d ∈ Dn−1, n > 0.

Let Dn be the set of all nth-bias optimal policies in Dn−1,
n > 0.

The sets D, D0, D1, . . ., are illustrated in Figure ??. Our
goal is to find an nth bias optimal policy, n = 0, 1, ....
Following the sensitivity-based view, we start with the
performance difference formulas for any two nth bias
optimal policies, n = 0, 1, . . .; these formulas can be
easily derived. Indeed, all the following results can be
obtained by simply exploring and manipulating the special
structures of these performance difference formulas.

(1) Choose any policy d0 ∈ D as the initial policy.
Applying the policy iteration algorithm, we may

obtain a gain (0th bias) optimal policy d̂0 ∈ D0.
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(2) Staring from any nth bias optimal policy d̂n ∈
Dn, n = 0, 1 . . ., applying a similar policy iteration
algorithm we may obtain an (n + 1)th bias optimal

policy d̂n+1 ∈ Dn+1.
(3) If a policy is Sth bias optimal, it is also nth bias

optimal for all n > S; i.e., DS = DS+1 = DS+2 = ....
(4) An Sth bias optimal policy is a Blackwell optimal

policy.

The sensitivity-based view provides a unified approach to
all these MDP-types of optimization problems; and the
approach is surprisingly simple and clear.

Reinforcement Learning (RL)

The fundamental model for systems in RL is also the
Markov chain. While MDP is basically an analytical ap-
proach, which assumes that all the parameters are known,
RL is a simulation-based (or in some cases, on-line) learn-
ing approach. Simulation can be carried out by following
the system structure (e.g., the queueing structure).

If we know enough information about the transition prob-
abilities to implement policy iteration with potentials, we
need only to “learn”, or to estimate, the potentials gdk

for all the states from a sample path of the system under
one policy dk and then update the policies iteratively ac-
cording to (11). In this sense, any estimation-based or on-
line approach for estimating potentials belongs to RL. In
this regard, many efficient RL algorithms, such as TD(λ)
(Bertsekas [1995,2001,2007], Sutton and Barto [1998]), and
approximate approaches, such as neuro-dynamic program-
ming (Bertsekas [1995,2001,2007], Bertsekas and Tsitsiklis
[1996]), have been developed. If we do not know anything
about the transition probabilities, we cannot implement
policy iteration even if we know the potentials. In this
case, we need to learn the system behavior for all state-
action pairs. Basically, in state i, we need to try all the
actions in A(i) in order to get enough information for
comparison. Therefore, this type of RL approach (e.g., Q-
learning) requires a sample path that visits all the state-
action pairs.

In these approaches, we consider a variant of the potential
gd(i), called the Q-factor of a state-action pair (i, α),
denoted as Qd(i, α) for any i ∈ S and α ∈ A(i). Qd(i, α) is
defined as the average potential of state i if action α ∈ A(i)
(not necessarily d(i)) is taken at a particular time and the
rest of the Markov chain is run under a policy d:

Qd(i, α) =

S∑
j=1

pα(j|i)gd(j) + f(i, α) − ηd, α ∈ A(i).

With this definition, (10) becomes

Qd(i, h(i)) = max{Qd(i, α) : α ∈ A(i)}.

Thus, we may implement policy iteration by choosing the
action that leads to the largest Qd(i, α) in state i as h(i)
in the improved policy h.

Sample-path-based algorithms may be developed to esti-
mate Q-factors. This leads to the Q-factor-based policy
iteration, which can be used when the Markov chain’s
transition probability matrix is unknown. This approach in
fact estimates the combined effect of the transition prob-

abilities pα(j|i) and the potentials gd(j) together without
estimating these items separately.

In the approach, we need a sample path that visits all the
state-action pairs. However, with a deterministic policy
d, only the state-action pairs (i, d(i)), i ∈ S, are visited.
This issue may be resolved by introducing, with a small
probability, other actions into the system as follows: in any
state i, we apply action d(i) with probability 1−ε and any
other action α ∈ A(i) randomly with an equal probability
ε/(|A(i)| − 1), 0 < ε << 1. We denote such a policy as dε.

In recent years, performance-gradient-based optimization
has attracted more and more attention from the RL com-
munity. Sample-path-based algorithms can be developed
for performance gradients (Baxter and Bartlett [2001],
Baxter et al. [2001], Cao [2005, 2007]); these algorithms
are based on the performance derivative formula (7).

In summary, the RL approach focuses on algorithms
estimating potentials and its variant Q-factors, or the
potentials and Q-factors for optimal policies, and the
algorithms for performance gradients.

Identification and Adaptive Control

Identification and adaptive control are well-developed ar-
eas. In adaptive control theory, system dynamics are mod-
eled by differential or difference equations that determine
the system structure. With such a mathematical model,
elegant analysis can be carried out, leading to widely
deployed adaptive control algorithms. When the system
parameters are unknown and/or time varying, they need
to be estimated from observations (this is also called sys-
tem identification), and performance optimization can be
achieved by using the adaptive control algorithms with the
parameters estimated from observations.

A stochastic system under control, although it has its
special structure, can be generally modeled as a Markov
process, with the control variables viewed as actions. Con-
sider a (discrete-time) linear stochastic system modeled as

Xl+1 = AXl + Bul + ξl, l = 0, 1, . . . , (13)

where Xl is the system state at time l, which is usually a
random vector, ul is a vector of control variables, ξl is a
vector of noise, and A and B are matrices with appropriate
dimensions. Apparently, X = {Xl, l = 0, 1, . . .} is a
Markov chain and ul can be viewed as the actions that
determine the transition probabilities of X, based on the
probability distribution function of ξl. The problem is how
to choose ul, l = 0, 1 . . . , such that a performance measure
is minimized.

Principally, such a problem is amenable to either MDPs,
RL, or PA. For example, we can apply policy iteration
to find the optimal feedback control policy ul = d(Xl).
Indeed, for the linear stochastic control problem in (13)
with a quadratic performance reward, we can derive, with
policy iteration, the famous Riccati equation for optimal
policies (Cao [2007]).

When the system parameters are unknown, the basic
quantities such as potentials and Q-factors have to be
learned from a sample path with various RL algorithms.
When the system parameters vary with a slow time scale,
the policies have to be updated frequently to keep up with
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Fig. 5. Two Types of Optimization Approaches

the parameter changes. In this sense, the on-line policy
iteration, RL, or PA-based optimization are equivalent to
system identification and adaptive control.

Another feature is that with policy iteration, we estimate
the potentials and Q-factors, and the system parameters
may not need to be estimated. This corresponds to the
direct adaptive control in the literature, where the param-
eters for the optimal control law, instead of the system,
are identified (Åström and Wittenmark [1989]).

One advantage of the on-line or sample-path-based ap-
proach is that, from the learning point of view, principally
it applies to both linear and non-linear systems in the
same way. The system structure affects only the transition
probability matrix. However, determining the transition
probability matrix for different control parameters might
be a difficult task. There are many works in this direction
(Werbos [1992]).

A Sensitivity-Based View of Learning and Optimization

In summary, the fundamental limitations of learning and
optimization sketch out the directions of developing ef-
ficient and widely applicable learning and optimization
approaches with as little information about the system
structure as possible. There are two feasible directions:
First, because we can only learn from one policy at a
time, we may at most obtain local (in the neighborhood
of a policy) information in the policy space; this leads
to performance gradients or derivatives. Second, because
we can only compare two policies at a time, we may
start with the performance difference formulas of any two
policies in developing learning and optimization methods.
In short, these directions can be characterized by per-
formance derivatives and performance differences, respec-
tively. We will refer to this as a sensitivity-based view (Cao
[2007]).

These two directions lead to two types of approaches. The
first type of approach is based on perturbation analysis
(PA). With PA, we can obtain the performance derivatives
with respect to the system’s parameters. We can develop
gradient-based optimization approaches using PA. This
approach applies to problems where policy spaces are
parameterized with continuous parameters. The basic idea
is shown in Figure 5.A. We first set the parameter θ to be
any value and determine the performance gradient at θ

with PA. Then we change θ slightly along the direction of
the gradient to θ+Δθ and determine the gradient again at
this θ+Δθ. We repeat this procedure until reaching a point
θ∗ at which the performance gradient is zero; this is a local
optimal point. The performance gradient can be calculated
analytically, or estimated from a sample path. When the
gradient estimates contain noise, stochastic approximation
techniques can be used in the optimization procedure
(Marbach and Tsitsiklis [2001]).

The second type of learning and optimization approach
is based on the comparison of the system performance
measures of two different policies. The approach strongly
depends on the system structure. A well-known result in
this direction is: When the actions taken in different states
are independent, it may be possible to use the information
learned by observing or analyzing the system behavior
under the current policy to determine a policy under which
the performance of the system is better, if such a policy
exists. This leads to the policy iteration procedure shown
in Figure 5.B. We start with any policy d0, learn from its
behavior and find a better policy d1, then learn from d1

and find a better policy d2, and so on until the best policy
d∗ is reached.

A Map of the Learning and Optimization World

With a sensitivity point of view, the world of learning and
optimization can be illustrated by the map shown Figure 6.
The central piece of the map is the performance potential.
Various RL methods yield sample-path-based estimates for
potentials g, or their variant Q-factors, or their values for
the optimal policy; the potentials are used as building
blocks in constructing the two performance sensitivity
formulas; these two formulas form the basis for gradient-
based (PA-type) and policy-iteration-type optimization
approaches; RL methods can also be developed for directly
estimating the performance gradients on sample paths;
stochastic approximation techniques can be used to derive
efficient optimization algorithms with the sample-path-
based gradient estimates, and to derive on-line policy
iteration algorithms. Both the gradient-based approaches
and policy iteration can be applied to system identification
and adaptive control (I&AC) problems, even with non-
linear systems.

5. EVENT-BASED OPTIMIZATION AND
POTENTIAL AGGREGATION

We have introduced a sensitivity-based view of learning
and optimization. In the framework, systems are modeled
by Markov processes. However, it is well known that the
Markov model suffers from the following disadvantages:

(1) The state space and the policy space are too large for
most problems.

(2) The MDP policy iteration theory requires the inde-
pendent action assumption.

(3) The model does not utilize any special feature of the
system.

Now, we show that with the sensitivity-based view, we can
develop new learning and optimization approaches that
utilize the special features of the systems to overcome or
alleviate the above difficulties.
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One of such approaches is the event-based optimization,
which can be applied to systems where the actions can be
taken only when some events happen.

The Main Features of the Event-Based Approach

We first give a simple example to illustrate the ideas.

Example 1. A robot takes a random walk in a five room
maze shown in Figure 7. The numbers in the parenthesis
indicate the rewards the robot gets in each room. The
robot moves from room 0 to the two top rooms 1 or 2
with probability p, and to the two bottom rooms 3 or 4
with probability q = 1 − p. There is a traffic light in each
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Fig. 9. The Transition Probabilities of State 0 When
Action α is Taken in Example 1

passage; if it is red, the robot moves to the left rooms 1 or
3, and if it is green, the robot moves to the right room 2 or
4. We may control the probability of the lights being red,
α, or being green, 1 − α. The system can be modeled by
a Markov chain. Figure 8 illustrates a part of a system’s
state transition diagram, and Figure 9 lists the transition
probabilities of state 0 when a particular α is chosen.

Let us analyze the structure of the transition diagram.
From Figure 8, if the system moves from state 0 to the
two top states, 1 and 2, we need to take the biggest value
α = 1 to reach state 1 with probability 1 and get a reward
of 100; on the contrary, if the system moves from state 0
to the two bottom states, 3 and 4, we need to take the
smallest value α = 0 to reach state 4 with probability 1
and get a reward of 100. Thus, at state 0, a big α is good
for the top, but bad for the bottom, and vice versa. When
p = q = 0.5, for any α the average reward at the next step
is zero. Therefore, the state-based optimal policy may not
be very good.

However, the situation improves significantly if we know
a bit of information about the state transition. From the
structure shown in Figure 8, the top two transitions, or
the bottom two transitions, have similar properties. This
structure can be captured by aggregating these transitions
together and defining two events:

a :=
{
〈0, 1〉, 〈0, 2〉

}
and b :=

{
〈0, 3〉, 〈0, 4〉

}
,

where 〈i, j〉 denotes a transition from state i to state j,
i, j ∈ S. These two sets of state transitions aggregated
into two events are shown as the two ovals, a and b, in
Figure 8; they are also illustrated by the two thick boxes
in Figure 9.

With this formulation, if event a occurs, the system moves
to state 1 with probability α and to state 2 with probability
1 − α; and if event b occurs, the system moves to state 3
with probability α and to state 4 with probability 1−α. In
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Fig. 10. The Admission Control Problem

the event-based approach, we assume that we can observe
the events, not the states; i.e., at any time instant l, we can
observe whether 〈Xl, Xl+1〉 ∈ a, or 〈Xl, Xl+1〉 ∈ b, occurs.
We need to determine an event-based policy that specifies
the probabilities chosen for events a and b: αa = d(a) and
αb = d(b).

From the reward structure shown in Figure 8, we may
design a myopic policy: if a occurs, we choose the largest
value, i.e., αa = 1, which leads to state 1 and the reward
at the next step is 100; and similarly, if b occurs, we choose
the smallest value, i.e., αb = 0, and the state at the next
step is 4 and the reward is also 100. In this example, this
myopic event-based policy is better than the optimal MDP
policy. ♦

This example shows that an optimal event-based policy
may be better than an optimal state-based policy; or
knowing the event is better than knowing the state. This
is because knowing the event implies knowing something
about the current transition, which, strictly speaking,
contains information about the future. In addition, we can
see that a history-independent event-based policy is good
enough in this example.

Many real-world systems fit the event-based formulation.

Example 2. (Admission Control) Consider a communica-
tion system modeled as a variant of an open network shown
in Figure 10. Packets are called customers in queueing
terminology. The network consists of M servers; the cus-
tomers’ service times at server i are identically and in-
dependently distributed with an exponential distribution
with mean 1/μi, i = 1, 2, . . . , M . After the completion
of its service at server i, a customer will join the queue
at server j with probability qi,j , and will leave the net-
work with probability qi,0, i, j = 1, 2, . . . , M . We have∑M

j=0 qi,j = 1, i = 1, 2, . . . , M . Let ni be the number of

customers at server i, and n =
∑M

i=1 ni be the population
of the system.

The customers arrive at the network in a Poisson process
with rate λ. If an arriving customer finds n customers in
the network, the customer will be admitted to the system
with probability α(n) and will be rejected and leave the
system with probability 1−α(n), 0 ≤ α(n) ≤ 1. We assume
that the system has a capacity of N ; i.e, α(N) = 0, or an
arriving customer finding N customers in the system will
be dropped. An admitted customer will join queue i with

probability q0,i, i = 1, 2, . . . , M ,
∑M

i=1 q0,i = 1.

The system can be modeled as a discrete-time Markov
chain embedded at the transition times. The system
state is n = (n1, n2, . . . , nM ). The optimization problem
is to find the best admission probabilities α(n), n =
0, 1, . . . , N − 1, such that the system performance is op-

timized. In this problem, an action is taken only when a
customer arrives at the network; we call it an event of
a customer arrival (which can be precisely defined as a
set of transitions). When a customer arrives, the system
can be in many different states n’s. Thus, the problem
is not a standard MDP, since an action may affect the
transition probabilities of many states. In addition, the
decision depends on events, rather than on states. ♦

With the sensitivity-based view, the solutions to the event-
based optimization problems rely on the performance
sensitivity formulas. It is easy to derive the performance
difference formula for the random walk example (with “′”
denoting the quantities for another policy):

η′ − η = π′(a)[(α′
a − αa)g(a)] + π′(b)[(α′

b − αb)g(b)], (14)

where π(a) and π(b) are the steady-state probabilities of
events a and b, and

g(a) = g(1) − g(2), g(b) = g(3) − g(4), (15)

are the potentials of events a and b, which are aggregated
from potentials g(1), g(2), and g(3), g(4), respectively,
according to the structure of the problem.

For the admission control problem, we have

η′ − η =

N−1∑
n=0

π′(n)[(α′(n) − α(n))]d(n), (16)

where π(n) is the steady-state probability of the event that
a customer arrives and finds the population n, and (let
n+i = (n1, ..., ni + 1, ...nM ))

d(n) =
1

π(n)
{

M∑
i=1

q0i[
∑

n1+···+nM=n

π(n)g(n+i)]

−[
∑

n1+···+nM=n

π(n)g(n)]}, (17)

is the potential aggregated according to the event struc-
ture.

Policy iteration algorithms can be developed from (14) and
(16). Furthermore, performance derivative formulas can
be easily derived from (14) and (16); therefore, gradient-
based optimization algorithms can also be developed. The
event-based potentials g(a) and g(b) in (15) and d(n) in
(17) can be estimated on a sample path of the systems,
and learning algorithms can be developed. The number of
events is usually much smaller than the number of states.
In the admission control problem, the number of states
grows exponentially with the system size N ; however, the
number of events, N + 1, is linear in the system size N .

In summary, the event-based approach has the following
advantages:

(1) Events may contain future information and an event-
based policy may perform better than state-based
policies.

(2) The potentials of events are aggregated from poten-
tials of states; the number of event-based policies may
be scale to the system size, and event-based approach
may save computation.
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(3) With event-based policy, the same action is taken at
different states that correspond to the same event;
thus, the event-based approach applies to problems
in which the independent-action assumption does not
hold.

The world of the event-based learning and optimization
can be described by a map similar to Figure 6, in which the
potentials g are replaced by the aggregated potentials of
the events, and the performance difference and derivative
formulas are replaced by those for event-based policies.
From these formulas, gradient-based approach, and under
some conditions (which are satisfied by the two examples
above, but not always!) policy iteration can be developed
(Cao [2007]). The difference and derivative formulas can
be “constructed” on a sample path with intuition by using
potentials as building blocks (Cao [2007]). Reinforcement
learning and other algorithms can also developed.

Many problems fit the event-based framework (a solution
may not be easy, though!). For example, in POMDP, we
may define an observation, or a sequence of observations,
as an event. Other examples including state and time ag-
gregations, hierarchical control (hybrid systems), options,
and singular perturbation. Different events can be defined
to capture the special features in these different problems.
In this sense, the event-based approach may provide a
unified view for possible solutions to these problems.

6. CONCLUSION

We have shown that the world of learning and optimization
of stochastic dynamic systems can be built upon the
two performance sensitivity formulas. This sensitivity-
based view not only provides a unified framework for
existing approaches, but also points to the direction for
new research topics. Event-based optimization, which have
advantages over the state-based approaches, may be solved
along that direction. Much work need to be done in that
direction.
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