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Hardware implementation of neuromorphic computing is attractive as a computing

paradigm beyond the conventional digital computing. In this work, we show that the

SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic

under a weak programming condition. The switching variability of the binary synaptic

device implements a stochastic learning rule. Such stochastic SET transition was

statistically measured and modeled for a simulation of a winner-take-all network for

competitive learning. The simulation illustrates that with such stochastic learning, the

orientation classification function of input patterns can be effectively realized. The system

performance metrics were compared between the conventional approach using the analog

synapse and the approach in this work that employs the binary synapse utilizing the

stochastic learning. The feasibility of using binary synapse in the neurormorphic computing

may relax the constraints to engineer continuous multilevel intermediate states and

widens the material choice for the synaptic device design.

Keywords: resistive switching, oxide RRAM, synaptic device, binary synapse, neuromorphic computing, stochastic

learning, switching variability

INTRODUCTION

In the memory hierarchy of today’s von Neumann digital sys-

tem, the increasing gap between the caches and the non-volatile

storage devices in terms of write/read speed has become the

performance bottleneck of the whole system. Bio-inspired neuro-

morphic computing breaks this von Neumann bottleneck because

it takes the advantage of massive parallelism that comes from the

distributed computing and localized storage in networks (Mead,

1990; Poon and Zhou, 2011). Neuromorphic computing is also

inherently error-tolerant, thus it is especially attractive for appli-

cations such as image or speech recognition which involve a

huge amount of correlated input data in a changing and inde-

terministic environment (Le et al., 2012). The most advanced

neuromorphic computing systems today are implemented by arti-

ficial neural network in software. For example, the IBM team

performed a cortical simulation at the complexity of the cat brain

on Blue Gene supercomputer, which required huge amount of

computation resources:147,456 microprocessors and 144 TB of

memories consuming a power of 1.4 MW (Preissl et al., 2012).

The parallelism of a multi-core computer pales in comparison

to the highly distributed computing in 1011 neurons and 1015

synapses in the human brain (Kandel et al., 2000). As an alter-

native approach, the hardware implementation of neuromorphic

computing may physically reproduce the parallelism on chip.

Previously, neuromorphic system in hardware with both neurons

and synapses was implemented by CMOS circuits (Indiveri et al.,

2006). The scaling-up of these systems is mainly constrained by

the device density and energy consumption of the synapses since

there are thousands of synapses connecting to one neuron. And

each synapse is implemented with quite a few transistors, e.g.,

the 8-T SRAM cells (Merolla et al., 2011) that occupies a huge

area (>100F2, F is the minimum feature size of the lithogra-

phy technology) and consumes substantial static power. Recently,

two-terminal emerging memory devices that show electrically-

triggered resistive switching phenomenon have been proposed as

artificial synapse (Kuzum et al., 2013). These emerging memo-

ries have the advantage of a small cell area (4F2, and 4F2/m if

3D stackable, m is the number of 3D stack layer). In the litera-

ture, Ge2Sb2Te5 based phase change memory (Bichler et al., 2012;

Kuzum et al., 2012; Suri et al., 2012a), Ag/a-Si (Jo et al., 2010),

Ag/Ag2S (Ohno et al., 2011) based conductive bridge memory,

and TiOx (Xia et al., 2009; Seo et al., 2011), WOx (Chang et al.,

2011; Yang et al., 2012a), HfOx (Yu et al., 2011a) based oxide

resistive switching memory have been reported showing synaptic

behaviors. Among these candidates, oxide based resistive switch-

ing memory is attractive for the large-scale demonstration of a

neuromorphic system due to a relatively lower energy consump-

tion (as compared to the phase change memory), the compatibil-

ity with CMOS technology and the potential for 3D integration

(Wong et al., 2012; Yu et al., 2013). Mb-scale to Gb-scale pro-

totype oxide based resistive switching memory chips have been

demonstrated recently (Sheu et al., 2011; Kawahara et al., 2012;

Liu et al., 2013). Therefore, a hybrid neuromorphic system with

CMOS neurons and oxide resistive switching synapses integrated

on top of CMOS neurons at the metal interconnect layers can be

envisioned.
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The mechanism of resistive switching phenomenon in oxides

has been widely attributed to the formation/rupture of the

nanoscale conductive filaments which may consist of oxygen

vacancies (Kown et al., 2010; Yang et al., 2012b). Figure 1 shows

an analogy between the biological synapse and the artificial oxide

synaptic device: the biological synapse changes its conductance by

activating/deactivating ion channels between the membrane and

the synaptic junction when the action potential arrives from pre-

synaptic and post-synaptic neurons coherently, while the oxide

synaptic device changes its resistance by generation and migration

of the oxygen vacancies when the programming voltage pulse that

is larger than the threshold is applied. The transition from off-

state to on-state is called SET, while the transition from on-state

to off-state is called RESET. During the SET, a conductive fila-

ment is formed connecting both electrodes. During the RESET,

a conductive filament is ruptured and a tunneling gap is formed

between one electrode and the residual filament. The variation

in the tunneling gap distance results in the multilevel resistance

states. The SET transition is typically abrupt due to the positive

feedback between the speed of filament growth and the increase

of temperature caused by the current rise (more Joule-heating)

(Yu et al., 2011b). On the other hand, the RESET transition is

typically gradual due to the negative feedback between the speed

of filament dissolution and the decrease of temperature caused

by the current drop (less Joule heating) (Yu et al., 2011b). For

the oxide synaptic device, the SET transition emulates the bio-

logical potentiation process and the RESET transition emulates

the biological depression process. Since the gradual RESET tran-

sition can provide multiple intermediate states, we define the

learning with RESET-only as depression-only rule. In the previ-

ous work (Yu et al., 2012), we reported an analog synapse utilizing

the depression-only learning rule for competitive learning. The

reason why we only utilized the depression is that the RESET

transition offers hundreds of states while the SET transition only

offers binary states. It is believed that the analog synapse generally

outperforms the binary synapse for neuromorphic computing

because a limited number of synaptic states dramatically reduce

the storage capacity of an artificial neural network (Senn and Fusi,

2005). If the synaptic strength cannot be changed by an arbi-

trarily small amount as in the case of the binary synapse, the

newly learned patterns quickly overwrite the previously learned

ones, thus the storage capacity is limited. This problem can be

overcome by a stochastic learning rule that changes only a small

fraction of synapses randomly chosen at each training cycle (Senn

and Fusi, 2005). How can this random choice be realized in an

oxide binary synaptic device without increasing the complexity

of the CMOS neuron circuit design? Recently, Suri et al. (2012b)

demonstrated a probabilistic switching in conductive bridge ran-

dom access memory, which inspired implementing a stochastic

learning rule for neuromorphic applications. In this work, we

demonstrate that the SET transition of the oxide synaptic device

becomes probabilistic under a weak programming condition

(applying a smaller voltage than the nominal switching voltage),

thus we propose utilizing such switching variability to realize

the stochastic learning rule in the binary synapse. The stochas-

tic SET transition was statistically measured and modeled for the

oxide synaptic device. Then the system performance metrics on

FIGURE 1 | An analogy between the biological synapse and the arifitial

oxide synaptic device. The biological synapse changes its conductance by

activating/deactivating ion channels between the membrane and the

synaptic junction when the action potential arrives from pre-synaptic and

post-synaptic neurons coherently, while the oxide synaptic device changes

its resistance by generation and migration of the oxygen vacancies when

the programming voltage pulse that is larger than the threshold is applied.

The neural network is emulated by the cross-point oxide synaptic device

array.

orientation classification function were compared between the

analog synapse utilizing the depression-only learning and the

binary synapse utilizing the stochastic learning. The comparison

shows that with the same network storage capacity, the orienta-

tion selectivity of the system with the binary synapse is a bit higher

than that of the system with the analog synapse, although the

total energy consumption of the system with the binary synapse

is larger than that of the system with the analog synapse. This

result suggests the feasibility of using the binary synapse for neu-

rormorphic computing. The use of binary synapse opens up new

opportunities because it relaxes the constraints to engineer con-

tinuous multilevel intermediate states and widens the material

choice for the synaptic device design.

ELECTRICAL CHARACTERIZATION OF OXIDE SYNAPTIC

DEVICE

Oxide synaptic device based on HfOx/TiOx/HfOx/TiOx stack

(from bottom to top) were fabricated (Fang et al., 2011). First,

we characterized the switching characteristics of the oxide synap-

tic device in both DC and pulse programming mode. Figure 2A

shows the measured DC I-V switching curve of the fabricated

device. The device is forming-free (Fang et al., 2011) which

means that no large voltage is required to trigger the subse-

quent switching behaviors and the as-fabricated device resis-

tance is around 500 k� off-state. The SET transition occurs

around +1 V with an abrupt jump of current to the compliance

current level (1 mA). The RESET transition starts from −0.7 V

to −1.6V with a gradual decrease of current. The abrupt SET

transition and gradual RESET transition is also observable in

the pulse switching mode, as shown in Figures 2B,C. When the

repetitive SET pulse (+1.7 V/10 ns) was applied to the device

in the off-state, the potentiation process is abrupt and only

two states can be obtained (∼500 k� and ∼500 �). In con-

trast, when repetitive RESET pulse (−1.3 V/10 ns) was applied

to the device in the on-state, the depression process is gradual
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FIGURE 2 | (A) Measured DC I-V switching characteristics of the oxide

synaptic device. Abrupt SET transition and gradual RESET transition is

observed. (B) Measured abrupt SET transition starting from the off-state

(∼500 k�) by repetitive SET pulses (+1.7 V/10 ns), in which case the device

functions as a binary synapse. (C) Measured gradual RESET transition

starting from the on-state (∼500 �) by repetitive RESET pulses (−1.3 V/10 ns),

in which case the device functions as an analog synapse. Results from 10

independent testing runs are shown. (D–F) Measured SET/RESET continuous

cycling with different SET pulse amplitudes +1.3 V/10 ns, +1.6 V/10 ns, +1.9 V/

10 ns, respectively. With the increase of SET pulse amplitude, the SET

success probability increases as well. The SET transition becomes stochastic

under weak programming condition, thus a stochastic learning rule can be

utilized in such binary synapse. All the data in this figure were obtained from

a single device that is representative of the devices measured.

and multilevel intermediate states can be obtained. Thus, the

device can serve as an analog synapse with the depression pro-

cess. We optimized the RESET condition (e.g., −1.1 V/10 ns) as

the analog synapse for the depression-only learning rule (Yu et al.,

2012) (see the Appendix). Interestingly, we found that although

the SET transition is abrupt, it becomes probabilistic under a

weak programming condition. Figures 2D–F shows the measured

SET/RESET continuous cycling with different SET pulse ampli-

tudes (+1.3 V/10 ns, +1.6 V/10 ns, +1.9 V/10 ns, respectively).

It is seen that with decrease of the SET pulse amplitude, the

SET success probability decreases as well. The resistive switch-

ing is inherently stochastic due to the randomness of the oxygen

vacancy’s generation and migration as suggested by the Kinetic

Monte Carlo simulation in (Yu et al., 2011b). The remarkable

switching parameter variability is a well-known technical chal-

lenge for the oxide based resistive switching memory array design

and substantial research efforts were spent to reduce the vari-

ability (Yu et al., 2013). Here we make use of the nominal

disadvantage (from a digital memory perspective) to realize the

stochastic learning rule for the binary synapse.

To obtain the statistics for both cycle-to-cycle variation and

device-to-device variation, we measured the pulse amplitudes

required for triggering the SET transition (with fixed 10 ns pulse

width) during 100 cycles in one device and repeated such testing

for 50 different devices. Figure 3 shows the measured statisti-

cal distribution: (A) for a particular device, the pulse ampli-

tude for a successful SET operation roughly follows a Gaussian

distribution with a standard deviation about 0.3 V; (B) across

various devices, the medium pulse amplitude for a successful

SET operation is centered around 1.95 V with a standard devi-

ation about 0.15 V. If we design the pulse amplitude applied

to the device to be 1.6 V, then on average, around 12% SET

trials will be successful. Certainly, due to device-to-device vari-

ation, some device may have success probability higher than

12%, while others may have success probability lower than 12%.

Nevertheless, the SET transition becomes probabilistic under

this weak programming condition. The origin of the stochastic

SET switching is worth discussion. We suggests there is some

sort of SET threshold (but not well-defined) associated with

the internal state of the device (e.g., the tunneling gap dis-

tance or oxygen vacancy distribution). After each RESET pulse

applied on the device, the internal state is disturbed somehow.

Even if the device is in the same resistance states in the off-

state, internally the oxygen vacancy distribution may be different.

Therefore, there may be another new SET threshold (but not well-

defined) in the next SET cycle if the device is under disturbance

pulse at the current cycle. The indeterministic SET threshold is

resulted from the variation of the internal state of the device.

The purpose of the testing in Figure 3 is to measure such SET

threshold distribution after the disturbance by a RESET pulse.

Further detailed study on the physical origin of the stochastic

SET switching is needed, and the Kinetic Monte Carlo simu-

lation in (Yu et al., 2011b) may offer deeper insights on this

issue.

In this work, we use a weak SET condition (e.g., +1.6 V/10 ns)

with a strong RESET condition (e.g., −1.9 V/10 ns) for a stochas-

tic learning rule. A RESET pulse larger than −1.6 V/10 ns can be

considered as strong programming condition for achieving the

complete off-state with a single pulse (Yu et al., 2012). Here a

strong RESET is needed to switch the device to a complete off-

state to avoid any unintentional switching under a weak SET pro-

gramming condition in the next cycle. Due to the non-volatility of

the resistive switching in the oxide synaptic device (which means

the resistance states should be stable without applying voltage
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stress), we would expect that the probability of SET would not

depend on the neuron firing rate, and the stability of the interme-

diate states is not a big concern. However, these issues are worth

further study.

SIMULATION OF WINNER-TAKE-ALL NETWORK

To validate the stochastic learning rule with oxide binary synaptic

device, we perform a simulation of a two-layer winner-take-

all neural network as a toy model. Figure 4A shows the net-

work architecture implemented by integrate-and-fire neurons

and oxide synaptic devices: every neuron in the output layer con-

nects with all the neurons in the input layer through excitatory

FIGURE 3 | Measured statistical distribution of pulse amplitude

required for triggering the SET switching from the off-state. In (A) the

probability of SET switching is measured for one representative device for

100 cycles. In each cycle, a strong RESET pulse (−1.9 V/10 ns) to was

applied to achieve a complete off-state (∼500 k�), then a weak SET pulse

with amplitudes from +0.6 V to +3 V (with linearly spaced steps with

increasing amplitude) with a 10 ns width was applied to determine the

switching probability. Such cycle was repeated for 100 cycles for each

device. In (B), 50 different devices on the wafer were measured in the way

as described for (A). The data for these 50 devices are presented in (B)

with one type of symbol in the figure representing the data from one

device. The y-axis in (B) is scaled to be Gaussian, thus a straight line in this

plot indicates a Gaussian distribution. If the applied pulse amplitude is 1.6 V,

then on average, around 12% of the SET trials will be successful.

synapses based on the oxide synaptic devices. Every neuron in

the output layer also connects to one another through inhibitory

synapses based on fixed resistors. The unsupervised competitive

learning algorithm allows such two-layer network to perform

the orientation classification function (Zamarreño-Ramos et al.,

2011). A spiking scheme for implementing the unsupervised

competitive learning algorithm in the binary synapse can be

designed in Figure 4B: the input layer neurons fire according

to the light intensity of the input pattern; if the light inten-

sity exceeds the neuron firing threshold, the neurons send a

relatively long but small positive pulse to all the output layer

neurons through the excitatory synapses. The output layer neu-

rons sum and integrate the input currents on the membrane

capacitor independently, and the one with the largest input cur-

rent fires first (becomes the “winner”), then it discharges the

membrane capacitor of all the other output layer neurons and

prevent them from firing (“takes all”) through the inhibitory

synapses. Meanwhile this winner neuron sends a short two-phase

pulse with a small negative pulse followed by a large positive

pulse back to all the input layer neurons. Thus, the excitatory

synapse strength gets modified according to the input pattern:

if both the input layer neuron and the output layer neuron fire,

the synapse may face an actual SET programming pulse larger

than the threshold; if only the output layer neuron fires, the

synapse may face an actual RESET programming pulse larger than

the threshold. Thus, the synapse conductance map between the

input layer and the output layer tends to mimic the input pat-

tern light intensity. Since the SET transition is probabilistic under

a weak programming condition, the update of the synapse con-

ductance map is an incremental process. After a certain number

of training images, a self-organized conductance map emerges.

In the following simulation, 32 × 32 neurons in the input layer

are used and 2 × 2 neurons in the output layer are used. Thus,

there are 4096 oxide synaptic devices between the two layers.

During the training, 200 gray-scale images of a 2D Gaussian

FIGURE 4 | (A) Neuromorphic system based on winner-take-all neural

network. In the system-level simulation, 32 × 32 neurons in the input layer

are connected with 2 × 2 neurons in the output layer through 4096 oxide

based excitatory synaptic devices. Every neuron in the output layer also

connects to one another through inhibitory synapses based on fixed

resistors. (B) The spiking scheme for binary synapse with stochastic

learning: the pre-synaptic forward spike from the input layer neuron is

designed to be a long but small positive pulse (e.g., +0.8 V/500 ns), the

post-synaptic backward spike is designed to be a short two-phase pulse

with a small negative pulse (e.g., −0.8 V/10 ns) followed by a large positive

pulse (e.g., +1.9 V/10 ns). If both the input layer neuron and the output

layer neuron fire, the synapse faces an actual SET programming pulse

(e.g., +1.6 V/10 ns); if only the output layer neuron fires, the synapse faces

an actual RESET programming pulse (e.g., −1.9 V/10 ns). Thus, the synapse

conductance map between the input layer and the output layer tends to

mimic the input pattern light intensity.
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FIGURE 5 | Simulated normalized conductance map between the input

layer neurons and the output layer neurons utilizing binary synapse

with stochastic learning (A–C) and analog synapse with

depression-only learning (D–F). The normalization is done with respect to

a reference that is the highest conductance in the synapse array before

the training. Initially, the resistances of all the oxide synaptic devices were

randomized with a distribution centered at on-state for binary synapse (A)

and for analog synapse (D). After the training, the resistances diverge.

With appropriate programming condition, the 4 distinct orientations

emerge, e.g., for binary synapse using +1.6 V/10 ns SET pulse (B) and for

analog synapse using −1.1 V/10 ns RESET pulse (E). If the programming

condition not optimized, only 3 distinct orientations emerge, e.g., for

binary synapse using +2 V/10 ns SET pulse (C) and for analog synapse

using −1.4 V/10 ns RESET pulse (F).

bar with random orientation were presented to the input layer

neurons. These orientations have a non-uniform distribution

(centered at 0, 45, 90, and 135◦ with a standard deviation of

7.5◦). The target of the network is to converge at these 4 dominate

orientations.

Figure 5 shows the evolution of the normalized conductance

map between the input layer neurons and the output layer neu-

rons for the binary synapse with stochastic learning (A–C) and

the analog synapse with depression-only learning (D–F). Initially,

the resistances of all the oxide synaptic devices were randomized

with a distribution centered at an on-state (∼500 �), as shown in

Figure 5A for the binary synapse and in Figure 5D for the analog

synapse. After the training, the resistances split into groups of the

on-state and the off-state. With appropriate programming con-

dition, 4 distinct orientations emerge, as shown in Figure 5B for

the binary synapse using +1.6 V/10 ns SET pulse and in Figure 5E

for the analog synapse using −1.1 V/10 ns RESET pulse. It is

noted that for the analog synapse, there are many noisy pixels

caused by the intermediate states. If the programming condition

not optimized, only 3 distinct orientations emerge, as shown in

Figure 5C for the binary synapse using +2 V/10 ns SET pulse and

in Figure 5F for the analog synapse using −1.4 V/10 ns RESET

pulse. To compare the system performance between the binary

synapse and the analog synapse, three metrics are used: (1) the

orientation selectivity defined as the contrast of the output layer

neuron’s response intensity to the 1st preferred orientation over

the 2nd preferred orientation; (2) the orientation storage capac-

ity defined as the number of distinct orientations stored in the

output layer (ideally, 4 distinct orientations will be detected);

(3) the energy consumed on the synaptic devices during the

whole training, including the read energy for summing the cur-

rent through the synapses and the write energy for programming

the synapses. Figure 6 shows the average values of these met-

rics as a function of programming conditions for the system

with the binary synapse (A–B) and the system with the analog

synapse (C–D) through 100 independent simulation runs (with

the same training data sets). The effect of using random train-

ing data sets remains for further study. The trends in Figure 6

can be explained as follows: for the binary synapse, increasing the

SET pulse amplitude means increasing the SET success probabil-

ity. As a result, the selectivity increases because more pixels are

switched to “white” and the contrast is improved. The orienta-

tion storage capacity can achieve the maximum value 4 at 1.6 V,

thus +1.6 V/10 ns is chosen as the optimized programming con-

dition for the binary synapse, which corresponds to a SET success

probability ∼12% on average. The loss of the orientation storage
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FIGURE 6 | Simulated system performance metrics as a function of

programming conditions. Network orientation selectivity and orientation

storage capacity for binary synapse in (A) and for analog synapse in (C);

Energy consumption of the synaptic devices during the whole training (200

training images) for binary synapse in (B) and for analog synapse in (D).

The average values through 100 independent simulation runs are

shown. +1.6 V/10 ns is chosen as the optimized programming condition for

binary synapse, which corresponds to a SET success probability ∼12% on

average. And −1.1 V/10 ns is chosen as the optimized programming

condition for analog synapse.

capacity below 1.6 V SET pulse amplitude is due to insufficient

SET success probability, which limits the ability of the network to

learn sufficient patterns for a fixed (limited) set of training images

(200 images in this case). On the other hand, the rapid drop of

the orientation storage capacity beyond 1.6 V SET pulse ampli-

tude is due to excessive SET success probability, which hastens

the network’s forgetting process (overwriting the learned patterns

too frequently), thus only the final patterns are remembered (see

Figure 5C as an example). The total energy consumption (includ-

ing the read and write energy) increases with the increase of

the SET pulse amplitude. The energy consumption roughly fol-

lows the relationship ∼ E = (V2/R) × t. For the analog synapse,

increasing the RESET amplitude means that the RESET transition

becomes less gradual and fewer intermediate states are available

(Yu et al., 2012). As a result, both the selectivity and the ori-

entation storage capacity decreases with increasing RESET pulse

amplitude (see Figure 5F as an example). Therefore, in general,

the lower the amplitude, the better. Here −1.1 V/10 ns is chosen

as the optimized programming condition for the analog synapse

because the pulses smaller than −1.1 V almost could not affect

the resistance (Yu et al., 2012). Under depression-only mode,

the learning becomes saturated as the devices quickly RESET to

the completely off-state if the number of possible intermediate

states are insufficient. The write energy consumption decreases

with the increase of RESET pulse amplitude since the learning

saturates faster. The read energy has a turning point due to the

competing trends of increasing voltage and increasing resistance

in the relationship ∼ E = V2/R × t. At the optimized program-

ming condition for the binary synapse and the analog synapse,

respectively, the same full network storage capacity of 100% is

achievable, the selectivity of the binary synapse is 14.1% and

that of the analog synapse is 9.9%, and the total energy con-

sumption of the binary synapse is 156 µJ and the that of the

analog synapse is 60 µJ. The feasibility of the stochastic learning

with the binary synapse is demonstrated through this system-level

simulation.

CONCLUSION

In summary, we demonstrate that the SET transition of

oxide synaptic device becomes probabilistic under a weak pro-

gramming condition. The switching variability can be uti-

lized to implement a stochastic learning rule. A simulation of

winner-take-all network was performed for orientation clas-

sification function, showing comparable system performance

between the analog synapse utilizing the depression-only learn-

ing and the binary synapse utilizing the stochastic learn-

ing. The significance of this demonstration is that it opens

up new opportunities for a variety of material and device

choices for implementing neuromorphic computing in the hard-

ware. Further studies on the physical origin of such stochas-

tic SET process is helpful, and the simulation beyond this

winner-take-all toy-model is necessary to evaluate the effec-

tiveness of such stochastic learning algorithms on real-world

problems.

METHODS

DEVICE FABRICATION

Fifty nanometer Pt bottom electrode (with 20 nm Ti adhesion

layer) was first deposited on 8-inch Si substrate by electron

beam evaporation. Four nanometer HfOx was deposited by reac-

tive sputtering in Ar and O2 ambient, and then 2 nm TiOx

was prepared by oxidation of Ti thin film. These two pro-

cesses were repeated to form the 12 nm four-layer oxide stack of

HfOx/TiOx/HfOx/TiOx (from bottom to top). Then a 50 nm TiN

top electrode was deposited by reactive sputtering and patterned

by photo-lithography with the 5 µm by 5 µm pad size. Finally,

dry etch was done to isolate the cells on the wafer. Materials

characterization techniques such as cross-sectional transmission

electron microscopy (TEM) and energy-dispersive X-ray (EDX)

spectroscopy were employed to study the cross-sectional mor-

phology and elemental spatial profile, which were reported in

(Fang et al., 2011).

DEVICE ELECTRICAL MEASUREMENT

Keithley 4200 semiconductor parameter analyzer and

Agilent 81150A pulse generator were used for DC and

pulse electrical measurements, respectively. In all the mea-

surements, the voltage was applied to the top electrode

(TiN) while the bottom electrode (Pt) was grounded.

The resistance state were all measured with a read voltage

of 0.1 V.

The experimental protocol for the measurement in Figure 2

is as follows: for a particular device, (A) DC I-V sweep was

performed from 0 V→ +2 V→0 V→ −2 V→0 V. During SET,

a 1 mA compliance current was enforced for the prevention

of permanent breakdown of the device. (B) SET transition

starting from the off-state (∼500 k�) by repetitive SET pulses
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(+1.7 V/10 ns). Ten independent testing runs were performed.

(C) RESET transition starting from the on-state (∼500 �) by

repetitive RESET pulses (−1.3 V/10 ns). Ten independent testing

runs were performed. (D–E) SET/RESET 100 times continuous

cycling with a fixed RESET pulse (−1.7 V/10 ns) but different SET

pulse amplitudes (+1.3 V/10 ns, +1.6 V/10 ns, +1.9 V/10 ns),

respectively.

The experimental protocol for the measurement in Figure 3

is as follows: 50 different devices on the wafer were measured,

and in each device 100 cycles were measured. In each cycle, a

strong RESET pulse (−1.9 V/10 ns) to was applied to achieve a

complete off-state, then a weak SET pulse linearly ramping from

+0.6 V to +3 V with a 10 ns width was applied to determine

the switching threshold voltage; and such cycle were repeated

for 100 cycles for each device. The purpose of the testing in

Figure 3 is to measure such SET threshold distribution after

the disturbance by a RESET pulse. Therefore, no intermediate

RESET pulse in between were applied when linearly ramping

the SET voltage amplitudes. However, this measurement proto-

col may introduce some systematic bias, e.g., some shift of the

SET threshold distribution toward lower amplitudes due to the

accumulation effect of the pulses. But such shift is expected to

be insignificant considering the exponential dependence of the

oxygen vacancy generation rate on the applied voltage (Yu et al.,

2011b).

WINNER-TAKE-ALL NETWORK SIMULATION

According to the measurement results in Figure 3, the stochas-

tic switching behavior is modeled as follows: the cycle-to-cycle

variation of the binary synapse is modeled as a Gaussian distri-

bution of the threshold SET pulse amplitude (with a standard

deviation 0.3 V); and the median value of the Gaussian distribu-

tion shifts from device to device, reflecting the device-to-device

variation, which is modeled as a Gaussian distribution cen-

tered around 1.95 V with a standard deviation 0.15 V. Then this

model was implemented in the following simulation in such a

way: each synapse in the network is randomly assigned with a

SET threshold with different thresholds following the Gaussian

distribution centered around 1.95 V with a standard deviation

0.15 V, and different synapses have different SET threshold volt-

ages reflecting the device-to-device variation. Then during the

simulation, if a synapse is disturbed by an intermediate RESET

pulse, the new SET threshold is assigned to that synapse follow-

ing the Gaussian distribution with a standard deviation 0.3 V,

reflecting the cycle-to-cycle variation caused by the RESET pulse

disturbance on the internal state of the device. At each cycle,

the actual voltage dropped on the synapse, which is designed

by the spiking schemes described in Figure 4B, is compared

with the SET threshold of each synapse in the network: if the

actual voltage is larger than the SET threshold at that particular

cycle, the synapse is switched from off-state to on-state, oth-

erwise, it remains off-state. If the synapse sees a RESET pulse,

it is unconditionally switched from on-state to off-state since

the RESET pulse is designed to be a strong RESET pulse (See

Figure 4B).

The two-layer winner-take-all neural network is sim-

ulated in MATLAB with the above stochastic binary

synapse model and a typical integrate-and-fire neuron

model.

Cm
dV

dt
= I −

V

RL

The neuron firing threshold is set to be 1 V. The leaky resistor is set

to be 1 M�, and the membrane capacitor is 1 pF, thus the decay

time constant of the membrane voltage is set to be 1 µs. The pre-

synaptic forward spike from the input layer neuron is designed to

be a positive pulse (e.g., +0.8 V/500 ns) that is half the amplitude

of the actual SET programming pulse, the post-synaptic backward

spike from the output layer neuron is designed to be a negative

pulse (e.g., −0.8 V/10 ns) that is half the amplitude of the actual

SET programming pulse followed by a positive constant pulse

(e.g., +1.9 V/10 ns), see Figure 4B for an illustration. Changing

the pulse amplitude also affects the synaptic transmission since

the input current of the output layer neurons is proportional to

the spike pulse amplitude of the input layer neurons.

Initially, the resistances of all the oxide synaptic devices

were randomized with a distribution centered at the on-state

(∼500 �). During the training, 200 gray-scale testing images with

32 × 32 pixels were presented into the input layer neurons. The

input patterns have the shape of a 2D Gaussian bar with random

orientation. The decay length of the 2D Gaussian bar in longitude

direction is 16 pixels and the decay length in latitude direction is

4 pixels. The input stimuli are synchronized. The input layer neu-

ron fires if the relative intensity is larger than 0.5. These 200 test

images have a non-uniform distribution in 4 orientations (cen-

tered at 0, 45, 90, and 135◦ with a standard deviation of 7.5◦).

The energy consumed on all the synapses in the network was

calculated during the training.

When the training was completed after 200 training images

by definition, standard images of 2D Gaussian bar in 24 differ-

ent orientations (0◦ to 180 with a step of 7.5◦) were used for

testing the orientation selectivity of the network. The orienta-

tion selectivity was calculated as the contrast of the output layer

neuron’s response intensity to the 1st preferred orientation over

the response intensity to the 2nd preferred orientations. The ori-

entation storage capacity was defined as the number of distinct

orientations in the output layer.
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APPENDIX

THE GRADUAL RESET TRANSITION AS AN ANALOG SYNAPSE

The oxide synaptic device has a gradual RESET transition. As

reported in Yu et al. (2012) of the main text, multilevel inter-

mediate states can be obtained by hundreds of RESET pulses.

Figure A1 shows the RESET transition starting from on-state

(∼500 �) with different RESET pulse amplitudes: a lower ampli-

tude leads to a more gradual RESET transition than a higher

amplitude does. Therefore, −1.1 V/10 ns is chosen as a preferred

programming condition for analog synapse. For system-level sim-

ulation, a compact model of filament dissolution was developed

to capture this gradual RESET transition. The model was fitted

with the experimental data, and the details of the model can be

found in Yu et al. (2012).

FIGURE A1 | Measured gradual RESET transition starting from ∼500 �

by hundreds of RESET pulses. The pulse amplitude was varied, and the

parameters of the compact model were fitted.

THE SPIKING SCHEME FOR ANALOG SYNAPSE WITH

DEPRESSION-ONLY LEARNING

Since the analog synaptic behavior can only be obtained in the

gradual RESET transition (not in the abrupt SET transition),

a spiking scheme for depression-only learning is designed as

following in Figure A2. It is similar as the scheme for binary

synapse showed in Figure 5B of the main text: the pre-synaptic

forward spike from the input layer neuron is designed to be

positive pulse with half amplitude of the actual RESET program-

ming pulse (e.g., +0.55 V/500 ns), the post-synaptic backward

spike is designed to be a positive pulse with amplitude of the

actual RESET programming pulse (e.g., +1.1 V/10 ns). Therefore,

if both the input layer neuron and the output layer neuron fire,

the synapse does not face any programming pulse due to the

cancelling effect of the forward spike and backward spike; if

only the output layer neuron fires, the synapse faces an actual

RESET programming pulse (e.g., −1.1 V/10 ns). In this way, the

depression-only learning for analog synapse is realized.

FIGURE A2 | The spiking scheme for the analog synapse utilizing the depression-only learning.
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