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We describe a family of learning algorithms that operate on a recurrent, symmetrically 
connected. neuromorphic network that. like the Boltzmann machine, settles in the 
presence of noise. These networks learn by modifying synaptic connection strengths on 
the basis of correlations seen locally by each synapse. We describe a version of the 
supervised learning algorithm for a network with analog activation functions. We also 
demonstrate unsupervised competitive learning with this approach. where weight 
saturation and decay play an important role. and describe preliminary experiments in 
reinforcement learning. where noise is used in the search procedure. We identify the 
above described phenomena as elements that can unify learning techniques at a physical 
microscopic level. 

These algorithms were chosen for ease of implementation in vlsi. We have designed a 
CMOS test chip in 2 micron rules that can speed up the learning about a millionfold 
over an equivalent simulation on a VAX lln80. The speedup is due to parallel analog 
computation for snmming and multiplying weights and activations. and the use of 
physical processes for generating random noise. The components of the test chip are a 
noise amplifier. a neuron amplifier. and a 300 transistor adaptive synapse. each of which 
is separately testable. These components are also integrated into a 6 neuron and 15 
synapse network. Finally. we point out techniques for reducing the area of the 
electronic correlational synapse both in technology and design and show how the 
algorithms we study can be implemented naturally in electronic systems. 

1. INTRODUCTION 

Ibere has been significant progress. in recent years. in modeling brain function as the collective 

behavior of highly interconnected networks of simple model neurons. This paper focuses on the 

issue of learning in these networks especially with regard to their implementation in an electronic 

system. Learning phenomena that have been studied include associative memoryllJ. supervised 

leaming by error correction(2) and by stochastic search(3). competitive learning(4) lS) reinforcement 

leamingI6). and other forms of unsupervised leaming(7). From the point of view of neural 

plausibility as well as electronic implementation. we particularly like learning algorithms that 

change synaptic connection strengths asynchronously and are based only on information 

available locally at the synapse. This is illustrated in Fig. 1. where a model synapse uses only the 

correlations of the neurons it connects and perhaps some weak global evaluation signal not 

specific to individual neurons to decide how to adjust its conductance. 
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Fig. 1. A local correlational synapse. 

We believe that a stochastic search procedure is most compatible with this viewpoint. Statistical 

procedures based on noise form the communication pathways by which global optimization can 

take place based only on the interaction of neurons. Search is a necessary part of any learning 

procedure as the network attempts to find a connection strength matrix that solves a particular 

problem. Some learning procedures attack the search directly by gradient following through error 

(orrection[8J (9J but electronic implementation requires specifying which neurons are input, 

tudden and output in advanC'e and nece!;sitates global control of the error correction[2J procedure 

m a way that requires specific connectivity and ~ynch!'Ony at the neural Jevel. There is also the 

question of how such procedures would work with unsupervised methods and whether they might 

get stuck in local minima. Stochastic processes can also do gradient foUowing but they are better 

at avoiding minima, are compatible with asynchronous updates and local weight adjustments, 

and, as we show in this paper, can generalize well to less supervifM!d learning. 

The phenomena we studied are 1) analog activation, 2) noise, 3) semi-local Hebbian synaptic 

modification, and 4) weight decay and saturation. These techniques were applied to problems in 

supervised, unsupervised, and reinforcement learning. The goal of the study was to see if these 

diverse learning styles can be unified at the microscopic level with a small set of physically 

plausible and electronically implementable phenomena. The hope is to point the way for 

powerful electronic learning systems in the future by elucidating the conditions and the types of 

circuits that may be necessary. It may also be true that the conditions for electronic learning may 
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have some bearing on the general principles of biologicalleaming. 

2. WCAL LEAltNlNG AND STOCHASl'IC SEARCH 

2.1 Supervised Learning in Recurrent Networks with Analog Activations 

We have previously shown! 10] how the supervised learning procedure of the Boltzmann 

machine(3) can be implemented in an electronic system. This system works on a recurrent, 

symmetrically connected network which can be characterized as settling to a minimum in its 

Liapunov function(l]!II). While this architecture may stretch our criterion of neural plausibility, it 

does provide for stability and analyzability. The feedback connectivity provides a way for a 

supervised learning procedure to propagate information back through the network as the 

stochastic search proceeds. More plausible would be a randomly connected network where 

symmetry is a statistical approximation and inhibition damps oscillations, but symmetry is more 

efficient and weD matched to our choice of learning rule and search procedure. 

We have extended our electronic model of the Boltzmann machine to include analog activations. 

Fig. 2 shows the model of the neuron we used and its tanh or sigmoid transfer function. The net 

input consists of the usual weighted sum of activations from other neurons but, in the case of 

Boltzmann machine learning, these are added to a noise signal chosen from a variety of 

distributions so that the neuron performs the physical computation: 

activation =1 (neti FI (EwijSj+noise ):::tanh(gain*neti) 

Instead of counting the number of on-on and off-off cooccurrences of neurons which a synapse 

connects, the correlation rule now defines the value of a cooccurrence as: 

Cij=/i*/i 

where Ii is the activation of neuron i which is a real value from -1 to 1. Note that this rule 

effectively counts both on-on and off-off cooccurrences in the high gain limit. In this limit, for 

Gaussian noise, the cumulative probability distribution for the neuron to have activation + 1 (on) 

is close to sigmoidal. The effect of noise "jitter" is illustrated at the bottom of the figure. The 

weight change rule is still: 

if Cij+ > Cij- then increment Wij .... else decrement 

where the plus phase clamps the output neurons in their desired states while the minus phase 

allows them to run free. 

As· mentioned, we have studied a variety of noise distributions other than those based on the 

Boltzmann distribution. The 2-2-1 XOR problem was selected as a test case since it has been 

shown! 10] to be easily caught in local minima. The gain was manipulated in conditions with no 

noise or with noise sampled from one of three distributions. The Gaussian distribution is closest 

to true electronic thermal noise such as used in our implementation, but we also considered a 

cut-off uniform distribution and a Cauchy distribution with long noise tails for comparison. The 

inset to Fig. 3 shows a histogram of samples from the noise distributions used. The noise was 

multiplied by the temperature to 'jitter' the transfer function. Hence. the jitter decreased as the 

annealing schedule proceeded. 
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Fig. 2. Electronic analog neuron. 

Fig. 3 shows average performance across 100 runs for the last 100 patterns of 2000 training 

pattern presentations. It can be seen that reducing the gain from a sharp step can improve 

learning in a small region of gain, even without noise. There seems to be an optimal gain level. 

However, the addition of noise for any distribution can substantially improve learning at all levels 

of gain. 
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2.2 Stochastic Competitive Learning 

We have studied how competitive leaming(4J[~) can be accomplished with stochastic local units. 

Mter the presentation of the input pattern. the network is annealed and the weight is increased 

between the winning cluster unit and the input units which are on. As shown in Fig. 4 this 

approach was applied to the dipole problem of Rumelhart and Zipser. A 4x4 pixel array input 

layer connects to a 2 unit competitive layer with recurrent inhibitory connections that are not 

adjusted. The inhibitory connections provide the competition by means of a winner-lake-all 

process as the network settles. The input patterns are dipoles - only two input units are turned 

OIl at each pattern presentatiOll and they must be physically adjacent. either vertically or 

horizontally. In this way, the network learns about the connectedness of the space and eventually 

divides it into two equal spatial regions with each of the cluster units responding only to dipoles 

from one of the halves. Rumelhart and Zipser renormalized the weights after each pattern and 

picked the winning unit as the one with the highest activation. Instead of explicit nonnalization 

of the weights. we include a decay term proportional to the weight. The weights between the 

input layer and cluster layer are incremented for on-on correlations, but here there are no 

alternating phases so that even this gross synchrony is not necessary. Indeed. if small time 

constants are introduced to the weight updates. no external timing should be needed. 

winner-lake-all 

cluster layer 

input/ayer 

Pig. 4. Competitive learning network for the dipole problem. 

Fig. S shows the results of several runs. A 1 at the po~ition of an input unit means that unit 1 of 

the cluster layer has the larger weight leading to it from that position. A + between two units 

means the dipole from these two units excites unit 1. A 0 and - means that unit 0 is the winner in 

the complementary case. Note that adjacent l's should always have a + between them since both 

weights to unit 1 are stronger. H, however, there is a 1 next to a 0, then there is a tension in the 

dipole and a competition for dominance in the cluster layer. We define a figure of merit called 

"surface tension" which is the number of such dipoles in dispute. The smaller the number, the 
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better. Note in Runs A and B, the number is reduced to 4, the minimum possible value, after 

2000 pattern presentations. The space is divided vertically and horizontally, respectively. Run C 

bas adopted a less favorable diagonal division with a surface tension of 6. 

Number of dipole pattern presentations 

0 200 800 1400 2000 

0-0-0-0 1+0-0+1 1+1+1+1 1+1+1+1 1+1+1+1 
+ + + + + + + - + + + + + + + + 

0-0-0-0 1+1+1+1 1+1+1-0 1+1+1+1 1+1+1+1 
RUn A + + - - + + - - + - + - - - - + 

0-0-0-0 1+1-0-0 1-0-0-0 0-0-0-0 0-0-0-0 

+ - - -
0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 

0-0-0-0 0-0-0-0 0-0-0+1 0-0-0-1 0-0-1+1 

- - - + - - + + - - - + - - + + 
0-0-0-0 0-0-0+1 0-0-1+1 0-0-1+1 0-0-1+1 

Run B - - - + - - + + - - + + - - + + 
0-0-0-0 1-0-1+1 0-0-1+1 0-0-1+1 0-0-1+1 

+ - + + - - + + - - + + - - + + 
0-0-0-0 1+0+1+1 0-0+1+1 0-0+1+1 0-0+1+1 

0-0-0-0 0+1+1+1 0+1+1+1 1+1+1+1 1+1+1+1 
- + + + - + + + + + + + - + + + 

0-0-0-0 0-1+1+1 0+1+1+1 0+1+1+1 0-0+1+1 

Run C - + + + - + + + - - + + - - + + 
0-0-0-0 0-1+1+1 0-0-0-0 0-0-0-0 0-0-0-1 

- - - + 
0- 0-0-0 0-0-0-0 0-0-0-0 0-0-0-0 0-0-0-1 

Fig. 5. Results of competitive learning runs on the dipole problem. 

Table 1 sbows the result of several competitive algorithms compared when averaged over 100 

such runs. The deterministic algorithm of Rumelhart and Zipser gives an average surface tension 

of 4.6 while the stochastic procedure is almost as good. Note that noise is essential in belping the 

competitive layer settle. Without noise the surface tension is 9.8, sbowing that the winner-take

all procedure is not working properly. 

Competitive learning algorithm 

Stochastic net with decay 
- anneal: T=3H T=1.0 
- no anneal: 70 @ T =1.0 

Stochastic net with renonnallzation 

Deterministic, winner-take-all 
(Rumelhart & Zipser) 

"surface tension" 

4.8 
9.8 

5.6 

4.6 

Table 1. Performance of competitive learning algorithms across 1 ()() runs. 

We also tried a procedure where, instead of decay, weights were renormalized. The model is that 

each neuron can support a maximum amount of weight leading into it. Biologically, this might 

be the area that other neurons can form synapses on, so that one synapse cannot increase its 

strength except at the expense of some of the others. Electronically, this can be implemented as 
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current emanating from a fixed clUTent source per neuron. As shown in Table 1, this works 

nearly as well as decay. Moreover, preliminary results show that renormalization is especiaUy 

effective when more then two cluster units are employed. 

Both of the stochastic algorithms, which can be implemented in an electronic synapse in nearly 

the same way as the supervised learning algorithm, divide the space just as the deterministic 

normalization procedure14J does. This suggests that our chip can do both styles of learning, 

supervised if one includes both phases and unsupervised if only the procedure of the minus phase 

is used. 

1.3 Reiolorcelfteot Learning 

We have tried several approaches to reinforcement learning using the synaptic model of Fig. 1 

where the evaluation signal is a scalar value available globally that represents how well the 

system performed on each trial. We applied this model to an xor problem with only one output 

unit. The reinforcement was r = 1 for the correct output and r = -1 otherwise. To the network, 

this was similar to supervised learning since for a single unit, the output state is fully specified by 

a scalar value. A major difference, however, is that we do not clamp the output unit in the 

desired state in order to compare plus and minus phases. This feature of supervised learning has 

the effect of adjusting weights to follow a gradient to the desired state. In the reinforcement 

learning described here, there is no plus phase. This has a satisfying aspect in that no overall 

synchrony is necessary to compare phases, but is also much slower at converging to a solution 

because the network has to search the solution space without the guidance of a teacher clamping 

the output units. This situation becomes much worse when there is more than one output unit. In 

that case, the probability of reinforcement goes down exponentially with the number of outputs. 

To test multiple outputs, we chose the simple replication problem whereby the output simply has 

to replicate the input. We chose the number of bidden units equal to the input (or output). 

10 the absence of a teacher to clamp the outputs, the network has to find the answer by chance, 

guided only by a "critic" which rates its effort as "better" or "worse". This means the units must 

somehow search the space. We use the same stochastic units as in the supervised or unsupervised 

techniques, but now it is important to have the noise or the annealing temperature set to a proper 

level. If it is too high, the reinforcement received is random rather than directed by the weights 

in the network. If it is too low, the available states searched become too smaU and the probability 

of finding the right solution decreases. We tuned our annealing schedule by looking at a 

volatility measure defined at each neuron which is simply the fraction of the time the neuron 

activation is above zero. We then adjust the final anneal temperature so that this number is 

neither 0 or 1 (noise too low) nor 0.5 (noise too high). We used both a fixed annealing schedule 

for all neurons and a unit-specific schedule where the noise was proportional to the sum of weight 

magnitudes into the unit. A characteristic of reinforcement learning is that the percent correct 

initially increases but then decreases and often oscillates widely. To avoid this, we added a factor 

of (I - <r » multiplying the final temperature. This helped to stabilize the learning. 

In keeping with our simple model of the synapse, we chose a weight adjustment technique that 

consisted of correlating the states of the connected neurons with the global reinforcement signal. 

Each synapse measured the quantity R = rs;sj for each pattern presented. If R >0, then ~';j is 

incremented and it is decremented if R <0. We later refined this procedure by insisting that the 

reinforcement be greater than a recent average so that R = (r-<,. > hi Sj. This type of procedure 
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appears in previous work in a number of fonns.(12] (13) For r =±l only, this "excess 

reinforcement" is the same as our previous algorithm but differs if we make a comparison 

between short term and long tenn averages or use a graded reinforcement such as the negative of 

the sum squared error. Following a suggestion by G. Hinton, we also investigated a more 

complex technique whereby each synapse must store a time average of three quantities: <r>, 

<SiSj>, and <rsiSj>. The definition now is R = <rsiSj>-<r><SjSj> and the rule is the same as 

before. Statistically, this is the same as "excess reinforcement" if the latter is averaged over 

trials. For the results reported below the values were collected across 10 pattern presentations. A 

variation. which employed a continuous moving average, gave similar results. 

Table 2 summarizes the perfonnance on the xor and the replication task of these reinforcement 

learning techniques. As the table shows a variety of increasingly sophisticated weight adjustment 

rules were explored; nevertheless we were unable to obtain good results with the techniques 

described for more than S output units. In the third column, a small threshold had to be exceeded 

prior to weight adjustment. In the fourth column, unit-specific temperatures dependent on the 

sum of weights, were employed. The last column in the table refers to frequency dependent 

learning where we trained on a single pattern until the network produced a correct answer and 

then moved on to another pattern. This final procedure is one of several possible techniques 

related to 'shaping' in operant learning theory in which difficult patterns are presented more often 

to the network. 

network t=1 time-averaged +£=0.1 +T-I:W +freq 

xor 

24-1 (0.60) 0.64 (0.70) 0.88 (0.76) 0.88 (0.92)0.99 (0.98) 1.00 

2-2-1 (0.58) 0.57 (0.69) 0.74 (0.96) 1.00 (0.85) 1.00 (0.78) 0.88 -
eplication 

2-2-2 (0.94)0.94 (0.46) 0.46 (0.91) 0.97 (0.87) 0.99 (0.97) 1.00 

3-3-3 (0.15) 0.21 (0.31) 0.33 (0.31) 0.62 (0.37)0.37 (0.97) 1.00 

444 - - - - (0.75) 1.00 

S-S-S - - - - (0.13) 0.87 

6-6-6 - - - - (0.02) 0.03 

Table 2. Proportion correct performance of reinforcement learning 

after (2K) and 10K patterns. 

Our experiments. while incomplete, hint that reinforcement learning can also be implemented by 

the same type of local-global synapse that characterize the other learning paradigms. Noise is 

also necessary here for the random search procedure. 

2. .. Sanunary of Study of hDdameatai Learning Par ... eters 

In summary, we see that the use of noise and our model of a local correlational synapse with a 

DOn-specific global evaluation signal are two important features in all the learning paradigms. 

Graded activation is somewhat less important. Weight decay seems to be quite important 

although saturation can substitute for it in unsupervised learning. Most interesting from our point 

of view is that all these phenomena are electronically implementable and therefore physically 
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plausible. Hopefully this means they are also related to true neural phenomena and therefore 

provide a basis for unifying the various approaches of learning at a microscopic level. 

3. ELECTRONIC IMPLEMENTATION 

3.1 The Supervised LearDiog Chip 

We have completed the design of the chip previously proposed.(IO] Its physical style of 

computation speeds up learning a millionfold over a computer simulation. Fig. 6 shows a block 

diagram of the neuron. It is a double differential amplifier. One branch forms a sum of the inputs 

from the differential outputs of aU other neurons with connections to it. The other adds noise 

from the noise amplifier. This first stage has low gain to preserve dynamic range at the summing 

nodes. The second stage has high gain and converts to a single ended output. This is fed to a 

switching arrangement whereby either this output state or some externally applied desired state is 

fed into the final set of inverter stages which provide for more gain and guaranteed digital 

complementarity . 

Sdlslrld 

Fig. 6. Block diagram of neuron. 

The noise amplifier is shown schematically in Fig. 7. Thermal noise, with an nns level of tens of 

microvolts, from the channel of an FET is fed into a 3 stage amplifier. Each stage provides a 

potential gain of 100 over the noise bandwidth. Low pass feedback in each stage stabilizes the 

DC output as well as controls gain and bandwidth by means of an externally controlled variable 

resistance for tuning the annealing cycle. 

Fig. 8 shows a block diagram of the synapse. The weight is stored in 5 flip-flops as a sign and 

magnitude binary number. These flip-flops control the conductance from the outputs of neuron i 

to the inputs of neuron j and vice-versa as shown in the figure. The conductance of the FETs are 

in the ratio 1 :2:4:8 to correspond to the value of the binary number while the sign bit determines 

whether the true or complementary lines connect. The flip-flops are arranged in a counter which 

is controUed by the correlation logic. If the plus phase correlations are greater than the minus 

phase, then the counter is incremented by a single unit If less, it is decremented. 
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Fig. 8. Block diagram of synapse. 

Fig. 9 sbows the layout of a test chip. A 6 neuron, 15 synapse network may be seen in the lower 

left comer. Eacb neuron bas attacbed to it a noise amplifier to assure that the noise is 

uncorrelated. The network occupies an area about 2.5 mm on a side in 2 micron design rules. 

Eacb 300 transistor synapse occupies 400 by 600 microns. In contrast, a biological synapse 

occupies only about one square micron. The real miracle of biological learning is in the synapse 

wbere plasticity operates on a molecular level, not in the neuron. We can't bope to compete using 

transistors, bowevc:r small, especially in the digital domain. Aside from this small network, the 

rest of the chip is occupied with test structures of the various components. 

3.1 Analog Synapse 

Analog circuit tecbni~ues can reduce the size of the synapse and increase its functionality. 
Several recent papers( 4] II~I have shown how to make a voltage controlled resistor in MOS 

technology. The voltage controlling the conductance representing the synaptic weight can be 

obtained by an analog charge integrator from the correlated activation of the neurons which the 

synapse in question connects. A charge integrator with a "leaky capacitor" bas a time constant 
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which can be used to make comparisons as a continuous time average over the last several trials. 

thereby' adding temporal information. One can envision this time constant as being adaptive as 

well. The charge integrator directly implements the analog Hebb-typel 16] correlation rules of 

section 2. 
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Fig. 9. Chip layout. 
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3.3 Tecbnologicalbnprovemeots for Flectronic Neural Networks 

It is still necessary to store the voltage which controls the analog conductance and we propose the 

EPROMll7] or EEPROM device for this. Such a device can hold the value of the weight in the 

same way that flip-flops do in the digital implementation of the synapse(lOJ. The process which 

creates this device has two polysilicon layers which are useful for making high valued 

capacitances in analog circuitry. In addition. the second polysilicon layer could be used to make 

CCD devices for charge storage and transport. Coupled with the charge storage on a floating 

gate(l8], this forms a compact. low power representation for weight values that apyroach 

biological values. Another useful addition would be a high valued stable resistive layerl l9 . One 
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could thereby avoid space-wasting long-channel MOSFETs which are currently the only 

rea~ble way to achieve high resistance in MOS technology. Lastly, the addition of a diffusion 

step or two creates a Bi-CMOS process which adds high quality bipolar transistors useful in 

analog design. Furthermore, one gets the logarithmic dependence of voltage on current in bipolar 

technology in a natural, robust way, that is not subject to the variations inherent in using 

MOSFETs in the subthreshold region. This is especially useful in compressing the dynamic 
range in sensory processing[20J• 

4. CONCLUSION 

We have shown how a simple adaptive synapse which measures correlations can account for a 

variety of learning styles in stochastic networks. By embellishing the standard CMOS process 

and using analog design techniques. a technology suitable for implementing such a synapse 

electronically can be developed. Noise is an important element in our formulation of learning. It 

can help a network settle, interpolate between discrete values of conductance during learning. and 

search a large solution space. Weight decay ("forgetting") and saturation are also important for 

stability. These phenomena not only unify diverse learning styles but are electronically 

implementabfe. 
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