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Abstract

In the classical stochastic k-armed bandit problem, in each of a sequence of rounds, a decision
maker chooses one of k arms and incurs a cost chosen from an unknown distribution associated
with that arm. In the linear optimization analog of this problem, rather than finitely many arms,
the decision set is a compact subset of Rn and the cost of each decision is just the evaluation
of a randomly chosen linear cost function at that point. As before, it is assumed that the cost
functions are sampled independently from an unknown but time-invariant distribution. The goal
is to minimize the total cost incurred over some number of rounds T , and success is measured
by low regret. Auer [2003] was the first to study this problem and provided an algorithm with
a regret bound that is O(poly(n, log |D|)

√
T ), where |D| is the cardinality of the decision set

(which he assumed to be finite).
We present a near complete characterization of this problem in terms of both upper and

lower bounds. We consider a deterministic algorithm based on upper confidence bounds, which
was described by Auer and conjectured to have small regret. (Auer analyzed a more complicated
master algorithm, which called this simpler algorithm as a subroutine.) In certain natural cases,
such as when D is finite or when D is a polytope, we show that this algorithm achieves an
expected regret of only O(n2 log3 T ), which has no dependence on the size of D. This polylog-
arithmic dependence on the time is analogous to the K-arm bandit setting, where logarithmic
rates are optimal. Here, however, the rates also depend on a problem dependent constant that
is sometimes characterized as the “gap” in performance of the best two arms (which is always
effectively nonzero). In our setting, this polylogarithmic rate also depends on a problem de-
pendent constant, which we characterize by a gap in performance of “extremal points” of the
decision region. Our polylogarithmic upper bound is only applicable when this gap is nonzero.
For general decision regions, where this gap is zero (such as for spheres), we provide a different
regret bound that is O∗(n

√
T ), and also a nearly matching lower bound, showing that this rate

is optimal in terms of both n and T , up to polylogarithmic factors. Importantly, this lower
bound shows that a polylogarithmic rate as function of the time is not achievable for certain
infinite decision regions (where the gap is 0), which is in stark contrast to the K-arm bandit
setting where logarithmic rates are always achievable.
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1 Introduction

The seminal work of Robbins [1952] introduced a formalism for studying the sequential design
of experiments, which is now referred to as the multi-armed bandit problem. In this foundational
paradigm, at each time step a decision maker chooses one of K decisions or “arms” (e.g. treatments,
job schedules, manufacturing processes, etc) and receives some feedback loss only for the chosen
decision. In the most unadorned model, it is assumed that the cost for each decision is independently
sampled from some fixed underlying (and unknown) distribution (that is different for each decision).
The goal of the decision maker is to minimize the average loss over some time horizon. This basic
model of decision making under uncertainty already typifies the conflict between minimizing the
immediate loss and gathering information that will be useful in the long-run. This sequential
design problem — often referred to as the stochastic multi-armed bandit problem — and a long
line of successor bandit problems have been extensively studied in the statistics community (see,
e.g., [Berry and Fristedt, 1985]), with close attention paid to obtaining sharp convergence rates.

While this paradigm offers a formalism to a host of natural decision problems (e.g. clinical
treatment, manufacturing processes, job scheduling), a vital issue to address for applicability to
modern problems is how to tackle a set of feasible decisions that is often large (or infinite). For
example, the classical bandit problem of clinical treatments (often considered in statistics) — where
each decision is a choice of one of K treatments — is often better modelled by choosing from some
(potentially infinite) set of mixed treatments subject to some budget constraint (where there is a
cost per unit amount of each of drug). In manufacturing problems, often the goal is to maximize
revenue subject to choosing among some large set of decisions that satisfy certain manufacturing
constraints (where the revenue from each decision may be unknown). A modern variant of this
problem that is receiving increasing attention is the routing problem where the goal is to send
packets from A to B and the cost of each route is unknown (see, e.g., [Awerbuch and Kleinberg,
2004]).

We study a natural extension of the stochastic multi-armed bandit problem to linear optimiza-
tion — a problem first considered in Auer [2003]. Here, we assume the decision space is an arbitrary
subset D ⊂ Rn and that there is fixed distribution π over cost functions. At each round, the learner
chooses a decision x ∈ D, then a cost function f(·) : D → [0, 1] is sampled from π. Only the loss
f(x) is revealed to the learner (and not the function f(·)). We assume that the expected loss is a
fixed linear function, i.e. that E[f(x)] = µ · x, where the expectation is with respect to f sampled
from π (technically, we make a slightly weaker assumption, precisely stated in the next section).
The goal is to minimize the total loss over T steps. As is standard, success is measured by the
regret — the difference between the performance of the learner and that of the optimal algorithm
which has knowledge of π. Note that the optimal algorithm here simply chooses the best decision
with respect to the linear mean vector µ.

Perhaps the most important and natural example in this paradigm is the (stochastic) online
linear programming problem. Here, D is specified by linear inequality constraints. If the mean
µ were known, then this is simply a linear programming problem. Instead, at each round, the
learner only observes noisy feedback of the chosen decision, with respect to the underlying linear
cost function.

1.1 Summary of Results and Comparison to Previous Work

Auer [2003] provides the first analysis of this problem. This paper builds and improves upon the
work of Auer [2003] in a number of important ways, which we now summarize.
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First, while Auer [2003] provides a natural, deterministic algorithm, based on upper confidence
bounds of µ, an analysis of the performance of this algorithm was not provided, due to rather
subtle independence issues (though it was conjectured that this simple algorithm was sufficient).
Instead, a significantly more complicated master algorithm was analyzed — this master algorithm
called the simpler upper confidence algorithm as a subroutine. In this work, we directly analyze
the simpler upper confidence algorithm. This simpler algorithm is directly applicable to infinite
decision regions (Auer [2003] only considered the finite case). Furthermore, this algorithm may be
implemented efficiently for the case when D is convex and when given certain oracle optimization
access to D. A key technical tool in our analysis of this simpler algorithm is a (not particularly well
known) concentration result by Freedman (Theorem 6.1 in the Appendix), which can be viewed as
a Bernstein-type bound for martingales.

Second, Auer [2003] achieves a regret of O∗((log |D|)3/2poly(n)
√

T ) where n is dimension of
the decision space, T is the time horizon, and |D| is the number of feasible decisions. Note for
the case of finite decision sets, such as the K-arm bandit case, a regret that is only logarithmic
in the time horizon is achievable. In particular, in earlier work by Auer et al. [2002],the optimal
regret for the K-arm bandit case was characterized as K

∆ log T , where ∆ is the “gap” between the
performance of the best arm and the second best arm. Note that this result is stated in terms of the
problem dependent constant ∆, so one can view it as the asymptotic regret for a given problem. In
fact, historically, there is long line of work in the K-arm bandit literature (e.g. [Lai and Robbins.,
1985, Agrawal, 1995]) concerned with obtaining optimal rates for a fixed problem, which are often
logarithmic in T when stated in terms of some problem dependent constant.

Hence, in the case where |D| is finite (such as the case considered in Auer [2003]), we know that
a log rate in the time is achievable by a direct reduction to the K-arm bandit case (though this
naive reduction results in an exponentially worse dependence in terms of |D|). This work shows
that a regret of n2

∆ polylog(T ) can be achieved, where ∆ is a generalized definition of the gap that
is appropriate for a potentially infinite D. Hence, a polylogarithmic rate in T is achievable with a
constant that is only polynomial in n and has no dependence on the size of the (potentially infinite)
decision region. Here, ∆ can be thought of as the gap between the values of the best and second
best extremal points of the decision set (which we define precisely later). For example, if D is a
polytope, then ∆ is the gap in value between the first and second best corner decisions. Also, for
the case where D is finite (as in the case considered by Auer [2003]), ∆ is exactly the same as in
the K arm case. However, for some natural decision regions, such as a sphere, ∆ is 0 so this bound
is not applicable. Note that ∆ is never 0 for the K-arm case (unless there is effectively one arm),
so a logarithmic rate in T is always possible in the K-arm case.

Third, we provide a more general bound of O∗(n
√

T ), which does not explicitly depend on ∆.
Hence, this bound is applicable when ∆ = 0. It is also appropriate if we desire a bound that is not
stated in terms of problem dependent constants. Using the result in Auer [2003], one can also derive
a bound of the form O(poly(n)

√
T ) for infinite decision sets by appealing to a covering argument

(where the algorithm is run on an appropriately fine cover of D). However, this argument leads to
significantly less sharp bound in terms of n, which we discuss later (after Theorem 3.2).

Note that this set of results still raises the question of whether there is an algorithm achieving
polylogarithmic regret (as a function of T ) for the case when ∆ = 0, which could be characterized
in terms of some different, more appropriate problem dependent constant. Our final contribution
answers this question in the negative. We provide a lower bound showing that the regret of any
algorithm on a particular problem (which we construct with ∆ = 0) is Ω(n

√
T ). In addition to

showing that a polylogarithmic rate is not achievable in general, it also shows our upper bound is
tight in terms of n and T . Note this result is in stark contrast to the K-arm case where the optimal
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asymptotic regret for any given problem is always logarithmic in T .
We should also note that the lower bound in this paper is significantly stronger than the bound

provided in Dani et al. [2008], which is also Ω(n
√

T ). In this latter lower bound, the decision
problem the algorithm faces is chosen as a function of the time T . In particular, the construction
in Dani et al. [2008] used a decision region which was a hypercube (so ∆ > 0 as this a polytope)
— in fact, ∆ actually scaled as 1/

√
T . In order to negate the possibility of a polylogarithmic rate

for a particular problem, we must hold ∆ = 0 as we scale the time, which we accomplish in this
paper with a more delicate construction using an n-dimensional decision space constructed out of
a Cartesian product of 2-dimensional spheres.

1.2 The Price of Bandit Information

It is natural to ask how much worse the regret is in the bandit setting as compared to a setting
where we received full information about the complete loss function f(·) at the end of each round.
In other words, what is the price of bandit information?

For the full information case, Dani et al. [2008] showed the regret is O∗(
√

nT ) (which is tight
up to log factors). In fact, in the stochastic case considered here, it is not too difficult to show that,
in the full information case, the algorithm of “do the best in the past” achieves this rate. Hence, as
the regret is O∗(n

√
T ) in the bandit case and O∗(

√
nT ) (both of which are tight up to log factors),

we have characterized the price of bandit information as
√

n, which is a rather mild dependence on
n for having such limited feedback.

We should also note that the work in Dani et al. [2008] considers the adversarial case, where
the cost functions are chosen in an arbitrary manner rather than stochastically. Here, it was shown
that the regret in the bandit setting is O∗(n3/2

√
T ), though it was conjectured that this bound was

loose and the optimal rate should be identical to rate for the stochastic case, considered here.
It is striking that the convergence rate for the bandit setting is only a factor of

√
n worse than

in the full information case — in stark contrast to the K-arm bandit setting, where the gap in the
dependence on K is exponential (

√
TK vs.

√
T log K). See Dani et al. [2008] for further discussion.

2 Preliminaries

Let D ⊂ Rn be a compact (but otherwise arbitrary) set of decisions. Without loss of generality,
assume this set is of full rank. On each round, we must choose a decision xt ∈ D. Each such choice
results in a cost `t = ct(xt) ∈ [−1, 1].

We assume that, regardless of the history, the conditional expectation of ct is a fixed linear
function, i.e., for all x ∈ D,

E (ct(x) | Ht) = µ · x = µ†x ∈ [−1, 1].

where x ∈ D is arbitrary, and we denote the transpose of any column vector v by v†. (Naturally,
the vector µ is unknown, though fixed.) Under these assumptions, the noise sequence,

ηt = ct(xt)− µ · xt

is a martingale difference sequence.
A special case of particular interest is when the cost functions ct are themselves linear functions

sampled independently from some fixed distribution. Note, however, that our assumptions are also
met under the addition of any time-dependent unbiased random noise function.
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In this paper we address the bandit version of the geometric optimization problem, where the
decision maker’s feedback on each round is only the actual cost `t = ct(xt) received on that round,
not the entire cost function ct(·).

If x1, . . . , xT are the decisions made in the game, then define the cumulative regret by

RT =
T∑

t=1

(µ†xt − µ†x∗)

where x∗ ∈ D is an optimal decision for µ, i.e.,

x∗ ∈ argmin
x∈D

µ†x

which exists since D is compact. Observe that if the mean µ were known, then the optimal
strategy would be to play x∗ every round. Since the expected loss for each decision x equals µ†x,
the cumulative regret is just the difference between the expected loss of the optimal algorithm and
the expected loss for the actual decisions xt. Since the sequence of decisions x1, . . . , xT may depend
on the particular sequence of random noise encountered, RT is a random variable. Our goal in
designing an algorithm is to keep RT as small as possible.

It is also important for us to make use of a barycentric spanner for D as defined in Awerbuch
and Kleinberg [2004]. A barycentric spanner for D is a set of vectors b1, . . . , bn, all contained in D,
such that every vector in D can be expressed as a linear combination of the spanner with coefficients
in [−1, 1]. Awerbuch and Kleinberg [2004] showed that such a set exists for compact sets D. We
assume we have access to such a spanner of the decision region, though an approximate spanner
would suffice for our purposes (Awerbuch and Kleinberg [2004] provide an efficient algorithm for
computing an approximate spanner).

3 Main Results

3.1 The Algorithm

In Figure 3.1 we present a generalized version of the LinRel algorithm of Auer [2003] to the case
where D is infinite. We call our algorithm the ConfidenceEllipsoid Algorithm to emphasize the fact
that it maintains an ellipsoidal region in which µ is contained with high probability. Due to this
ellipsoidal shape, the algorithm may be implemented efficiently for the case when D is convex and
when given certain oracle optimization access to D (i.e. the ability to optimize linear functions
over D).

The algorithm is motivated as follows. Suppose decisions x1, . . . xt−1 have been made, incurring
corresponding losses `1, . . . , `t−1. Then a reasonable estimate µ̂ to the true mean cost vector µ can
be constructed by minimizing the square loss:

µ̂ := argmin
ν
L(ν), where L(ν) :=

∑
τ<t

(
ν†xτ − `τ

)2
.

Defining A =
∑

xτx
†
τ , we have that the least squares estimator is

µ̂ = A−1
∑
τ<t

`τxτ .

4



Algorithm 3.1: ConfidenceEllipsoid(D, δ)

Initialization:
Compute an (almost) barycentric spanner b1, . . . , bn for D.
A1 =

∑n
i=1 bib

†
i

µ̂1 = 0
for t← 1 to ∞

βt = max
(

128n ln t ln(t2/δ),
(

8
3 ln

(
t2

δ

))2
)

(this is O(n log2 t))

Bt =
{
ν : (ν − µ̂t)†At(ν − µ̂t) ≤ βt

}
xt = argmin

x∈D
min
ν∈Bt

(ν†x)

Incur and observe loss `t := ct(xt)
At+1 = At + xtx

†
t

µ̂t+1 = A−1
t+1

∑t
τ=1 `τxτ

Figure 1: The Algorithm ConfidenceEllipsoid: See text for details.

A natural confidence region for µ is the set of ν for which L(ν) exceeds L(µ̂) by at most some
amount β, i.e. the set

{ν | L(ν)− L(µ̂t) ≤ β}

It is straightforward to see that:

L(ν)− L(µ̂) = (ν − µ̂)†A(ν − µ̂)

Thus the confidence region proposed above has the shape of an ellipsoid centered on µ̂, where the
axes are defined through A. This set is commonly referred to the as set of vectors ν with bounded
Mahalanobis distance with respect to mean µ̂ and covariance matrix A−1.

A difficulty with the above reasoning is that we have implicitly assumed that A is invertible,
which is clearly false for t < n. Under a slight alteration, define the estimator µ̂t at time t by

µ̂t = A−1
t

∑
τ<t

`τxτ .

where At is now defined as

At =
n∑

i=1

bib
†
i +

∑
τ<t

xτx
†
τ

where b1, . . . , bn is the barycentric spanner (see Preliminaries for the definition). It is easily seen that
At is positive definite (and hence invertible), since the spanner is linearly independent. Intuitively,
the first term in At (the sum of outerproducts of the spanner vectors) is a natural initialization
of the confidence region, as it imposes uncertainty along the directions in which D varies most
(namely the spanner directions). Our proofs effectively show that an approximate spanner would
suffice instead. Note that µ̂t is the least squares estimator for the sampled data if we pretend that
decisions b1, . . . , bn were selected on fictitious rounds t = −n + 1, . . . , t = 0 and all incurred loss 0.
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Now define the confidence region at time t to be the ellipsoid

Bt := {ν | (ν − µ̂t)†At(ν − µ̂t) ≤ βt}

In the proofs, we show that, with our choice of βt, µ always remains inside this ellipsoid for all
times t, with high probability.

The decision at the next round is then the greedy optimistic decision:

xt = argmin
x∈D

min
ν∈Bt

(ν†x).

Again, this exists since D is compact.
It should be remarked that although the linear function x 7→ µ · x is a feasible cost function,

and µ̂t is an approximation to µ, the function x 7→ µ̂t · x may be far from being a feasible (i.e.
[−1, 1]-valued) cost function on D — however, it is bounded in [−n, n].

3.2 Upper Bounds

In the traditional K-arm bandit literature, the regret is often characterized for a particular problem
in terms of T , K, and problem dependent constants. In the K-arm bandit results of Auer et al.
[2002], this problem dependent constant is the “gap” between the loss of the best arm and the
second best arm.

We cannot naively use the same definition since if the decision space is, say a convex set, then
there is no well defined notion of second best arm. Instead, we define the gap as follows. Let E
denote the set of extremal points of the decision set D, where an extremal point of D is defined as
a point which is not a proper convex combination of points in D. It is easy to see that any linear
loss function on D always attains its minimum value at a point in E . It is not too difficult to show
that ConfidenceEllipsoid always plays extremal points, due to the strict convexity of the confidence
region. Now define the set of suboptimal extremal points as:

E− = {x ∈ E : µ · x > µ · x∗}

and define the gap, ∆, as
∆ = inf

x∈E−
µ · x− µ · x∗

so the ∆ is just the difference in costs between the optimal and next to optimal decision among the
extremal points. Note that if D is a fixed polytope then the ∆ > 0. However, if D is a ball then
∆ = 0, as all points on the surface (a sphere) are extremal — so infx∈E− µ · x limits to µ · x∗ (and
no point in E− achieves this value).

We now state the first upper bound, which is a problem dependent bound stated in terms of ∆.

Theorem 3.1. (Problem Dependent Upper Bound) Let 0 < δ < 1. Suppose the decision set D and
the true mean µ have a gap ∆ > 0. Then for all sufficiently large T , the cumulative regret RT of
ConfidenceEllipsoid(D,δ) is with high probability at most n2

∆ log3 T . More precisely,

Prob
(
∀T, RT ≤

8nβT ln(T )
∆

)
≥ 1− δ,

where βT = max
(

128n lnT ln(T 2/δ),
(

8
3 ln

(
T 2

δ

))2
)

.
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Analogous to the K-arm case, when ∆ > 0, a polylogarithmic rate in T is achievable with a
constant that is only polynomial in n and has no dependence on the size of the decision region.

The following upper bound is stated without regard to the specific parameter ∆ for a given
problem. Furthermore, it also holds for the case when ∆ = 0.

Theorem 3.2. (Problem Independent Upper Bound) Let 0 < δ < 1. Then for all sufficiently large
T , the cumulative regret RT of ConfidenceEllipsoid(D,δ) is with high probability at most O∗(n

√
T ),

where the O∗ notation hides a polylogarithmic dependence on T . More precisely,

Prob
(
∀T, RT ≤

√
8nTβT lnT

)
≥ 1− δ.

where βT = max
(

128n lnT ln(T 2/δ),
(

8
3 ln

(
T 2

δ

))2
)

.

We note that Auer [2003] achieves a rate that is O∗((log |D|)3/2
√

nT ), with a more complicated
algorithm for any finite decision set D. Using his result, one can derive the less sharp bound of
O∗(n5/2

√
T ) for arbitrary compact decision sets with two observations. First, through a covering

argument, we need only consider D to be exponential in n. Second, Auer [2003] assumes that D
is a subset of the sphere, which leads to an additional

√
n factor. To see this, note the comments

in the beginning of Section 4 essentially show that a general decision region can be thought of as
living in a hypercube (due to the barycentric spanner property), so the additional

√
n factor comes

from rescaling the cube into a sphere.
The following subsection shows our bound of O∗(n

√
T ) is tight, in terms of both n and T . Also,

as mentioned in the Introduction, tightly characterizing the dimensionality dependence allows us
to show that the price of bandit information is only (

√
n).

3.3 Lower Bounds

Note that our upper bounds still leave open the possibility that there is a polylogarithmic regret (as
a function of T ) for the case when ∆ = 0, which could be characterized in terms of some different,
more appropriate problem dependent constant. We now provide that a lower bound showing in
fact that this is not possible, by providing a Ω(n

√
T ) lower bound.

For the lower bound, we must consider a decision region with ∆ = 0, which rules out poly-
topes and finite sets (so the decision region of a hypercube, used by Dani et al. [2008], is not
appropriate here. See Introduction for further discussion). The decision region is constructed as
follows. Assume n is even. Let Dn = (S1)n/2 be the Cartesian product of n/2 circles. That is,
Dn = {(x1, . . . , xn) : x2

1 + x2
2 = x2

3 + x2
4 = · · · = x2

n−1 + x2
n = 1}. Observe that Dn is a subset of the

intersection of the cube [−1, 1]n with the sphere of radius
√

n/2 centered at the origin.
Our cost functions take values in {−1,+1}, and for every x ∈ Dn, the expected cost is be µ · x,

where nµ ∈ Dn. Since each cost function is only be evaluated at one point, any two distributions
over {−1,+1}-valued cost functions with the same value of µ are equivalent for the purposes of our
model.

Theorem 3.3. (Lower Bound) If µ is chosen uniformly at random from the set Dn/n, and the
cost for each x ∈ Dn is in {−1,+1} with mean µ · x, then, for every algorithm, for every T ≥ 1,

E R = E
µ

E (R | µ) ≥ 1
10

n
√

T .

where the inner expectation is with respect to observed costs.
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In addition to showing that a polylogarithmic rate is not achievable in general, this bound shows
our upper bound is tight in terms of n and T . Again, contrast this with the K-arm case where the
optimal asymptotic regret for any given problem is always logarithmic in T .

4 Upper Bound Analysis

Throughout the proof, without loss of generality, assume that the barycentric spanner is the stan-
dard basis ~e1 . . . ~en (this just amounts to a choice of a coordinate system, where we identify the
spanner with the standard basis). Hence, the decision set D is a subset of the cube [−1, 1]n. In
particular, this implies ‖x‖ ≤

√
n for all x ∈ D. This is really only a notational convenience; the

problem is stated in terms of decisions in an abstract vector space, and expected costs in its dual,
with no implicit standard basis.

In establishing the upper bounds there are two main theorems from which the upper bounds
follow. The first is in showing that the confidence region is appropriate. Let E be the event that
for every time t ≤ T , the true mean µ lies in the “confidence ellipsoid” Bt. The following shows
that event E occurs with high probability. More precisely,

Theorem 4.1. (Confidence) Let δ > 0. Then

Prob (∀t, µ ∈ Bt) ≥ 1− δ.

Subsection 7.2 (in the Appendix) is devoted to establishing this confidence bound. The proof
centers on a rather delicate construction In essence, the proof seeks to understand the growth of the
quantity (µ̂t−µ)†At(µ̂t−µ), which involves a rather technical construction of a martingale (using the
matrix inversion lemma) along with a careful application of Freedman’s inequality (Theorem 6.1).

The second main step in analyzing ConfidenceEllipsoid(D,δ) is to show that, as long as the
aforementioned high-probability event holds, we have some control on the growth of the regret.
The following bounds the sum of the squares of instantaneous regret.

Theorem 4.2. (Sum of Squares Regret Bound) Let

rt = µ · xt − µ · x∗

denote the instantaneous regret acquired by the algorithm on round t. If µ ∈ Bt for all t ≤ T , then

T∑
t=1

r2
t ≤ 8nβT lnT

This is proven in the Appendix (in Subsection 7.1). The idea of the proof involves a potential
function argument on the log volume (i.e. the log determinant) of the “precision matrix” At (which
tracks how accurate our estimates of µ are in each direction). The proof involves relating the
growth of this volume to the regret.

At this point the proofs of Theorems 3.1 and 3.2 diverge. To show the former, we use the gap
to bound the regret in terms of

∑T
t=1 r2

t . For the latter, we simply appeal to the Cauchy-Schwarz
inequality.

Using these two results we are able to prove our upper bounds as follows.
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Proof of Theorem 3.1. Let us analyze rt = µ ·xt−µ ·x∗, the regret of ConfidenceEllipsoid on round
t. Since ConfidenceEllipsoid always chooses a decision from E , either µ · xt = µ · x∗ or xt ∈ E−, so
that µ · xt − µ · x∗ ≥ ∆. Since ∆ > 0 it follows that either rt = 0 or rt/∆ ≥ 1 and in either case,

rt ≤
r2
t

∆

By Theorem 4.2, we see that if µ ∈ Bt, then

RT =
T∑

t=1

rt

≤
T∑

t=1

r2
t

∆

≤ 8nβT lnT

∆

Applying Theorem 4.1, we see that this occurs with probability at least 1− δ, which completes the
proof.

Proof of Theorem 3.2. By Theorems 4.1 and 4.2, we know that with probability at least 1 − δ,∑T
t=1 r2

t ≤ 8nβT lnT . Applying the Cauchy-Schwarz inequality, we have, with probability at least
1− δ

RT =
T∑

t=1

rt

≤

(
T

T∑
t=1

r2
t

)1/2

≤
√

8nTβT lnT

Substituting βT = max

(
128n lnT ln(T 2/δ),

(
8 ln(T 2/δ)

3

)2
)

completes the proof.

5 Lower Bound Analysis

This section analyzes the 2-dimensional case. The extension to the general case is provided in the
Appendix.

Assume n = 2. Let us condition on the event that µ ∈ {µ1, µ2}, where µ1, µ2 ∈ D2/2 such that
‖µ1− µ2‖ = ε. Note that µ is uniform over {µ1, µ2} in this event. We show that, even conditioned
on this additional information, the expected regret is Ω(

√
T ). The conclusion of Theorem 3.3 then

follows by an averaging argument.
Let

bt := Pr (µ = µ1 | Ht)−Pr (µ = µ2 | Ht)

be the bias towards µ1 at time t. Note that b0 = 0, and that the sequence (bt) is a martingale with
respect to (Ht).

9



Lemma 5.1. For all t, for any sequence of decisions x1, . . . , xt and outcomes `1, . . . , `t−1, the regret
from round t satisfies

E
µ
(rt | Ht) ≥

1
16

(
ε2 +

|bt+1 − bt|2

ε2

)
1{|bt| ≤ 1/2}

The proof of this Lemma is somewhat technical and is provided in the Appendix.
We are now ready to prove Theorem 3.3 in the n = 2 case. We generalize the argument to

n-dimensions in the appendix.

Proof of Theorem 3.3 for n = 2. Let ε = T−1/4. First, observe that, by Fubini’s theorem and
linearity of expectation,

E R = E
µ

E
HT

(R | µ) = E
µ

T∑
t=1

E
Ht

(rt | µ)

=
T∑

t=1

E
Ht

E
µ
(rt | Ht)

≥ 1
16

T∑
t=1

E
Ht

((
ε2 +

|bt+1 − bt|2

ε2

)
1{|bt| ≤ 1/2}

)
.... by Lemma 5.1

≥ 1
16

ε2T Prob (for all t, |bt| ≤ 1/2) +
1
16

T∑
t=1

E
Ht

(
|bt+1 − bt|2

ε2
1{|bt| ≤ 1/2}

)

=
√

T

16

(
Prob (for all t, |bt| ≤ 1/2) +

T∑
t=1

E
Ht

(
|bt+1 − bt|21{|bt| ≤ 1/2}

))

Thus, if Prob (for all t ≤ T |bt| ≤ 1/2) ≥ 1/2 − 1/e, then we are done by the first term on
the right-hand side. Otherwise, with probability at least 1/2 + 1/e, there exists t ≤ T such that
|bt| ≥ 1/2. By Freedman’s Bernstein-type inequality for martingales (Theorem 6.1 in the Appendix)
applied to the martingale bt∧σ, where σ = min{τ : |bτ | ≥ 1/2}, we have

Prob
(

(∃t ≤ T ) |bt| ≥
1
2

and V ≤ 1
32

)
≤ 2 exp

(
−1/4

1/8 + ε/3

)
≤ 2

e2
<

1
e

where V =
∑T

t=1 1{∀τ ≤ t, |bτ | ≤ 1/2}E
(
|bt+1 − bt|2 | Ht

)
. It follows that

Prob
(

V >
1
32

)
≥ 1/2.

In particular,
T∑

t=1

E
Ht

(
|bt+1 − bt|21{|bt| ≤ 1/2}

)
≥ E V ≥ 1

64
.

completing the proof.
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Appendix

6 Concentration of Martingales

We use the following Bernstein-type concentration inequality for martingales, due to Freedman Freed-
man [1975] (see also [McDiarmid, 1998, Theorem 3.15]).

Theorem 6.1 (Freedman). Suppose X1, . . . , XT is a martingale difference sequence, and b is an
uniform upper bound on the steps Xi. Let V denote the sum of conditional variances,

V =
n∑

i=1

Var (Xi |X1, . . . , Xi−1).

Then, for every a, v > 0,

Prob
(∑

Xi ≥ a and V ≤ v
)
≤ exp

(
−a2

2v + 2ab/3

)
.
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7 Upper Bound Proofs

7.1 Proof of Theorem 4.2

In this section, we prove Theorem 4.2, which says that the sum of the squares of the instantaneous
regrets of the algorithm is small, assuming the evolving confidence ellipsoids always contain the
true mean µ. A key insight is that on any round t in which µ ∈ Bt, the instantaneous regret is at
most the “width” of the ellipsoid in the direction of the chosen decision. Moreover, the algorithm’s
choice of decisions forces the ellipsoids to shrink at a rate that ensures that the sum of the squares
of the widths is small. We now formalize this.

Observation 7.1. Let ν ∈ Bt and x ∈ D. Then

|(ν − µ̂t)†x| ≤
√

βtx†A
−1
t x

Proof. At is a symmetric positive definite matrix. Hence A
1/2
t is a well-defined symmetric positive

definite (and hence invertible) matrix. Now we have

|(ν − µ̂t)†x| = |(ν − µ̂t)†A
1/2
t A

−1/2
t x|

= |(A1/2
t (ν − µ̂t))†A

−1/2
t x|

≤ ‖A1/2
t (ν − µ̂t)‖‖A−1/2

t x‖ by Cauchy-Schwarz

=
√

(ν − µ̂t)†At(ν − µ̂t)
√

x†A−1
t x

≤
√

βtx†A
−1
t x since ν ∈ Bt.

Define
wt :=

√
x†tA

−1
t xt

which we interpret as the “normalized width” at time t in the direction of the chosen decision. The
true width, 2

√
βtwt, turns out to be an upper bound for the instantaneous regret.

Lemma 7.2. Fix t. If µ ∈ Bt, then

rt ≤ 2 min (
√

βtwt, 1)

Proof. Let µ̃ ∈ Bt denote the vector which minimizes the dot product µ̃†xt. By choice of xt, we
have

µ̃†xt = min
ν∈Bt

min
x∈D

ν†x ≤ µ†x∗,

where the inequality used the hypothesis µ ∈ Bt. Hence,

rt = µ†xt − µ†x∗

≤ (µ− µ̃)†xt

= (µ− µ̂t)†xt + (µ̂t − µ̃)†xt

≤ 2
√

βtwt

where the last step follows from Observation 7.1 since µ̃ and µ are in Bt. Since `t ∈ [−1, 1], rt is
always at most 2 and the result follows.
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Next we show that the sum of the squares of the widths does not grow too fast.

Lemma 7.3. Let t ≤ T . If µ ∈ Bτ for all τ ≤ t, then
t∑

τ=1

min (w2
τ , 1) ≤ 2n ln t.

To prove this, we need to track the change in the confidence ellipsoid from round t to round
t + 1. The following two facts prove useful to this end.

Lemma 7.4. For every t ≤ T ,

det At+1 =
t∏

τ=1

(1 + w2
t ).

Proof. By the definition of At+1, we have

det At+1 = det(At + xtx
†
t)

= det(A1/2
t (I + A

−1/2
t xtx

†
tA

−1/2
t )A1/2

t )

= det(At) det(I + A
−1/2
t xt(A

−1/2
t xt)†)

= det(At) det(I + vtv
†
t ),

where vt := A
−1/2
t xt. Now observe that v†t vt = w2

t and

(I + vtv
†
t )vt = vt + vt(v

†
t vt) = (1 + w2

t )vt

Hence (1+w2
t ) is an eigenvalue of I +vtv

†
t . Since vtv

†
t is a rank one matrix, all the other eigenvalues

of I + vtv
†
t equal 1. It follows that det(I + vtv

†
t ) is (1 + w2

t ), and so

det At+1 = (1 + w2
t ) detAt.

Recalling that A1 is the identity matrix, the result follows by induction.

Lemma 7.5. For all t, det At ≤ tn.

Proof. The rank one matrix xtx
†
t has x†txt = ‖xt‖2 as its unique non-zero eigenvalue. Also, since

we have identified the spanner with the standard basis, we have
∑n

i=1 bib
†
i = I. Since the trace is

a linear operator, it follows that

trace At = trace

(
I +

∑
τ<t

xtx
†
t

)
= n +

∑
τ<t

trace(xtx
†
t) = n +

∑
τ<t

‖xτ‖2 ≤ nt.

Now, recall that trace At equals the sum of the eigenvalues of At. On the other hand, det(At)
equals the product of the eigenvalues. Since At is positive definite, its eigenvalues are all positive.
Subject to these constraints, det(At) is maximized when all the eigenvalues are equal; the desired
bound follows.

Proof of Lemma 7.3. Using the fact that for 0 ≤ y ≤ 1, ln(1 + y) ≥ y/2, we have
t∑

τ=1

min(w2
τ , 1) ≤

t∑
τ=1

2 ln(1 + w2
τ )

= 2 ln(det At+1) by Lemma 7.4
≤ 2n ln t by Lemma 7.5
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Finally, we are ready to prove that if µ always stays within the evolving confidence ellipsoid,
then our regret is under control.

Proof of Theorem 4.2. Assume that µ ∈ Bt for all t. Then

T∑
t=1

r2
t ≤

T∑
t=1

4βt min(w2
t , 1) by Lemma 7.2

≤ 4βT

T∑
t=1

min(w2
t , 1) since 1 < β1 < · · · < βT

≤ 8βT n lnT by Lemma 7.3

as desired.

7.2 Proof of Theorem 4.1

In this section, we prove Theorem 4.1, which states that with high probability, for all t the true
mean µ lies in the confidence ellipsoid Bt.

Recall that
ηt := ct(xt)− µ†xt = `t − E (`t | Ht)

where Ht denotes the complete history of the game on rounds 1, . . . , t − 1, that is, the σ-algebra
generated by `1, . . . , `t−1.

Let us define
Zt := (µ̂t − µ)†At(µ̂t − µ)

which measures the error of µ̂t as an approximation to the true mean, µ, under the norm induced
by At. Note that µ ∈ Bt if and only if Zt ≤ βt. The next lemma bounds the growth of Zt.

Lemma 7.6. For all t,

Zt ≤ n + 2
t−1∑
τ=1

ητ
x†τ (µ̂τ − µ)

1 + w2
τ

+
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

.

Proof. For notational convenience, define:

Yt = At(µ̂t − µ)

We have the following relations:

Zt = Y †
t A−1

t Yt

Yt =
∑
τ<t

ητxτ − µ

Yt+1 = Yt + ηtxt

which are immediate from the definitions of At, µ̂t, and ηt.
Now examining the growth of Zt, we have:

Zt+1 = Y †
t+1A

−1
t+1Yt+1

= (Yt + ηtxt)†A−1
t+1(Yt + ηtxt)

= Y †
t A−1

t+1Yt + 2ηtx
†
tA

−1
t+1Yt + η2

t x
†
tA

−1
t+1xt (1)

14



Applying the matrix inversion lemma to A−1
t+1, we note that:

A−1
t+1 = (At + xtx

†
t)
−1

= A−1
t −

A−1
t xtx

†
tA

−1
t

1 + x†tA
−1
t xt

= A−1
t −

A−1
t xtx

†
tA

−1
t

1 + w2
t

We can use this to bound the three terms of (1) as follows. For the first term,

Y †
t A−1

t+1Yt = Y †
t A−1

t Yt −
(Y †

t A−1
t xt)2

1 + w2
t

≤ Zt.

For the second term,

2ηtx
†
tA

−1
t+1Yt = 2ηtx

†
tA

−1
t Yt − 2ηt

x†tA
−1
t xtx

†
tA

−1
t Yt

1 + w2
t

= 2ηtx
†
tA

−1
t Yt − 2ηt

w2
t x
†
tA

−1
t Yt

1 + w2
t

= 2ηt
x†tA

−1
t Yt

1 + w2
t

= 2ηt
x†t(µ̂t − µ)

1 + w2
t

For the third term,

η2
t x
†
tA

−1
t+1xt = η2

t w
2
t − η2

t

w4
t

1 + w2
t

= η2
t

w2
t

1 + w2
t

Putting these together, we have shown

Zt+1 ≤ Zt + 2ηt
x†t(µ̂t − µ)

1 + w2
t

+ η2
t

w2
t

1 + w2
t

.

By induction, it follows that

Zt ≤ Z1 + 2
t−1∑
τ=1

ητ
x†τ (µ̂τ − µ)

1 + w2
τ

+
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

.

Finally, we check that Z1 ≤ n. To see this, recall from the algorithm that A1 = I and µ̂1 = 0.
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Also, since ~e1, . . . , ~en ∈ D, by assumption, µ · ~ej ∈ [−1, 1].

Z1 = (µ̂1 − µ)†A1(µ̂1 − µ)

= ‖µ‖2

=
n∑

j=1

(µ† ~ej)2

≤ n.

We now define a useful martingale difference sequence. First, it is convenient to define an
“escape event” Et as:

Et = I{Zτ ≤ βτ for all τ ≤ t} = I{µ ∈ Bτ for all τ ≤ t}

where I{·} is the indicator function.

Lemma 7.7. Define a random variable Mt by

Mt = 2ηtEt
x†t(µ̂t − µ)

1 + w2
t

.

Then Mt is a martingale difference sequence with respect to the sequence of game histories Ht.

Proof. To see that Mt is a martingale difference sequence, note that:

E (Mt | Ht) = 2Et
x†t(µ̂t − µ)

1 + w2
t

E (ηt | Ht)

= 0

since the history fully determines x1, . . . , xt, µ̂1, . . . , µ̂t, Z1, . . . , Zt, and E1, . . . , Et, and since the
noise functions ηt are a martingale difference sequence with respect to Ht.

We show that with high probability, the associated martingale,
∑t

τ=1 Mτ , never grows too large.

Lemma 7.8. Given δ < 1,

Prob

(
∀t,

t−1∑
τ=1

Mτ ≤ βt/2

)
≥ 1− δ,

where βt is defined in the statement of ConfidenceEllipsoid(D,δ).

We defer the proof to Section 7.2.1. Equipped with this lemma, we can prove Theorem 4.1.

Proof of Theorem 4.1. It suffices to show that the high-probability event described in Lemma 7.8
is contained in the support of Et for every t. We prove the latter by induction on t.

By Lemma 7.6 and the definition of β1, we know that Z1 ≤ n < β1. Hence E1 is always 1
(equivalently, µ is always in B1).

Now suppose the high-probability event of Lemma 7.8 holds, so in particular,

t−1∑
τ=1

Mτ ≤ βt/2.
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By inductive hypothesis, Eτ = 1 for τ ≤ t− 1. Hence by Lemma 7.6 we have

Zt ≤ n + 2
t−1∑
τ=1

ητ
x†τ (µ̂τ − µ)

1 + w2
τ

+
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

= n +
t−1∑
τ=1

Mτ +
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

≤ n + βt/2 +
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

≤ n + βt/2 +
t−1∑
τ=1

min(w2
τ , 1) since |ητ | ≤ 1

≤ n + βt/2 + 2n ln t by Lemma 7.3
≤ βt.

Thus we have shown Et = 1, completing the induction.

7.2.1 Concentration

All that remains to complete the proof now is to show that our martingale
∑t

1 Mτ has good concen-
tration properties. As we show, the step sizes |Mt| are uniformly bounded so that an application of
the Hoeffding-Azuma inequality would bound the probability that

∑t
1 Mτ grows too large. Unfor-

tunately, the bound thus obtained translates into a regret bound of T 3/4, which is not good enough
for our purpose.

Instead we use Theorem 6.1, which allows us to to bound the step sizes in terms of random
variables, as long as the conditional variances remain under control.

Proof of Lemma 7.8. Let us first obtain upper bounds on the step sizes of our martingale.

|Mt| = 2|ηt|Et
|x†t(µ̂t − µ)|

1 + w2
t

≤ 2|ηt|Et

√
βtx

†
tA

−1
t xt

1 + w2
t

= 2|ηt|Et
wt
√

βt

1 + w2
t

≤ 2|ηt|Et

√
βt min(wt, 1/2) (2)

where the first inequality follows trivially when Et = 0, and by Observation 7.1 when Et = 1.
Additionally this gives a family of uniform upper bounds:

|Mτ | ≤
√

βt for all τ ≤ t

since |ηt| ≤ 1 and (by choice) βτ is a non-decreasing sequence.
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Next we bound the sum of the conditional variances of our martingale. Note that (min (wt, 1/2))2 =
min (w2

t , 1/4)

Vt :=
t∑

τ=1

Var (Mτ |M1 . . .Mτ−1)

≤
t∑

τ=1

4Eτβτ min (w2
τ , 1/4) by (2) and since |ητ | ≤ 1

≤ 4(max
τ≤t

βτ )
t∑

τ=1

Eτ min(w2
τ , 1)

≤ 4βt

∑
τ≤t

Eτ min(w2
τ , 1)

≤ 8βtn ln (max{τ ≤ t | Eτ = 1}) by Lemma 7.3
≤ 8βtn ln t

Since we have established that the sum of conditional variances, Vt, is always bounded by
8βtn ln t, we can apply Theorem 6.1 with parameters a = βt/2, b =

√
βt and v = 8nβt ln t, to get

Prob

(
t−1∑
τ=1

Mτ ≥ βt/2

)
= Prob

(
t−1∑
τ=1

Mτ ≥ βt/2 and Vt ≤ 8nβt ln t

)

≤ exp

(
−(βt/2)2

2(8nβt ln t) + 2
3(βt/2)(

√
βt)

)

= exp

(
−βt

64n ln t + 4
3

√
βt

)

≤ max
{

exp
(
−βt

128n ln t

)
, exp

(
−3
√

βt

8

)}
≤ δ

t2

where the last inequality follows from the definition of βt. Finally, we apply a union bound to get

Prob

(
t−1∑
τ=1

Mτ ≥
βt

2
for some t

)
≤

∞∑
t=1

Prob

(
t−1∑
τ=1

Mτ ≥
βt

2

)

≤
∞∑

t=2

δ

t2

≤ δ(
π2

6
− 1)

≤ δ

completing the proof of Lemma 7.8.

8 Lower Bound Proofs

We first prove Lemma 5.1. Then we generalize our argument to the n dimensional case in the
following subsection.
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Proof. (Proof of Lemma 5.1). Let v1 be the unit vector in the direction of µ1 − µ2, and let v2 be
the unit vector in the direction of µ1 + µ2. Note that v1, v2 is an orthonormal basis for the plane.
Decompose xt = αv1 + βv2, and E(µ | Ht) = γv1 + δv2. Since E(µ | Ht) = µ1+µ2

2 + bt
µ1−µ2

2 , we
have γ = εbt/2 and δ =

√
1−ε2

2 .
Let p = Pr (µ = µ1 | Ht). Then bt = 2p− 1. Observe that

bt+1 − bt =
p(1 + `tµ1 · xt)− (1− p)(1 + `tµ2 · xt)
p(1 + `tµ1 · xt) + (1− p)(1 + `tµ2 · xt)

− 2p + 1

=
(2p− 1) + p`tµ1 · xt − (1− p)`tµ2 · xt

1 + p`tµ1 · xt + (1− p)`tµ2 · xt
− 2p + 1

=
p`tµ1 · xt − (1− p)`tµ2 · xt − (2p− 1)(p`tµ1 · xt + (1− p)`tµ2 · xt)

1 + p`tµ1 · xt + (1− p)`tµ2 · xt

=
2p(1− p)`tµ1 · xt − 2p(1− p)`tµ2 · xt

1 + p`tµ1 · xt + (1− p)`tµ2 · xt

=
2p(1− p)`t(µ1 − µ2) · xt

1 + p`tµ1 · xt + (1− p)`tµ2 · xt

Since |µi · xt| ≤ 1/2, the denominator of the above expression is at least 1/2. Since p(1− p) ≤ 1/4,
it follows that

|bt+1 − bt| ≤ |(µ1 − µ2) · xt| = ε|α|. (3)

Assume the game history is such that |bt| ≤ 1/2. Otherwise, since the regret is non-negative,
there is nothing to prove. Now we calculate

E
µ
(rt | Ht) =

1
2

+ xt · E(µ | Ht)

=
1
2

+ αγ + βδ

=
1
2
(1 + αεbt + β

√
1− ε2)

≥ 1
2

(
1 + αεbt +

(
α2

2
− 1
)√

1− ε2

)
(4)

≥ 1
2

(
1 + αεbt +

(
α2

2
− 1
)(

1− ε2

2

))
=

1
16

(α2 + ε2) +
1
8
(α2 + 4btαε + ε2) +

1
16

(α2 + ε2 − 2α2ε2)

≥ 1
16

(α2 + ε2) (5)

≥ 1
16

(
ε2 +

|bt+1 − bt|2

ε2

)
(6)

Here (4) follows because α2 +β2 = 1 implies that 1+β ≥ α2/2, with equality iff β = −1. Inequality
(5) follows because |bt| ≤ 1/2 and |α|, |ε| ≤ 1. Inequality (6) follows from (3), which completes the
proof.

8.1 The n-Dimensional Case

Now suppose n > 2 is even. Fix an index 1 ≤ i ≤ n/2, and consider the contribution to the total
expected regret from the choice of (x2i−1, x2i), i.e., the component from the i’th circle.
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Analogously to the 2-dimensional case, we condition on the i’th component of µ being one of two
vectors, ν1, ν2 ∈ S1/n. We further condition on the exact values of the other n/2− 1 components
of µ. We denote ε = ‖ν1 − ν2‖

Let bt denote the bias toward ν1, given the history Ht of the game on rounds 1, . . . , t− 1. That
is,

bt = Pr (µi = ν1 | Ht)−Pr (µi = ν2 | Ht)

Then we have the following analog of Lemma 5.1.

Lemma 8.1. For all t, for any sequence of decisions x1, . . . , xt and outcomes `1, . . . , `t−1, the regret
from round t due to the ith component of xt satisfies

E
µ
(r(i)

t | Ht) ≥
1
64

(
ε2 +

|bt+1 − bt|2

ε2

)
1{|bt| ≤ 1/2}

It follows along the same lines as before that the expected total regret from the ith component
is Ω(

√
T ). Summing over the n/2 possible values of i completes the proof.

20


