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Abstract To improve access to electricity, decentral-

ized, solar-based off-grid solutions like Solar Home

Systems (SHSs) and rural micro-grids have recently

seen a prolific growth. However, electrical load pro-

files, usually the first step in determining the electrical

sizing of off-grid energy systems, are often non-

existent or unreliable, especially when looking at the

hitherto un(der)-electrified communities. This paper

aims to construct load profiles at the household level

for each tier of electricity access as set forth by the

multi-tier framework (MTF) for measuring household

electricity access. The loads comprise dedicated off-

grid appliances, including the so-called super-efficient

ones that are increasingly being used by SHSs, reflect-

ing the off-grid appliance market’s remarkable evo-

lution in terms of efficiency and price. This study

culminated in devising a stochastic, bottom-up load
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profile construction methodology with sample load

profiles constructed for each tier of the MTF. The

methodology exhibits several advantages like scala-

bility and adaptability for specific regions and com-

munities based on community-specific measured or

desired electricity usage data. The resulting load pro-

files for different tiers shed significant light on the

technical design directions that current and future off-

grid systems must take to satisfy the growing energy

demands of the un(der)-electrified regions. Finally,

a constructed load profile was also compared with

a measured load profile from an SHS active in the

field in Rwanda, demonstrating the usability of the

methodology.
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Introduction

In 2016, the 17 Sustainable Development Goals

(SDGs) of the 2030 Agenda for Sustainable Develop-

ment came into force (United Nations 2017). In the

same year, an estimated 1.1 billion people globally

lacked access to electricity (IEA 2017). It is no won-

der then that the United Nations defines SDG #7 as

“Ensure access to affordable, reliable, sustainable and

modern energy for all” (United Nations 2017).
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Fig. 1 Distribution of globally unelectrified population as of

2016 (data sourced from IEA 2017). ME, Middle-East; LA,

Latin America

Figure 1 shows the distribution of the global pop-

ulation without electricity across various regions. A

large majority (nearly 85%) of the global population

without electricity access lives in the rural areas.

Hope in off-grid electrification

For various reasons, grid extension efforts in the

electricity-deficient areas have been slower than desired,

and in some cases, grid extension may not be the best

way forward at all (Palit and Bandyopadhyay 2016;

Narayan et al. 2017). It has also been estimated that by

2030, decentralised systems will offer the most cost-

effective means of electricity access for over 70% of

those gaining electricity access in the rural areas (IEA

2017). In particular, solar-based off-grid rural electri-

fication seems to complement as well as compensate

for the grid extension efforts in most of the under-

electrified regions. Solar Home Systems (SHSs) and

solar-based mini-grids are the perfect examples. An

SHS is usually defined as a solar photovoltaic (PV)-

based generator rated 11–20 Wp (entry-level SHS) to

>100 Wp (high-power SHS) and a suitable battery

storage (Global Off-Grid Lighting Association 2018).

An argument in favor of the solar-based off-grid solu-

tions is that most of the unelectrified regions belong

to the sunnier latitude belts. Additionally, the tech-

nology costs of the so-called exponential technologies

like solar PV, LED, and batteries have been declining.

Accordingly, 4.14 million solar-based products were

sold globally in the second half of 2017, bringing the

number of people currently living in households using

solar energy source to 72.3 million (Global Off-Grid

Lighting Association 2018).

Multi-tier framework for household electricity access

In the past, governments have often defined electricity

access as a connection to an electrical grid, whether or

not that connection is reliable. Additionally, large sec-

tions of the people (e.g., a whole village) have also

been called electrified if a small percentage of the

households is electrified (Tenenbaum et al. 2014).

Until the previous decade, electricity access was largely

looked at as a have or have-not condition. However,

such oversimplification is a dangerously narrow view

of understanding and acting towards the electricity

access problem. Such binary metrics were therefore

considered insufficient, and a multi-tier framework

(MTF) was proposed by Bhatia and Angelou (2015),

which captures the multi-dimensional nature of elec-

tricity access. Table 1 captures the MTF as described

in Bhatia and Angelou (2015).

The central idea behind the MTF is to view elec-

trification in terms of the quality and quantity of the

energy services supplied to the user. The underlying

premise is that different energy service attributes, as

listed in Table 1, define the electricity usage that sat-

isfies the various human needs. Human needs broadly

encompass the following categories: (a) lighting, (b)

entertainment and communication, (c) food preser-

vation, (d) mechanical loads and labor-saving, (e)

cooking and water heating, (f) space cooling and heat-

ing (Tenenbaum et al. 2014). The household-level

energy use is bound to be increasing with time as

more households rise out of (energy) poverty (Wol-

fram et al. 2012). Moving up the tiers makes more and

better quality energy services available that could sat-

isfy more of these human needs. The notion of this

tier-based framework is independent of the type of

technology that enables the electrification.

Off-grid appliances

Since the dawn of electricity, the electricity appliance

market has always been under a constant state of evo-

lution. However, until recently, most major advents

of electrical appliances and devices in the developing

world have largely been on the heels of their suc-

cess in the developed world. Examples include mobile

phones and LED lights. This trend has now been

broken, and a number of dedicated, so-called super-

efficient off-grid appliances are being designed speci-

fically for the off-grid markets (Phadke et al. 2015;
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Table 1 Multi-tier matrix for measuring access to household electricity supply

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Peak power rating >12 Wh, >3 W >200 Wh, >50 W >1 kWh, >200 W >3.4 kWh, >800 W >8.2 kWh, >2 kW

and energy

Availability (h/day) >4 >4 >8 >16 >23

Availability >1 >2 >3 >4 >4

(h/evening)

Reliability – – – <14 disruptions per week <3 disruptions

per week

Quality – – – Voltage problems do not affect the use

of desired appliances

Affordability – – – Cost of 365 kWh/year <5% of

household income

Legality – – – Bill is paid to the utility or authorized

representative

Health and safety – – — Absence of past accidents and high risk

perception in the future

Sourced from Bhatia and Angelou (2015)

Global LEAP 2016a). Examples include electric fans,

TVs (Park and Phadke 2017), and refrigerators, all of

which can work on DC as well as consume just a frac-

tion of the energy costs of the traditional, mainstream

counterparts. Moreover, high-quality off-grid products

tailor-made for the low-income markets combined

with innovative business models and falling compo-

nent costs have enabled the rapid market growth.

Envisioning universal electricity access by 2030

would require the support of off-grid, stand-alone sys-

tems as well. The use of super-efficient appliances

will greatly help in this regard, as seen in Fig. 2.

The higher cost of bundling super-efficient appliances

is more than compensated by the lower cost of the

PV and battery due to reduced system size needed

to deliver the same energy services. In this partic-

ular example, an average annual cost reduction of

32% can be achieved (IEA 2017). In general, coupling

super-efficient devices has been seen as a means to

delivering the same, if not better energy services at

lower costs, while also increasing the momentum of

the energy access efforts (REN21 2017).

Moreover, many of these appliances can be used

for their productive use of energy, i.e., using the

appliances for improving the productivity and supple-

menting income (GIZ 2016). Productive use of energy

(PUE) is different from the usual, consumptive use

of energy, in that the productive use is labor-saving

and supplements the income generation capabilities

of the user. Some examples are in small enterprises

(sewing machines, power drills) and farming (solar

pumps). The biggest advantage of PUE comes in the

form of benefits towards both poverty reduction as

well as stability and viability of energy supply, due

to increased ability to pay for the energy services,
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Fig. 2 Impact of using super-efficient appliances in overall

system costs. Assuming universal electricity access by 2030,

annual average cost per household powered by SHS and using

four lightbulbs, a television, a fan, a mobile phone charger,

and a refrigerator. I: SHS with standard appliances; II: SHS

with super-efficient appliances. Use of super-efficient appli-

ances leads to an overall decrease in total costs. Adapted from

IEA (2017)
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and less reliance on subsidies (Kooijman-van Dijk

2008). However, not all dedicated off-grid appliances

available today can be classified in the super-efficient

category. For instance, washing machines and air cool-

ers still have a long way to go in terms of efficiency

improvements.

It is interesting to note that super-efficient appli-

ances are also being promoted from the policy side by

governments and are not necessarily limited to the off-

grid sector. For example, by providing production sub-

sidies to appliance manufacturers, the Super Efficient

Equipment Program (SEEP) aims at reducing energy

consumption in Indian households (Troja 2016). Inter-

national collaborative programs like CLASP are also

working towards improving energy efficient appli-

ances.

Importance of load profiles

A load profile can be defined as the power demand

of an energy system mapped over time. A load pro-

file not only captures the energy demand of the user

but also serves as a vital input to the electrical system

design. Especially in the case of off-grid power sys-

tems like the SHSs, reliable apriori knowledge of the

load profile is extremely helpful in the electrical sizing

the system (i.e., deciding the PV rating and the battery

capacity).

In fact, load profile, even if coarsely estimated, is

almost always the starting point in an off-grid, stan-

dalone PV system design (Smets et al. 2016). Load

profiles can have a profound impact on the perfor-

mance as well as design decisions in off-grid systems

(Treado 2015). A better knowledge of load profile

makes for a more optimal off-grid electrical sys-

tem design. Conversely, the lack of an appropriate

load profile leads to either oversizing or undersizing

the system, thereby causing an unhealthy trade-off

between system costs and power availability (Heeten

et al. 2017).

An over-utilization will result in frequently empty

batteries and loss-of-load events. Particularly in the

context of first-time SHS users, this may result in loss

of faith and trust in solar-based electrification, as was

experienced during the fieldwork done in rural Cam-

bodia related to the work reported in Heeten et al.

(2017). On the other hand, underutilization would

have a detrimental financial impact. This is because

the user would pay more for effectively utilizing only

a fraction of the power generation potential of the

system. In terms of the Levelized Cost of Electricity

(LCOE), a grossly underutilized system would result

in a high LCOE. In a market segment where purchase

power, cost price, and profit margins are sensitive

parameters, a high LCOE is definitely unattractive,

whether or not there are subsidies in play.

Need for load profile construction

The following points necessitate the requirement for

load profile construction.

– Difficult to estimate It is tough to estimate the

energy consumption behavior in off-grid commu-

nities if the electricity access has hitherto been

limited.

– Starting point The load profile is the starting

point in off-grid system design. In the absence of

existing load profiles, as is the case with most off-

grid locations, reliable load profile construction is

crucial.

– Growth enabling Load profile construction for

not just the present but an estimated future usage

would benefit the off-grid system designers to

enable the growth of the energy consumption in

their off-grid systems.

Contributions

For the goal of achieving an optimal SHS design, the

work described in this paper endeavors to construct

load profiles by mapping the energy usage for vari-

ous tiers of electricity access. While multiple studies

in the past have discussed load profile construction

(as discussed in the “Literature review” section), this

paper focuses specifically on stochastic load profile

construction for the various tiers of the MTF for elec-

tricity access. Following are the main contributions of

this paper.

1. A fully adaptable, scalable, and bottom-up load

profile construction methodology is presented,

which can be customized for different regions and

user groups.

2. The constructed load profiles include the latest

trends in dedicated off-grid appliances for each

tier of the MTF for household electricity access.

3. Off-grid appliances for productive use of energy

are included while constructing the load profiles.
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4. The stochastic load profile construction model is

validated through a comparison with a measured

load profile from an active SHS in the field.

5. The impact of load profiles on off-grid system

design is discussed.

Background

This section discusses a brief literature review on the

existing load profile construction methodologies, and

details the load profile parameters and the types of off-

grid electrical appliances considered in this study.

Literature review

Load profile construction can be a complex task for

the rural off-grid scenario. The electrical consump-

tion of the target users is often increasing with time,

as the process of electrification itself contributes to

greater energy needs because of improvement in living

standards (Gustavsson 2007). It is therefore impor-

tant for rural off-grid initiatives to enable communities

to move beyond basic lighting and phone charging

(Hirmer and Guthrie 2017).

However, the complex causality of electricity

access with socio-economic development signifi-

cantly impacts energy modelling approaches, while

most electrification impact assessments estimate a lin-

ear growth in electricity demand (Riva et al. 2018).

Limited knowledge of electricity demand can nega-

tively impact off-grid system dimensioning. Similarly,

Riva et al. (2017) say that most studies do not assume

a dynamic demand over the years and do not con-

sider the evolution of the future load demand, which

severely undermines long-term planning. As seen in

Riva et al. (2017), 74.4% of energy demand forecast-

ing approaches adopted in the reported case studies

consider no evolution in the energy demand.

Fortunately, the MTF for household electricity

access can be instrumental in overcoming some of

these problems thanks to its multi-layered approach.

The tier-based electrification makes it easier to cat-

egorically cater to different tiers of energy usages.

Additionally, while the jump from, say, tier 1 to tier 2

might happen quickly for certain households, it would

still take much longer to reach tier 4 or 5. Using MTF

as a categorical sieve for modelling energy demand

and consequently designing electrical systems still

makes a better case for the future than assuming a

fixed demand. Moreover, use of interviews and sur-

veys can be used additionally to complement and

calibrate the load profiles based on the MTF, thereby

making them more robust as well as customized to

local contexts.

In the case of rural (off-grid) electrification

projects, use of only interviews to model the energy

demand may not be the best way forward. Currently,

energy demand estimation is often carried out solely

through interviews and surveys due to lack of his-

torical data. However, research surveys for predicting

electricity consumptions can be error-prone. As high

as 426 Wh/day per consumer of mean absolute error

has been observed over a study of eight rural mini-

grids in Kenya (Blodgett et al. 2017). Hartvigsson and

Ahlgren (2018) compare the load profiles in a mini-

grid from interviews as well as measured data. Their

study concludes that purely interview-based data falls

short in accurately estimating energy needs. There-

fore, interviews, when used as the only tool, need

not be the best indicators of actual load consump-

tion, especially if delicate system design and sizing

is going to be based on the load profiles constructed

from interview data. However, a stochastic load profile

construction approach can gain greatly from interview

data in terms of calibration and limits.

Existing energy modelling methods have in gen-

eral been investigated by Bhattacharyya and Tim-

ilsina (2010) in the context of developing economies.

Econometric (macro-scale) and end-use are the two

most common approaches being used, with the latter

able to produce more realistic projections. Given the

task of estimating household energy demand and con-

structing load profiles for the same, modelling end-use

consumption is more suited. Swan and Ugursal (2009)

also identify two main approaches in modelling user

data and generating load profiles, viz., top-down and

bottom-up approaches.

Top-down approaches work on aggregate data,

which does not distinguish energy consumption due

to individual users. Tsekouras et al. (2008) use pat-

tern recognition and clustering methods to generate

load profiles as well as for short/mid-term load fore-

casting. However, this is oblivious to appliance-level

data. Räsänen et al. (2010) and Nuno et al. (2012) sim-

ilarly use clustering-based methodologies to peruse

large datasets and construct “new” load profiles based

on the existing data. Sajjad et al. (2014) discuss load
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aggregation and sampling times of measured data to

determine optimal sampling times and aggregation

levels.

Based on the top-down approach, these models

lack appliance-level data and are not specifically suit-

able for off-grid applications. Reliance on historical

aggregate data is a drawback of these models, as they

are intrinsically incapable of modelling technologi-

cal advances that are discontinuous in nature (Swan

and Ugursal 2009). Therefore, top-down approach

is deemed inadequate to be used for modelling the

energy consumption in the form of load profiles for the

purpose of electrification of remote, off-grid house-

holds that are hitherto un(der)-electrified, while also

taking into account the latest developments in dedi-

cated off-grid appliances.

On the other hand, bottom-up approaches work

with individual users, and often even with appliance-

level data. Bottom-up approaches can be classified

as statistical methods (SMs) or engineering methods

(EMs). While SMs use regression analysis or artificial

neural networks to estimate end-user energy consump-

tions, and use historical data, EMs account for energy

consumption at individual user levels on the basis

of power ratings and use of equipment (Swan and

Ugursal 2009). These do not necessarily rely on his-

torical or measured data, but measured data can be

used for calibration. To construct load profiles while

incorporating the off-grid appliances, only the EM

methods can be used. Moreover, as one goes to a

smaller scale, like a household level, load profiles

need to be more appliance oriented than what the top-

down approaches can offer. This is because demand

and supply needs to be optimally matched in planning

and operation. The maximum demand and variabil-

ity decreases with increasing number of appliances

and users (Boait et al. 2015). Therefore, for smaller

mini-grids and SHSs, the peaks are even more dis-

ruptive and the demand and supply matching even

more difficult. Consequently, a good peek into the

load consumption profile at the design stage is cru-

cial. Therefore, a bottom-up approach is chosen for

stochastic load profile construction in this study.

Bottom-up approach is used in Paatero and Lund

(2006), which uses datasets for hundreds of Finnish

urban households to construct load profile from each

load behavior. Underlying loads and appliances were

obtained from other studies at the time (2006). Prob-

ability factors were taken from public reports and

other available data. However, this study was primar-

ily in the urban scenario, with contemporary loads,

and considering hourly mean power levels.

Mandelli et al. (2016) also discuss a bottom-up

approach to construct load profiles specifically for off-

grid areas. While Mandelli et al. (2016) come closest

to creating a bottom-up methodology for construct-

ing load profiles for rural off-grid systems, there are

additional aspects that are considered in the study

described in this paper, which will be incorporated

in the methodology described in the “Methodology”

section. These include (a) Special focus on dedi-

cated, super-efficient, off-grid (DC) appliances and

related trends. (b) Formulating an analytical approach

to include the coincidence factor as a design param-

eter for stochastic load profile construction. (c) Each

load per tier constrained by a maximum usage per

day. (d) Use of a measured load profile from an SHS

in Rwanda to compare and validate the constructed

load profile. (e) Constructing daily load profiles for

an entire year so as to also account for inter-day

variations. The methodology could be further com-

plemented with interviews and data monitoring for

seasonal recalibration if necessary.

Load profile parameters

The important load profile parameters that this work

refers to are discussed in this section. Additionally,

implications of the load parameters on the off-grid

energy system are also discussed.

Peak and average loads

Peak load is the maximum power value the load pro-

file takes over the period of consideration, while the

average load is the mean load power. The electri-

cal dimensioning of the energy system must be able

to support the peak load power. In SHSs, this is

usually done with adequately rated power electronic

converters. Information on average loads is in itself

insufficient to appropriately size the systems and often

error-prone (Louie and Dauenhauer 2016).

Energy demand

The energy demand is the integral of instantaneous

power demand, i.e., the summation of all load con-

sumption events during the period of consideration.
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This has implications on the amount of electrical

energy the generator like PV module has to produce in

the system.

E =
T∫

0

PL(t)dt (1)

where E is the total energy demand, PL(t) is the

instantaneous load power, and T is the time inter-

val under consideration. Consequently, the mean daily

energy, which is defined as the average daily energy

consumption over the given year, can be obtained as

follows.

Edaily =

∑365
i=1

24h∫
0

PLi
(t)dt

365
(2)

where Edaily is the mean daily energy, PLi
(t) is the

instantaneous load power on day i.

Load factor

Load factor is defined as the ratio of the average load

power to the peak load power as shown in Eq. 3.

Higher the load factor, flatter the load profile, indica-

tive of a load demand with fewer variations. On the

other hand, a low load factor is indicative of high

variability in the load profile.

Load factor =
PL,Avg

PL,Peak

(3)

where PL,Avg and PL,Peak are the average and the peak

power values of the load profile over a particular day.

Coincidence factor

Coincidence factor (CF) is defined as the ratio of

the peak load power in the load profile to the total

rated power of all the installed appliances in the

energy system, as shown in Eq. 4 (Hartvigsson and

Ahlgren 2018). It is a measure of the likelihood of

all the loads constituting the load profile functioning

simultaneously. This can hugely impact the electrical

dimensioning of the system.

CF =
PL,Peak

PL,Tot
(4)

where PL,Tot is the total installed load.

Types of appliances

The “Off-grid appliances” section has already intro-

duced the so-called super-efficient appliances increas-

ingly being produced and used in the rural, off-grid

regions. Global LEAP (2015) reports a dedicated sur-

vey on off-grid appliances to investigate the appliance-

products reflecting the greatest off-grid consumer

demand, as well as driving the greatest electricity

access. This survey, carried out in Africa, Latin Amer-

ica, and South Asia, considered a total of 19 appli-

ances for off-grid household usage. The appliances

considered in the survey have been listed in Table 2.

The table also mentions the typical power ratings

and the needs that these appliances can fulfill. This

survey and its results reported in Global LEAP (2015)

have been taken as the base for the selection of the

loads that can meet the energy needs and can help in

the construction of the load profiles. These loads can

now be used in constructing the load profiles for the

Table 2 List of off-grid appliances as ranked in Global LEAP

(2015)

S. No. Appliance Needs Typical

rating [W]

1 LED Lighting a 1–5

2 Mobile charging/banks b 3–20

3 Television b 10–50

4 Radio b 2–5

5 Fridges c 40–400

6 Fan f 15–100

7 Laptop b 30–100

8 Solar water pumps d 40–800

9 Tablets b 12–50

10 Rice cooker e 200–250

11 Clothes iron d 150–2000

12 Grinders d 750–1000

13 Hand power tools d 100–1000

14 Hair clippers d 15–50

15 Small speaker systems b 5–10

16 Rice mills d 200–500

17 Sewing machines d 40–100

18 Soldering iron d 20–60

19 Tea kettles e 100–800

The “Needs” column refers to the same human needs a to f as

mentioned in Section 2
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various tiers of electricity access as outlined by the

MTF.

Methodology

This section details the overall methodology used for

the stochastic construction of the load profiles, along

with the mathematical model that forms the core of the

methodology.

Load classification

Out of the 19 listed off-grid appliances listed in

Table 2, a total of 16 appliances were considered in

this study, with an air cooler as an additional appli-

ance. These loads are then classified into the 5 tiers

(T-1 to T-5) of household electricity access as outlined

by the MTF (Table 1). Every tier is a superset of the

preceding tier with more appliances.

This classification is captured in Table 3, where the

considered load appliances are listed along with their

power rating, quantity, and other operating constraints

that are used as inputs to the mathematical model, as

described in the “Model parameters” section. Table 3

assumes typical values of operational constraints to

demonstrate the applicability of the described method-

ology. These values are expected to be customized per

target region or community.

Additionally, four dedicated appliances that con-

tribute to productive use of energy (PUE) are consid-

ered as well in tier 5, viz., hand power tools, water

pump, grinder/miller, and sewing machine. Note that

the so-called super-efficient off-grid appliances are

considered wherever applicable. However, some high-

power appliances, although DC and off-grid, are still

in the process of undergoing advancements in the off-

grid market, and therefore need not necessarily be

“super-efficient” like the LEDs and TV. For exam-

ple, washing machine and air coolers. The appliances,

and their specific datasheets, wherever applicable, are

mentioned in Appendix.

Model parameters

The parameters of the mathematical model used in the

methodology are defined in Table 4. The model assumes

that a load can be operated in an allowed usage win-

dow multiple times for finite durations, as defined by

the parameters and their constraints. The values for

these parameters (including boundary values where

applicable) along with details of the load appliance

used for constructing the load profile can be seen in

Table 3. It must be noted that these input values have

a bearing on the model output, and can be tailored by

the system designer using the described methodology

for the specific user group being catered to.

As the data resolution in this study is 1 min, f (refer

Table 4) is a 1440 (1 day long) length vector in MAT-

LAB having ones and zeroes (1s and 0s) to indicate

activity or inactivity of any load.

Usage window

The idea of the usage window is illustrated in Fig. 3.

The concept illustration shows a usage window (W )

spanning 9 h from 09.00 to 18.00. Two occurrences

of variable duration of a load rated 150 W can be

seen, from 11.00 to 12.00 and from 15.00 to 18.00.

Additionally, the cycle times (Ti), number of instances

(n), starting times (ti) and power rating (P ) have been

marked.

Peak window and coincidence factor

Peak window is that subset of the total allowed usage

window that intersects with the usage window of other

loads. This is an important input parameter for the

model, as depending on the coincidence factor, multi-

ple loads will operate in the peak window at the same

time or around each other.

Figure 4 illustrates the concept of the peak window.

The load usage window Wj is shown for 3 different

appliances W1 to W3, and the intersecting time dura-

tion Wpeak is shown. For tiers 4 and 5, lower powered

applications like LED lighting, mobile phone charg-

ing, and radio are not considered for determining the

peak window.

Using coincidence factor The concept of coincidence

factor (CF) described in the “Load profile parameters”

section is an important load profile parameter, which

can have implications on the off-grid system design to

cater to the load profile. The coincidence factor mea-

sure is used as an attribute that impacts the probability

of a load occurrence in the peak window. The probabil-

ity of load occurrence times tij within the peak win-

dow is considered to follow a normal distribution with
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Table 4 Parameters used for stochastic load profile construction

Parameter Definition Notation Type

Load type Type of load in use. For example, TV, LED j Input

lights, etc, chosen from the LCM

Total load type Total load types per category N Input

Rated power Rated power per load P

Cycle time Duration for which a load is operational T Generated

Maximum usage Maximum number of hours a load is Tm Input

allowed to operate during the day

Instances Number of times a load is operated in n Generated

the allowed usage window

Usage window The allowed time window within which the W Input

loads are expected to be used

Quantity of loads The number of loads of each type q Input

Start time Start time of a load instance within the usage window t Generated

Load occurrence The ith occurrence of a load cycle i Generated

Dynamic window Dynamic window calculated as more Wdyn Generated

load occurrences reduce the usage window

Functioning time Day long time interval showing the precise f Output

time stamps when the load is active or inactive

Peak window The usage window where multiple appliances Wpeak Generated

can potentially function simultaneously

Coincidence factor A design input between 0.2 and 1 that denotes CF Input

the likelihood of appliances functioning simulatneously

the mean centered around the middle of the peak win-

dow. Equation 5 describes the normal probability den-

sity function with a mean µ and standard deviation σ .

It is known that 99.7% of the values drawn from the nor-

mal distribution are within 3σ distance from the mean.

P(x) =
1

σ
√
2π

e−(x−µ)2/2σ 2

(5)

Fig. 3 Concept illustration of load usage window (W ) and load

occurrence during the day

Figure 5 illustrates the normal probability distri-

bution of load occurrence being superimposed on the

peak window. A high coincidence factor would imply

a much narrower distribution compared to a lower

coincidence factor. Minimum coincidence factor gives

rise to a normal distribution that just fits within the

window, with the peak window boundary marking the

Fig. 4 Concept illustration of peak window (shaded region) as

an intersection of 3 different load usage windows

Energy Efficiency (2020) 13:197–215206



Fig. 5 Normal probability distribution of load occurrence in the

peak window

3σ limits for the normal distribution. Maximum coin-

cidence factor of 1 would imply a distribution with

σ = 0 and therefore the occurrence guaranteed at the

center of the peak window.

Additionally, this is used to derive a relationship

between CF and sigma as shown in Eq. 6. CFmin is

fixed at 0.2 in this study.

σ =
1 − CF

1 − CFmin

×
Wpeak

6
(6)

Randomness and constraints

As the model stochastically builds a load profile in a

bottom-up manner by constructing load usages during

the day, randomness was incorporated in the model.

There are three main parameters that are quantified

randomly withing the usage windows. These are cycle

times, starting times within the usage window(s), and

the number of instances of load occurrence.

Moreover, the starting time for the specific occur-

rence in the peak window is handled using a normal

distribution and the coincidence factor as explained

in the “Peak window and coincidence factor” section.

The load profile construction efforts described in this

paper have been executed in MATLAB, and the ran-

domness has been achieved with the help of the

internal random number generator of MATLAB.

Additionally, there are several constraints that the

various parameters are bound by. These are listed as

follows.

1. i ∈ [1, nj ]
2. j ∈ [1, N ]
3. nj ∈ [njmin

, njmax], where njmin
and njmax are

the lower and upper bounds of the number of

instances of load occurrence for load j in a win-

dow respectively.

4. Tij ∈ [Tjmin
, Tjmax] where Tjmin

and Tjmax are

the lower and upper bounds of the cycle times

respectively.

5.
∑nj

i=1 Tij ≤ Tm,j

6. tij ∈ Wj ∀ ij . Additionally, tij + Tij ∈ Wj

These constraints change across the different load

categories. The values of each of these constraints

for the various loads and different tiers have been

captured in Table 3.

Stochastic load profile model

The stochastic load profile construction methodology

is illustrated through the flowchart presented in Fig. 6.

The methodology is executed in MATLAB in four

distinct phases. They are as described below.

1. Phase I: Stochastic generation In this phase, for

every load j , the number of instances nj of load

occurrence during the day is randomly generated

using the random number generator in MATLAB.

Then, for each load instance occurrence i, a cycle

time Tij is randomly generated. The peak window

Wpeak is also determined in this phase. The var-

ious constraints, quantity of loads, rated power,

and coincidence factor (CF) are also taken as

inputs in this phase.

2. Phase II: Occurrence Distribution The occur-

rence time instance t of every load instance i is

determined randomly in this step. Note that one

occurrence is deliberately considered inside the

peak window, using normal probability distribu-

tion with parameters derived from the coincidence

factor, as explained in Eq. 4 in the “Peak window

and coincidence factor” section. The occurrence

ti occurs inside the allowed window(s) W , so that

in general tij ∈ Wj . The cycle time Ti is added

to ti . At this time, phase III is executed to validate

the cycle time of the load. If valid, then phase II

is executed again for the next load instance i. If

invalid, then the cycle time is constrained accord-

ing to either of 2 criteria as mentioned in phase

III, and then phase II is executed for the next load

instance i. If i was already the same as n, then

phase II is implemented for the next load of the

same type if the quantity q > 1. If the function-

ing window f has been generated for all q, then

the execution proceeds to the next load j . For

every execution of phase II, the allowed window
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Fig. 6 Flowchart

illustrating the stochastic

load profile estimation for

one day. The process is

repeated for the whole year

across every tier

is shrunk based on the cycle time occurrence of

the executed load instance. Therefore, an updated,

shrunken, dynamic window Wdyn is available for

the next load occurrence. The total usage hours of

any load is also kept track of in this phase.

3. Phase III: Validation and Correction Phase III

concerns with validation based on two criteria,

viz.,
∑nj

i=1 Tij ≤ Tm,j and tij + Tij ∈ Wj . That

is, the cycle time is truncated if it spills out of the

dynamic window. Alternately, it is truncated if the

sum total of all load occurrences is greater than

the allowed usage hours, a constraint coming from

the MTF. After every execution of phase II, phase

III validates the result, and phase II is executed

again accordingly. The methodology thus operates

between phase II and phase III until the functioning

time fj is populated for each q of all j .

4. Phase IV: Aggregation Here, the functioning win-

dows fj have been stochastically generated for all

the loads. Finally, the load profile is aggregated

taking the quantity q of the loads and the power

rating P into account as shown in Eq. 7.

L =
N∑

j=1

fjPj (7)

where L is the final load profile vector of length 1440,

owing to the 1-min resolution of f . The load pro-

file generation is repeated 365 times for a yearly load

profile.

The procedure described is valid for the generation

of the load profile for N loads within the user group.

The same procedure can be followed with different

inputs and constraints to obtain the load profiles from

various tiers. The reader is referred to Table 3 to peruse

the entire list of inputs and constraints as used in this

study.

Energy Efficiency (2020) 13:197–215208



Assumptions in the methodology

There are a few careful assumptions in the presented

methodology. These are:

1. No occurrence of the load takes place outside

the usage window. Therefore, the choice of usage

window largely dictates the particular load’s con-

tribution in the overall load profile. The usage

windows shown in Table 3 have been considered

as the typically expected values, which could be

made more precise as usage preference data is

available from the field.

2. For some of the loads, like laptop, tablet, and

mobile phone charging, the loads in these cases

specifically denote just the charging of the

devices’ battery and not the usage of the loads

itself.

3. The load power is constant throughout its occur-

rence and is equal to the rated power. The only

exception to this is the refrigerator, as explained

below.

It must also be noted that the methodology presented

here is strictly for load profile construction, and not

for load forecasting.

The case of the refrigerator

Unlike the rest of the loads, the fridge’s energy con-

sumption is rated differently and therefore deserves

special treatment. The power consumption behavior

of the fridge is not taken to be at rated power at all

times. This is because manufacturers often specify

two parameters, the rated power and the daily energy

consumption under testing conditions.

For example, an off-grid DC-powered fridge is

rated at 40 W with a daily energy consumption of

114 Wh at 32.2 ◦C ambient temperature (SunDanzer

2016). The daily energy mentioned translates to a

steady consumption of 4.75 W, much lower than

the rated power of 40 W. This is because the daily

energy only denotes the consumption when the fridge

is largely in standby, and otherwise switches on due

to self-checks. This neglects the switching on of the

fridge due to external events like the door opening and

new food addition.

The methodology described in this study assumes

the rated standby and self-check consumption with-

out external events. Additionally, the load instances

i occurring through the day are considered to be the

external events causing the fridge to switch on and

consume 40 W for the cycle times Ti . Just as the

other loads, the number of event instances will be

constrained as i ∈ [1, n] and n ∈ [nmin, nmax].

Advantages of the methodology

The load profile construction methodology devel-

oped in this study enjoys several advantages, as listed

below.

1. Scalability The load profiles constructed in this

study were at a household level, given the back-

ground of electricity access and the MTF. How-

ever, as the methodology is bottom-up, the same

method can be used to scale up the scope from

household to neighborhood or even village level.

The coincidence factor will need to be appropri-

ately changed.

2. Randomness The stochastic nature of the load

profiles embodies uncertainty, reflecting human

behavior. For example, there is consistency with

the usage windows for each load. However, the

number of times of load usage and the cycle

times are still inconsistent within constraints. This

allows for multiple load profile generations within

the same set of given input data constraints.

3. Yearly load profile The yearly load profile con-

tains unique daily load profiles. For instance, the

load profile constructed for day 1 can be quite

different from that of, say, day 200 in a given

year. This is a welcome change from the yearly

load profiles that are simply the same daily load

repeated 365 times. This is helpful in sizing an

off-grid system and understanding the system’s

battery behavior over a larger span of time.

4. Adaptability The procedure described is flexible

enough to incorporate more or different appli-

ances in the future or even change the specifica-

tions of any load that makes up the load profile.

The load profiles can be further customized based

on precise demographic inputs and requirements

from a specific community through fieldwork, for

instance.

5. Ease of system design Due to increasing needs of

the off-grid population, SHS designers often need

to oversize their systems to enable future growth

of consumption. This could be planned better with

Energy Efficiency (2020) 13:197–215 209



the methodology which helps quantify the energy

consumption in the form of load profiles.

Results and discussions

Based on the inputs described in Table 3 to the

methodology described in Fig. 6, different load pro-

files are obtained for the various tiers of the MTF.

For ease of discussion, only the daily load profiles are

shown here and discussed.

All the data from the generated load profiles have

been made freely accessible at https://doi.org/10.4121/

uuid:c8efa325-87fe-4125-961e-9f2684cd2086.

Stochastic load profiles for MTF

Figure 7 shows a tier 1 load profile for a representative

day from the year-long load profile. As only a handful

of loads operate in this case, both the peak power and

the energy consumption is the lowest compared to the

rest of tiers.

Figure 8 shows a daily tier 2 load profile for a rep-

resentative day. Similar to tier 1 load profile, the char-

acteristic peak occurs in the evening with moderate

consumption during the day.

Figure 9 shows a daily tier 3 load profile for a rep-

resentative day. An additional base load can be seen

in this case due to the fridge. As described earlier,

the consumption of the fridge is not modelled based

Fig. 7 Load profile of an off-grid household with tier 1 elec-

tricity access for a representative day. Total energy consumption

for this day is 60 Wh with a peak of 12 W

Fig. 8 Load profile of an off-grid household with tier 2 elec-

tricity access for a representative day. Total energy consumption

for this day is 262 Wh with a peak of around 51 W

on the duty cycle. Instead, a base average consump-

tion is assumed from the manufacturer’s data, and the

external usage events are modelled.

Figure 10 shows a daily tier 4 load profile for a

representative day. Due to the high-power appliances

used in this category, the peak power (around 1 kW) is

much more pronounced.

Figure 11 shows a daily tier 5 load profile for a

representative day. As this tier is assumed to contain

appliances that support PUE as well, a very high peak

of 2.5 kW can be seen. Moreover, the peaks of all the

Fig. 9 Load profile of an off-grid household with tier 3 elec-

tricity access for a representative day. Total energy consumption

for this day is 914 Wh with a peak of around 150 W
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Fig. 10 Load profile of an off-grid household with tier 4 elec-

tricity access for a representative day. Total energy consumption

for this day is 3.29 kWh with a peak of around 1 kW

load profiles lie in the peak window based on the coin-

cidence factor as explained in the “Peak window and

coincidence factor” section.

Load profiles: main parameters

The main parameters of the load profiles discussed

in the “Load profile parameters” section have been

captured in Table 5.

Here,Pmax is the maximum value attained byPL,Peak

throughout the year, while Pmin is the minimum value.

Fig. 11 Load profile of an off-grid household with tier 5 elec-

tricity access supporting PUE loads for a representative day.

Total energy consumption for this day is 9.34 kWh

Table 5 Maximum peak power Pmax, minimum peak power

Pmin, average daily energy Edaily and load factor for the load

profiles for each tier based on the 1-year generated load profile

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Pmax (W) 12 51 154 1670 3081

Pmin (W) 6 35 113 583 1732

Edaily (Wh) 50 218 981 3952 9531

Load factor (-) 0.17 0.18 0.26 0.10 0.13

When compared with the energy and power limits

mentioned by the MTF (refer Table 1), it can be seen

that the constructed load profiles (in terms of Edaily

and Pmax) conform to these limits. The only exception

is tier 3, where the Pmax is lower than the minimum

limit as mentioned in the MTF. This is because of

the super-efficient appliances already available and in

use, which impact the overall power consumption. The

impact of the efficiency of these appliances is more

apparent in tier 3 than the lower tiers. The higher

tiers 4 and 5 are still seeing advances being made

in terms of dedicated, high-power, efficient, off-grid

appliances.

It must be noted that the existing solar lanterns,

SHSs or mini-grid solutions only span tiers 1 to 3

in terms of off-grid electrification. There is still a

long way to go before most current off-grid commu-

nities can reach tier 4 and 5 consumptions. Nonethe-

less, climbing up the rural electrification ladder is

inevitable, and when the expected tier 4 and 5 con-

sumptions are reached, viable energy solutions need to

be in place.

The higher tier load profiles can be seen to have

lower load factors due to the tall peaks of the high

power appliances. This would have severe implica-

tions on the battery size and the battery lifetime of

stand-alone systems like SHSs if that were to solely

satisfy these load profiles.

The values obtained in Table 5 can be tailored based

on the kind of loads being used and the corresponding

usage restrictions that are captured in Table 3, which

is the expected use of this methodology.

Implications on system design

This section outlines the implications of the tier-based

load profiles on the system design for the tiers. A stan-

dalone solar PV and battery-based (off-grid) energy
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system is considered in a location with around 4.5

equivalent sun hours (ESH), which is usual for most

tropical and equatorial regions.

Tier 1 load profile shown in Fig. 7 could be typ-

ically satisfied with a 15 to 20 Wp PV module and

corresponding battery storage. This is already being

done in the field by pico-solar products or smaller SHS

designs. The tier 2 load demand shown in Fig. 8 could

be typically satisfied with around 50 Wp PV module

and corresponding battery size for a location in the

tropical belt, which is what a present-day small SHS

can provide. Finding the optimal battery size require-

ment would need a more detailed analysis based on the

year-long load profile and the specific meteorological

data.

Tier 3 load profile would need around 250 Wp of

PV, which is about the typical size of a contemporary

residential solar panel used in the developed world.

Only a handful SHS providers currently operate with

such PV dimensions when catering to household-

level, stand-alone, off-grid SHS. Tier 4 load profile

would need almost 1 kWp of PV module. A load peak

of around 1 kW (Fig. 10) and overall peak of 1.67 kW

(Table 5) would have implications on the optimal

dimensioning of the battery and the power electronics

of the system, which needs a dedicated analysis.

Tier 5 load profile shows a load peak of around

2.5 kW (Fig. 11) and an overall peak of around 3 kW

due to the high-power appliances that enable PUE.

A stand-alone system would demand a PV of around

2.5 kWp and corresponding battery and power elec-

tronics to match. This shows that supporting the high-

power, dedicated, PUE-enabling appliances is going

to be an exacting challenge on the size of a stand-

alone system like SHS. Guaranteeing zero loss-of-load

events would call for a highly oversized stand-alone

system. A microgrid with distributed generation might

be a more suited option.

Most importantly, as the household under con-

sideration climbs up the rural electrification ladder,

the increase in the appliances owned and therefore

energy consumption would also mark a movement

up the tiers. Therefore, a stand-alone system design

that aims to enable this future growth has to be mod-

ular in nature, such that higher energy demand can

be met with a modular addition of PV and/or bat-

tery. However, modularity alone would still not suffice

for enabling consumption at tier 4 and 5 levels with

only a stand-alone system. For such high levels of

consumption, guaranteeing full power availability is

bound to lead to wastage of energy due to oversiz-

ing of the system. A central, top-down community

microgrid implementation may be the solution, but

it is usually not cost-effective, incurs high capital

expenditure (CAPEX), and also renders the previous

SHS obsolete. Instead, the authors propose the use of

modular stand-alone SHS design that could also be

interconnected into a bottom-up, organically growing

microgrid.

Comparison with field data

At the time of writing this article, most prevalent SHSs

and other off-grid systems deployed at household level

were only catering up to tier 2, or in some cases, tier

3 level electricity access. BBOXX, an SHS provider

in Rwanda, East Africa, offers a portfolio of efficient

DC appliances along with the SHS. Figure 12 shows

a single day load profile of an off-grid SHS from

BBOXX capable of powering 3 LED lights (1.2 W

nominal consumption) and a USB port for charging a

mobile phone and a portable radio. The consumption

limits would deem this to be a tier 1 load pro-

file. Also shown is a stochastically generated load

profile, with different inputs matching those corre-

sponding to the appliances of the SHS in the field.

Fig. 12 Comparison of a generated stochastic load profile with

the measured load consumption over a single day of a household

in Rwanda powered by an SHS from BBOXX
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The generated profile seems to match the measured

one closely, especially with respect to the peak load

in the peak window in the evening. The total daily

energy of the measured load profile is 35.7 Wh, while

that of the generated one is 34.7 Wh, representing

a 2.9% error. Furthermore, the load factor of the

measured load profile is 0.18 while that of the gener-

ated load profile is 0.17. A much greater match can

naturally be achieved if needed by adjusting the oper-

ational constraints. However, the comparison here is

to merely exemplify the usefulness of the described

methodology.

Conclusions

This paper described a bottom-up, stochastic load pro-

file construction methodology to quantify the energy

needs for the various tiers of the MTF. The loads

were entirely composed of dedicated, off-grid, and

in some cases the so-called super-efficient appli-

ances. Advantages like scalability, adaptability, and

randomness of the proposed methodology were iden-

tified. A method for incorporating coincidence fac-

tor as a design input for the methodology was also

introduced. Several stochastic load profiles were cre-

ated using the described methodology, and their

impact on standalone system design for the differ-

ent load profiles has been underlined. The impact

of appliances enabling productive use of energy was

also investigated through a tier 5 load profile con-

struction. The utility of this methodology can be

greatly augmented with the availability of local data

and complemented with targeted surveys per target

community/region.

The load profile construction methodology described

in this paper is expected to greatly help various off-

grid electrical system designers in constructing load

profiles and customizing energy solutions to cater to

the growing energy needs of the un(der)-electrified

population.

Recommendations and future work

The methodology described assumes rated power con-

sumption of these DC appliances throughout the usage

of the appliance. In reality, some appliances may

consume differently based on their usage. For now,

only the fridge has been treated as a special case.

Other examples could include the starting power con-

sumption of an appliance, or the varying power con-

sumption of an LCD TV depending on the screen

illumination, which can be quite different from the

rated power. In the absence of actual power consump-

tion profiles of these up-and-coming DC appliances,

the current load profile construction methodology is

considered to be sufficient. More light will be hope-

fully shed in the future by the real-time data gathered

from SHSs in the field. Finally, the most natural pro-

gression of this work will be towards the sizing of the

off-grid systems like SHSs for the various electricity

access tiers based on these load profiles, where the

aforehand knowledge of the load profiles can greatly

help in the optimal sizing of these systems.
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Appendix

Table 6 lists down the loads used in the study. The

model number and basic specifications of the loads

are mentioned, along with the corresponding source

wherever applicable.
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Table 6 List of appliances

used for constructing the

load profile

Loads Sample model number(s) Source

LED lighting SL 1220CF120 Phocos (2016)

Mobile phone Samsung Guru Plus Samsung (2016)

Radio Fosera, FS106 GIZ (2016)

Fan ONergy 10” BOX FAN, GIZ (2016), Global LEAP (2016b)

FS91, ONergy 16” PEDESTAL

FAN, FS92, Ceiling Fan ME-103-DC

TV Fosera DC TV 15.6” 12 V, Global LEAP (2016b)

D.light design 18.5” LE185N91C,

Mobisol 24” MSDV2310MY-308C1

Fridge Solar Chill, FS52 , SunDanzer (2016), GIZ (2016)

Sundanzer DCR 50, DCR 165

Tablet HP Pro Tablet 10 EE G1 HP (2016)

Kettle Solar DC Kettle SE520, FS65 GIZ (2016)

Laptop Generic Laptop –

Rice cooker SR-3NA-S Panasonic (2016)

Clothes iron Solar DC Power Iron Dry/ Spray GIZ (2016)

style-12V SL100S, FS192

Washing machine Washing Machine CERAD, FS127 GIZ (2016)

Air cooler DC Solar Air Conditioner, DC4812VRF Hotspot Energy (2016)

Power tools Bosch 18V Lithium Ion 4-Tool Combo GIZ (2016)

Kit (CLPK414-181), FS84

Grinders/millers Grain Mill Solar Milling, FS32 GIZ (2016)

Sewing machine Sewing Machine CERAD, FS73 GIZ (2016)

Water pump Solar Surface Slow Pump Dankoff, FS10 GIZ (2016)
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