

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

DOI : 10.5121/ijccsa.2011.1301 1

STOCHASTIC MARKOV MODEL APPROACH FOR

EFFICIENT VIRTUAL MACHINES SCHEDULING ON

PRIVATE CLOUD

Hsu Mon Kyi
1
 and Thinn Thu Naing

2

1
University of Computer Studies, Yangon, Myanmar

hsumonkyi.ucsy@gmail.com

2
University of Computer Studies, Yangon, Myanmar

ucsy21@most.gov.mm

ABSTRACT

Cloud computing is deployed a large set of virtualized computing resources in different infrastructures and

various development platforms. One of the significant issues in cloud computing system is the scheduling

and allocation of virtual resources and virtual machines (VMs). To address this issue, this paper proposed

an efficient approach for virtual machines scheduling in cloud infrastructure resource management and

allocation also called EVMSA (Efficient Virtual Machines Scheduling Algorithm) that provides the effective

and efficient resource allocation. To analyze the performance of this scheduling and allocation on cloud

infrastructure, an analytical performance model approach using Stochastic Markov model is proposed to

measure the scalability and tractability for infrastructure resource of private cloud. This model intends to

analyze an academic-oriented private cloud system which is implemented using Eucalyptus open source

system. According to performance evaluation, the effective mean response time of the system to improve the

performance of IaaS services in the system.

KEYWORDS

Cloud Computing, Virtual Machine, Scheduling, Stochastic Markov Model, Eucalyptus Private Cloud

1. INTRODUCTION

A Cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented as one

or more unified computing resources based on Service Level Agreements (SLA) established

through negotiation between the service providers and consumers [10]. There are four

deployment models of cloud computing environment such as Public, Private, Community and

Hybrid cloud. This research is only emphasis on the private cloud model and data and processes

are managed within the organization that a limited number of people behind a firewall.

Eucalyptus open source provide cloud system is configured to provide IaaS services in the

system.

Some of the classical cloud-based applications include Social Networking, Web Hosting,

Content Delivery, and Real-Time Instrumented data processing. It is very difficult to

quantify the performance of scheduling and allocation policy on cloud infrastructures for

different applications under varying workload and system size. The reason why resource

allocation and scheduling brings new research issues in cloud computing system is that resource

provision is more complex, since virtual machines and their host resources both need to be

considered and compared with resource allocation in the traditional parallel and distributed

system, virtual machines contain more properties which are used for scheduling, for example,

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

2

memory size, software packages, and access to specific devices. Moreover, cloud resource

allocation and servicing is difficult for realistic analyze of cloud servicing request.

Existing Eucalyptus’s default VM scheduler is Greedy scheduler and Round Robin scheduler.

The weakness of these approaches is basic single queuing systems that lead to maximize

execution time due to longer jobs necessitating for the deployment of a better scheduling strategy

at the cluster level. In order to improve throughput and minimize response time of system, we

enhanced an efficient scheduling algorithm which is called Efficient Virtual Machines

Scheduling Algorithm (EVMSA). In this algorithm, we use multiple queues and follow the FCFS

principle. This algorithm uses three effective policies for resource allocation. These policies are

(1) To decrease delay time for large VM request, this system uses three queues instead of single

queue. Waiting VM requests are inserted to their appropriate queue according to the user request

VM types. (2) To be fair all VM requests from three queues, the system compare the arrival time

of first three queue for select queued VM request. (3) To be efficient utilize the resource, if

selected VM request is not sufficient the resources, then we choose VM request from another

queue due to small VM request size more sufficient resource than large VM request. According to

these policies, the scheduler launches the specified VM(s) on physical resources according to

FCFS principle. However, not every VM(s) request will be accepted by the scheduler since there

may be not enough computing resource available in some clouds. Therefore, if there is no

sufficient resource for the request, the scheduler will reject it and place this request on the

appropriate queue. Then we choose VM request from another queue according to three

scheduling policies.

To analyze the performance of efficient scheduling and allocation on cloud infrastructure, we use

an analytic modelling approach using stochastic Markov models. Analytical performance model

allows the system to predict the effects of a provisioning schedule on target QoS such as response

time, throughput, and resource utilization. First, we construct separate sub-models for resource

allocation and servicing steps of a cloud service and then the overall solution is obtained by

iteration over individual sub-model solutions. The detailed steps of the model are described

in the next section.

The two major contributions of this system are to:

• Develop an efficient scheduling mechanism to provide heterogeneous VM request types,

for instances, variation in the number of cores, sizes of memory and sizes of storage.

• To analyze heterogeneous service request, we use Interacting Stochastic Markov model

approach. This model result is to generate mean response time of request VM and system

availability for user request.

The next sections will describe in detail: Section 2 discusses related work to this system and the

overview of proposed cloud system is presented in section 3. This paper defines steps of the

model approach in section 4. Then, numerical performance evaluation results are presented in

section 5. Finally, Section 6 concludes the paper.

2. RELATED WORK

Since Eucalyptus [1] and Usher [7] are the open source systems for cloud infrastructure and

development, they provide VM creation and resources allocation across a Physical Machine on

cluster servers. However, they could not support the efficient VM scheduling policies to

consolidate or redistribute VMs.

O.Khalid et al. [9] proposed a dynamic and adaptive real-time virtual machine scheduling

technique for HPC workloads on the Grid. The primary objective is to increase overall job

throughput in the system. L.Wang et al. [2] presented vGreen design to manage VM scheduling

across different PMs with the objective of managing the over performance and system level

energy savings.

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

3

N.Bobroff et al [8] proposed virtual machine placement algorithm to allocate virtual machines

while minimizing the number of PMs activated without violating the SLA agreement. Similarity,

L.Wangy et al. [6] presented a Multi-Dimensional Scheduling Algorithm (MDSA) for task

scheduling in virtual machine based SOA environments. Each virtual machine is pre-installed

with some application level software packages. This algorithm is static based scheduling

algorithm.

Rodrigo N. Calheiros et al. [11] presented analytical performance (queuing network system

model) to improve the efficiency of the system. This proposed provisioning technique detects

changes in workload intensity (arrival pattern, resource demands) that occurs over time and

allocates multiple virtualized IT resources accordingly to achieve application QoS targets.

Luqun Li [5] discussed an optimistic differentiated service job scheduling system for cloud

computing service users and providers. This system uses non-preemptive priority M/G/1 queuing

model for these job services. Hongbin Liang et al. [3] proposed Semi-Markov Decision Process

model for resource allocation on mobile cloud environment. This system aims to allocate the

cloud resource to maximize the system resources.

To the best of our knowledge, the proposed efficient virtual machine scheduling (EVMSA)

algorithm is appropriate for resource allocation and the heterogeneous VM request servicing of

IaaS properties, for example, CPU, memory size, storage and software packages. And then

Stochastic Markov Model approach is suitable for analyzing the performance of scheduling and

allocation services of IaaS cloud system.

3. PROPOSED SYSTEM OVERVIEW

In this section, we present a component of Eucalyptus architecture and system model for this

architecture.

3.1. The Components of Eucalyptus Architecture

In this section, we will briefly explain the overview architecture of Eucalyptus open source

system. Eucalyptus architecture is deployed with some components: Cloud Controller (CLC) as

front-end interface component, the several Cluster Controllers (CCs) in which Storage Controllers

(SCs) are attached to provide the EBS block storage. Then the several Node Controllers (NCs)

are working as back-end nodes. According to networking architecture point of view, the front-end

node is configured with two network interfaces: one is connected to public campus network and

another one is connected to private VM networks into Node Controllers (back-end node).

The main functions of Eucalyptus components are: Cloud Controller (CLC) - The CLC is

responsible for exposing and managing the underlying virtualized resources (machines (servers),

network, and storage) via user-facing APIs.

Walrus Storage Controller (WS3)- WS3 implements scalable “put-get bucket storage.” The

current implementation of Walrus is interface compatible with Amazon’s S3 (a get/put interface

for buckets and objects), providing a mechanism for persistent storage and access control of

virtual machine images and user data.

Storage Controller (SC) - The SC provides block-level network storage that can be dynamically

attached by VMs. The current implementation of the SC supports the Amazon Elastic Block

Storage (EBS) semantics.

Cluster Controller (CC) - The CC controls the execution of virtual machines (VMs) running on

the nodes and manages the virtual networking between VMs and external users.

Node Controller (NC) - The NC (through the functionality of a hypervisor) controls VM

activities, including the execution, inspection, and termination of VM instances.

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

4

 The Eucalyptus private cloud system architecture is shown in below.

Figure 1. The Eucalyptus system architecture

3.2. System Model for Eucalyptus Architecture

This system model is constructed based on Eucalyptus private cloud infrastructure architecture. In

such system, several VM types are offered according to the users’ requirements. These VM types

with specific CPU, RAM and storage capacity are provisioned after creation an instance. These

user request VM are deployed on node controller (NCs) each of which may be shared by multiple

VMs. The Eucalyptus infrastructure offers two types of resource pools. These pool are running

(turn on) and pending (turn on, but not ready) pool. User requests several VM types are submitted

to a resource allocation decision module that processes request on a first-come first-serve (FCFS)

basis as follows. The request at the head of the queue is provisioned on a running server if there is

capacity to run a VM on one of the running servers. If no running NC is available, a NC from

pending pool is used for provisioning the requested VM. If none of these servers are available, the

request is rejected and placed this request on appropriate queue. This system model uses the

efficient virtual machine scheduling algorithm (EVMSA) using proposed effective scheduling

policies to enhance FCFS scheduling policy. Using the EVMSA algorithm, the instances will be

scheduled to run on proper physical machines so that it will have a higher performance.

4. STEPS OF PROPOSED MODEL APPROACH

This section describes hierarchical steps of the developed models and interaction among the

models. Step by step processes of VM request in Eucalyptus cloud is shown in Figure 2 and the

detail analysis of steps are described in below.

NC3 NC4

Client1 Client2 Clientn

VM VM

VM VM

VMM

VM VM

VM VM

VMM

Cluster 2

Web Interfaces

CLC,WS3

Scheduler

Cloud Controller(CLC)

Walrus Storage Controller(WS3)

Cluster 1

Cluster Controller(CC)

Elastic Block Storage(EBS)

Virtual Machines(VM)

Node Controllers(NC)

Virtual Machine

Monitor (VMM)

Storage Server

CC,EBS

NC1 NC2

CC,EBS

VM VM

VM VM

VMM

VM VM

VM VM

VMM

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

5

Figure 2. The Process of resource allocation and servicing

Resource allocation and servicing steps describe in figure translate three interactive sub models

for analyze the performance of system. These steps based on Markov model; (1) resource

allocation decision model, (2) VM usage model and (3) VM execution model respectively. These

models are described below.

4.1. Resource Allocation Decision Model

To calculate the resource allocation decision process, we design a continuous time Markov chain

(CTMC) shown on Figure

Figure 3. Resource allocation decision model

Scheduling Queue

Phase

Resource Allocation
Decision Phase

(RADP)

VM Instance

Creation

VM Deployment

VM Running

VM Finishing

Waiting for Resource Allocation and

Servicing Steps

(i)Resource Allocation Decision

(ii)VM usage (creation and
deployment) and

(iii)VM Run Time Execution

Translate these steps into

analytical model

User Request

λ λ λ

λ λ λ

1,r

rr Pδ
rr Pδ rr Pδ

)1(rr P−δ

pp Pδ

)1(pp P−δ
1,p

)1(rr P−δ

0,p

pp Pδ
)1(pp P−δ

pp Pδ

)1(pp P−δ

n-1,p

pp Pδ
)1(pp P−δ

)1(rr P−δ

0,0

rr Pδ

λ
0,r n-1,r

u,s
u=number of user request in queue

s=pool (running and pending)

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

6

The system users arrive at the system with the Poisson rate λ. In this model, arrival user is u (u

∈{1,…,n}). States in the model in Figure 3 are labelled as (u,s), where u denotes the number of

users currently waiting in the queue and s denotes the type of pool that the user’ requested VM is

undergoing allocation decision. In this model, state (0,0) indicate a user has not arrived at the

system. From state (0,0) model transits to state (0,r) with rate λ, due to arrival of a user. State (0,r)

describe the RADP is deciding if at least one running NC can accept the user requested VM for

allocation. Similarity, state (0,p) indicate the RADP is deciding if any pending NC can accept the

request for allocation. This system assumes that δ
1 is the mean searching delay to fine a NC for

allocation in RADP. In state (0,r), three possible outgoing events can occur: (a) job is accepted

for allocation on one of the running NCs, and the model goes to state (0,0) with rate ,
rr Pδ . (b)

user request VM cannot be accepted for allocation on any running NC, and the model goes to

state (0,p) with rate)1(rr P−δ ,(c) arrival of new request and the model goes to state (1,r) with rate

λ. If no running NC is available, a transition occurs from state (0,r) to state (0,p).In state (0,p),

three possible outgoing event are same transaction with the state (0,r). Next State (1,r) represents

the condition that one request is waiting in the decision queue and request job is undergoing

allocation decision. In this model, input and out parameters discussed in the following.

4.1.1. Model Input and Output

Input parameters in this model, cloud user in according to the Poisson distribution rate λ is

assumed to be given, the delay parameters
pr δδ ,
can be measure from Greedy search and

pr PP , are compute from VM usage model. Outputs of this model are

(i) Average request service unavailable probability (Serviceunavailabe) that a user request will be

rejecting due to insufficient capacity.

∑
−

=

−
=

1

0

),()1(n

u

pupp

eunavailabl

P
Service

λ

πδ
 (1)

(ii)Measure of service availability that user request will be available

eunavailablavailable ServiceService −= 1 (2)

(iii) Average waiting time in resource allocation decision phase E[WRADP] = E[Wq_dec](queuing
delay for resource allocation decision)+E[Wdec] (decision delay)

)1(

)
)1(1

()(

][

1

0

),(),(

eunavailabl

n

i p

r

r

piri

RADP
Service

P
i

WE
−

−
+++

=

∑
−

=

λ

δδ
λππ

 (3)

4.2. Virtual Machines Usage Model

VM usage models capture the instantiation creation and deployment of a VM on a NC. In this

model, we design separate VM usage models according to user request VM types. Three kind of

request types are type1 (one CPU core for each request), type2 (two CPU cores for each request)

and type3 (four CPU cores for each request). Figure 4 shows VM usage model for each user

request for one VM which runs on one CPU core of a server in the running pool.

We assume that all event times (e.g., VM request inter-arrival time, service time, VM
provisioning time etc.) considered in this model are exponentially distributed. Service time for

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

7

each VM request type: µ obtained from run time model. We design separate VM usage models

for running, pending pool of NCs. States of the model in Figure 4 are indexed by (i,j,k), where, i

denotes number of request VM in the queue, j denotes number of VMs currently being

provisioned, k denotes the number of CPU cores on a NC which have already been deployed. In
Figure 4, Qr is buffer size in each PM and M is maximum number of VMs that can be deployed

on a NC for the type 1 request. In this model, From state (0,0,0), after a job arrival, model goes to

state (0,1,0), with rate rλ . In state (0,1,0), a VM instance is created. Mean time to creation a VM

on a running PM, is
rβ1 and the model moves from (0,1,0) to (0,0,1) with rate

rβ . Upon service

completion, VM instance is removed and the model moves from (0,0,1) to (0,0,0) with rate µ ;

this rate is computed as an output from the VM execution model. When a VM is being

provisioned in state (0,1,0), arrival of a new job will take the model to state (1, 1,0), where the

new job is waiting in the queue. In this usage model, input and output parameters are discussed in

the following.

Figure 4. Virtual Machines usage model

4.2.1. Model Input and Output

This model assumes total Hr NCs in the running pool, the arrival rate rλ to each running NC is

given by:

r

r
H

λ
λ = (4)

the mean time to creation a VM on the running NC is
rβ

1 and service rate µ are obtained from the

VM run time model. Outputs of this model are

(i) the steady state probability (rπ) that a running NC cannot accept a job for all request VM type

provisioning:

r

MQ

M

i

r

iQr rr),0,(

1

0

),1,(πππ +=∑
−

=

 (5)

(ii) Probability for all VM request type that a user request can be accepted in the running pool

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

8

rH

rrP)(1 π−= (6)

For a pending NC is similar to the running NC model, with few differences:

(i) the arrival rate pλ to each pending NC is given by:

p

r
p

H

P)1(−
=

λ
λ (7)

(ii) the pending NC requires some additional start-up time to make it ready to use. Time to make

a pending NC ready for use, is assumed to be exponentially distributed with mean
pγ

1 . (iii) Mean

time to provision a VM on a pending NC is
pβ

1 for the first VM to be deployed on this PM; mean

time to provision VMs for subsequent jobs is the same as that for a running NC, i.e.,
rβ

1 . After

solving the pending NC, we can compute the steady state probability (pπ) that a pending NC can

not accept a request for VM provisioning and overall pool model is a set of Hp. The probability of

pending pool can accept the request is given by:

pH

ppP)(1 π−= (8)

From VM usage models, we can also compute average waiting time in VM usage E([Wusage])

=(E[Wvm_q])(queuing delay) + (E[Wprov])(provision delay). According to their Resource
Allocation Decision Model and VM usage Model, we can compute average response time for a

VM request. This is given by:

E[Tresp]= E([Wusage]) + E[WRADP] (9)

4.3. Virtual Machine Execution Model

Once a VM request is successfully allocated, it utilizes the resources until its execution is

completed.

Figure 5. Virtual Machines execution model for each Virtual Machine request

VM execution model is used to determine the mean time for a VM service completion. We use a
Discrete Time Markov Chain (DTMC) to capture the details of VM execution. From the initial

state labelled CPU, a VM can finish its execution with a probability P0 or go for some I/O

operations with probability (1- P0).A transition can occur from local I/O to waiting I/O with a

probability (1- P1) or from local I/O to CPU with probability p1 . Assuming the mean service

CPU 1

0P

01 P− I/O

operation

1P

Finish

Waiting for

I/O

operation

11 P−

1

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

9

times on the CPU, local I/O and waiting I/O to be
lc u

11 ,µ and
wµ

1 respectively, we compute the

mean VM service time:

wlc PP

PP

PP

P

P µµµµ 10

10

10

0

0

)1)(1()1(11 −−
+

−
+= (10)

5. NUMERICAL PERFORMANCE EVALUATION RESULT

We evaluated cloud user VM request services are two solutions- (1) Service request available

probability and (2) mean response time for resource allocation and servicing. In this system
model, we show the effect of changing job arrival rates, job service time and system capacity

(number of servers in each pool). We assumed exponential distribution for inter-arrival times and

service times.

An example two scenarios are considered for this model output. First is maximum of one VM on

each NC, buffer size in front of RADP to be 20, and buffer size within each NC to be zero. In this

stochastic model, resource allocation decision model (in our example, 41 states) and VM usage

models (for each PM model respective number of states are 3and 4) are solved in this system.

Next scenario is similar to the first except eight VM on each NC.

All models were solving using SHARPE [4] software package. Assume values of key parameters

are shown in Table 1.

Table 1. Values of key parameters

Symbol Meaning Value

pr δδ
11 ,

Mean search delays for resource allocation decision phase: from a

particular pool (running and pending)

4 seconds

rβ
1

Mean time to VM for instantiation and deployment a VM on a

running server

8 minutes

pβ
1

Mean time to VM for instantiation and deployment a VM on a

pending server

12 minutes

pγ
1

Mean time to prepare on pending state for ready to use 20 seconds

µ
1

Mean VM service time 15-30 minutes

λ Cloud user request VM arrival time 300-500 request/hr

rH Number of running NC in running pool 8-16 NCs

pH Number of pending NC in pending pool 8-16 NCs

Table 2 shows numerical result of a fixed mean service time (15 minutes for each VM request)

and different arrival rate at different number of NCs. In this experiment, decrease user request

service available probability at increasing arrival rate. Observe arrival rate at 300, 350, 400, 450
and 500 user request VM an hour, for an increase in capacity from 8 to 16 NCs in each pool

Table2. User request service available probability at different arrival rate

Arrival

rate (VMs

request/hr)

Comparison of service availability result in running and pending pools

(8,8) (12,12) (16,16)

Serviceavailable

(1VM)

Serviceavailable

 (8VMs)

Serviceavailable

(1VM)

Serviceavailable

 (8VMs)

Serviceavailable

(1VM)

Serviceavailable

(8VMs)

300 0.695 0.99585 0.9776 1 0.999986 1

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

10

350 0.620 0.98620 0.9495 1 0.999749 1

400 0.537 0.96710 0.9090 0.999999 0.998870 1

450 0.442 0.93770 0.8610 0.999990 0.992190 1

500 0.373 0.89700 0.8090 0.999836 0.986200 1

Different service time and fixed arrival rate (350 user request VM/hr) results are shown in Table

3. In these tables result, service available probability increase at increasing number of VM in each
pool.

Table3. User request service available probability at different service time

Service time

for each VM

request(min)

Comparison of service availability result in running and pending pools

(8,8) (12,12) (16,16)

Serviceavailable

(1VM)

Serviceavailable

 (8VMs)

Serviceavailable

(1VM)

Serviceavailable

 (8VMs)

Serviceavailable

(1VM)

Serviceavailable

(8VMs)

15 0.620 0.98620 0.9495 1 0.999749 1

20 0.563 0.92104 0.9175 1 0.998670 1

25 0.493 0.08163 0.8640 0.999999 0.993460 1

30 0.404 0.04630 0.8060 0.999987 0.980700 1

In our experiment for first scenario, figure 6(a) shows, at a fixed arrival rate (350 cloud user

request VM /hr) and mean response time increase at increasing service time. Figure 6(b) shows

that with increasing arrival rate, mean response time increases for a fixed number of NCs in each

pool. In Figure 6(b), observe arrival rate at 300, 350, 400, 450 and 500 user request VM an hour,
for an increase in capacity from 8 to 16 NCs in each pool.

Figure 6(a). Mean response time for different service time and fixed arrival rate (350 user

request VM/hr) at different number of NCs

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

11

Figure 6(b). Mean response time for different arrival rate and fixed mean service time (15

minutes) at different number of NCs

In second scenario, figure 7(a) shows that a fixed arrival rate (350 cloud user request VM /hr)

and, increases mean response time at increasing mean service time. And also, Figure 7(b) shows

that with increasing arrival rate, mean response time increases for a fixed number of NCs in each

pool. According to these scenarios, the more number of VM in each NC the more performance

for this system.

Figure 7(a). Mean response time for different service time and fixed arrival rate (350 user request

VM /hr) at different number of NCs

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

12

Figure 7(b). Mean response time for different arrival rate and fixed mean service time (15

minutes) at different number of NCs

6. CONCLUSIONS

It has been widely accepted that virtual machines can be employed as computing resources for

high performance computing. Thus, virtual machine scheduling and resource allocation is

essential in cloud computing environment. Therefore, we present Stochastic Markov model for

evaluate the performance of resource scheduling and allocation on Eucalyptus private cloud

system. In this paper, we quantify the effects of variations in workload (e.g., user request arrival

rate, service rate of VM) and system capacity (NCs in each pool) on cloud service quality. Our
approach is tractable and captures many realistic features of a large sized cloud, with reduced

complexity of analysis.

REFERENCES

[1] D. Nurmi, R.Wolski, C.Grzegorczyk, G. Obertelli, S.Soman, L.Youseff, and D. Zagorodnov.“The

Eucalyptus open-source cloud-computing system”, In Proceedings of Cloud Computing and Its

Applications, 2008.

[2] G. Dhiman, G.Marchetti, T. Rosing. “vGreen: A System for Energy Efficient Computing in

Virtualized Environments”, ACM, In Proc.ISLPED,2009.

[3] Hongbin Liang, Dijiang Huang, LinX.Cai, Xuemin (Sherman) Shen and Daiyuan Peng, “Resource

Allocation for Security Services in Mobile Cloud Computing”, IEEE,pp. 191-195 ,May 2011.

[4] K. S. Trivedi and R. Sahner, “SHARPE at the age of twenty two,” ACM Sigmetrics Performance

Evaluation Review, vol. 36, no. 4, pp. 52–57, March 2009.

[5] L.Li “An Optimistic Differentiated Service Job Scheduling System for Cloud Computing Service

Users and Providers”, IEEE Third International Conference on Multimedia and Ubiquitous

Engineering, pp.295-299, 2009.

International Journal on Cloud Computing: Services and Architecture(IJCCSA),Vol.1, No.3,November 2011

13

[6] L.Wangy, G.V.Laszewskiy, M.Kunzez and J.Taoz “Schedule Distributed Virtual Machines in a

Service Orientedent Environment”, 2009.

[7] M. McNett, D. Gupta, A. Vahdat and G. M. Voelker. “Usher: an extensible framework for

managing custers of virtual machines”. In Proc. LISA, 2007.

[8] N.Bobroff, A.Kochut and K.Beaty “Dynamic placement of virtual machines for managing SLA

violations”,2009

[9] O.Khalid,I.Maljevic and R.Anthony. “Dynamic Scheduling of Virtual Machines Running HPC

Workloads in Scientific Grids”IEEE,2009.

[10] R.Buyya, , C. S. Yeo and Venugopal, “Market oriented cloud computing: Vision, hype, and

reality for delivering IT services as computing utilities”. Proceeding of the 10
th

 IEEE

International Conference on the High Performance Computing and Communications,2008.

[11] Rodrigo N. Calheiros, Rajiv Ranjany, and Rajkumar Buyya, “Virtual Machine Provisioning Based

on Analytical Performance and QoS in Cloud Computing Environments”, 2011.

Authors

Hsu Mon Kyi. She is received the Bachelor of Computer Science degree and Master of Computer

Science degree from University of Computer Studies, Yangon in 2003 and 2007 respectively.

Currently she is a Ph.D student in University of Computer Studies, Yangon (Myanmar) as well as

currently, she is an assistant lecturer in Computer Science at University of Computer Studies,

Yangon (Myanmar). Her research interests are Distributed Computing, Cloud Computing and

Virtualization Technology.

Thinn Thu Naing. She obtained her Ph.D degree in Computer Science from University of

Computer Studies, Yangon in 2004, Bachelor of Computer Science degree and Master of

Computer Science degrees in 1994 and 1997 respectively from University of Computer Studies,

Yangon. Currently, she is a Professor in Computer Science at University of Computer Studies,

Yangon (Myanmar). Her specialization includes Cluster computing, Grid computing, Cloud

computing and Distributed computing.

