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Stochastic maximum allowable transmission intervals for the stability of

linear wireless networked control systems

Vineeth S. Varma, Romain Postoyan, Irinel-Constantin Morărescu and Jamal Daafouz

Abstract— We investigate the scenario where a plant, modeled
as a linear deterministic discrete-time system, is controlled
through a wireless communication network. The controller
is designed by emulation, meaning that we construct it to
stabilize the origin of the plant while ignoring communication
constraints and then implement the control law over the
network. The transmissions over the wireless channel are
time-varying and uncertain, in particular, the probability of
successful communication (i.e., no packet is dropped) between
the plant and the controller depends on the resources utilized,
such as the allocated bandwidth or the transmission signal
power. As a result, we provide conditions on the varying inter-
transmission times to ensure the mean square stability of the
closed-loop system. The novelty is that stability properties are
characterized by not only the length of the inter-transmission
interval (often called the MATI in the deterministic literature),
but also by the probability of successful communication before
and after this interval, referred to as the stochastic allowable
transmission interval (SATI). These conditions could then be
utilized by radio engineers/researchers to design energy-efficient
communication strategies while ensuring the mean square
stability of the control system.

I. INTRODUCTION

Wireless networks offer appealing features for the imple-

mentation of control loops, as these allow remote control

and exhibits many advantages over traditional wired point-

to-point set-ups in terms of flexibility, ease of maintenance,

reduced weight and volume. On the other hand, the commu-

nication constraints induced by the network, such as packet

drop-outs, scheduling, etc., need to be appropriately handled

in the design of the control law to guarantee the desired

requirement for the closed-loop system, called in this context,

a networked control system (NCS); see [7], [8], [21] and the

references therein. A key parameter of NCS is the maximum

allowable transmission interval (MATI), which is a bound on

the maximum time between two successive transmissions.

Numerous works address the construction of computable

bounds on the MATI under which the control requirements

are ensured, see [1], [4], [9], [11]–[13] for stability results,

[14] for observers design and [15] for tracking control.

The MATI is a deterministic constraint, as two successive

transmission times are not allowed to be spaced by more than

this quantity. This requirement may be difficult to achieve

when working with wireless NCS (WNCS), for which trans-

missions are often modeled as a stochastic process. While
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relaxations of the MATI to cope with packet drops or delays

are available in e.g., [2], [4], [6], [11], these results still have

a strong deterministic flavor, which may not be suitable for

WNCS. A stochastic alternative to the notion of MATI is

therefore needed when dealing with WNCS: this is the main

purpose of this study.

A first observation is that we can no longer character-

ize stability exclusively based on the length of the inter-

transmission interval, N , in the stochastic setting. Indeed, we

also need to take into account the (cumulative) probability

that a transmission occurs within these N steps, which

we denote η. The value η depends on the probability of

successful transmission at each time step in the interval of

N . We also need to consider what happens if the time since

the last successful transmission becomes bigger than N . In

this case, we want to maximize the chance for a packet

to be successfully transmitted. We therefore assume that

every transmission after N steps, occurs with probability

δ. The parameter δ represents the physical limitations of

the communication system in terms of packet success [18],

and it is impossible to achieve a higher communication

success probability than δ at any time instant regardless

of the resources utilized, see also [17], [22] for practical

details. In other words, when the inter-transmission interval

is larger than N , transmission is repeatedly attempted with all

the available resources, i.e., with a success probability of δ,

until the transmission is successful. As a result, stability now

depends on N , η and δ and we term this ensuing notion, the

(η, δ)-stochastic maximum allowable transmission interval,

(δ, η)-SATI in short. The (η, δ)-SATI is not only useful

to investigate stability of WNCS, it is also relevant to

optimize the transmission energy. Indeed, we have shown

in [19] how to optimize the energy used to communicate in

WNCS with stochastic channel fading, while guaranteeing

a MATI condition. Because of the latter, we had to make

strong assumptions on the channel state, in particular we

assumed that a successful transmission is possible at any

given time. These assumptions can be relaxed when imposing

a (η, δ)-SATI constraint on the network instead; this will be

investigated in future work.

Before we explain in more detail the content of this study,

we need to point out that related results are available in the

literature. In particular in [3], [10], [20], stochastic time-

varying transmission times are considered and stability is

established under conditions on the i.i.d probability dis-

tributions of the inter-transmission intervals. In Section V

of [10], two cases are studied, when the inter-transmission

intervals follow a given i.i.d distribution, or when the inter-



transmission intervals are a Markov process, with each

mode of the associated Markov jump system denoting a

certain inter-transmission interval. Our results are signifi-

cantly different from these works as we characterize stability

depending on the inter-transmission interval length, N , the

cumulative probability η that a transmission occurs before

N steps have elapsed, and δ, instead of the probability

distribution of the inter-transmissions intervals. This major

difference prevents us from applying the results in [3], [10]

and requires developing a new framework.

In this paper, we consider plants modeled by a linear time-

invariant discrete-time system. The controller is designed

by emulation, meaning that we synthesize it while ignoring

the network. We allow for dynamic output-feedback laws,

hence covering static feedback stabilizers as a particular case.

We then take into account the stochastic communication

constraint induced by the network. We concentrate on the

impact of time-varying successful transmission times and we

ignore possible transmission delays and quantization effects.

Various holding strategies are allowed when implementing

the controller, such as zero-order hold, zeroing [16], or

model-based techniques [10]. The overall system is modeled

as a Markov jump linear systems like in Section V of [10],

but with each mode of the Markov jump system representing

the time since the last transmission instant, and not the

inter-transmission interval as done in [10]. Note that inter-

transmission intervals measure the time interval between

two successful transmissions. Our objective is to ensure the

mean square stability (MSS) of this Markov jump linear

system depending on the values of η, δ and N (and not the

probabilities of having certain inter-transmission intervals).

Sufficient conditions in terms of matrix inequalities are

provided, and then extended to the case where η and δ are

time-varying. The results are then illustrated on a numerical

example.

The paper is organized as follows. The problem is stated

in Section II. In Section III, we formally define the SATI

and we model the WNCS as a Markov jump linear system in

Section IV. In Section V, we provide conditions in the form

of linear matrix inequalities (LMIs) under which the WNCS

is MSS. Finally, in Section VI, some numerical results

are presented, which highlight the relevance of our approach.

Notation. Let R := (−∞,∞), R≥0 := [0,∞), and Z≥0 :=
{0, 1, 2, . . .}. We use E for the expectation taken over

the relevant stochastic variables and 1(·) for the indicator

function, taking the value 1 when the condition is satisfied

and 0 otherwise.

II. PROBLEM STATEMENT

We consider the discrete-time linear system

xp(t+ 1) = Apxp(t) +Bpu(t)
y(t) = Cpxp(t),

(1)

where t ∈ Z≥0 is the time, xp(t) ∈ R
nx is the plant state,

u(t) ∈ R
nu is the control input, y(t) ∈ R

ny is the output

and nx, nu, ny ∈ Z≥0. The pairs (Ap, Bp) and (Ap, Cp) are

assumed to be stabilizable and detectable, respectively.

We proceed by emulation and we first construct a stabi-

lizing controller for system (1) given by

xc(t+ 1) = Acxc(t) +Bcy(t)
u(t) = Ccxc(t) +Dcy(t),

(2)

where xc(t) ∈ R
nx is the controller state. A stabilizing

controller of the form of (2) for system (1) always exists

since (Ap, Bp) is stabilizable and (Ap, Cp) is detectable.

We are intested in the scenario where plant (1) and

controller (2) communicate over a wireless channel. In

particular, we investigate the case where the wireless network

is between the sensors and the controller as seen in Figure

1a, or is between the controller and the actuator as seen

in Figure 1b. As a result, the feedback loop is no longer

closed at every time instant t ∈ Z≥0, but only at the instants

ti, i ∈ I ⊆ Z≥0 when communication is successful.

System Controller

Wireless Network

u

y ŷ

(a) Network between the sensors and the controller.

System Controller

Wireless Network

y

û u

(b) Network between the controller and the actuators.

Fig. 1: Schematic of the networked control system.

When the WNCS is of the first case as in Figure 1a, (1)

remains unchanged, but (2) becomes

xc(t+ 1) = Acxc(t) +Bcŷ(t)
u(t) = Ccxc(t) +Dcŷ(t),

(3)

where ŷ(t) denotes the networked version of the measure-

ment available at the controller. When the network is between

the controller and the actuators as in Figure 1b, (2) remains

unchanged, but (1) becomes

xp(t+ 1) = Apx(t) +Bpû(t)
y(t) = Cpxp(t),

(4)

where û(t) denotes the networked version of the control

available at the actuator. In the following, we focus on

the case where the network is between the sensors and the

controller as in Figure 1a. The other case can be similarly

handled and results in the same general model as shown in

Section IV. Between two successive successful transmission



instants, ŷ(t) is held using the following holding function

ŷ(t) = Cg ŷ(t− 1)) +Dgxc(t)) (5)

when t ∈ Z≥0 and t /∈ {ti}i∈I . For instance, the use of

zero-order-hold devices leads to (Cg, Dg) = (I, 0), and the

use of zeroing strategies gives (Cg, Dg) = (0, 0). When the

xc-system in (2) is an observer, we can use a model-based

holding strategy like in [10], which leads to (Cg, Dg) =
(CpBpDc, Cp(Ap +BpCc)). At ti, i ∈ I, we have

ŷ(ti) = y(ti).

We now need to describe the sequence of successful trans-

mission instants ti, i ∈ I. When the transmissions between

the plant and the controller must satisfy a deterministic

constraint, a key parameter is the MATI as we mentioned

in the introduction. As we consider discrete dynamics, the

MATI is the maximum interval N ∈ Z≥0 such that the

stability of the original closed loop system is preserved,

provided

ti+1 − ti ≤ N (6)

for all i ∈ I, see [13]. In this paper, we consider wireless

networks, for which transmissions are typically modeled as

a stochastic process. As a result, to demand that successful

transmission occurs within the MATI may not be appropriate.

We therefore need a new notion to ensure stability (in a

stochastic sense), which not only depends on the length of

the inter-transmission intervals as in (6), but also on the

probability that a successful transmission occurs before a

given time and that after this time has passed. We call

this new notion (η, δ)-SATI, where η is the cumulative

probability that communication was successful within the

(η, δ)-SATI, and δ is the maximum transmission success rate

possible for the communication network at any given time

after the interval has passed.

Our objective is to provide conditions on η, δ and the

induced SATI such that the closed-loop networked control

system is MSS. Before we study the stability properties, we

will establish the technical framework for defining the (η, δ)-
SATI in the next section.

III. STOCHASTIC ALLOWABLE TRANSMISSION INTERVAL

The stability of the WNCS (4) depends on the sequence

of successful communication instants ti, i ∈ I. To model the

latter, we introduce the clock τ(t) ∈ Z≥0 which counts the

number of time instants since the last successful transmission

τ(t+ 1) =















1
when communication is successful at t

τ(t) + 1
when no or failed communication at t.

(7)

Let N be a given transmission interval length. We consider

that the probability that communication is successful is given

by f(τ(t)) ∈ [0, δ] for all τ(t) ≤ N . That is, communication

success is a Bernoulli process, with the time since the last

transmission triggering different communication modes. We

allow f to depend on τ(t), and on t in the time-varying

extension described in the remark below, as this probability

depends on several factors like the time-varying wireless

channel quality, transmission power etc. The sensor can

know if a transmission was successful via a simple ac-

knowledgement scheme, which is commonly used in wireless

communication systems. The probability η to transmit within

this interval N is therefore defined as

η := 1−

N
∏

i=1

(1− f(i)). (8)

To be precise, we impose a constraint on the probability

of the inter-transmission interval being larger than N , and

η denotes the probability that the inter-transmission interval

was within the interval N . The motivation for characterizing

communication policies in this manner is to decouple the

control requirements and the communication aspects. As

long as the inter-transmission interval τ(t) is within the

communication interval N , i.e. τ(t) ≤ N , communication

can be attempted with a lower resource consumption, like

radio-transmit power or bandwidth, while ensuring that (8)

is satisfied to have stability.

Recall that δ is the maximum success probability as

explained in the above section, and so f(τ(t)) ≤ δ for all

t ∈ Z≥0. We study a specific class of policies defined by the

interval N ∈ Z≥0, after which communication is repeatedly

attempted with all the available resources. That is, f(τ(t)) =
δ for all τ(t) > N . If the inter-transmission interval is too

large, i.e. more than N , all the available resources must be

utilized, resulting in the maximum communication success

rate of δ.

A special case of interest is when η = 0, i.e., no

communication is attempted until τ(t) > N . This quantity is

highly relevant in practice as many communication systems,

like remote sensors, have low computational capabilities and

can only operate in two modes ON or OFF. Additionally,

communication constraints do not allow updates in every

time slot due to scheduling conflicts etc. As δ can be de-

termined from the network settings, it becomes very easy to

design a scheme that after a successful communication, waits

for the duration (0, δ)-SATI and then repeatedly attempts to

send its message until it is received and so on. Therefore,

we will refer to the (0, δ)-SATI as simply the δ-SATI.

Remark 1: We can easily extend our results when the

communication probabilities are time-varying. That is, if the

communication success at each time is given by f(τ(t), t) ∈
[0, δ(t)], such that δ(t) ∈ [δmin, δmax] with 0 ≤ δmin ≤
δmax ≤ 1. This model is suitable when the wireless commu-

nication system has time-varying parameters. For instance,

the quality of the wireless communications, commonly

known as the channel fading, is a time-varying parameter,

which determines the packet success rate. In such cases,

instead of η, we will have η(t) for each t which we can

constraint to lie in a certain bound, i.e. 0 ≤ ηmin ≤ η(t) ≤
ηmax ≤ 1 for all t ∈ Z≥0.



IV. THE WNCS AS A MARKOV JUMP LINEAR SYSTEM

In this section, we model the WNCS as a Markov jump

linear system in order to then proceed with the stability

analysis in Section V. As mentioned in Section III, we focus

on the scenario where the network is between the sensors

and the controllers as in Figure 1a; similar derivations apply

when the network is between the controller and the actuators.

We define the concatenation of all the state variables as

χ(t) :=





xp(t)
xc(t)

ŷ(t− 1)



 (9)

with ŷ(−1) being chosen arbitrarily from R
ny . We thus write

the overall model as

χ(t+ 1) =















A1χ(t)
when communication is successful

A2χ(t)
when no or failed communication,

(10)

with

A1 :=





Ap +BpDcCp BpCc 0
BcCp Ac 0
Cp 0 0



 , (11)

and

A2 :=





Ap BpCc BpDc

0 Ac Bc

0 Cg Dg



 . (12)

System (10) is a linear jump system with two modes,

depending on whether a successful transmission occurs at

time t ∈ Z≥0. To write the system as a Markov jump linear

system, we introduce N + 1 virtual modes as the transition

probabilities are f(τ(t)) for τ(t) ≤ N and is a constant δ
otherwise.

When communication is successful, i.e. τ(t+1) = 1, χ(t+
1) = A1χ(t) and χ(t + 1) = A2χ(t) otherwise. Therefore,

we model the dynamical system as a linear jump system with

2 distinct dynamics, but N +1 virtual modes (the dynamics

are identical for N of these modes) as shown in Figure 2.

The mode index r(t) ∈ {1, 2, . . . , N + 1} defined as r(t) =
τ(t) when τ(t) ≤ N and r(t) = N+1 when τ(t) > N . The

associated jump probability matrix is Π given by

Π :=















f(1) f(2) . . . f(N) δ
1− f(1) 0 . . . 0 0

0 1− f(2) . . . 0 0
...

0 0 . . . 1− f(N) 1− δ















,

(13)

which can be deduced by studying Figure 2. There is a

probability to jump to mode 1, i.e., to communicate, given

by f(τ(t)) or equivalently f(r(t)) from any mode r(t). The

only other mode that can be reached from r(t) is one with

τ(t + 1) = τ(t) + 1, resulting in 0 probability of jumps to

all the other states. Finally, it is also possible to jump from

r(t) = N+1 to r(t+1) = N+1 as r(t) = N+1 represents

any τ(t) > N . As a result, the dynamics (10) are rewritten

1,A1

2,A2 3,A2

N,A2

N + 1,A2
f(1)

1− δ

1
−
f
(1
)

f(2)

1− f(2)

1−
f(N

)δ

f(3)

f(N)

1− f(3)

1− f(N − 1)

Fig. 2: The Markov chain with the modes representing the

states

as

χ(t+ 1) = A1+1(r(t)>1)χ(t),
Pr(r(t+ 1) = j|r(t) = i) = Πij , 1 ≤ i, j ≤ N + 1,

(14)

with r(t) denoting the discrete-time process determining the

mode of the Markov jump system.

With system (14) at hand, we are ready to proceed with

the stability analysis in the next section.

Remark 2: When the wireless network is between the

controller and the actuators as in 1b, we have

χ(t) :=





xp(t)
xc(t)

û(t− 1)



 , (15)

with

A1 =





Ap +BpDcCp BpCc 0
BcCp Ac 0
DcCp Cc 0



 , (16)

and

A2 =





Ap 0 Bp

BcCp Ac 0
0 Cg Dg



 . (17)

V. MAIN RESULTS

Our goal is to determine conditions such that the system

(14) is MSS defined as follows.

Definition 1: Given N ∈ Z≥0, η, δ ∈ [0, 1], the system

(14) is MSS if and only if for some β ≥ 1, 0 < ζ < 1 and

any χ(0) ∈ R
nx × R

nx × R
ny ,

E[χ(t)Tχ(t)] ≤ βζtχ(0)Tχ(0) (18)

�

We first derive the next lemma, which directly follows from

the results in Section 4 of [5].



Lemma 1: System (14) is MSS if and only if there ex-

ists symmetric positive definite matrices Qm, with m ∈
{1, 2, . . . , N + 1}, such that the following holds

A1+1(m>1)

(

N+1
∑

i=1

Πi,mQi

)

AT
1+1(m>1) < Qm (19)

for all 1 ≤ m ≤ N + 1. �

Lemma 1 is informative but it does not suit our purpose.

Indeed, stability conditions are provided, but these involve

the probabilities f(τ(t)) through Π, see (13) and (14). We

are looking for conditions, which are independent of f(τ(t)),
and only depend on N , η and δ. Therefore, we propose the

next theorem in order to characterize MSS of (14) based on

η, δ and N , allowing us to compute bounds on the (η, δ)-
SATI.

Theorem 1: Given N ∈ Z≥0, η ∈ [0, 1] and δ ∈ [0, 1],
the system (14) is MSS if there exists symmetric positive

definite matrices Q1, QN+1 and S such that

A1 (δQN+1 + ηS)AT
1 < Q1 (20)

A2 ((1− δ)QN+1 + (1− η)S)AT
2 < QN+1 (21)

and

Ai
2Q1(A

i
2)

T < S ∀i ∈ {0, . . . , N − 1} (22)

holds. �

Theorem 1 provides sufficient conditions for the system

(14) to be MSS. These conditions can be easily verified and

are dependent only on N , δ and η, and are independent of

the probabilities f(τ(t)) used during the flexible period. As

δ is usually given from communication constraints, we have

flexibility in choosing N and η. For a given N and δ, as

0 ≤ η ≤ 1, we can do a bisection based linear search to find

the minimum η required for having MSS. On the other hand,

N belongs to a discrete set, hence, for a given (η, δ), we

can also do a line search to find the largest N satisfying the

LMIs, thereby obtaining a lower bound on the (η, δ)-SATI.

Note that when η = 1 and δ = 1, a SATI always exists as the

system (1)-(2) has its origin globally exponentially stable.

When η = 0, the largest N satisfying the matrix inequal-

ities in Theorem 1 corresponds to the δ-SATI. In this case,

when η = 0, we have less conservative matrix inequalities

as seen from next corollary.

Corollary 1: Given N ∈ Z≥0, η = 0 and δ ∈ [0, 1], the

system (14) is MSS if there exists symmetric positive definite

matrices Q1 and QN+1 such that

δA1QN+1A
T
1 < Q1 (23)

A2

(

(1− δ)QN+1 +AN−1
2 Q1(A

N−1
2 )T

)

AT
2 < QN+1

(24)

holds. �

As mentioned in Remark 1, our results can be easily

extended to the case where η and δ are time-varying.

When the communication success at each time is given

by f(τ(t), t) ∈ [0, δ(t)] such that δ(t) ∈ [δmin, δmax] and

ηmin ≤ η(t) ≤ ηmax for all t ∈ Z≥0, we have the next result,

whose proof follows similar lines as the proof of Theorem 1,

and is therefore omitted. Here, the process is time-varying,

but the probabilities for packet loss is bounded by the values

δmin and δmax. It might not be feasible to impose a time-

invariant constraint as in (8), and so we consider a time-

varying η(t) as well, which lies in the interval defined by

ηmin and ηmax.

Corollary 2: System (14) is MSS for a given interval N ,

ηmin ≤ η(t) ≤ ηmax and δ(t) ∈ [δmin, δmax], if the following

matrix inequalities are satisfied:

A1 (δmaxQN+1 + ηmaxS)A
T
1 < Q1 (25)

A2 ((1− δmin)QN+1 + (1− ηmin)S)A
T
2 < QN+1 (26)

and

Ai
2Q1(A

i
2)

T < S ∀i ∈ {0, . . . , N − 1} (27)

for some Q1 = QT
1 > 0, QN+1 = QT

N+1 > 0 and S =
ST > 0. �

VI. NUMERICAL RESULTS

In this section, we apply our results on system (1) with

Ap =

(

1 0.1
0 1

)

, Bp =

(

0
1

)

and Cp = I , for which

we design the controller (2) with Dc =
(

−0.012 −0.07
)

,

Bc = I and Cc = Ac = 0. We then implement this controller

over a network. For ease of exposition, we focus on the

case where the probability of successful transmission only

depends on the clock τ(t) and not explicitly on the time.

We then apply Theorem 1 to study the impact of N, δ and

η on stability. The objective of this section is to illustrate

how N , η and δ all impact each other. Our numerical study

illustrates that for a given δ, we can chose one of several

potential interval lengths N , by using the appropriate η. This

demonstrates the flexibility of our approach.

In particular, we first fix values for δ and we study the

smallest η such that (20)-(22) hold for a given N . Fixing δ
is relevant from a practical point of view as the maximum

packet success rate is determined by the wireless network.

We plot the smallest η which results in MSS in Figure 3

against N for certain values of δ. Surprisingly, we observe

that even for very low maximum packet success rates, i.e.

δ = 0.2, we are able to achieve MSS with a large enough η.

That is, if the probability for the transmission interval to be

beyond N is small enough, the system is MSS. We also note

that the δ-SATI for δ = 0.5 is lower bounded by 26 and the

δ-SATI for δ = 0.2 is lower bounded by 19.

Next, we demonstrate the flexibility in choosing δ and

η, by presenting the image of the lower bound on the

corresponding (η, δ)-SATI in Figure 4. In practice δ might be

determined by the wireless network, however the flexibility

in choosing η and the corresponding (η, δ)-SATI allows us

to select the right configuration for designing the optimal

communication scheme based on the communication system

requirements. For example, if every transmission attempt

costs the same amount of energy, transmitting periodically,

with a period length of the δ-SATI interval might be the most

efficient, as no energy is consumed within this interval. On

the other hand, if the communication cost depends on the



Fig. 3: The smallest feasible η plotted against N . The largest

value of N feasible for a given η and δ corresponds to the

(η, δ)-SATI.

Fig. 4: The (η, δ)-SATI (lower bounds) for various values of

δ and η. The color indicates the value of the (η, δ)-SATI,

and we notice that even when δ = 0.1 and η = 0, a δ-SATI

of 6 is possible.

time-varying strength of the wireless channel, selecting a

larger η might be more suitable. This enables us to select a

longer (η, δ)-SATI, as long as communications are attempted

even within the interval to meet the constraint (8) based on η.

Communication within this interval can be optimized based

on the wireless channel as we have done in [19] for the

deterministic setting.

VII. CONCLUSION

We have studied discrete-time linear systems in which the

communication with the controller occurs over a stochastic

wireless channel. We introduce the notion of (η,δ)-SATI

which is an interpretation of the traditional MATI in the

stochastic setting, where η denotes the cumulative probability

of a successful transmission within the (η, δ)-SATI and δ
denotes the instantaneous communication success probability

after the (η, δ)-SATI has passed. Under the assumption that

the system with perfect communication is stabilizable, we

provide conditions on the (η, δ)-SATI in terms of matrix

inequalities. The obtained results will be exploited in fu-

ture work for the design of energy-efficient communication

strategies depending on the channel fading, while ensuring

the MSS of the WNCS. Hence, extending our previous work

[19] which considered a MATI constraint.
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