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Stochastic Measure of Fatigue Crack

Damage for Health Monitoring of Ductile

Alloy Structures

Asok Ray*

Mechanical Engineering Department, The Pennsylvania State University,

University Park, PA 16802, USA

This paper models a stochastic measure of fatigue crack damage in ductile alloys that are commonly

encountered in structures and machinery components of complex mechanical systems such as land,

air, ocean, and space vehicles. The constitutive equations of the damage measure are built upon the

physics of fracture mechanics and are substantiated by Karhunen-Loève decomposition of fatigue test

data where statistical orthogonality of the estimated measure and the resulting estimation error is

demonstrated in a Hilbert space setting. The non-stationary probability distribution (PDF) function of

the damage estimate is generated in a closed form without numerically solving stochastic differential

equations in the Wiener integral or Itôo integral setting. The model of crack damage measure allows

real-time execution of decision algorithms for health monitoring, risk assessment, and life prediction of

mechanical structures on inexpensive platforms such as a Pentium processor. The stochastic model of

fatigue crack damage measure is in good agreement with experimental data sets for 2024-T3 and

7075-T6 aluminum alloys.

Keywords stochastic modeling � fatigue crack growth � damage measure � risk analysis �
life prediction

1 Introduction

Decision systems for health monitoring of

mechanical structures are synthesized by taking

mission objectives (e.g., productivity and perfor-

mance), service life, and overall cost into

consideration [23]. The current state-of-the-art of

synthesizing decision systems for health monitor-

ing and life prediction of operating machinery

focuses on enhancement of reliability and

diagnostic capabilities under constraints that

often do not adequately represent the material

degradation aspects of critical plant components

[11]. The reason is that traditional design meth-

odologies are usually based upon the assumption

of invariant characteristics of structural materials.

However, in reality, since structural integrity of

critical components monotonically degrades with

age and cycles of operation, the maintenance

strategies for new and old machinery are likely

to be significantly different even if they are

identically operated. Therefore, it is highly

desirable to update operation and maintenance

strategies in real time as new information on
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sensor data and history of machinery operation

and anticipated usage becomes available.

A concept of Information-Based Health and

Usage Monitoring is that of updating decisions

for inspection, repair, maintenance scheduling

based on the evolving knowledge of operation

history and anticipated loading of the machinery

as well as the physical characteristics and

dynamics of material degradation in critical

components. The key steps in the synthesis of

health monitoring strategies are formulations of:

. Physics-based dynamic models of material

degradation including identification of failure

precursors;
. Statistical models of hypothesis tests for risk

analysis and remaining life prediction under

different operating conditions;
. Decision algorithms for maintenance schedul-

ing based on the information derived from

operation history (e.g., sensor data and expert

knowledge) and anticipated usage of the

machinery.

From the above perspectives, stochastic

modeling and analysis of fatigue crack pheno-

mena in ductile alloys has received considerable

attention over the last several decades. A list of

the literature representing the state-of-the-art is

cited by Sobczyk and Spencer [31] as well as in

the March 1996 issue of Engineering Fracture

Mechanics.

Bogdonoff and Kozin [5] proposed a Poisson-

like independent-increment jump model of fatigue

crack phenomena. The underlying principle of

this model agrees with the theory of micro-level

fatigue cracking. An alternative approach to

stochastic modeling of fatigue crack damage is to

randomize the coefficients of an existing determi-

nistic model to represent material inhomogeneity

[7]. Another alternative approach is to augment a

deterministic model of fatigue crack growth with

a random process [12,16,32]. The fatigue crack

growth process is thus modeled by nonlinear

stochastic differential equations in the Itô setting

[15,22]. Specifically, Kolmogorov forward and

backward diffusion equations, which require solu-

tions of nonlinear partial differential equations,

have been proposed to generate the statistical

information required for risk analysis of mechan-

ical structures [4,34]. These nonlinear partial

differential equations can only be solved numeri-

cally and the numerical procedures are computa-

tionally intensive as they rely on fine-mesh

models using finite-element or combined finite-

difference and finite-element methods [31].

Casciati et al. [6] have analytically approximated

the solution of Itô equations by Hermite

moments to generate a probability distribution

function of the crack length.

This paper presents a stochastic measure of

fatigue crack damage in ductile alloys that are

commonly encountered in structures and machin-

ery components of complex mechanical systems

(e.g., land, air, ocean, and space vehicles). The

measure of fatigue crack damage at an instant

(i.e., at the end of a stress cycle) is expressed as

a continuous function of the current and initial

crack lengths in the mean square (ms) sense.

The non-stationary probability distribution of an

estimated measure of fatigue crack damage is

obtained in a closed form without numerically

solving stochastic differential equations in the

Wiener integral or Itôo integral setting. Model

predictions are shown to be in close agreement

with the fatigue test data of 2024-T3 and 7075-T6

aluminum alloys. The paper also illustrates

how the stochastic damage measure can be used

for condition monitoring as well as in making

decisions for risk analysis and life prediction

that are necessary for health management

and life extending control of mechanical and

aerospace systems [25]. The proposed model

of stochastic damage measure would require

parameter identification and tuning in a labora-

tory environment, prior to its implementation

for health monitoring in a mechanical structure

that may have its own unique material property

and crack geometry. For example, Keller and

Ray [14] have reported such experiments in a

laboratory environment using optical microscopic

and ultrasonic sensing devices for crack damage

assessment.

2 Measure of Fatigue Crack Damage

Traditionally fatigue crack growth models have

been formulated by fitting estimated mean values
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of fatigue crack length, generated from ensemble

averages of experimental data, as functions of

time in units of cycles [24,30]. Ray and Patankar

[27] have formulated the state-space modeling

concept of crack growth based on fracture-

mechanistic principles of the crack-closure con-

cept. The state-space model has been validated by

fatigue test data for variable-amplitude cyclic

loading [30]. The following definition of a fatigue

cycle is adopted for model development in the

sequel.

Definition 2-1: The kth fatigue cycle is defined

on the time interval: =k ¼ f � 2 < : �k�1 < � � �kg
with �k�1 < ���k < �k where �k and ���k are the

instants of occurrence of the minimum stress Smin
k

and the maximum stress Smax
k , respectively. The

kth fatigue cycle is denoted as the ordered pair

ðSmax
k ,Smin

k Þ.

It follows from the above definition that

Smax
k > maxðSmin

k�1,S
min
k Þ.

A stress cycle is determined by the maximum

stress Smax and the following minimum stress

Smin. The frequency and the shape of a stress

cycle are not relevant for crack growth in ductile

alloys at room temperature [1]. The load depen-

dence of crack growth is assumed to be com-

pletely characterized by peaks and valleys of

applied stress at temperatures significantly

below about one-third of the melting point (e.g.

room temperature for aluminum and ferrous

alloys).

Following Sobczyk and Spencer [31] and the

pertinent references cited therein, the stochastic

model of fatigue crack damage, formulated in

this paper, is built upon the state-space structure

of the mean-value model [27] that accounts for

variable-amplitude cyclic stress and crack retarda-

tion phenomena [21]:

�âat � âat � âat��t ¼ h �K
eff
t

� �

�t with hð0Þ ¼ 0;

for t � to and given âato > 0

�Keff
t ¼ �Se

t

ffiffiffiffiffiffiffiffiffiffiffiffiffi

� âat��t
p

F âatð Þ

�Se
t ¼ ½Smax

t �maxðSo
t ,S

min
t��tÞ�UðSmax

t � So
t��tÞ

ð1Þ

where t is the current time upon completion of a

stress cycle, and t0 is the initial time (e.g., when

the machine component is put in service after a

major maintenance or inspection); â(t) is the

estimated mean value of (time-dependent) crack

length; �â(t) is the increment of the estimated

mean crack length over one cycle at time t, and

�t indicates the time increment over the cycle

completed at time t; hð�Þ is a non-negative

Lebesgue-measurable function [2] which is depen-

dent on the material and geometry of the stressed

component; and �Se
t is the effective stress range

during the cycle completed at time t with the

corresponding crack opening stress So
t , maximum

stress Smax
t , and minimum stress Smin

t ; and the

Heaviside unit step function Uð�Þ is defined as:

UðxÞ ¼
0 if x < 0

1 if x � 0

�

The (dimensionless) correction factor F is depen-

dent on geometrical configuration (e.g., thickness,

width, and the crack type in the stressed com-

ponent) and the crack length. For example,

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sec � âaðtÞ=ð2wÞð Þ
p

for center-cracked speci-

mens of half-width w for which 0<â(t)<w at

every t� t0.

There are several empirical and semi-empiri-

cal methods for calculating the crack opening

stress S0. For example, Newman [20] has formu-

lated an algebraic relation to obtain S0 as a

function of peak stress Smax and stress ratio

R�Smin/Smax under constant-amplitude cyclic

loading. The estimated mean â of crack length is

normalized with respect to the parameter of its

physical dimension (e.g., half-width for center-

cracked specimens or full width for compact

specimens) to obtain the estimated mean of a

dimensionless crack length defined as:

ĉct �
âat

w
) 0 < ĉct < 1 8t � to ð2Þ

and the effective stress range �Se
t is normalized

with respect to the flow stress Sflow (which is the

average of yield stress and the ultimate strength

of the structural material) as:
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�St �
�Se

t

Sflow
ð3Þ

It has been shown in the fracture mechanics

literature [1] that, for a given geometry (i.e.,

thickness and width) of center-cracked specimens

of ductile alloys, the function hð�Þ in Equation (1)

is separable as a product of two functions,

h1(�St) and h2(ĉt). For ĉt� 1 in center-cracked

specimens, Equation (1) can be approximated by

series approximation of the cosine term in the

correction factor F as:

�ĉct ¼ �̂� �St

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĉct
cos �=2 ĉctð Þ

q� �m

�t

ffi �̂�
�St

ffiffiffiffi

ĉct
p� �m

1�m �=4ĉctð Þ2
�t

ð4Þ

for t� t0 and 0 < ĉcto � ĉct < 4=ð�
ffiffiffiffi
m

p
Þ that

ensures non-negativity of the crack length incre-

ment �ĉt. The constant dimensionless parameters

�̂� and m are dependent on the specimen material,

geometry, and fabrication. For constant-ampli-

tude loading, Equation (4) reduces to the well-

known Paris equation [24]. For varying-amplitude

load, Ray and Patankar [27] have validated

Equation (4) under varying load amplitude

(i.e., time-dependent stress range �St by having

S0(t) as a state variable.

Ditlevsen [7] has shown that, under constant

load amplitude, the randomness of fatigue crack

growth accrues primarily from parametric uncer-

tainties. The stochastic process of crack growth is

largely dependent on two second-order random

parameters — a multiplicative process �(�,�S)

and an exponent parameter m(�). Ditlevsen [7]

suggested the possibility of one of the above two

random variables being a constant for all speci-

men �. Statistical analysis of the experimental

data for 2024-T3 and 7075-T6 aluminum alloys

by Ray and Tangarilla (1997) and Ray and

Phoha (1999) reveals that the random exponent

m(�) can be approximated as a constant for all

specimens, i.e., having m(�)¼m with probability

(wp) 1, at different levels of constant stress range

�S for a given material. Based on this obser-

vation and the (deterministic) model structure

in Equation (4), we postulate the following con-

stitutive equation for fatigue crack growth in the

stochastic setting [31] partly similar to what was

originally proposed by [24] in the deterministic

setting:

�ctð�Þ ¼ �ð�,�StÞ
�St

ffiffiffiffiffiffiffiffiffi

ctð�Þ
p� �m

1�m �=4ctð�Þð Þ2

0

@

1

A �tð�Þ�t

for t � to and 0 < ctoð�Þ � ctð�Þ <
4

�
ffiffiffiffi
m

p wp1

ð5Þ

where the (at least) second-order random process

�(�,�St) is pertinent to a test specimen � for

a (possibly varying amplitude) stress range �St,

and represents uncertainties in manufacturing

(e.g., machining); �(�,�St) is assumed to be

independent of material microstructure; and the

(at least) second-order (positively correlated) sto-

chastic process �t(�) represents (multiplicative)

uncertainties in the material microstructure

and crack length measurements that may vary

with crack propagation in a given specimen �.

We postulate that the process �t(�,�St) is statis-

tically independent of �(�,�St) for all t� t0.

The rationale for this independence assumption

is that inhomogeneity of the material microstruc-

ture and measurement noise associated with each

test specimen, represented by �t(�), are unaffected

by the uncertainty �(�,�St) due to machining

operations, for example. Without loss of general-

ity, we constrain that E½�tð�Þ� ¼ 1 8t � to.

Furthermore, non-negativity of crack length

increment �ctð�Þ is assured in the almost sure (as)

sense by imposing the constraints �(�,�St)� 0

and �t(�)� 0 wp 1 8t � to.

Since the number of cycles to failure is

usually very large in the crack growth processes

(even for low-cycle fatigue), a common practice

in the fracture mechanics literature is to

approximate the difference equation of crack

growth by a differential equation. Therefore, for

t� t0 and ctoð�Þ > 0 wp 1, the crack growth

increment in Equation (5) is approximated as

the Riemann sum that is obtained as a stochastic

differential equation in the almost sure (as)

sense:
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ctð�Þ�m=2 �m
�

4

� �2

ctð�Þ2�m=2

� �

dctð�Þ

¼ ð�StÞm �ð�,�StÞ �tð�Þ dt wp 1 ð6Þ

which is integrated pointwise (i.e., for the indivi-

dual �’s) as follows:

Z ctð�Þ

cto ð�Þ

d�

�m=2
� m

�

4

� �2
Z ctð�Þ

cto ð�Þ

d�

��2þm=2

¼
Z t

to

ð�S�Þm �ð�,�S�Þ ��ð�Þd� wp 1 ð7Þ

to yield the following (almost sure) solution:

cð�, tÞ1�m=2 � cð�, toÞ1�m=2

1� m
2

� �

�m �
4

� �2 cð�, tÞ3�m=2 � cð�, toÞ3�m=2

3�m=2

� �

¼
Z t

to

ð�S�Þm ��ð�,�S�Þ ��ð�Þd� wp 1

for t � to and 0 < ĉctoð�Þ � ĉctð�Þ <
4

�
ffiffiffiffi
m

p

ð8Þ

where the constant parameter m is in the range of

2.5 to 5 for ductile alloys and metallic materials

ensuring that (1�m/2)<0 and (3�m/2)>0 in

Equation (8).

Now we introduce a stochastic diffusion

process  t(�; t0) to represent a (dimensionless)

non-negative measure of fatigue crack damage

increment from the initial instant t0 to the current

instant t as a function of the normalized crack

lengths ct(�) and ctoð�Þ of the stressed specimen:

 t �; toÞð � ctð�Þ1�m=2 � ctoð�Þ1�m=2

1�m=2

� �

�m
�

4

� �2 ctð�Þ3�m=2 � c
3�m=2
to

3�m=2

 !

wp 1

for t � to and 0 < ctoð�Þ � ctð�Þ <
4

�
ffiffiffiffi
m

p

ð9Þ

The damage increment measure is obtained

by combining Equations (8) and (9), leading to

the following identity in the mean-square (ms)

sense:

 t �; toð Þ ¼ms
Z t

to

ð�S�Þm �ð�,�S�Þ ��ð�Þd� ð10Þ

We split the non-negative process ��(�) in

the integrand on the right hand side of Equation

(10) as:

 t �; toð Þ ¼ms
Z t

to

ð�S�Þm �ð�,�S�Þ d�

þ
Z t

to

ð�S�Þm �ð�,�S�Þ �tð�Þ � 1ð Þ d�

ð11Þ

where the zero-mean (possibly correlated) time-

dependent process (�t(�)� 1) is statistically

independent of �(�,�St) for all t� t0.

The diffusion process  t(�; t0) is almost surely

continuous because  t(�; t0) is a continuous func-

tion of the crack length process ct(�) wp 1. Both

ct(�) and  t(�; t0) are measurable functions

although the (probability) measure spaces of ct(�)

and  t(�; t0) are different. In essence, the prob-

ability of  t(�; t0), conditioned on the initial

crack length ctoð�Þ, leads to a stochastic measure

of fatigue crack damage increment at the instant

t starting from the initial instant t0. The condi-

tional probability distribution F jcto �; t �j Þð that

depends on the history of stress range f�Sð�Þ :
� 2 ½to, tÞg plays an important role in health

monitoring, risk analysis, and remaining life

prediction.

Mean and covariance of the stochastic

measure of damage increment  t(�; t0) are expres-

sed as:

� ðt; toÞ � E½ tð�; toÞ�

C  ðt1, t2; toÞ � E½ð t1ð�; toÞ � � ðt1; toÞÞ

	 ð t2ð�; toÞ � � ðt2; toÞÞ� ð12Þ

The covariance function C  (t1, t2, t3) in

Equation (12) is continuous at ðt1, t2Þ t1¼t2¼t

	
	

8t � to. Hence, the process  t(�; t0) is mean-
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square (ms) continuous based on a standard

theorem of mean-square calculus [13,37].

The objective is to obtain an estimate

 ̂ t �; toð Þ of the damage increment measure

 t(�; t0) from the initial instant t0 to the current

instant t such that:

 t �; toð Þ ¼ms
 ̂ t �; toð Þ þ ~  t �; toð Þ ð13Þ

where the zero-mean estimation error ~  tð�; toÞ is

statistically orthogonal to  ̂ tð�; toÞ in the Hilbert

space L2(P) defined by the probability measure P

[19]. As such  ̂ t �; toð Þ is the best linear estimate

of  t(�; t0). Based on mean-square continuity

of the damage measure  t(�; t0), the next sec-

tion elaborates on the model structure laid out

in Equation (13). To this end, we analyze

experimental data sets of random fatigue via

Karhunen–Loève (K–L) decomposition [8,37]. We

also use these experimental data sets to identify

the model parameters in Section 4.

3 Karhunen–Loève Decomposition
of Experimental Data

This section analyzes fatigue test data via

Karhunen–Loève (K–L) decomposition [8] to

justify postulation of the model structure in

Equations (8) and (9). We have used experimental

data of random fatigue crack growth in 2024-T3

aluminum alloy [35] and 7075-T6 aluminum alloy

[9] for which the tests were conducted under

different constant load amplitudes at ambient

temperature. The Virkler data set was generated

for 68 center-cracked specimens (of half-width

w¼ 76.2mm) at a single constant-amplitude load

amplitude with peak nominal stress of 60.33MPa

(8.75 ksi), stress ratio R�Smin/Smax¼ 0.2 for

about 200,000 cycles; and the effective stress

range �Se¼ 21.04MPa. The Ghonem data sets

were generated for 60 center-cracked specimens

each (of half-width w¼50.8mm w¼ 50.8mm) at

three different constant load amplitudes: (i) Set 1

with peak nominal stress of 70.65MPa (10.25 ksi)

and R¼ 0.6 for 54,000 cycles, the effective stress

range �Se¼ 15.84MPa; (ii) Set 2 with peak

nominal stress of 69.00MPa (10.00 ksi) and

R¼ 0.5 for 42,350 cycles, and �Se¼ 17.80 MPa;

and (iii) Set 3 with peak nominal stress of

47.09MPa (6.83 ksi), R¼ 0.4 for 73,500 cycles,

and �Se¼ 13.24MPa. The crack opening stress

S0 is calculated via the correlation of Newman

(1984).

For a constant stress range �S, Equation (11)

is modified as follows:

 t �; toð Þ
¼ms ð�SÞm �ð�,�SÞ½ðt� toÞ þ �tð�; toÞ�

ð14Þ

where the diffusion �tð�; toÞ �
R t

to
��ð�Þ � 1ð Þ d�

and E½�tð�; toÞ� ¼ 0 8t � to because E[�t(�)]¼ 1.

Since only finitely many data points at l

discrete instants are available from experiments,

an obvious choice is discretization over finite

time horizons [t0, t] so that the stochastic process

 t(�; t0) now reduces to an l-dimensional random

vector denoted as  D(�). Consequently, the covar-

iance function C  (t1, t2, t3) in Equation (12) is

reduced to a real semi-positive-definite (l	 l)

symmetric matrix CD
  . Since the experimental

data were collected at sufficiently close intervals,

CD
  contains pertinent information of the crack

damage process. The l (real non-negative) eigen-

values of CD
  are ordered as 	1� 	2� � � �� 	l,

with the corresponding eigenvectors, ’1,’2, . . . ,’l,

that form an orthonormal basis of <‘ for signal

decomposition. The K–L decomposition also

ensures that the l random coefficients of the

basis vectors are statistically orthogonal (i.e.,

zero-mean and mutually uncorrelated). These

random coefficients form a random vector X(�)�
[x1(�)x2(�) . . .xl(�)]

T having the covariance matrix

CXX¼diag(	1, 	2, . . . , 	l) leading to decomposition

of the discretized signal as:

 Dð�Þ ¼ms
E½ Dð�Þ� þ

X‘

j¼1

’ j xjð�Þ
� �

ð15Þ

It was observed by Ray and Tangirala [29]

and Ray and Phoha [28] that the statistics

of crack length are dominated by the random

coefficient corresponding to the principal eigen-

vector (i.e., the eigenvector associated with the

largest eigenvalue) and that the combined effects
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of the remaining eigenvectors are small. Therefore,

the signal  D(�) in Equation (15) is expressed as

the sum of a principal part and a (zero-mean)

residual part that are mutually statistically ortho-

gonal:

 Dð�Þ ¼ms
E ½ Dð�Þ� þ ’1 x1ð�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Principal Part

þ
X‘

j¼2

’ jxjð�Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Residual Part

ð16Þ

The random vector  D(�) is expressed as the sum

of the principal and residual parts with equality

in the mean square (ms) as:

 Dð�Þ ¼ms
 ̂ Dð�Þ þ ~  Dð�Þ ð17Þ

where

 ̂ Dð�Þ � E ½ Dð�Þ� þ ’1 
1ð�Þ damage estimate

~  Dð�Þ �
P‘

j¼2

’ j
jð�Þ estimation error

8

<

:

and the resulting (normalized) mean square error

[8] is:

"2rms �
TraceðCov½ð�Dð�Þ � �̂�Dð�ÞÞ�Þ

TraceðCov½�Dð�Þ�Þ ¼
P‘

j¼2 	j
P‘

j¼1 	j

ð18Þ

The K–L decomposition of fatigue test data sets

reveals that "2rms in Equation (18) is in the range

of 0.018–0.035 for all four data sets.

The principal eigenvector �
1(t), associated

with the largest eigenvalue 	1, very closely fits the

ramp function (t� t0) in each experimental data

set. Comparing the terms on the right hand

side of the discrete model in Equation (17) with

those of the continuous model in Equation (14),

it is logical to have the random variable (�S)m

(�(�,�S)���(�S)) to be equal (in ms sense)

to the random coefficient 
1(�) of the principal

eigenvector �
1(t). Applying the lemma in the

Appendix, a mean-square equivalence between

the K–L decomposition model in Equation (16)

derived from the test data and the postulated

model in Equation (14) is established as:

’1 x1ð�Þ
|fflfflfflffl{zfflfflfflffl}

Discrete Model
ðTest DataÞ



ms ð�SÞm �ð�,�SÞ � ��ð�SÞð Þ ðt� toÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Continuous Model
ðConstitutive RelationÞ

X‘

j¼2
’ j xjð�Þ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Discrete Model
ðTest DataÞ



ms ð�SÞm�ð�,�SÞ�tð�; toÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Continuous Model
ðConstitutive RelationÞ

ð19Þ

Note that the two entities on the left hand side in

Equation (19) are mutually statistically orthogo-

nal. Similarly, the two entities on the right hand

side in Equation (19) are also mutually statisti-

cally orthogonal. In view of Equation (13), the

zero-mean estimation error ~  tð�; toÞ is statistically

orthogonal to  ̂ tð�; toÞ in the Hilbert space L2(P)

defined by the probability measure P associated

with the stochastic process  t(�; t0). As such

 ̂ t �; toð Þ can be viewed as a best linear estimate of

 t(�; t0) with the least error ~  tð�; toÞ in the mean-

square sense.

It follows from Equations (13) to (19) that

the uncertainties associated with an individual

sample resulting from the damage measure esti-

mate  ̂ t �; toð Þ dominate the cumulative effects of

material inhomogeneity and measurement noise

in the estimation error ~  t �; toð Þ unless (t� t0)

is small. Therefore, from the perspectives of

health monitoring, risk analysis, and remaining

life prediction where the inter-maintenance inter-

val (t� t0) is expected to be large, a reasonably

accurate identification of the mean ��(�S) and

variance �2�ð�SÞ of the random parameter

�(�;�S) is crucial while the role of the diffusion

process �t(�; t0) is relatively less significant. This

observation is consistent with the statistical anal-

ysis of fatigue test data by Ditlevsen [7] where the

random process described by Equation (19) is

treated as the zero-mean residual. Ditlevsen [7]

also observed largely similar properties by

statistical analysis. Nevertheless, the K–L decom-

position provides deeper physical insight into the

problem.

4 Model Parameter Identification

The model parameters, m , ��, �
2
�, and �2� , in

Equations (9) and (10) are identified based on

the data sets described earlier in Section 3. The
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exponent parameter, m, is first identified as an

ensemble average estimate from the slope of the

logarithm of crack growth rate in Equation (4)

for both materials, 7075-T6 and 2024-T3.

Following Equation (9), a database for the

damage measure  t(�; t0) is generated for each

sample path � from the measured data of crack

length ct(�). Since the random parameter

�(�;�S) is not explicitly dependent on time, its

expected value is readily identified from Equation

(14) as:

��ð�SÞ ¼ E  tð�; toÞ½ �
ð�SÞmðt� toÞ

ð20Þ

from the ensemble average estimate from the data

sets for each type of material, 7075-T6 and 2024-

T3 alloys.

Data analysis of individual sample paths in

fatigue crack propagation reveals that the sto-

chastic process �t(�) in Equation (10) is positively

correlated. Therefore, we postulate that the zero-

mean diffusion process �tð�; toÞ �
R t

to
��ð�Þ � 1ð Þ d�

is a (positively correlated) fractional Brownian

motion (fBm) process [18,36] such that

Var½�t �; toð Þ� � �2� ðt; toÞ ¼ � ðt� toÞ ð21Þ

where the exponent 1 <  < 2 represents positive

correlation.

Following Equation (14), the variance �2 ðt, toÞ
of the damage increment measure  t(�; t0)) is

obtained from experimental data as:

�2 ðt; toÞ
¼ ð�SÞ2m �2� ðt� toÞ2 þ ð�2� þ �2

�Þ �2� ðt; toÞ
� �

ð22Þ

However, since the variances �2�ð�SÞ and

�2� ðt; toÞ of �(�;�S) and �t(�; t0), respectively,

cannot be separately identified from Equation

(22) alone, we make use of the eigenvalues, 	1,

	2, . . . , 	l, of CD
��

generated by K–L decomposi-

tion as additional information. Taking expected

values of the Euclidean norms on both sides of

the pair of Equations (19) and using Equation

(17), the following relations are obtained based

on the test data over a period [t0, t]:

ð�SÞ2m �2�ð�SÞ t� toð Þ2 
 	1 t, toð Þ

) �2�ð�SÞ 
 	1 t, toð Þ
ð�SÞ2m t� toð Þ2

ð23Þ

�Sð Þ2mVar½�ð�,�SÞ �t �; toð Þ� 

X‘

j¼2

	j t, toð Þ

) � t� toð Þ


P‘

j¼2

	j t, toð Þ

�Sð Þ2m ð�2� þ �2
�Þ

ð24Þ

Substitution of the parameters ��(�S) and �2�ð�SÞ
from Equations (20) and (23) in Equation (24)

yields:

� t� toð Þ�2


P‘

j¼2

	j t, toð Þ

	1 t, toð Þ þ E2  ð�, t; toÞ½ � ð25Þ

The unknown parameters,  and �, on the

left hand side of Equation (25) are now identified

by linear regression analysis of experimentally

derived data on the right hand side of Equation

(25) for different ranges of t. The value of  is

found to be �1.3, which signifies that the diffu-

sion �t(�; t0) associated with the estimation error
~  , can be approximated as a (positively corre-

lated) fractional Brownian motion.

The following generalized parametric rela-

tions are now postulated for different levels of

(constant-amplitude) stress excitation �S for a

given material:

. �� �Sð Þ � E �ð�,�SÞ½ � is independent of �S,

i.e., �� is a constant for a given material and

E �Sð Þm �ð�,�SÞ½ � ¼ �Sð Þm��.
. �2� �Sð Þ � Var �ð�,�SÞ½ � is proportional to

�Sð Þ�2m, i.e., Var �Sð Þm �ð�,�SÞ½ � is a con-

stant for a given material.
. Var �Sð Þm�ð�Þ�tð�; toÞ½ � 
 �2�ð�SÞ�ðt � toÞ

becomes gradually small compared to

Var �Sð Þm�ð�Þ½ � t� toð Þ2 for large (t �t0) because

the variance of the fractional Brownian motion

�t(�, t0) has an exponent <2.

252 Structural HealthMonitoring 3(3)



The above three observations are consistent

with the data sets of Ghonem and Dore [9] for

7075-T6 aluminum alloy. The first two observa-

tions are not yet verified for 2024-T3 aluminum

alloy because the Virkler data set provides

only one level of stress range. These relations

are expected to be valid for ductile alloys and

many other metallic materials because the nature

of dependence of the model parameters on the

material microstructure and specimen preparation

(i.e., machining operations) is similar. Laboratory

experiments are planned to generate additional

test data and significant results will be reported

in forthcoming publications.

Several investigators have assumed the crack

growth rate in ductile alloys to be lognormal-

distributed (e.g., citations in Sobczyk and Spencer

[31]). Some others have treated the crack length

to be lognormal-distributed (e.g., Ray and

Tangirala [29]). The results of K–L decomposition

in Equations (12) to (17) are in agreement with

these claims because �(�,�S) which dominates

the random behavior of fatigue crack growth can

be considered as a perfectly correlated random

process whereas the non-negative, multiplicative

uncertainty term �t(�) is a weakly (positively)

correlated random process. Yang and Manning

[38] have presented an empirical second-order

approximation of crack growth by postulating

lognormal distribution of a parameter that does

not bear any physical relationship to �S but it is,

to some extent, similar to �(�,�S) in the present

model.

We hypothesize that the random process

�(�,�S) is two-parameter (r¼ 2) lognormal-

distributed [5], and its goodness of fit is examined

by both 

2 and Kolmogorov–Smirnov tests of

experimental data. Each of the four data sets is

partitioned into L¼ 12 segments to assure that

each segment contains at least 5 samples. With

(L� r� 1)¼ 9 degrees of freedom, the 

2-test

shows that, for each of the four data sets, the

hypothesis of two-parameter lognormal-distribu-

tion of �(�,�S) passed the 10% significance level

which suffices the conventional standard of 5%

significance level. For each of the four data sets,

the hypothesis of two-parameter lognormal-distri-

bution of �(�,�S) also passed the 20% signifi-

cance level of the Kolmogorov–Smirnov test. The

probability density function (pdf) of the two-

parameter lognormal-distributed random variable

�(�,�S) is obtained for a given value of �S as

[5]:

f�ðxÞ ¼
exp � ln x� �ð Þ2

2�2

� �

�x
ffiffiffiffiffiffi

2�
p for x � 0

0 otherwise

8

>
>
>
<

>
>>
:

ð26Þ

where �2 � logð1þ ��=��ð Þ2Þ and � � logð��Þ�
�2=2.

Now we summarize the results of model

parameter identification. The random process

�(�,�S) is hypothesized as two-parameter (r¼ 2)

lognormal-distributed [5], and its goodness of fit

is examined by both 

2 and Kolmogorov–

Smirnov tests [3] on the experimental data. Each

of the four data sets is partitioned into L¼ 12

segments to assure that each segment contains

at least 5 samples. With (L� r� 1)¼ 9 degrees of

freedom, the 
2-test shows that, for each of the

four data sets, the hypothesis of two-parameter

lognormal-distribution of �(�,�S) passed the

10% significance level which suffices the conven-

tional standard of 5% significance level. For each

of the four data sets, the hypothesis of two-

parameter lognormal-distribution of �(�,�S)

also passed the 20% significance level of the

Kolmogorov–Smirnov test.

Figure 1 compares the analytically derived

lognormal-distributed probability density func-

tions (pdf’s) of �(�,�S) with the corresponding

histograms generated from four sets of experi-

mental data by compensating the relatively small

second-order statistics of the diffusion �t(�; t0)

as delineated in Equation (24). The mean �� in

the model is identical for the three data sets

of 7075-T6 while the corresponding variance is

different in each set as seen in Figure 1. This is

because �2� �Sð Þ is inversely proportional to

(�S)2m and �S is different for each data set —

�2� is largest for the Ghonem data set #3 for

which �Se¼ 13.24MPa is smallest and �2� is

smallest for the Ghonem data set #2 for which

�Se¼ 17.80MPa is largest of the three data sets.

However, for 2024-T3, no such comparison could

be made because only one �Se is available in the

Virkler data set.
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We have not made any formal hypothesis on

the probability distribution of �t(�) because the

zero-mean diffusion �tð�; toÞ �
R t

to
��ð�Þ � 1ð Þ d�

has been approximated as a fractional Brownian

motion.

5 Model Prediction

Model predictions of crack growth are now

obtained by Monte Carlo simulation of the

stochastic difference equation (5). Lognormal

distributions of �(�,�S) are realized by taking

exponentials of outputs of the standard normal

random number generator with different seed

numbers. For convenience of simulation, we have

represented the approximate fractional Brownian

motion process �t(�; t0) as a zero-mean Gaussian

distribution N (0,�(t�t0)
). It should be noted

that the parameters � and  are quite approx-

imate because of a very small contribution of the

estimation error term ~  relative to the estimate  ̂ 

as seen in Equation (18). Figure 2 shows a com-

parison of the test data of fatigue crack growth

and the predictions of Monte Carlo simulation of

the damage model in Equation (5) for the four

data sets under consideration.

Next we present the accuracy of probability

distribution functions (PDFs) of the estimated

damage measure  ̂ , which are generated from the

lognormal-distributed parameter �(�,�S) from

Equations (12) and (23). Both test data and

model predictions are used to generate PDFs

of service cycles to exceed specified limits

a* of crack length. Note that the Virkler set

and each of the three Ghonem sets contain 68

samples and 60 samples, respectively, while the

Monte Carlo simulations for model prediction

have been conducted with 1000 samples in each

case. The PDF plots in Figure 3 compare model

predictions with the experimental data of Virkler
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Figure 1 Identification of probability density function of the model parameter �.
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et al. (1979) for three different values of a* at

11mm, 14mm, and 20mm. Similarly, the three

PDF plots from left to right in Figure 4 compare

model predictions with the data sets, #2, #1, and

#3 (in the decreasing order of the effective stress

range �Se), respectively, of Ghonem and Dore [9]

data sets at a*¼ 11mm. The agreement of the

predicted PDFs in Figures 3 and 4 with the

respective experimental data is a consequence of

fitting the key model parameter �(�,�S) to a
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Figure 2 Comparison of model prediction with experimental data for 2024-T3 and 7075-T6.
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high level of statistical significance as seen in

Figure 1. The small differences between the model-

based and experimental PDFs in both Figures 3

and 4 should be further reduced for larger

ensemble size of the data sets as the histograms

of �(�,�S) in Figure 1 would more closely fit the

(right hand) tails of the probability density

function (pdf) plots.
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6 Risk Analysis and Life Prediction

This section illustrates how the stochastic model

of fatigue crack growth, developed in earlier

sections, can be used for risk analysis and

remaining life prediction of mechanical structures.

As pointed out earlier, the impact of �t(�) and

hence of the diffusion �t(�; t0) on overall scatter

of the crack growth profile is not significant for

large (t� t0). In general, t0 signifies the starting

time of a machine after maintenance and/or

inspection. Since risk analysis and life prediction

become important after a significant lapse of

time (i.e., when (t� t0) is sufficiently large), it is

reasonable to make these decisions based only on

the PDF of the estimated damage measure

 ̂ tð�; toÞ. Note that the error due to ignoring the

effects of the error ~  tð�; toÞ of damage measure

estimation is on the order of
P‘

j¼2 	j=
P‘

j¼1 	j that

is in the range of 0.018 to 0.035 for all four sets

as stated in Section 2.

6.1 Hypotheses Testing for Risk

Analysis

This subsection presents a simple example to

demonstrate how the estimate  ̂ tð�; toÞ of stochas-
tic damage measure can be used for hypothesis

testing for risk analysis.

Let (Mþ 1) levels of hypotheses be defined

based on a partition of the physical variable,

crack length, in the range ½ �cc0,1Þ where �cco is

the (a priori known) minimum threshold of the

initial crack length c(�, t0) which is assumed to be

measured with good precision, i.e., �2�cc0 
 0. The

parameter �cco represents an estimate of the effects

of initial crack or defect based on the available

information from sensing (e.g., ultrasonic, electro-

magnetic, mechanical, or optical) devices.

The first M hypotheses are defined on the

range ½ �cco, �ccM � where �ccM is the critical crack length

beyond which the crack growth rate rapidly

becomes very large leading to complete rupture:

H0ðt, toÞ : cð�, tÞ 2 ½ �cco, �cc1Þ
H1ðt, toÞ : cð�, tÞ 2 ½ �cc1, �cc2Þ

..

. ..
.

HM�1ðt, toÞ : cð�, tÞ 2 ½ �ccM�1, �ccMÞ

ð27Þ

where �cci ¼ �cc0 þ ið �ccM � �cc0Þ=M, i ¼ 1, 2, . . . , ðM� 1Þ.
The last (i.e., the Mth) hypothesis is defined

as HM : c� 2 ½ �ccM ,1Þ, which is popularly known

as the unstable crack region in the fracture

mechanics literature [31]. Each of these (Mþ 1)

hypotheses represents a distinct range in the

entire space of crack lengths from an initial value

till rupture occurs, and together, they form an

exhaustive set of mutually exclusive regions in the

state space of crack length. The first M hypoth-

eses are generated as:

ctð�Þ 2 Hjðt, toÞ ¼ ½ �cc j, �ccjþ1Þ

)  tð�; toÞ 2 ½ j,  jþ1Þ
ð28Þ

for j¼ 0, 1, 2,. . .,M� 1 and a given �S.

where  j �
�ccj=w
� � 1�m=2� �cco=wð Þ 1�m=2

1�m=2

� m �
4

� � 2 �ccj=w
� � 3�m=2� �cco=wð Þ 3�m=2

3�m=2

 !

follows the structure of Equation (7). As dis-

cussed earlier, the damage measure  t(�; t0) is

approximated as the estimate  ̂ tð�; toÞ by ignoring

the effects of the error term ~  tð�; toÞ. The prob-

ability that the jth hypothesis, Hj (t, t0), can be

obtained from the instantaneous (conditional)

PDF F j �ccto �; t jð Þ of  (�, t; t0). This is directly

generated from the two-parameter lognormal

distribution of �(�,�S) without any computa-

tionally expensive integration because conversion

of the range of integration in the log scale

allows evaluation of the error function via table-

lookup. These details are straight-forward and

are not presented in this paper.

For j¼ 0, 1, 2, . . . ,M� 1, the probabilities of

the individual hypotheses become:

P½Hjðt, toÞ�
¼ F jcð�, toÞ  jþ1; t �cco

	
	

� �

� F jcð�, toÞ  j; t �cco

	
	

� � ð29Þ

and
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P½HMðt, toÞ� ¼ 1�
XM�1

j¼0

P½Hjðt, toÞ�

The concept of hypothesis testing for risk

analysis and life prediction is now elucidated with

Virkler and Ghonem data sets. The probability

that the random crack length {c(�, t):t� t0} at a

given time t is located in one and only one of

these segments is computed in real time by

Equation (24). For each data set, it is observed

that �aao ¼ 9:0mm, i.e., �cco ¼ �aao=w, wp 1. The critical

crack length, �ccM ¼ �aaM=w, is chosen based on the

geometry of the test specimens: For the Virkler

experiment (in which the specimen half-width is

76.2 mm), �aaM ¼ 45:0mm; for the Ghonem experi-

ments (in which the specimen half-width is

50.4mm), �aaM ¼ 27:0mm. The space ½ �cco, 1Þ is

partitioned into (Mþ 1) regions. In these exam-

ples, we have chosen 11 hypotheses (i.e., M¼ 10)

for both Virkler and Ghonem data sets. The

range of each hypothesis is defined as depicted

in Table I and Table II, respectively. The time

evolution of probability of the hypotheses for

the four data sets is shown in the four plates of

Figure 5. In each case, the plot of H0 begins with

a probability equal to 1 at time t¼ t0 and later

diminishes as the crack grows with time (i.e.,

number of load cycles applied). The probability

of each of the hypotheses H1 to H9 is initially

zero and then increases to a maximum and

subsequently decreases as the crack growth pro-

cess progresses with time. The probability of the

last hypothesis H10 (on the extreme right in each

plate of Figure 5) of unstable crack growth

beyond the critical crack length, �ccM , initially

remains at zero and increases rapidly only when

the specimen is close to rupture. At this stage, the

probability of each of the remaining hypotheses is

zero or rapidly diminishes to zero.

The hypotheses testing procedure can be

executed in real time on inexpensive platforms

such as a Pentium processor in the plant instru-

mentation and control system for issuing alerts

and warnings while the machine is in operation.

For example, the space of crack length, defined

by ½ �cco,1Þ, can be partitioned into four hypoth-

eses denoting three regions of green, yellow,

and red alert conditions for the first three

hypotheses and catastrophic conditions for the

fourth hypothesis. While alerts and warnings

are useful for operational support and safety

enhancement, operations planning and mainte-

nance scheduling require remaining life pre-

diction. Equipment readiness assessment and

failure prognosis based on current condition and

projected usage of the machinery are important

tools for operations and maintenance planning,

especially in an information-based maintenance

environment where access to all pertinent infor-

mation is enabled.

6.2 Remaining Life Prediction

Having known the instantaneous (conditional)

probability distribution function F
 ̂ jcoð�; t �cco

	
	 Þ of

the estimated damage  ̂ t(�; t0), the remaining life

can be computed on-line at any specified time

instant, t, based on a desired plant operational

profile and a confidence level (1� "). This implies

that if the plant operation is scheduled to yield

a desired output profile, then the remaining life

T is the maximum time of operation after the

Table 1 Crack damage hypotheses for Virkler et al.

Data.

Description Range of Fatigue Crack Length

Hypothesis H0 9.00mm� a(t)<12.6mm
Hypothesis H1 12.6mm� a(t)<16.2mm
� �
� �
� �
Hypothesis H9 41.4mm� a(t)<45.0mm
Hypothesis H10 45.0mm� a(t)

(Unstable crack growth)

Table 2 Crack damage hypotheses for Ghonem & Dore

Data.

Description Range of Fatigue Crack Length

Hypothesis H0 9.00mm� a(t)<10.8mm
Hypothesis H1 10.8mm� a(t)<12.6mm

Hypothesis H9 25.2mm� a(t)<27.0mm
Hypothesis H10 27.0mm� a(t)

(Unstable crack growth)
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current time such that the probability of the

crack length ctþ�(�) to exceed a specified bound

�ccM is less than ".

The algorithm for remaining life prediction

must be executed in real time based on the

current information. The generated results can

then be conveyed to a decision-making module at

a higher level for failure prognosis, life extending

control, and maintenance scheduling, or simply

for generation of warnings and alerts. These

results may also be displayed as a decision support

tool for human operators. The objective is to

determine the statistical confidence with which

plant operations can be planned for a specified

period of time or to evaluate alternate opera-

tional scenarios. This is also of considerable

importance in the scheduling of maintenance to

avoid untimely shutdowns since failure prognostic

information is inherent in remaining life pre-

diction. Some of these issues have been addressed

by Ray and Phoha [28].

7 Summary and Conclusions

This paper presents a stochastic measure estimate

of fatigue crack damage for health monitoring,

risk analysis, and life prediction of ductile alloy

structures and machinery components in mechan-

ical systems (e.g., aircraft, spacecraft, and power

plants). The constitutive equation of the damage

measure is based on the physics of fracture

mechanics. The stochastic damage measure model

is built upon the state-space model of fatigue

crack growth [27], which predicts an estimated

mean of crack length and accounts for variable-

amplitude cyclic stress and crack retardation

0 200 400 600 800 1000 1200 1400

H0 H1 H2

H10

H3

H4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P

ro
b
ab

il
it

y
 o

f 
H

y
p
o
th

es
es

Virkler et al. Set 

2024 T-3 Aluminum Alloy

Max Stress = 60.33 MPa

R = 0.2

Time in units of 200 cycles (1 cycle = 50 ms)

..

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
ab

il
it

y
 o

f 
H

y
p
o
th

es
es

Time in units of 50 cycles (1 cycle = 100 ms)

Ghonem and Dore Set # 1

7075 T-6 Aluminum Alloy

Max Stress = 70.65 MPa

R = 0.6

H0

H1

H2

H10

H3

H4 ..

0 200 400 600 800 1000 1200 1400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
ab

il
it

y
 o

f 
H

y
p
o
th

es
es

Time in units of 50 cycles (1 cycle = 100 ms)

Ghonem and Dore Set # 2

7075 T-6 Aluminum Alloy

Max Stress = 69.00 MPa

R = 0.5

H0

H1

H2

H10

H3

H4 ..

0 500 1000 1500 2000 2500 3000 3500 4000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
ab

il
it

y
 o

f 
H

y
p
o
th

es
es

Time in units of 50 cycles (1 cycle = 100 ms)

Ghonem and Dore Set # 3

7075 T-6 Aluminum Alloy

Max Stress = 47.09 MPa

R = 0.4

H0

H1

H2 H10...

Figure 5 Probabilities of hypotheses for fatigue crack propagation.

Asok Ray Health Monitoring of Ductile Alloy Structures 259



phenomena. The model of stochastic damage

measure model is potentially applicable to health

monitoring of mechanical structures that might

be subjected to variable-amplitude stress cycling.

However, the model parameters (that depend

on the structural material and crack geometry)

have to be identified and tuned a priori in the

laboratory environment [14].

The damage measure is modeled as a diffu-

sion process represented by a continuous function

of the current crack length and the initial crack

length. The randomness in the damage measure

estimate accrues from manufacturing uncertain-

ties such as defects generated during machining

operations and is captured by a single lognormal-

distributed non-stationary random variable. The

resulting diffusion process of estimation error is

primarily due to inhomogeneity in the structural

material, and is approximated by a fractional

Brownian motion (fBm) model. The damage

estimate is statistically orthogonal to the resulting

zero-mean estimation error in the Hilbert space

L2(P) defined by the probability measure P of the

stochastic damage. As such the damage estimate

can be viewed as a best linear estimate with least

error in the mean-square sense.

The structure of the stochastic damage model

has been validated by Karhunen–Loève decom-

position of fatigue test data in the Hilbert space

setting for 2024-T3 at a single level of constant-

amplitude cyclic load and for 7075-T6 aluminum

alloys at three different levels of constant-ampli-

tude cyclic load. For 7075-T6 alloy, predictions

of the stochastic damage model, identified and

tuned for the experimental data set under one

load condition, closely matches those under two

other load conditions. For 2024-T3 alloy, the

same model structure prevails. This establishes

predictive capability of the stochastic damage

model under constant-amplitude loading.

Validation of the stochastic damage model under

varying-amplitude random loading is a subject of

current research as an extension of the author’s

earlier work [26].

A systematic procedure for parameter identi-

fication of the stochastic damage measure model

has been established. The predicted probability

distribution function (PDF) of service cycles to

exceed a specified crack length is shown to be

in close agreement with those generated from a

number of test data sets. The (non-stationary)

probability distribution function of crack damage

measure is obtained in a closed form without

numerically solving stochastic differential equa-

tions in the Wiener integral or Itôo integral setting

[13,22,37]. The model allows formulation of risk

assessment and life prediction algorithms for

real-time execution on inexpensive platforms such

as a Pentium processor. Examples are presented

to illustrate how the damage measure estimate

can be used to generate and update hypotheses

of crack propagation based on the information

of stress cycles. The effects of uncertainties in the

initial conditions are included in the model in

the construction of the probability distribution of

damage measure.

Potential applications of the stochastic damage

include the following technologies:

. Life extending control of mechanical systems

[25,39];
. Analytical measurements and intelligent sen-

sing (including real-time non-destructive evalu-

ation [17]) by on-line calibration of parameters

of the stochastic damage measure model

parameters of fatigue crack damage [14];
. Remaining life prediction of machinery com-

ponents as well as generation of alerts and

warnings for operational support and safety

enhancement;
. Real-time maintenance decisions based on the

information of machinery operation and

anticipated usage.

A unified model that accounts for different

sources (e.g., fracture geometry) of uncertainties

in crack growth needs to be established before

viable practical applications.

Nomenclature

a¼ crack length

C¼ autocovariance; covariance matrix

c¼ normalized crack length

Fð�Þ ¼ probability distribution function

F ¼ geometry factor for crack growth equation

f ð�Þ ¼ probability density function
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H ¼hypothesis

h¼ crack growth function

K ¼ stress intensity factor

M ¼number of hypotheses

m¼ exponent parameter of the model

o¼ initial condition; opening condition

P¼probability measure

R¼ stress ratio (Smin/Smax)

S¼ stress

T ¼ remaining life

t¼ time in units of cycles

Uð�Þ ¼ step function

w¼half of specimen width

� ¼ specified limit

¼ exponent for power law distribution

�¼ incremental range

�¼ increment operator

’¼ eigenvector of covariance matrix

�¼ constant for power law distribution

�¼ (diagonal) eigenvalue matrix


¼ random coefficient

X¼ random coefficient vector

�¼ expected value

�¼ time interval

�¼ fraction Brownian motion process

�¼multiplicative noise process

� ¼ standard deviation

� ¼dummy variable

�D ¼discretized fatigue crack damage measure

 ¼ continuous fatigue crack damage measure

 ̂ ¼ estimated fatigue crack damage measure
~  ¼ estimation error of damage measure

�¼ random parameter of the model

�¼ sample point (test specimen)
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Appendix: A Supporting Lemma

Lemma: Let Að�Þ and Bð�Þ be second-order real

random variables; ~xxtð�Þ and ~yytð�Þ be zero-

mean mean-square continuous (possibly non-

separable) real random processes; and the real

gðtÞ be almost everywhere continuous on an

interval � such that, for all t 2 �, the following

conditions hold:

(i) Að�Þ ¼ms
Bð�Þ;

(ii) E½Að�Þ ~xxtð�Þ� ¼ 0 and E½Bð�Þ ~yytð�Þ� ¼ 0.

Then, the following mean-square identity

Að�ÞgðtÞ þ ~xxtð�Þ ¼
ms
Bð�ÞgðtÞ þ ~yytð�Þ

yields

~xxtð�Þ ¼
ms

~yytð�Þ;

E½Að�Þ ~yytð�Þ� ¼ 0;

E½Bð�Þ ~xxtð�Þ� ¼ 0

9

>
>=

>>
;

8t 2 �:

Proof:

It follows from the mean-square identity

Að�ÞgðtÞ þ ~xxtð�Þ ¼
ms
Bð�ÞgðtÞ þ ~yytð�Þ

that

Var½ðAð�Þ � Bð�ÞÞgðtÞ þ ð ~xxtð�Þ � ~yytð�ÞÞ� ¼ 0

that leads to:

Var½Að�Þ � Bð�Þ� g2ðtÞ þ Var½ ~xxtð�Þ � ~yytð�Þ�
þ E½ðAð�Þ � Bð�ÞÞð ~xxtð�Þ � ~yytð�ÞÞ�gðtÞ ¼ 0

A combination of Condition (i) and Schwarz

inequality yields:

Var½ ~xxtð�Þ � ~yytð�Þ� ¼ 0

and the remaining two identities follow from

Condition (ii).

Asok Ray Health Monitoring of Ductile Alloy Structures 261



References

1. Anderson, T.L. (1995). Fracture mechanics, 2nd Edn.,

CRC Press, Boca Raton, Florida.

2. Bartle, R. (1966). The elements of integration and

lebesgue measure, John Wiley, New York.

3. Brunk, H.D. (1975). An introduction to mathe-

matical statistics, 3rd Edn., Xerox Publishing,

Lexington, MA.

4. Bolotin, V.V. (1989). Prediction of Service Life for

Machines and Structures, ASME Press, New York.

5. Bogdanoff, J.L. and Kozin, F. (1985). Probabilistic

models of cumulative damage, John Wiley, New York.

6. Casciati, F., Colombi, P., and Farvelli, L. (1992).

Fatigue crack size probability distribution via a filter

technique. Fatigue & fracture of engineering materials &

structures, 15(5), 463–475.

7. Ditlevsen, O. (1986). Random fatigue crack growth — a

first passage problem. Engineering Fracture Mechanics,

23(2), 467–477.

8. Fukunaga, K. (1990). Introduction to statistical pattern

recognition, 2nd Edn., Academic Press, Boston.

9. Ghonem, H. and Dore, S. (1987). Experimental study

of the constant probability crack growth curves under

constant amplitude loading. Engineering Fracture

Mechanics, 27, 1–25.

10. Holmes, M. and Ray, A. (1998). Fuzzy damage mitigat-

ing control of mechanical structures. ASME Journal of

Dynamic Systems, Measurement and Control, 120(2),

249–256.

11. Hoyland, A. and Rausland, M. (1994). System relia-

bility theory: models and statistical methods, Wiley-

Interscience, New York.

12. Ishikawa, H., Tsurui, A., Tanaka, H. and Ishikawa, H.

(1993). Reliability assessment based upon probabilistic

fracture mechanics. Probabilistic Engineering

Mechanics, 8, 43–56.

13. Jazwinski, A.H. (1970). Stochastic processes and filter-

ing theory, Academic Press, New York.

14. Keller, E. and Ray, A. (2003). Real-time nondestructive

evaluation of mechanical structures. Structural Health

Monitoring, 2(3), 191–203.

15. Kloeden, P.E. and Platen, E. (1995). Numerical

solution of stochastic differential equations, Springer,

Berlin.

16. Lin, Y.K. and Yang, J.N. (1985). A stochastic theory of

fatigue crack propagation. AIAA Journal, 23(1),

117–124.

17. Maldague, X.P.V. Ed. (1994). Advances in signal

processing for nondestructive evaluation of materials,

NATO ASI Series, Kluwer Academic Publications,

Dordrecht, The Netherlands.

18. Mandelbrot, B. and Van Ness, J.W. (1968). Fractional

brownian motion, fractional noises, and applications.

SIAM Review, 10, 422–437.

19. Naylor, A.W. and Sell, G.R. (1982). Linear operator

theory in engineering and science, Springer, New York.

20. Newman, J.C., Jr. (1984). A crack opening stress

equation for fatigue crack growth. International

Journal of Fracture, 24, R131–R135.

21. Newman, J.C., Jr. (1992). FASTRAN-II – A Fatigue

Crack Growth Structural Analysis Program, NASA

Technical Memorandum, Langley Research Center,

Hampton, VA.

22. Oksendal, B. (2003). Stochastic Differential Equations:

An Introduction with Applications, 6th Edn. Springer,

Berlin.

23. Ozekici, S. ed. (1996). Reliability and Maintenance of

Complex Systems, NATO Advanced Science Institutes

(ASI) Series F: Computer and Systems Sciences, 154,

Berlin, Germany.

24. Paris, P.C. and Erdogan, F. (1963). A critical analysis

of crack propagation laws. Journal of Basic Engineering,

Trans. ASME, D85, 528–534.

25. Ray, A. and Caplin, J. (2000). Life extending control

of aircraft: Trade-off between flight performance

and structural durability. The Aeronautical Journal,

104(1039), 397–408.

26. Ray, A. and Patankar, R. (1999). Stochastic modeling

fatigue crack propagation under variable amplitude

loading. Engineering Fracture Mechanics, 62, 477–493.

27. Ray, A. and Patankar, R. (2001). Fatigue crack growth

under variable amplitude loading: Parts I and II.

Applied Mathematical Modelling, 25, 979–1013.

28. Ray, A. and Phoha, S. (1999). Stochastic modeling of

fatigue crack damage for information-based mainte-

nance. Annals of Operation Research, 91, 197–204.

29. Ray, A. and Tangirala, S. (1997). A nonlinear

stochastic model of fatigue crack dynamics.

Probabilistic Engineering Mechanics, 12(1), 33–40.

30. Schijve, J. (1976). Observations on the Prediction of

Fatigue Crack Growth Propagation Under Variable-

Amplitude Loading. Fatigue Crack Growth Under

Spectrum Loads, ASTM STP, 595, 3–23.

31. Sobczyk, K. and Spencer, B.F. (1992). Random Fatigue:

Data to Theory, Academic Press, Boston, MA.

32. Spencer, B.F., Tang, J. and Artley M.E. (1989). A

stochastic approach to modeling fatigue crack growth.

The AIAA Journal, 27(11), 1628–1635.

33. Suresh, S. (1991). Fatigue of materials, Cambridge

University Press, Cambridge, UK.

34. Tsurui, A. and Ishikawa, H. (1986). Application of the

Fokker-Planck to a stochastic fatigue growth model.

Structural Safety, 4, 15–29.

262 Structural HealthMonitoring 3(3)



35. Virkler, D.A., Hillberry, B.M. and Goel, P.K. (1979).

The statistical nature of fatigue crack propagation.

ASME Journal of Engineering Materials and

Technology, 101(2), 148–153.

36. West, B. (1999). Physiology, promisquity and prophecy at

themillenium: A tale of tails,World Scientific, Singapore.

37. Wong, E. and Hajek, B. (1985). Stochastic processes

in engineering systems, Springer-Verlag, New York.

38. Yang, J.N. and Manning, S.D. (1996). A simple

second order approximation of stochastic crack

growth analysis. Engineering Fracture Mechanics,

53(5), 677–686.

39. Zhang, H., Ray, A. and Phoha, S. (2000). Hybrid

life extending control of mechanical systems: experi-

mental validation of the concept. Automatica, 36(1),

23–36.

Asok Ray Health Monitoring of Ductile Alloy Structures 263




