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ABSTRACT

This paper considers several filtering methods of stochastic nature, based on Monte Carlo drawing, for the
sequential data assimilation in nonlinear models. They include some known methods such as the particle filter
and the ensemble Kalman filter and some others introduced by the author: the second-order ensemble Kalman
filter and the singular extended interpolated filter. The aim is to study their behavior in the simple nonlinear
chaotic Lorenz system, in the hope of getting some insight into more complex models. It is seen that these filters
perform satisfactory, but the new filters introduced have the advantage of being less costly. This is achieved
through the concept of second-order-exact drawing and the selective error correction, parallel to the tangent
space of the attractor of the system (which is of low dimension). Also introduced is the use of a forgetting
factor, which could enhance significantly the filter stability in this nonlinear context.

1. Introduction and motivation

The purpose of this work is to propose some data
assimilation methods and investigate their behavior and
that of some others, in the context of highly nonlinear
systems. Specifically we shall consider the particle filter
(Del Moral and Salut 1995; Del Moral et al. 1995), the
ensemble Kalman filter (Evensen 1994, 1997a,b; Ev-
ensen and van Leeuwen 1996, 2000; Burgers et al.
1998), and some new filters that we introduce: the sec-
ond-order-exact ensemble Kalman filter and the singular
extended interpolated filter (Pham 1997; Pham et al.
1998a). All these methods are sequential and of sto-
chastic nature, relying on Monte Carlo drawing to mimic
the statistical behavior of the system. They therefore
have some similarities, which will be made clear. Our
filters have been developed with applications to mete-
orology and oceanography in mind so that the com-
putational cost is of great concern. But here we focus
on the nonlinearity aspect of the system and try to see
if they could perform reasonably well in a such a con-
text. To avoid excessive computational cost (especially
in the case of the particle and ensemble Kalman filters),
we shall limit ourselves to the simple Lorenz model
(Lorenz 1963). This model is described simply by an
ordinary system of differential equation in three di-
mensions and yet has some connection with atmospheric
flows. More importantly, it exhibits two main features
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of nonlinear dynamics: the existence of an attractor and
chaos. The first means that the system state will ap-
proach a special subset of the phase space, called at-
tractor, regardless of the initial state (provided that it is
not too far from the attractor), while the second means
that two nearby states, however close, will diverge in
time; hence, the system state in the far future is unpre-
dictable.

Our works have been influenced by the paper of Mill-
er et al. (1994) in which the data assimilation in the
Lorenz system is investigated. But these authors focus
on the extended Kalman filters and the variational meth-
ods while here we focus on newer stochastic techniques.
However, we have recently become aware of the paper
by Evensen (1997a) in which the ensemble Kalman filter
has been studied through a similar design. A further
paper of Miller et al. (1999) has also appeared during
the revison of this work, in which the authors also con-
sider nonlinear filtering of the Lorenz equations, using
numerical and Monte Carlo calculation (the last has
some similarities to the particle filter, discussed below).
More importantly, unlike their paper, we consider the
case where only the first component of the state vector,
and not the full state vector, is observed. We feel that
full observation constitutes a too favorable situation, as
we have been motivated by the application to ocean-
ography and meteorology in which partial observation
of the state vector is the norm. Note that the case where
only one variable in the Lorenz is observed has been
considered in Evensen and Fario (1997), but concerning
the variational method with weak contraint.

The paper is organized as follows. The next section
introduces the sequential data assimilation framework
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and provides a brief review of the nonlinear optimal
filter, the particle filter, and the ensemble Kalman filter
(EnKF). Section 3 introduces some new filters and the
use of a forgetting factor and an adaptative scale for the
observation error covariance matrix. Section 4 provides
some simulation results based on the Lorenz model. The
paper is completed with conclusions and an appendix
describing the ‘‘second-order-exact sampling,’’ which is
the basis of our filters.

2. The particle filter and the EnKF

We shall adopt the same notations as in Pham et al.
(1998a,b), which follows that proposed in Ide et al.
(1995). Consider the physical system described by

xt(tk) 5 M(tk21, tk)xt(tk21) 1 hk, (2.1)

where xt(t), a vector representing the true system state
at time t, M(s, t), is a (nonlinear) operator expressing
the system transition from time s to time t and hk is the
system noise vector. At each time tk, one observes

5 H kxt(tk) 1 ek,oyk (2.2)

where H k is the observational operator and ek is the
observational noise. The noises hk and ek are assumed
to be independent random vectors with mean zero and
covariance matrices Qk and Rk, respectively.

The sequential data assimilation (also known as fil-
tering) consists in estimating the system state at each
observation time, based only on the observations up to
this time. In the linear case, this problem has been solved
by the well-known Kalman filter. In the nonlinear case,
one often linearizes the model around the current esti-
mated state vector, which yields in the so-called ex-
tended Kalman filter (see, e.g., Ghil and Manalotte-Riz-
zoli 1991 for detail). However, this filter, besides being
no longer optimal, may produce instabilities or even
divergence (Kushner 1967; Gauthier et al. 1993, etc.).
Theoretical solution to the optimal filtering problem in
fact has been known (see, e.g., Liptser and Shiryaev
1977, Kallianpur 1980, etc.) but the practical imple-
mentation remains problematic. However some under-
standing on this theory would be useful to develop prac-
tical suboptimal filters. Note that this theory has been
developed mostly for the continuous time case, which
would involve partial differential equations. Below, we
shall try to describe the theory based on the discrete
time model, (2.1) and (2.2), which is simpler to under-
stand (in our opinion) and is more relevant to our prob-
lem. Continuous time formulation, in terms of the Fok-
ker–Planck equation and Bayes theorem, can be found
in Miller et al. (1999). General formulas for calculating
the optimal estimator, including the optimal nonlinear
filter and smoother, can be found in van Leeuwen and
Evensen (1996).

The nice feature of the Kalman filter is its closure at
the second-order moments, meaning that the filter evo-
lution is uniquely determined by its second-order char-

acteristics. This no longer holds for the optimal nonlin-
ear filter. Its evolution can be determined only through
all its moments characteristics, or more precisely
through a density function. Specifically, instead of an
analysis vector xa(tk) and its error covariance matrix
Pa(tk) at the time tk, one now needs an analysis density
da( · | , . . . , ), which is the conditional density func-o oy y1 k

tion of the state vector at time tk given all past obser-
vations up to this time. Similarly, instead of a forecast
state vector at time tk and its error covariance matrix,
one now needs a forecast density df ( · | , . . . , ),o oy y1 k21

which is the conditional density function of the state
vector at time tk given all past observations before this
time. The filtering can then be performed in two steps
as in the linear case.

1) The forecasting step: One computes the forecast den-
sity in term of the analysis density (at time tk21),
using the model equation (2.1). Assuming Gaussian
system noise for simplicity, the conditional density
of the state vector to be at z at time tk given that it
is at x at time tk21 is f [z 2 M(tk, tk21)x | Qk], where
f (h | S) 5 exp(2 hT S21h)/ det(2pS) is the1

2 Ï
Gaussian density (at h) of mean zero and covariance
matrix S (superscript T denoting the transpose).
Thus,

f o od (z | y , . . . , y )1 k21

a o o5 f[z 2 M (t , t )x | Q ]d (x | y , . . . , y ) dx.E k k21 k 1 k21

(2.3)

2) The analysis (or correction) step: One computes the
analysis density after a new observation yk has been
made. By the Bayes theorom and the observation
equation (2.2), assuming again Gaussian observa-
tion noise, it is given by

a o od (x | y , . . . , y )1 k

f o od (x | y , . . . , y )f(y 2 H x | R )1 k21 k k k5 . (2.4)
f o od (z |y , . . . , y )f(y 2 H z |R ) dzE 1 k21 k k k

Note that if the Gaussian assumption of the noises is
dropped, one needs only to change f in the above for-
mulas to the density functions of the noises. But the
main practical difficulty with these formulas is the need-
ed integration with respect to the state vector. The in-
tegration in (2.3) requires the evaluation of M(tk, tk21)x
for a large set of values of x, while a single such eval-
uation can be already quite costly in applications. There-
fore the above filter is inapplicable in practice.

a. The particle filter

The basic idea is to approximate the analysis density
da( · | , . . . , ) by a convex combination of theo oy y1 k21
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Dirac function; in other words, the analysis distribution
is approximated by a discrete distribution, located at r
1 1 states (tk21), . . . , (tk21) with probabilitiesa ax x1 r11

p1,k21, . . . , pr11,k21. Then (2.3) yields the forecast den-
sity

f o od (z | y , . . . , y )1 k21

r11

a5 f[z 2 M (t , t )x (t ) | Q ]p . (2.39)O k k21 j k21 k j,k21
j51

This is a convex combination of Gaussian densities,
which reduces to a convex combination of Dirac func-
tions if there is no system noise (Qk 5 0). If however
the system noise is present, the forecast distribution is
continuous so that one again needs to approximate it by
a discrete distribution. To this end, we resort to Monte
Carlo drawing. We draw r 1 1 realizations h1,k, . . . ,
hr11,k according to the density f ( · | Qk) and then ap-
proximate the distribution of density (2.39) by the dis-
crete distribution located at

(tk) 5 M (tk, tk21) (tk21) 1 h j,k,f ax xj j

j 5 1, . . . , r 1 1, (2.5)

with probabilities p1,k21, . . . , pr11,k21. The analysis dis-
tribution that results from (2.4) can then be seen to be
the discrete distribution located at the same points, now
denoted by (tk), . . . , (tk), but with probabilitiesa ax x1 r11

ap f[y 2 H x (t ) | R ]j,k21 k k j k k
p 5 ,j,k r11

ap f[y 2 H x (t ) | R ]O l,k21 k k l k k
l51

j 5 1, . . . , r 1 1. (2.6)

This is the basis of the particle filter. Explicitly, it
operates as follows.

1) Initialization: One draws r 1 1 states (henceforth
called particles) (t0), . . . , (t0) according to ana ax x1 r11

a priori distribution and sets the probabilities p1,0,
. . . , pr11,0 to 1/(r 1 1). In practice, we recommend
constituting a large database of states obtained from
a long free run of the model, then just randomly
picking r 1 1 particles out of this base.

2) Forecast: At time tk, move the particles to (tk)fxj

defined by (2.5), keeping the same probabilities.
3) Analysis: Having observed , one changes the prob-oyk

abilities according to (2.6) and sets (tk) 5 (tk).a fx xj j

[In this simple version (tk) and (tk) are the samea fx xj j

but they differ when resampling in introduced; see
below.] The analysis state can be obtained as

r11

a fx (t ) 5 p x (t ), (2.7)Ok j,k j k
j51

and its error covariance matrix as
r11

a f a f a TP (t ) 5 p [x (t ) 2 x (t )][x (t ) 2 x (t )] . (2.8)Ok j,k j k k j k k
j51

These computations are however optional. The filter
actually operates on the set of particles and their
probabilities and not on the mean and covariance
statistics. The above formulas are simply meant to
provide an analysis vector and its error covariance
for practical use or for comparision with traditional
filtering methods.

In practice, it is often necessary to introduce a re-
sampling step for the filter to work. The reason is that,
as the system is chaotic, the particles tend to become
disperse and hence after some time many of them, being
far from the true state, would receive negligible prob-
ability so that only a few particles effectively participate
in the filter algorithm. Resampling is introduced to avoid
this. Instead of setting (tk) to (tk), one draws thema fx xj j

according to the analysis distribution and resets the
probabilities to 1/(r 1 1). There is a pitfall though. Since
this distribution is discrete (more exactly one only has
a discrete approximation to it), one actually draws r 1
1 particles out of a set of r 1 1 of elements, so one
gets a lot of identical particles. If the system noise is
present, this may not be very serious since they will be
separated later by the addition of the h j,k in (2.5). How-
ever, when the system noise is absent or small, identical
particles will remain identical or close, so that one still
effectively works with a few particles. Our remedy is
to draw (tk), . . . , (tk) according not to the discretea ax xj r11

analysis distribution but to an approximating continuous
distribution. Borrowing from the popular kernel density
estimation method (see, e.g., Silverman 1986), we pro-
pose to take this distribution as the one of density:

r11

a o o f 2 ad̂ (x | y , . . . , y ) 5 p f[x 2 x (t ) | h P (t )], (2.9)O1 k j,k j k k
j51

where Pa(tk) is as in (2.8) and h is a small tuning pa-
rameter. Then drawing from this density is the same
drawing from the set { (tk), . . . , (tk)} with prob-f fx x1 r11

abilities p1,k, . . . , pr11,k, then adding a Gaussian noise
of mean zero and covariance matrix h2Pa(tk). As resam-
pling is meant to deliberately change the analysis dis-
tribution, from the discrete distribution located at the

(tk) with probability pj,k to the one located at (tk)f ax xj j

with propability 1/(r 1 1), it should be done only if the
probabilities p1,k, . . . , pr11,k differ too much from the
uniform probabilities. As a measure of this discrepancy,
we propose to take the entropy difference between the
two probability distribution:

r11

E(p , . . . , p ) 5 log(r 1 1) 1 p logp .O1,k r11,k j,k j,k
j51

This measure is nonnegative and can be zero only if p1,k

5 · · · 5 pr11,k 5 1/(r 1 1). Resampling is performed
only when it is greater than some prescribed threshold.

b. The EnKF

The EnKF filter was introduced by Evensen (1994,
1997a), Evensen and van Leeuven (1996), and later clar-
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ified by Burgers et al. (1998) (see also Evensen 1997b).
It makes use of an ensemble of states as in the particle
filter. In fact the forecast steps are identical in both
filters. But the analysis steps differ. In the EnKF, this
step is similar to the Kalman filter but applied on each
individual ensemble member, using a gain matrix com-
puted from the forecast error covariance matrix provided
by the ensemble of states. Further, the observations are
intentionally perturbed by an additive noise to get a
correct error covariance matrix used in the analysis.
More precisely, before applying the Kalman correction,
the observation yk has been added a noise vector ej,k

having zero mean and covariance matrix Rk (Evensen
1997b; Burger et al. 1998). This is more or less im-
plicitly assumed in the earlier derivation of the EnKF
but has been made clear in the Burgers et al. paper,
which provides a detailed argument why the perturba-
tion is needed. This paper also introduces the idea of
using the mean of the ensemble states as the estimate
of the system state.

It is of interest to highlight the difference between
the particle filter and the EnKF, which look similar at
first sight. The EnKF, as well as the filters introduced
below, retain the ‘‘linearity aspect’’ of the Kalman filter
in the analysis stage, in that the analysis vector and/or
the ensemble members are ‘‘corrected’’ by the addition
of a linear function of the observations. By contrast, the
particle filter has nothing to do with the Kalman filter;
the correction in the analysis stage is achieved by chang-
ing the probabilities associated with each particle [ac-
cording to formula (2.6)], not by changing the particles.
Of course, if one performs resampling, these particles
will change, but this should be done only occasionally
and the change simply reflects the fact that the proba-
bility has to be reset to 1/(r 1 1). In the EnKF, the
probabilities of the ensemble members play no role at
all, as they are uniform among ensemble members (and
never change). Resampling is not necessary, in fact it
is implicit at the analysis stage through the addition of
noises to the observations.

3. Some new filters and improvements

The particle method requires a very large number of
particles, especially in the case of a high-dimensional
state space, in order to approximate adequately a con-
tinuous distribution by a discrete one. The Monte Carlo
technique has a notoriously slow convergence rate: it is
of the order 1/(r 1 1) where r 1 1 is the number of
drawings. Since r cannot be very high, due to compu-
tational cost, large sampling fluctuation is unavoidable.
Specifically, the sample mean and covariance matrix of
the (tk) can be far from the theoretical mean and co-axj

variance matrix of the distribution from which they are
drawn. In a high-dimensional context, these sample
mean and covariance matrices contain a huge number
of elements, so chances are that many of them are down-
right wrong.

The basic idea in our filters is to construct the en-
semble members in such a way that their sample mean
and covariance matrix match exactly the intended the-
oretical ones. Note that if the model is linear, only sec-
ond-order moments are needed to construct the optimal
(i.e., Kalman) filter; therefore, as we also want our filters
to perform well in linear models, it is natural to require
the above condition.

a. The second-order-exact EnKF

Consider the forecast stage in the EnKF. If the en-
semble members (tk21), . . . , (tk21) have the sam-a ax x1 r11

ple mean and covariance matrix matching exactly the
theoretical ones, namely xa(tk21) and Pa(tk21), then in
the case of where the model (2.1) is linear, the forecast
distribution has mean

r111
f fx (t ) 5 x (t 2),Ok j kr 1 1 j51

where (3.1)
f ax (t 2) 5 M (t , t )x (t )j k k k21 j k21

and covariance matrix
r111

f f f f f TP (t ) 5 [x (t 2) 2 x (t )][x (t 2) 2 x (t )]Ok j k k j k kr 1 1 j51

1 Q .k (3.2)

For a nonlinear model, this formula can still be used as
an approximation. But because of sampling fluctuations
in Monte Carlo drawing, the matrix (3.2) will differ from
sample covariance matrix of the ensemble members

(tk), . . . , (tk) defined by (2.5). To avoid this prob-f fx x1 r11

lem, we introduce the concept of second-order-exact
sampling. It can be easily verified that if one draws the
sample h1,k, . . . , hr11,k subjected to the conditions

r111
h 5 0 andO j,kr 1 1 j51

r111
Th h 5 Q , (3.3)O j,k j,k kr 1 1 j51

and if they further satisfy the linear contraints
r111

f f Th [x (t 2) 2 x (t )] 5 0, (3.4)O j,k j k kr 1 1 j51

then these ensemble members have sample means and
sample covariance matrix matching exactly xf (tk) and
Pf (tk), as defined in (3.1) and (3.2).

Sampling subjected to the condition (3.3) will be
called second-order exact as it reproduces the theoretical
second-order characteristics of the sample. The con-
straint (3.4) on the other hand reflects the property that
the ‘‘noise’’ sample h j,k is independent of the system
state. In ordinary Monte-Carlo sampling, both (3.3) and
(3.4) would be approximately satisfied for large r, but
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this r may need to be quite large for the approximation
to be ‘‘good enough,’’ in a high-dimensional system.
Our second-order-exact sampling with linear con-
straints ensures that (3.3) and (3.4) are satisfied exactly.
Such a sampling procedure will be described in the ap-
pendix. We mention here only that this is possible if
and only if the rank of the covariance matrix Qk plus
that of the constraint matrix

C(tk2) 5 [ (tk2) 2 x f (tk) · · · (tk2) 2 x f (tk)]f fx x1 r11

(3.49)

does not exceed r.
Turning to the analysis stage, we have adopted the

idea of correcting of the ensemble members, as in Bur-
ger et al. (1998), and not of their probabilities, as in the
particle filter. Observe that the Kalman filter corrects
the analysis vector as

xa(tk) 5 xf (tk) 1 Kk[ 2 H kxf (tk)],oyk (3.5)

where Kk is the Kalman gain matrix. Since the analysis
vector should be the mean of the ensemble members,
one would achieve the same result by correcting directly
these members, that is, by adding Kk[ 2 H k (tk)] too fy xk j

(tk), j 5 1, . . . , r 1 1. But then the new membersfxj

would have sample covariance matrices less than the
annalysis error covariance matrix Pa(tk). Indeed,

Pa(tk) 5 (I 2 KkHk)P f (tk)(I 2 KkHk)T 1 KkRk ,TKk (3.6)

with Hk denoting the gradient of H k at xt(tk),1 while the
sample covariance matrix of new ensemble members
equals only the first term of the above formula. To cor-
rect this, we add a noise term: the new ensemble mem-
bers are taken as

(tk) 5 (tk) 1 Kk[ 2 Hk (tk)] 1 ,a f o fx x y x ẽj j k j j,k

j 5 1, . . . , r 1 1, (3.7)

where , . . . , is a second-order-exact sampleẽ ẽ1,k r11,k

from the Gaussian distribution with zero means and co-
variance matrix KkRk , with linear constraints:TKk

r11

f f Tẽ [x (t ) 2 x (t )] 5 0. (3.8)O j,k j k k
j51

Then it can be checked that the sample mean and co-
variance matrix of (tk), . . . , (tk) are exactlya ax x1 r11

xa(tk)Pa(tk), as given in (3.5) and (3.6).
Note that Burger et al. (1998) also add noise, but to

the observation and not to the ensemble members. This
is in fact equivalent since adding a noise ej,k with co-
variance matrix Rk to amounts to adding Kkej,k, whichoyj

has covariance matrix KkRk , to the jth member. TheTKk

reason that we do this differently is that the matrix
KkRk can have rank less, but never more, than thatTKk

1 This formula is actually only approximate, except when Hk is
linear.

of Rk and since we draw our sample second order exactly
and with constraints, this rank plays an important role.
As it is stated earlier, the drawing is possible if and only
if this rank plus the rank of the constraint matrix

C(tk) 5 [ (tk) 2 x f (tk) · · · (tk) 2 x f (tk)]Tf fx x1 r11 (3.89)

does not exceed r. Burger et al. (1998) do not use second
order exact sampling, hence do not need the above con-
sideration on ranks.

The Kalman gain matrix Kk is known to be
Pf (tk) [KkPf (tk) 1 Rk]21, but this formula is basedT TH Hk k

on the linearization of H k, which we feel is better to
avoid. Observe that HkPf (tk) and Pf (tk) representT TH Hk k

(in the case where H k is linear) the sample covariance
matrix of (tk) 5 H k (tk), j 5 1, . . . , r 1 1 and cross-f fy xj j

covariance matrix between (tk), . . . , (tk) andf fx x1 r11

(tk), . . . , (tk). This suggests taking as gain matrixf fy y1 r11

r111
f f f f TK 5 [x (t ) 2 x (t )][y (t ) 2 y (t )]Ok j k j k j k k5 6r 1 1 j51

r111
f f f f T3 [y (t ) 2 y (t )][y (t ) 2 y (t )]O j k j k j k k5r 1 1 j51

21

1 R .k6 (3.9)

b. The singular evolutive interpolated Kalman filter

We have developed the singular evolutive interpo-
lated Kalman (SEIK) filter (Pham, 1997; Pham et al.
1998a) as a variant of the singular evolutive extended
Kalman (SEEK) filter (Pham et al. 1998b). But it may
also be viewed as a variant of the EnKF using a min-
imum number of ensemble members.

The principle of the SEEK filter is to make corrections
only in the directions for which the error is amplified
or not sufficiently attenuated by the system dynamic,
relying on such attenuation to keep the error small in
other directions. This assumes that the system admits
an attractor and the ‘‘direction of corrections’’ are then
those parallel to the tangent space to the attractor at the
analysis state. Such selective correction is achieved by
using an error covariance matrix of low rank r (but not
lower than the dimension of the attractor). In the case
where there is no system noise, one simply initializes
the extended Kalman filter with such an error covariance
matrix, then it can be shown that this matrix remains
of the same rank at all later times. This is no longer
true if the system noise hk is present. To overcome this
difficulty, we basically project this noise onto the range
space of the error covariance matrix and ignore the noise
component in the orthogonal complement of this space.
The justification comes from the fact that the second
noise component, being ‘‘transversal’’ to the attractor,
would be strongly attenuated by the system dynamic
(for a more detailed discussion, see Pham et al. 1998b).
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Consider the second-order-exact EnKF; the above ar-
guments suggest that one can take r as low as the di-
mension of the attractor. The tangent space to the at-
tractor is then actually approximated by the affine space
supported by the ensemble members (tk), . . . , (tk).a ax x1 r11

However, the filter requires that r is not less than the
rank of Qk plus that of the matrix (3.49) and than the
rank of KkRk plus that of the matrix (3.89). To guar-TKk

antee that such a condition is satisfied would require
that r is not less than twice the dimension of the state
vector. This would exclude meteorology and oceanog-
raphy applications for which this dimension could be
in the range 105–106.

To overcome the above difficulty, we shall make use
of resampling. Instead of ‘‘correcting’’ the ensemble
members as in (3.7), we simply redraw them second
order exactly according to the Gaussian distribution with
mean xa(tk) and covariance matrix Pa(tk). As will be
seen, this matrix has the same rank as Pf (tk) so that one
only needs that Pf (tk) has rank r (or less). To ensure
that Pf (tk) has rank r, we resort to the method used in
our SEEK filter: we project the system noise hk onto
the linear space parallel to the affine space supported
by (tk2), . . . , (tk2) and pretend that this is thef fx x1 r11

system noise. Note that since we redraw the ensemble
members, we do not need the (tk) except for the com-fxj

putation of Kk in (3.9). This is not a problem as an
alternative definition of Kk is possible and will be given
shortly. Thus we do not have to draw h1,k, . . . , hr11,k.

In summary, the forecast step of this filter consists
in the calculation of (tk2), . . . , (tk2), xf (tk), andf fx x1 r11

Pf (tk) by (3.1) and (3.2), while the analysis step consists
in computing xa(tk), Pa(tk), and redrawing (tk), . . . ,ax1

(tk).axr11

As the covariance matrices involved have rank r, it is
much more efficient computationally to work with their
factored form. To this end, we introduce a (r 1 1) 3 r
full rank matrix T such that its columns are orthogonal
to the vector [1 · · · 1]T. A convenient choice is

 1 0
 1 · · · 1   · · · 1

T 5 2 _ _ _ .   
0 1 r 1 1  

1 · · · 1   0 · · · 0 

Then the matrix Pf (tk) defined by (3.2) can be written
as LkUk21 1 Qk, whereTLk

f fL 5 [x (t 2) · · · x (t 2)]T,k 1 k r11 k

T 21U 5 [(r 1 1)T T] .k21

[Note that for the above choice of T, Lk is none other
than the matrix with columns (tk2) 2 xf (tk), . . . ,fx1

(tk2) 2 xf (tk) and (r 1 1)TTT is the Toeplitz matrixfxr

with r on the main diagonal and 21 on the other di-
agonals.] But, as stated before, we change the system
noise by projecting it onto the linear space spanned by

the columns of Lk. This yields that Pf (tk) 5 LkŨk21 ,TLk

where

Ũk21 5 Uk21 1 ( Lk)21 QkLk( Lk)21.T T TL L Lk k k

Since Kk 5 Pf (tk) [ Pf (tk)Hk 1 Rk]21, one getsT TH Hk k

Kk 5 LkŨk21 [ Ũk21(HL)k 1 Rk]21,T T(HL) (HL)k k (3.10)

where (HL)k 5 HkLk. However, in the case where H k in
nonlinear, we feel that it is better to avoid linearization
and take (HL)k 5 [H k (tk2) · · · H k (tk2)]T.f fx x1 r11

The analysis state xa(tk) is given by (3.5) and its error
covariance matrix can be obtained by a similar (and
tedious) calculation as in the SEEK filter: Pa(tk) 5
LkUk , whereTLk

Uk 5 [ 1 (HL)k]21.21 T 21Ũ (HL) Rk21 k k (3.11)

Also Kk can be more conveniently computed as
LkUk .T 21(HL) Rk k

It is worthwhile to relate the SEIK filter to the SEEK
filter. Formulas (3.1) and (3.2), together with the fact
that the sample covariance matrix of (tk21), . . . ,ax1

(tk21) equals Pa(tk21), are almost the same as thoseaxr11

in the forecast step of the extended Kalman filter. The
main difference is that no gradient calculation is done
and some form of differencing is performed instead.
While the calculation in the extended Kalman filter is
based on linearizing the model operator around xa(tk21),
it is here based on interpolating it at the ensemble mem-
bers (tk21), . . . , (tk21). Such interpolation woulda ax x1 r11

yield precisely the forecast and its error covariance ma-
trix, as given by (3.1) and (3.2). That is why we call
our filter interpolated. The analysis step is the same as
in the SEEK filter, except that the linearization of H k is
also avoided.

A problem that may arise in the SEIK filter is that
the randomly drawn ensemble member is not a physi-
cally realizable state. This is however a common prob-
lem in Kalman-type filters, since at the analysis stage
a correction is performed that could conceivably pull
the analysis state (or an ensemble member) to an un-
realizable state. But this problem might occur more fre-
quently in the SEIK filter, due to the random nature of
resampling. If this happens, a possible remedy is to
replace the offending state with a nearby realizable state.
Another weakness of the SEIK filter is its use of the
projection of the system noise vector onto the linear
space spanned by correction basis. Although it is quite
reasonable to assume that the noise vector lies in a re-
duced space, it is debatable that this space would be
parallel to the tangent space of the attractor. Such weak-
ness is dealt with in the next filter, in which the system
noise is assumed only to have a low rank covariance
matrix.

c. The singular second-order-exact EnKF

As has been mentioned, a constraint of the second-
order-exact EnKF is that the number of ensemble mem-
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bers should be greater than twice the dimension of the
phase space, in order that the ‘‘rank conditions’’ can be
guaranteed to hold. Often, this dimension is very high.
However, as the system state essentially lies on the at-
tractor, which has a low dimension, the rank conditions
can still be approximately satisfied with a small number
of ensemble members.

The basic idea is that the constraint matrices C(tk2)
and C(tk) could be well approximated by matrices of
some low rank r*, say. We will construct such an ap-
proximation through the singular value decomposition.
One can write C(tk2) 5 VDWT where V and W are
matrices with columns of unit norm and orthogonal each
to the other and D is a diagonal matrix (containing the
singular values). A rank r* approximation C̃(tk2) to
C(tk2) is then obtained by putting to 0 the diagonal
elements of D other than the r* largest. If the covariance
matrix Qk of the system noise is of rank r9 # r 2 r*,
then it is possible to draw h1,k, . . . , hr11,k second order
exactly, with linear constraints based on C̃(tk2) instead
of C(tk2). If not, one could still approximate it by a
matrix of rank r9 # r 2 r*. Similarly, one replaces the
constraint matrix C(tk) by a rank r* approximation C̃(tk).
If the matrix KkRk has rank r0 # r 2 r*, one canTKk

again draw , . . . , second order exactly withẽ ẽ1,k r11,k

the linear constraints based on C̃(tk). If not, one could
approximate KkRk by a matrix of rank r0 # r 2 r*.TKk

Approximations to a covariance matrix may be obtained
through an eigenvector decomposition. For example, let
Qk 5 VDVT where V is an orthogonal matrix, the col-
umns of which are the eigenvectors of Qk with eigen-
values the corresponding diagonal elements of the di-
agonal matrix D. Then putting these diagonal elements,
other than the r9 largest, to 0 yields a rank r9 approx-
imation to Qk.

The above method requires the choice of three ap-
proximation ranks r*, r9, and r0, and a number of en-
semble members r 1 1 . r* 1 max(r9, r0). Note that
if C(tk) is nearly of rank r*, then Kk would also be nearly
of rank r* or less, as can be seen from formula (3.9).
Hence r0 can be taken equal to r* or less.

Since the gain matrix is of rank at most r, it is more
efficiently computed as in section 3b. Let T be the same
matrix as defined there and put

Lk 5 [ (tk) · · · (tk)]T, Uk21 5 [(r 1 1)T T T]21.f fx x1 r11

Then Kk may be computed as in (3.9) but with Uk21

replaced by Uk21 and (tk2) [in the definition of (HL)k]fxj

replaced by (tk).fxj

d. The use of a forgetting factor and an adaptative
scale in the observation error covariance matrix

In our earlier studies (Pham et al. 1998a,b), we have
found that the introduction of a forgetting factor can
greatly improve the filter stability. This can be explained
by the fact that our models can be strongly nonlinear
in certain region of the phase space and thus quite sen-

sitive to the initial condition, hence relying too much
on the model forecast could lead to divergence (with
respect to the true state). It is prudent to rely more on
the observation in constructing the analysis vector, than
as one would do in the linear case. A simple way to
achieve this is to use a gain matrix computed from a
smaller observation noise covariance matrix. More pre-
cisely, we replace, in the formulas (3.9) and (3.10), Rk

by rRk where r is a positive coefficient less than 1. Note
that this would yield the same gain matrix Kk as re-
placing Ũk21 by Ũk21/r. This new gain matrix can still
be computable as LkUk(HL)k but with Uk now given21Rk

by [r 1 (HL)k ]21 and not (3.11). Note that21 21 TŨ R (HL)k21 k k

we propose to change only the gain matrix and not the
forecast error covariance matrix Pf (tk), as we have done
in earlier works (Pham et al. 1998a,b). Thus the analysis
error covariance matrix will still be computed through
formula (3.6) and this yields, after some tedious algebra,

Pa(tk) 5 LkUk[r2 1 (HL)k]Uk ,21 T 21 TŨ (HL) R Lk21 k k k

where Uk is as above. We feel that the present approach
is more satisfactory theoretically than the earlier one,
since we change only the gain matrix and nothing else
(but in our simulations their performance are quite sim-
ilar). Incidentally, in the case of the (singular) second-
order EnKF, the ej,k are still drawn according to the
covariance matrix Rk. We argue that in a nonlinear con-
text there is no compelling reason that one should stick
with the Kalman gain: the linear correction is not op-
timal anyway and this gain is obtained from a lineari-
zation that inevitably contains some error. By using a
modified gain as above, we may let some more obser-
vation error enter the analysis vector but we reduce the
risk of filter divergence, because we pull this vector
more strongly toward the observation. The factor r is
called the forgetting factor, and its use can be viewed
as an error compensation technique that is fairly com-
mon (Jawinsky 1970).

Another modification of the considered filters is the
use of an adaptive scale in the observation error co-
variance matrix. This is necessary to deal with a diffi-
culty is the case of small noise. To simplify, consider
the case Qk 5 0 and Rk 5 s 2R̃k with a very small scale
factor s 2. Then in the particle filter, all particles, except
the one for which the observation operator yields the
closest value to the observation, would receive negli-
gible probabilities [see formula (2.6)]. Therefore the
analysis error covariance matrix (2.8) would be almost
zero. The same thing happens in the SEIK filter: for
very small s 2, the matrix Uk in (3.10) would reduce to
s 2[ (HL)k]21, provided that the later is invert-T 21˜(HL) Rk k

ible. In any case, one can see that after several analysis
steps, this matrix will become of the same order as s 2

and hence so is Pa(tk). The behavior of the EnKF (sec-
ond-order exact or not) is more subtle. But is can be
seen from the formula (3.7) without the term thatẽj,k

the set of ensemble states would shrink in size toward
a single one. Thus in all cases we will have an almost
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zero analysis error covariance matrix, but the analysis
vector, in general, cannot not be so accurate.

The above phenomenon can be explained. The anal-
ysis error covariance matrix Pa, by the way it is com-
puted, reflects only the error coming from the system
and observation noises; other kinds of errors have been
ignored. This includes the discrete approximation and
the addition of noise in the resampling scheme in the
particle filter, and the sampling fluctuation in Monte
Carlo sampling and the linearization or interpolation
error in other filters. When the system and observation
noises are very small, the above kinds of errors are no
longer negligible before them and hence the analysis
error covariance matrix, as computed by the Kalman
filter and its variants, can seriously underestimate the
true error.

The Kalman gain however is not really affected by
the small noise problem. As mentioned above, the ma-
trices Uk and Pa(tk) will become in the long run of the
same order as s 2. Thus, looking at formula (3.9) for
the gain matrix, one sees that s 2 cancel out. Therefore
the extended Kalman filter and the SEEK filter are not
affected by the small noise problem, except that the filter
error covariance matrix they produce could be too low.
However, the filters considered in this paper are based
on a set of particles that should have this matrix as a
covariance matrix; hence, they would cluster too closely
around their means.

To address the above problem we propose not to use
a fixed scale factor s 2 but we have adapted it during
the filter algorithm to reflect the true filter errors. Spe-
cifically, we estimate it as

5 1 (1 2 l)( ek 2 ),2 2 T 21 2˜ŝ ŝ e R sk k21 k k k21

where ek 5 2 H kxf (tk) is the innovation vector andoyk

l is an adaptation factor. Actually would somewhat2ŝ k

overestimate the scale factor s 2, since the innovation
vector not only contains the observation noise but also
some part of the filter forecast error as well. However,
our procedure has the advantage of still providing a
realistic analysis error covariance matrix Pa(tk), hence
a realistic set of particles, for very small noise. Further,
it is robust against erroneous specification of the noise
level.

4. Simulation results

The simulation is based on the Lorenz model defined
by the system of differential equations:

dx dy
5 s(y 2 x), 5 (r 2 z)x 2 y,

dt dt

dz
5 xy 2 bz,

dt

with coefficients classically chosen as s 5 10, r 5 28,
b 5 8/3. This system of equations is integrated by the
well-known fourth-order Runge–Kutta method, with an

integration step of 0.005. Observations are made at in-
tervals of 0.05, on the x coordinate only and with the
observation error having a variance of 2. This design
is similar to that of Miller et al. (1994), except that
observations are made more frequently, to compensate
for the fact that only the x coordinate and not the full
state vector is observed. The filter performance will be
measured by the root-mean-square error (rmse), which
is 1/ 3 times the norm of the difference between theÏ
analysis and the true states.

For the particle filter, the second-order-exact EnKF
and the EnKF, we construct a database of states as fol-
lows. We generate a trajectory of the Lorenz model
starting at (x, y, z) 5 (20.587 276, 20.563 678,
16.8708) containing 500 states (excluding the initial
one) at intervals of 0.05, but retain only the last 400
states to avoid the transitory phase. The initial particles
or ensemble members in the above filters are simply
randomly drawn from this database. The same database
is also used to perform an empirical orthogonal func-
tions (EOF) analysis, to construct the initial analysis
error covariance matrix in the SEIK filter (the initial
state is the mean of the states in the database). For more
detail on this EOF method, see, for example, Pham et
al. (1998b). Only the first two EOFs are retained, yield-
ing a rank-two matrix. This is in line with the fact that
the Lorenz attractor has a dimension of about 2.06.

Figure 1 plots the rmse of the particle filter with 10,
50, and 200 particles. The resampling threshold and the
coefficient h, which controls the amount of perturbation
(see the end of section 2a), have been chosen to be 0.15
and 0.7, 0.3 and 0.5, and 0.5 and 0.45, respectively.
These choices have been obtained through trials to ob-
tain a good performance of the filter. We must mention
that this performance is quite sensible to the choice of
these tuning parameters. A bad choice could result in a
much worse performance than is reported here. Likewise
better performance could be achieved with some other
choices, since we have not tried very hard to find the
best ones. Observe that the higher the number of par-
ticles, the higher the threshold and the lower the co-
efficient h should be, since resampling would be needed
less often and with less perturbation noise added, as the
set of particles become denser. Clearly, the filter per-
formance improves as the number of particles increases.
It is also less dependent on the choice of the above
tuning parameters as well. For the present problem, 10
particles seem to be the lower bound and 50 particles
might be needed to obtain a reasonably good perfor-
mance without a fine-tuning of the resampling threshold
and coefficient.

Figure 2 plots the rmse of the EnKF with no forgetting
factor and with a forgetting factor of 0.8. One can see
that the use of a forgetting factor improves markedly
the filter performance. As can be seen in this plot, and
also in previous and subsequent plot, the filter sometime
seems to lose track of the true system state, causing a
sudden burst of large error (we suspect this happens
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FIG. 1. Rmse of the particle filter with 10, 50, and 200 particles.

FIG. 2. Rmse of the EnKF with and without the forgetting factor.

when the system state enters a strong nonlinearity re-
gion). The use of a forgetting factor helps to reduce the
peak of these bursts and may even prevent them from
happening. In this sense, it enhances the filter stability.

Figure 3 plots the rmse of the EnKF with 5 and 50

ensemble members, to illustrate the effect of the size of
the ensemble. It can be seen that the filter does not
perform well with five ensemble members. Using a for-
getting factor does not help. In fact, the filter performs
somewhat worse with a forgetting factor of 0.9 or 0.8,
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FIG. 3. Rmse of the EnKF with 5 and 50 ensemble members.

FIG. 4. Rmse of the second-order-exact EnKF with and without the forgetting factor.

which is why we chose to show the result with no for-
getting factor. Not that the EnKF has also been studied
by Evensen (1997a) in the context of the Lorenz model,
and he has noted that good results can be obtained using
as few as about 10 ensemble members. However, sim-

ulation results in Evensen (1997a) cannot really be com-
pared with ours because he uses full observations (but
with a larger time interval between them) and not partial
observations.

Figure 4 plots the rmse of the second-order-exact
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FIG. 5. Rmse of the second-order-exact EnKF with and without the forgetting factor.

EnKF with and without the forgetting factor. Here again
the effect of this factor is drastic, as it prevents a too
large filter error from happening around the middle of
the experiment. Figure 5 plots the rmse of this filter
with different numbers of ensemble members, 4 and 10,
respectively, to show the effect of this number. Curi-
ously, increasing the number of members from 5 to 10
does not seem to increase filter performance. Its per-
formance at 10 members seems even slightly worse.
With more members, this filter behaves quite similarly
to the EnKF, as expected, since the drawing in the EnKF
would satisfy approximately the second-order-exact
condition and the constraints implemented by this filter.
But its performance (and also that of the EnKF) at 50
members, for example, is still not much different than
at only 5 ensemble members.

We do not have a sure explanation of the above find-
ing. A plausible one is that the second-order-exact EnKF
at five members has almost attained its maximum ca-
pability. Indeed, this filter and also the EnKF correct
the analysis state in a linear way based on a gain matrix
computed from the second-order statistics only. The use
of more ensemble members may improve the accuracy
in evaluating these statistics, but the filters still have not
exploited any other nonlinear characteristics (higher-or-
der moments, shape of the analysis density, . . .) of the
system. By contrast the particle filter can theoretically
attain the optimal performance when the number of par-
ticles goes to infinity. Note that the rank condition in
the second-order-exact EnKF requires that r $ 4 so that
one needs at least five ensemble members. This is be-

cause the rank of the gain matrix is 1 (as the observation
is a scalar) and the constraint matrix is of rank 3 usually
(as the state vector is of this dimension). The above
simulation results suggest that one does not need a num-
ber of ensemble members more than the strict minimum.
Note that the second plot of Fig. 5 (with four ensemble
members) corresponds actually to the singular second-
order-exact EnKF, in which the constraint matrix has
been reduced to a rank-two matrix (in line with the fact
that the Lorenz attractor has a dimension of about 2).
The performance of this filter is somewhat worse than
the one with five ensemble members, but not much.

Finally, Fig. 6 shows the behavior of the SEIK filter
and again illustrates the effect of the forgetting factor.
As one can see, this effect is quite drastic near the end
of the experiment. The performance of this filter com-
pares very favorably to the second-order-exact EnKF. It
is almost as good as the later with five ensemble mem-
bers and is even better than this filter with four ensemble
members. Yet, it requires only three members.

5. Conclusions and discussion

We have introduced some new filters of stochastic
nature for data assimilation in nonlinear systems. They
have in common with previously introduced filters, such
as the particle filter and the EnKF, the use of Monte
Carlo drawings to mimic the behavior of the system.
Our contributions consist of three main points:

1) The concept of second-order-exact sampling with
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FIG. 6. Rmse of the SEIK filter with and without the forgetting factor.

linear constraints. This permits the reduction of the
number of ensemble members to a strict minimum
and yet does not cause any degradation of perfor-
mance.

2) The exploitation of the (existence of a) low-dimen-
sional attractor of the system. This permits the fur-
ther reduction of the number of ensemble members,
especially in the case of a system with high-dimen-
sional phase space. The filter may be viewed roughly
as working on the attractor and not on the phase
space and the number of ensemble members may be
reduced to just the dimension of the attractor plus
1. Again, this does not degrade performance.

3) The use of the forgetting factor to enhance filter
stability. Our simulation studies show that filter in-
stability is the most vexing problem in nonlinear data
assimilation. The filter can work well for a while and
suddenly commit large errors and then can lose track
of the true system state almost completely. The use
of the forgetting factor can be helpful to alleviate
this problem. Our simulations shows that it is rather
effective to prevent such ‘‘filter excursions’’ or at
least reduce their magnitude and duration.

In terms of performance, our new filters are com-
parable to the EnKF, all with an appropriate forgetting
factor. The advantage of the new filters is in their low
computational cost. In this respect the SEIK filter is the
best. The particle filter, however, can outperform these
filters (as well as the EnKF), but with the cost of a very
large number of particles. In the case of the Lorenz

model considered here, the break point seems to be
around 200.
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APPENDIX

Second-Order-Exact Sampling with Linear
Constraints

The goal is to draw a sample of size r 1 1 from a
Gaussian distribution with mean m and covariance ma-
trix S, conditionally on the constraints that the sample
mean and covariance matrix equal exactly m and S and
on some other linear constraints. More precisely, the
obtained sample x1, . . . , xr11 must satisfy

r111
x 5 m,O jr 1 1 j51

r111
T(x 2 m)(x 2 m) 5 S (A.1)O j jr 1 1 j51

[(x 2 m) · · · (x 2 m)]C 5 0, (A.2)1 r11

where C is a given matrix of r 1 1 rows and has rank
r0 # r.
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Without loss of generality, we may assume that m 5
0, since by adding a constant to the sample we can adjust
it to have any mean. Further, the first constraint of (A.1)
and the constraint (A.2) can be grouped into

 1 
[x · · · x ]G 5 0, G 5 _ C . (A.3) 1 r11  

1 

Let r9 be the rank of S, then one may decompose S
into LLT where L is a full rank matrix of r9 columns.
By (A.1), x1, . . . , xr11 must lie on the linear space
spanned by the column of L. Thus they may be written
in the form Ly1, . . . , Lyr11 where y1, . . . , yr11 is a
sample from the conditional Gaussian distribution of
zero mean and unit covariance matrix, subject to the
constraints that

r111
T[y · · · y ]G 5 0, y y 5 I. (A.4)O1 r11 j jr 1 1 j51

The first constraint in (A.4) means that the row vec-
tors of [y1 · · · yr11] belong to the linear subspace of
Rr11 orthogonal to the columns of G. Thus, letting {v1,
. . . , vr2r0} be an orthonormal basis of this space, this
constraints implies that

[y1 · · · yr11]

5 [y1 · · · yr11][v1 · · · vr2r 0][v1 · · · vr2r 0]T.

Without the constraint (A.4), the elements of the matrix
[y1 · · · yr11] are simply independent standard normal
variables; hence, the row vectors of the matrix WT 5
[y1 · · · yr11][v1 · · · vr2r0] are independent random
Gaussian vectors in Rr2r0 with zero mean and unit co-
variance matrix. The first constraint in (A.4) simply im-
poses that [y1 · · · yr11] must equal ([v1 · · · vr2r0]W)T,
but the random matrix W still has the same distribution
as before; that is, their elements are independent stan-
dard normal variables. The second constraint in (A.4),
however, imposes that the matrix V 5 W/ r 1 1 sat-Ï
isfies VTV 5 I, which can be satisfied only if r 2 r0
$ r9, since V has size (r 2 r0) 3 r9. Thus the problem
reduces to drawing V according to the Gaussian dis-
tribution over matrices with elements being independent
of zero mean and same variance, conditionally on the
constraint that their columns are of unit norm and or-
thogonal among themselves. Such distribution is called
uniform because it is invariant with respect to orthogonal
transformation: if V is a uniform random orthogonal
matrix, then so is VO, for any orthogonal matrix O.

We now develop an efficient method to draw a uni-
form random orthogonal matrix V, of size (r 2 r0) 3
r9. Denoted by zr2r0, its last column, then, this vector
is uniformly distributed over the unit sphere of R r2r0 .
Construct a (r 2 r0) 3 (r 2 r0 2 1) matrix H(z r2r0)
that completes it to form an orthonormal matrix; that
is, the columns of H(zr2r0) form a basis of the orthog-
onal complement to the linear subspace spanned by

zr2r0 . Then one can write V as [H(z r2r0)Vr2r021 zr2r0]
where V r2r021 5 H(zr2r0)TV is the matrix whose col-
umns contain the coordinates of the corresponding col-
umns of V relative to the above basis. It can be seen
that Vr2r021 is a (r 2 r0 2 1) 3 (r9 2 1) uniform
random orthogonal matrix, independent of zr2r0 . Sim-
ilarly, let zp21 be the first column of V r2r021 and
H(z r2r021) be a (r 2 r0 2 1) 3 (r 2 r0 2 2) matrix
that completes it to form an orthonormal matrix. Then
again V r2r021 5 [H(z r2r021 )V r2r022 z r2r021 ] where
Vr2r022 is a (r 2 r0 2 2) 3 (r9 2 2) uniform random
orthogonal matrix. Continuing this way, one gets

Vk 5 [H(zk)Vk21 zk], (A.5)

where zk is a uniform random vector on the unit sphere
of Rk, H(zk) is a k 3 (k 2 1) matrix that completes zk

to form an orthonormal matrix, and Vk is a k 3 (k 2
r 1 r0 1 r9) uniform random orthogonal matrix.

The procedure for drawing V is based on the above
recurrence, in the reverse order, of increasing k. One
starts with Vr2r92r011, which is a column matrix uni-
formly distributed over the unit sphere of Rr2r92r011 (if
r 5 r9 1 r0, this reduces to a random number taking
the values 61 with probability ½ each). Then one con-
structs Vk for k 5 r 2 r9 2 r0 1 2, . . . , r 2 r0 by
(A.5), each time drawing a uniform random vector zk

on the unit sphere of Rk. Finally, take V to be Vr2r0.
To complete our sampling procedure, we also need

to construct an orthonormal basis of the linear subspace
of Rr11 orthogonal to the column of G. This can be done
through the matrix H( · ) again. The idea is to construct
recursively the vectors zr11, . . . , zr112r0, such that at
the stage i, (0 # i # r0), the columns of the matrix
product H(zr11) · · · H(zr112i) form a basis of the linear
subspace of Rr11 orthogonal to i 1 1 distinct columns
c0, . . . , c i of G. At the first stage (i 5 0), it is clear
that one can take zr11 5 c0/\c0\ where c0 is any nonzero
column of G. Suppose now that zr11, . . . , zr112i have
been obtained satisfying the above requirement. Then
for any vector c i11, [H(zr11) · · · H(zr112i)] [H(zr11) · · ·
H(zr112i)]Tci11 is no other than its orthogonal projection
onto the linear subspace of Rr11 orthogonal to c0, . . . ,
ci. Choose ci11 to be a column of G such that this pro-
jection is not zero (which is clearly possible if i , r0),
so that one can normalize the vector

H (zr11) · · · H (zr112i)]Tci11

5 H T(zr112i) · · · H T(zr11)c i11

to get a vector z r2 i of unit norm. Then since
[H(zr2i) zr2i] is an orthonormal matrix, the columns of
[H(zr11) · · · H(zr112i)] [H(zr2i) zr2i] clearly also form
an orthogonal basis of the linear subspace of Rr11 or-
thogonal to c0, . . . , c i. But we already know that the
last element of this basis is parallel to the orthogonal
projection of c i11 onto the linear subspace of Rr11 or-
thogonal to c0, . . . , c i; therefore, the other elements,
which are columns of H(zr11) · · · H(zr2i), form an or-
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thogonal basis of the linear subspace of Rr11 orthogonal
to c0, . . . , c i11. Thus the vector zr2i satisfies the re-
quirement. One continues this way until i 5 r0, at this
stage all columns of G belong to the linear space
spanned by c0, . . . , cr0.

In summary, an orthonormal basis of the linear sub-
space of Rr11 orthogonal to the column of G is given
by the columns of the matrix H(zr11) · · · H(zr112r0)
where zr11, . . . , zr112r0 are computed recursively as fol-
lows.

1) Initialization: Pick a nonzero column of the matrix
G and normalize it to get zr11 and denote by G (0) the
matrix formed by the remaining columns.

2) Recursion: For i 5 0, . . . , r0 2 1, pick a nonzero
column of the matrix HT(zr112i)G (i) and normalize it
to get zr2i and denote by G (i11) the matrix formed by
the remaining columns.

At the last stage (i 5 r0 2 1), the matrix G (r0) will
be a null matrix (or an empty matrix if G has r0 1 1
columns). Thus the above procedure also provides a
means to determine the rank of G.

Once zr11, . . . , zr112r0 have been computed as above,
one may obtain the vectors y1, . . . , yr11 as the rows of
the matrix r 1 1 H(zr11) · · · H(zr112r0)V. Recall thatÏ
V 5 Vr2r0, hence it is no other than the matrix formed
by the first r9 columns of the matrix Vr11 obtained by
continuing the recursion (A.5) up to k 5 r 1 1. Note
that the remaining r0 1 1 columns of Vr11 form a basis
of the linear space spanned by the columns of G.

It remains to construct the matrix H(zk). A simple
way is to use the Householder matrix, arising from the
well-known Householder transformation. The House-
holder matrix, associated with a vector zk 5 Rk of unit
norm, is given by

 z1,k 1 _
I 2 [z · · · z z 1 s],  1,k k21,k k,k1 1 sz zk,k k21,k 

z 1 sk,k 

where s 5 61 and z1,k, . . . , zk,k are the elements of zk

(for best numerical accuracy, we take s to be the sign
of zk,k). This matrix is orthogonal and admits as its last
column 2szk. Thus one may take as H(zk) the matrix
defined by the first k 2 1 columns of the above matrix.
The advantage of this choice is that multiplication with
a Householder matrix is very fast.
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