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Stochastic Mirror Descent on Overparameterized

Nonlinear Models
Navid Azizan , Member, IEEE, Sahin Lale, Graduate Student Member, IEEE, and Babak Hassibi, Member, IEEE

Abstract— Most modern learning problems are highly over-
parameterized, i.e., have many more model parameters than
the number of training data points. As a result, the training
loss may have infinitely many global minima (parameter vectors
that perfectly “interpolate” the training data). It is therefore
imperative to understand which interpolating solutions we con-
verge to, how they depend on the initialization and learning
algorithm, and whether they yield different test errors. In this
article, we study these questions for the family of stochastic
mirror descent (SMD) algorithms, of which stochastic gradient
descent (SGD) is a special case. Recently, it has been shown
that for overparameterized linear models, SMD converges to
the closest global minimum to the initialization point, where
closeness is in terms of the Bregman divergence corresponding
to the potential function of the mirror descent. With appropriate
initialization, this yields convergence to the minimum-potential
interpolating solution, a phenomenon referred to as implicit
regularization. On the theory side, we show that for sufficiently-
overparameterized nonlinear models, SMD with a (small enough)
fixed step size converges to a global minimum that is “very close”
(in Bregman divergence) to the minimum-potential interpolating
solution, thus attaining approximate implicit regularization. On the
empirical side, our experiments on the MNIST and CIFAR-
10 datasets consistently confirm that the above phenomenon
occurs in practical scenarios. They further indicate a clear
difference in the generalization performances of different SMD
algorithms: experiments on the CIFAR-10 dataset with different
regularizers, ℓ1 to encourage sparsity, ℓ2 (SGD) to encourage
small Euclidean norm, and ℓ∞ to discourage large components,
surprisingly show that the ℓ∞ norm consistently yields better
generalization performance than SGD, which in turn generalizes
better than the ℓ1 norm.

Index Terms— Deep learning, implicit regularization, mirror
descent, overparameterization, stochastic gradient descent (SGD).
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I. INTRODUCTION

D
EEP learning has demonstrably enjoyed a great deal

of success in a wide variety of tasks [1]–[7]. Despite

its tremendous success, the reasons behind the good per-

formance of these methods on unseen data are not fully

understood (and, arguably, remains somewhat of a mystery).

While the special deep architecture of these models seems

to be important to the success of deep learning, the archi-

tecture is only part of the story, and it has been now widely

recognized that the optimization algorithms used to train these

models, typically stochastic gradient descent (SGD) and its

variants, play a key role in learning parameters that generalize

well.

Since these deep models are highly overparameterized, they

have a lot of capacity and can fit to virtually any (even

random) set of data points [8]. In other words, these highly

overparameterized models can “interpolate” the training data,

so much so that this regime has been called the “interpolating

regime” [9]. In fact, on a given dataset, the loss function

typically has (infinitely) many global minima, which, however,

can have drastically different generalization properties (many

of them perform poorly on the test set). Which minimum

among all the possible minima we converge to in practice is

determined by the initialization and the optimization algorithm

that we use for training the model.

Since the loss functions of deep neural networks are

nonconvex—sometimes even nonsmooth—in theory, one may

expect the optimization algorithms to get stuck in local minima

or saddle points. In practice, however, such simple stochastic

descent algorithms almost always reach zero training error,

i.e., a global minimum of the training loss [8], [10]. More

remarkably, even in the absence of any explicit regularization,

dropout, or early stopping [8], the global minima obtained

by these algorithms seem to generalize quite well (con-

trary to some other “bad” global minima). It has also been

observed that even among different optimization algorithms,

i.e., SGD and its adaptive variants, there is a discrepancy in

the solutions achieved by different algorithms and how they

generalize [11].

In this article, we propose training deep neural networks

with the family of stochastic mirror descent (SMD) algo-

rithms, which is a generalization of the popular SGD. For

any choice of potential function, there is a corresponding

mirror descent algorithm. In particular, to see whether these

algorithms lead to different minima and generalize differently,

we train a standard ResNet-18 architecture on the popular

CIFAR-10 dataset using SMD with a few different potential
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functions: ℓ1 norm, ℓ2 norm (SGD), and ℓ∞ norm.1 In all

the cases, we train the network with a sufficiently small

fixed step size until we converge to an interpolating solution

(global minimum). Comparisons between the histograms of

these different global minima show that they are vastly dif-

ferent. In particular, the solutions obtained by ℓ1-SMD are

much sparser, and on the contrary, the solutions obtained

by ℓ∞ have virtually no zero components while having a

smaller maximum. More importantly, there is a clear gap

in the generalization performance of these algorithms. In

fact, surprisingly and somewhat counterintuitively, the solution

obtained by ℓ∞-norm SMD (which uses all the parameters

in the already highly overparameterized network) consistently

generalizes better than the one obtained by SGD, which in turn

outperforms the sparser one obtained by the ℓ1-norm SMD.

This begs the question:

Which global minima do these algorithms converge to, and

what properties do they have?

On the theory side, we show that, for overparameterized

nonlinear models, if the model is sufficiently overparame-

terized so that the random initialization point is close to

the manifold of interpolating solutions (something that is

occasionally referred to as the “blessing of dimensionality”),

then the SMD algorithm for any particular potential function

converges to a global minimum that is approximately the

closest one to the initialization, in the Bregman divergence

corresponding to the potential. For the special case of SGD,

this means that it converges to a global minimum which is

approximately the closest one to the initialization in the usual

Euclidean sense.

We perform extensive systematic experiments with various

initial points and various mirror descent algorithms for the

MNIST and CIFAR-10 datasets using standard off-the-shelf

deep neural network architectures for these datasets with stan-

dard random initialization, and we measure all the resulting

pairwise Bregman divergences. We found that every single

result is exactly consistent with the above theory. Indeed,

in all our experiments, the global minimum achieved by any

particular SMD algorithm is the closest, compared with all

other global minima obtained by other mirrors and other ini-

tializations, to its initialization in the corresponding Bregman

divergence. In particular, the global minimum obtained by

SGD from any particular initialization is the closest to the

initialization in the Euclidean sense, both among the global

minima obtained by different mirrors and among the global

minima obtained by different initializations.

This result, proven theoretically and corroborated by exten-

sive experiments, further implies that when initialized around

zero, SGD converges to a solution that has almost the smallest

Euclidean norm, thus acting as an approximate ℓ2-norm regu-

larizer. More generally, when initialized at the minimizer of

the potential, SMD with any potential function ψ converges

to a solution that has almost the smallest potential ψ . For

instance, when initialized around zero, the solution obtained

1Since the potential function needs to be differentiable and strictly convex,
and ℓ1 and ℓ∞ norms are not, instead, we use ℓ1+ǫ and ℓN norms for a
sufficiently small ǫ and a sufficiently large N (see Section III).

by SMD with ℓ1-norm potential is approximately the minimum

ℓ1-norm one, which explains why its weights are much sparser.

Similarly, the solution obtained by SMD with the ℓ∞-norm

potential has an ℓ∞-norm regularization, which explains why

the maximum of the weights is much smaller in this case.

II. BACKGROUND

A. Preliminaries

Let us denote the training dataset by {(xi, yi ) : i =

1, . . . , n}, where xi ∈ R
d are the inputs and yi ∈ R are

the labels. The model (which can be, e.g., linear, a deep

neural network and so on) is defined by the general function

f (xi , w) = fi (w) with some parameter vector w ∈ R
p.

Since typical deep models have a lot of capacity and are

highly overparameterized, we are particularly interested in the

overparameterized (or so-called interpolating) regime, where

p > n (often p ≫ n). In this case, there are many parameter

vectors w that are consistent with the training data points.

We denote the set of these parameter vectors by

W = {w ∈ R
p | f (xi , w) = yi , i = 1, . . . , n}. (1)

This is a high-dimensional set (e.g., a (p − n)-dimensional

manifold) in R
p and depends only on the training data

{(xi , yi) : i = 1, . . . , n} and the model f (·, ·).

The total loss on the training set (empirical risk) can

be expressed as L(w) =
∑n

i=1 L i(w), where L i (·) =

ℓ(yi , f (xi , w)) is the loss on the individual data point i

and ℓ(·, ·) is a differentiable nonnegative function, with the

property that ℓ(yi , f (xi , w)) = 0 iff yi = f (xi , w). Often,

ℓ(yi , f (xi , w)) = ℓ(yi − f (xi , w)), with ℓ(·) convex and

having a global minimum at zero (such as square loss and

Huber loss). In this case, L(w) =
∑n

i=1 ℓ(yi − f (xi , w)). The

conventional gradient descent (GD) algorithm, for example,

can be used as an attempt to minimize L(·) over w.

B. Stochastic Mirror Descent

An important generalization of GD is the mirror descent

(MD) algorithm, which was first introduced by Nemirovski

and Yudin [12] and has been widely used since then [13]–[16].

Consider a strictly convex differentiable function ψ(·), called

the potential function. Then, MD is given by the following

recursion:

∇ψ(wi ) = ∇ψ(wi−1) − η∇L(wi−1), w0 (2)

where η > 0 is known as the step size or learning rate. Note

that, due to the strict convexity of ψ(·), the gradient ∇ψ(·)

defines an invertible map so that the recursion in (2) yields

a unique wi at each iteration, i.e., wi = ∇ψ−1(∇ψ(wi−1) −

η∇L(wi−1)). Compared to classical GD, rather than update

the weight vector along the direction of the negative gradient,

the update is done in the “mirrored” domain determined by the

invertible transformation ∇ψ(·). Mirror descent was originally

conceived to exploit the geometrical structure of the problem

by choosing an appropriate potential. Note that MD reduces

to GD when ψ(w) = 1
2
‖w‖2 since the gradient is simply the

identity map.
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Alternatively, the update rule (2) can be expressed as

wi = arg min
w

ηwT ∇L(wi−1) + Dψ (w,wi−1) (3)

where

Dψ (w,wi−1) := ψ(w) − ψ(wi−1)−∇ψ(wi−1)
T (w − wi−1)

(4)

is the Bregman divergence with respect to the potential func-

tion ψ(·). Note that Dψ (·, ·) is nonnegative, convex in its first

argument, and that, due to strict convexity, Dψ (w,w′) = 0 iff

w = w′.

Different choices of the potential function ψ(·) yield dif-

ferent optimization algorithms, which will potentially have

different implicit biases. A few examples follow.

Gradient Descent: For the potential function ψ(w) =
1
2
‖w‖2, the Bregman divergence is Dψ (w,w′) = 1

2
‖w −w′‖2,

and the update rule reduces to that of SGD.

Exponentiated Gradient Descent: For ψ(w) =
∑

j w j log w j , the Bregman divergence becomes the

unnormalized relative entropy (Kullback–Leibler divergence)

Dψ (w,w′) =
∑

j w j log(w j/w
′
j ) −

∑

j w j +
∑

j w′
j , which

corresponds to the exponentiated GD (also known as the

exponential weights) algorithm [17].

p-Norm Algorithm: For any q-norm squared potential

function ψ(w) = 1
2
‖w‖2

q , with 1
p

+ 1
q

= 1, the algorithm

will reduce to the so-called p-norm algorithm [18], [19].

When n is large, computation of the entire gradient may be

cumbersome. Alternatively, in online scenarios, the entire loss

function L(·) may not be available, and only the local loss

functions may be provided at each iteration. In such settings,

a stochastic version of MD has been introduced, aptly called

stochastic mirror descent (SMD), which can be considered the

straightforward generalization of stochastic gradient descent

(SGD),

∇ψ(wi ) = ∇ψ(wi−1) − η∇L i(wi−1), w0. (5)

The instantaneous loss functions L i (·) can be either drawn at

random or cycled through periodically.

III. TRAINING DEEP NEURAL NETWORKS WITH SMD

As mentioned earlier, the heavy overparameterization in

typical deep neural networks means that the loss function

for such architectures typically has infinitely many global

minima, and these different minima can have very different

properties and generalization performances. Motivated by this

fact, we propose training deep neural networks with SMD

algorithms, to see whether they lead to different global minima

and different generalization performances.

In particular, we propose training deep neural networks with

SMD with potential function ψ(w) = 1
q
‖w‖

q
q , which can be

expressed as

wi [ j ] = ||wi−1[ j ]|q−1 sign(wi−1[ j ]) − η∇L i (wi−1)[ j ]|
1

q−1

× sign(|wi−1[ j ]|q−1 sign(wi−1[ j ]) − η∇L i (wi−1)[ j ])

(6)

where wi [ j ] denotes the j th element of the wi vector.

Fig. 1. Generalization performance of different SMD algorithms on the
CIFAR-10 dataset using the ResNet-18 neural network. SMDs with higher
norms (which are surrogates for ℓ∞ norm) tend to achieve better generalization
performance (lower test error) than the ones with lower norms. In particular,
ℓ14 outperforms SGD (state of the art), whereas ℓ1-SMD performs worse than
both.

Note that, for this particular choice of potential function,

the update rule is separable, i.e., the j th element of the new

weight vector can be computed using only the j th element

of the weight and gradient vectors. This allows for efficient,

parallel, and distributed implementation of the algorithm,

which is highly desirable for large-scale learning tasks.

We should also remark that the computational complexity

of the ℓq -norm SMD is of the same order as that of the usual

SGD. In other words, it is linear in the number of weights,

which, again, can also be parallelized in the same way as SGD.

In addition, the storage complexity of the algorithm

is exactly the same as the usual SGD. All that

are stored are the weights. Code for SMD, which

can be applied to arbitrary models, is available at

https://github.com/SahinLale/StochasticMirrorDescent.

A. Experiment

We take the popular CIFAR-10 dataset and the stan-

dard ResNet-18 architecture, commonly used for this dataset.

We initialize the network with random weights around zero,

as usual, and train it with the ℓq -norm SMD for a few different

values of k. In particular, we use: ℓ1+ǫ norm, ℓ2 norm (SGD),

ℓ3 norm, ℓ8 norm, ℓ10 norm, and ℓ14 norm, where ℓ1+ǫ is a

surrogate for ℓ1 norm and the higher norms are surrogates for

the ℓ∞ norm. In all the cases, we choose the step size to be

sufficiently small and train for a sufficiently large number of

steps until we converge to an interpolating solution (global

minimum).

We compare the generalization performance of these dif-

ferent solutions on the test set. Fig. 1 shows the test errors

of the solutions. As can be seen, there is a clear gap

in the generalization performance of the algorithms: SMD

with higher norms consistently outperforms SGD, which in

turn performs better than the SMD with ℓ1 norm. In fact,

perhaps surprisingly, by virtue of changing the optimizer

from SGD to these high-norm SMDs, without any additional

tricks, we outperform the state of the art for ResNet-18 on
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Fig. 2. Histogram of the absolute value of the final weights in the network for different SMD algorithms with different potentials. Note that each of the
four histograms corresponds to an 11 × 106 dimensional weight vector that perfectly interpolates the data. Even though the weights remain quite small,
the histograms are drastically different. ℓ1-SMD induces sparsity on the weights. SGD appears to lead to a Gaussian distribution on the weights. ℓ3-SMD
starts to reduce the sparsity, and ℓ10 shifts the distribution of the weights significantly, so much so that almost all the weights are nonzero.

CIFAR-10. This is particularly remarkable, given that this very

architecture had been designed with training with SGD in

mind.

One may be curious to see how different the weights

obtained by different algorithms look. Fig. 2 shows the his-

togram of the absolute value of the weights for four different

SMDs, initialized by the exact same set of weights. The

histograms of the final weights look substantially different,

and since they all started from the same initial weights and

they all interpolate the same dataset, this difference is fully

attributable to the mirrors used. Remarkably, the histogram

of the ℓ1-SMD has more weights at and around zero, i.e., it

is very sparse. The histogram of the ℓ2-SMD (SGD) looks

almost perfectly Gaussian. The one corresponding to ℓ3 has

somewhat shifted to the right, and the ℓ∞ has completely

moved away from zero (i.e., all the components are nonzero)

while having no “tail.” The fact that the ℓ∞ solution, which

uses all the parameters in the already highly overparameterized

network, generalizes better than the sparser ones is quite

remarkable.

IV. THEORETICAL RESULTS

In this section, we provide a theoretical analysis of what dif-

ferent SMD algorithms converge to. In particular, we show that

for highly overparameterized models, under certain assump-

tions: 1) SMD converges to a global minimum and 2) the

global minimum obtained by SMD is approximately the

closest one to the initialization in the Bregman divergence

corresponding to the potential.

A. Warm-Up: Overparameterized Linear Models

Overparameterized (or underdetermined) linear models have

been recently studied in many papers due to their simplicity

and the fact that there are interesting insights that one can

obtain from them. In this case, the model is f (xi , w) = x T
i w,

the set of global minima is W = {w | yi = x T
i w, i =

1, . . . , n}, and the loss is L i (w) = ℓ(yi −x T
i w). The following

result characterizes the solution that SMD converges to ([20]

and [21]).

Proposition 1: Consider a linear overparameterized model.

For sufficiently small step size, i.e., for any η > 0 for which

ψ(·)−ηL i (·) is convex, and for any initialization w0, the SMD

iterates converge to

w∞ = arg min
w∈W

Dψ(w,w0).

Note that the step size condition, i.e., the convexity of ψ(·)−

ηL i(·), depends on both the loss and the potential function.

For the case of SGD, ψ(w) = 1
2
‖w‖2, and ℓ(yi − x T

i w) =
1
2
(yi − x T

i w)2, so the condition reduces to the well-known

η ≤ 1/‖xi‖
2. In this case, Dψ(w,w0) is simply 1

2
‖w − w0‖

2.

Corollary 2: In particular, for the initialization w0 =

arg minw∈Rp ψ(w), under the conditions of Proposition 1,

the SMD iterates converge to

w∞ = arg min
w∈W

ψ(w). (7)

This means that running SMD for a linear model with the

aforementioned w0, without any explicit regularization, results

in a solution that has the smallest potential ψ(·) among all

solutions, i.e., SMD implicitly regularizes the solution with

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:19:55 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZIZAN et al.: SMD ON OVERPARAMETERIZED NONLINEAR MODELS 5

Fig. 3. Illustration of the parameter space. W represents the set of global
minima, w0 is the initialization, B is the local neighborhood, w∗ is the closest
global minimum to w0 (in Bregman divergence), and w∞ is the minimum that
SMD converges to.

Fig. 4. Illustration of DLi
(w,w′) ≥ 0 in a local region in Assumption 1.

ψ(·). In particular, this means that SGD initialized around

zero acts as an ℓ2-norm regularizer. In what follows, we show

that these results continue to hold for highly overparameterized

nonlinear models in an approximate sense.

B. Main Results

Let us define

DL i
(w,w′) := L i(w) − L i(w

′) − ∇L i (w
′)T (w − w′) (8)

which is defined in a similar way to a Bregman divergence

for the loss function. The difference, though, is that, due to

the nonlinearity of f (·, ·), unlike the potential function of the

Bregman divergence, the loss function L i(·) = ℓ(yi − f (xi , ·))

need not be convex (even when ℓ(·) is).

It has been argued in several recent papers that in highly

overparameterized neural networks, because W is very high

dimensional, any random initialization w0 is close to it, with

high probability [20], [22]–[25] (see also the discussion in

Appendix A in the Supplementary Material). In such settings,

it is reasonable to make the following assumption about the

manifold.

Assumption 1: Denote the initial point by w0. There exists

w ∈ W and a region B = {w′ ∈ R
p | Dψ (w,w′) ≤ ǫ}

containing w0, such that DL i
(w,w′) ≥ 0, i = 1, . . . , n, for all

w′ ∈ B.

It is important to understand what this assumption means.

Since L i (·) is not necessarily convex, it is certainly not the

case that DL i
(w,w′) ≥ 0 for all w′. However, since w is

a minimizer of L i (·), there will be a neighborhood around

it such that for all w′ in this neighborhood, DL i
(w,w′) ≥

0 (see Fig. 4 for an illustration). What we are requiring is

that the initialization w0 is inside the intersection of all such

neighborhoods for i = 1, . . . , n. In other words, we require

w0 close enough to W . ǫ in Assumption 1 characterizes the

closeness.

Our second assumption states that in this local region,

the first and second derivatives of the model are bounded.

Assumption 2: Consider the region B in Assumption 1.

fi (·) have bounded gradient and Hessian on the convex hull

of B, i.e., ‖∇ fi (w
′)‖ ≤ γ , and α ≤ λmin(H f i

(w′)) ≤

λmax(H f i
(w′)) ≤ β, i = 1, . . . , n, for all w′ ∈ conv B.

This is a mild assumption, which is assumed in other related

work such as [26] as well. Note that we do not require α to be

positive (just its boundedness). The following theorem states

that under Assumption 1, SMD converges to a global minimum

(see Fig. 3).

Theorem 3: Consider the set of interpolating parameters

W = {w ∈ R
p | f (xi , w) = yi , i = 1, . . . , n}, and the SMD

iterates given in (5), where every data point is revisited after

some steps. Under Assumption 1, for sufficiently small step

size, i.e., for any η > 0 for which ψ(·) − ηL i(·) is strictly

convex on B for all i , the following holds.

1) All the iterates {wi } remain in B.

2) The iterates converge (to w∞).

3) w∞ ∈ W .

In other words, we converge to a global minimum (interpo-

lating solution). The convergence is “local” in the sense that

Assumption 1 has to be met. However, as argued earlier, that is

not an unreasonable assumption in highly overparameterized

settings. Note that, while convergence (to some point) with

decaying step size is almost trivial, this result establishes con-

vergence to the solution set with a fixed step size. Furthermore,

the convergence is deterministic and is not in expectation or

with high probability. For example, this result also applies to

the case where we cycle through the data deterministically.

We should also remark that the choice of distance in the

definition of the “ball” B was important to be the Bregman

divergence with respect to ψ(·) and in that particular order.

In fact, one cannot guarantee that the SMD iterates get closer

to an interpolating w at every step in the usual Euclidean sense.

However, one can establish that it gets closer in Dψ(w, ·).

Finally, it is important to note that we need the step size to be

just small enough to guarantee the strict convexity of ψ(·) −

ηL i(·) inside B and not globally.

Denote the global minimum that is closest to the initializa-

tion in the Bregman divergence by w∗, i.e.,

w∗ = arg min
w∈W

Dψ (w,w0). (9)

Recall that in the linear case, this was what SMD converges

to. We show that in the nonlinear case, under Assumptions 1

and 2, SMD converges to a point w∞ that is “very close”

to w∗ (see Fig. 3).

Theorem 4: Define w∗ = arg minw∈W Dψ (w,w0). Under

the conditions of Theorem 3 and Assumption 2, the following

holds.

1) Dψ(w∞, w0) = Dψ(w∗, w0) + o(ǫ).

2) Dψ(w∗, w∞) = o(ǫ).

In other words, if we start with an initialization that is

O(ǫ) away from W , in Bregman divergence (Assumption 1),

we converge to a point w∞ ∈ W that is o(ǫ) away from w∗,

in Bregman divergence.

Corollary 5: For the initialization w0 = arg minw∈Rp ψ(w),

under the conditions of Theorem 4, w∗ = arg minw∈W ψ(w)
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TABLE I

FIXED INITIALIZATION (THE SETTING SHOWN IN FIG. 5). WE HAVE TRAINED THE NETWORK FROM A COMMON FIXED INITIALIZATION WITH FOUR

DIFFERENT SMDS (ℓ1 , ℓ2 , ℓ3 , AND ℓ10) TO OBTAIN FOUR DIFFERENT INTERPOLATING SOLUTIONS. FOR EACH INTERPOLATING SOLUTION,
WE CAN COMPUTE ITS DISTANCE FROM THE INITIAL WEIGHT VECTOR. SINCE WE HAVE FOUR DIFFERENT POTENTIALS, WE HAVE

FOUR DIFFERENT BREGMAN DIVERGENCES TO ASSESS THE DISTANCE BY. THIS GIVES US A 4 × 4 TABLE. THE COLUMNS

CORRESPOND TO THE FOUR DIFFERENT INTERPOLATING SOLUTIONS (ONE FOR EACH SMD) AND THE ROWS CORRESPOND

TO THE DIFFERENT BREGMAN DIVERGENCES. AS CAN BE SEEN, THE SMALLEST ENTRY IN EACH ROW IS THE

ONE WHERE THE POTENTIALS CORRESPONDING TO THE ALGORITHM AND THE BREGMAN DIVERGENCE

MATCH. IN OTHER WORDS, FOR EACH BREGMAN DIVERGENCE, THE CLOSEST INTERPOLATING SOLUTION

TO THE INITIALIZATION IS THE ONE THAT IS OBTAINED FROM THE SMD CORRESPONDING TO

THAT PARTICULAR BREGMAN DIVERGENCE

and the following holds.

1) ψ(w∞) = ψ(w∗) + o(ǫ).

2) Dψ (w∗, w∞) = o(ǫ).

C. Fundamental Identity of SMD

An important tool used in our proofs is a “fundamental

identity” that governs the behavior of the iterates of SMD,

which holds under very general conditions (see Appendix A

in the Supplementary Material for a proof).

Lemma 6: For any model f (·, ·), any differentiable loss

ℓ(·), any parameter w ∈ W , and any step size η > 0,

the following relation holds for the SMD iterates {wi}:

Dψ (w,wi−1) = Dψ (w,wi ) + Dψ−ηL i
(wi , wi−1)

+ ηL i(wi ) + ηDL i
(w,wi−1) (10)

for all i ≥ 1.

This identity allows one to prove the results in a remarkably

simple and direct way. The ideas behind it are related to

the H∞ estimation theory [27], [28], which was originally

developed in the 1990s in the context of robust control theory.

In fact, it has connections to the minimax optimality of SGD,

which was shown in [29] for linear models, and recently

extended to nonlinear models and general mirrors in [20].

V. EXPERIMENTAL VALIDATION

In this section, we evaluate the theoretical claims of

Section IV, by running extensive experiments for different

initializations and different mirrors and computing the dis-

tances between each global minimum achieved and each

initialization, in different Bregman divergences.

The theoretical results suggest that SMD converges

to (almost) the closest point in the corresponding Bregman

divergence. While accessing all the points on W and finding

the closest one is impossible, we design systematic experi-

ments to test this claim. We run experiments on some standard

deep learning problems, namely, a standard four-layer convo-

lutional neural network (CNN) on the MNIST dataset [30] and

the ResNet-18 [31] on the CIFAR-10 dataset [32]. We use the

cross-entropy loss as the loss function in our training. We train

the models from different initializations and with different

SMDs from each particular initialization, until we reach zero

training error, i.e., a point on W . We randomly initialize the

Fig. 5. Illustration of the experiments in Table I.

parameters of the networks around zero with N (0, 0.0001)

for the weights in the convolutional and batch-norm layers and

U(−0.01, 0.01) for the weights in the linear layers. We choose

six independent initializations for the CNN and eight for

ResNet-18, and for each initialization, we run different SMD

algorithms defined by the norm potential function ψ(w) =
1
q
‖w‖

q
q for the following values of q: 1) q = 1 + 0.01, as a

surrogate for ℓ1 norm; 2) q = 2, which is SGD; 3) q = 3;

and 4) q = 10, as a surrogate for ℓ∞ norm. We use a fixed

step size η, chosen small enough to avoid diverging. See

Appendix B in the Supplementary Material for more details

on the experiments.

In all the cases, provided the learning rate was small

enough, the algorithm converged to an interpolating solu-

tion. We measure the distances between the initializations

and the global minima obtained from different mirrors and

different initializations, in different Bregman divergences.

Tables I and II (as illustrated in Figs. 5 and 6) show some

examples among different mirrors and different initializations,

respectively. Fig. 7 shows the distances between a particular

initial point and all the final points obtained from different

initializations and different mirrors (the distances are often

orders of magnitude different, so we show them in a loga-

rithmic scale). The global minimum achieved by any mirror

from any initialization is the closest in the correct Bregman

divergence, among all mirrors, among all initializations, and

among both, which follows what Theorems 3 and 4 predict.

This trend is very consistent among all our experiments,

which can be found in Appendix B (see the Supplementary

Material).

It is worth emphasizing that there is virtually no addi-

tional overhead in training the networks with ℓq -norm SMD,
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TABLE II

FIXED POTENTIAL (THE SETTING SHOWN IN FIG. 6). WE HAVE TRAINED THE NETWORK FROM EIGHT DIFFERENT INITIAL POINTS WITH THE SAME

SMD (IN THIS CASE, SGD) TO OBTAIN EIGHT DIFFERENT INTERPOLATING SOLUTIONS. THE ROWS CORRESPOND TO THE INITIAL POINTS,
THE COLUMNS CORRESPOND TO THE INTERPOLATING SOLUTIONS, AND EACH ENTRY IS THE DISTANCE BETWEEN THE TWO, ALL

MEASURED IN THE SAME BREGMAN DIVERGENCE (IN THIS CASE, EUCLIDEAN). AS CAN BE SEEN, THE SMALLEST ENTRY IN

EACH ROW IS THE ONE WHERE THE INITIAL POINT AND THE FINAL POINT MATCH. IN OTHER WORDS, THE CLOSEST

FINAL POINT TO EACH INITIAL POINT i , AMONG ALL THE EIGHT FINAL POINTS, IS THE ONE OBTAINED BY THE

ALGORITHM FROM THE INITIAL POINT i

Fig. 6. Illustration of the experiments in Table II.

compared to SGD. The computational and memory complexity

of every iteration is the same. We empirically observed that

larger values of q require smaller step sizes, and in fact,

this is also what the theoretical condition on the step size

suggests. For instance, we have the step sizes for SGD and

ℓ10-SMD as 10−2 and 10−9, respectively. However, the number

of iterations required for ℓ10 SMD is not significantly higher

(1000 iterations, compared to 500 for SGD).

VI. PROOFS

In this section, we prove the main theoretical results dis-

cussed in Section IV.

A. Convergence of SMD to the Interpolating Set

Let us first prove the convergence of SMD to the set of

solutions.

Assumption 1: Denote the initial point by w0. There exists

w ∈ W and a region B = {w′ ∈ R
p | Dψ (w,w′) ≤ ǫ}

containing w0, such that DL i
(w,w′) ≥ 0, i = 1, . . . , n, for all

w′ ∈ B.

Theorem 3: Consider the set of interpolating parameters

W = {w ∈ R
p | f (xi , w) = yi , i = 1, . . . , n}, and the SMD

iterates given in (5), where every data point is revisited after

some steps. Under Assumption 1, for sufficiently small step

size, i.e., for any η > 0 for which ψ(·) − ηL i (·) is strictly

convex for all i, the following holds.

1) All the iterates {wi } remain in B.

2) The iterates converge (to w∞).

3) w∞ ∈ W .

Proof of Theorem 3: First, we show that all the iterates will

remain in B. Recall the identity (10) from Lemma 6, which

holds for all w ∈ W . If wi−1 is in the region B, we know that

the last term DL i
(w,wi−1) is nonnegative. Furthermore, if the

step size is small enough that ψ(·)−ηL i (·) is strictly convex,

the second term Dψ−ηL i
(wi , wi−1) is a Bregman divergence

and is nonnegative. Since the loss is nonnegative, ηL i (wi) is

always nonnegative. As a result, we have

Dψ(w,wi−1) ≥ Dψ(w,wi ). (11)

This implies that Dψ (w,wi ) ≤ ǫ, which means that wi is in

B too. Since w0 is in B, w1 will be in B, and therefore, w2

will be in B; similarly, all the iterates will remain in B.

Next, we prove that the iterates converge and w∞ ∈ W .

If we sum up the identity (10) for all i = 1, . . . , T , the first

terms on the right- and left-hand side cancel each other

telescopically, and we have

Dψ(w,w0) = Dψ(w,wT ) +

T
∑

i=1

[Dψ−ηL i
(wi , wi−1)+ηL i(wi)

+ ηDL i
(w,wi−1)]. (12)

Since Dψ (w,wT ) ≥ 0, we have
∑T

i=1[Dψ−ηL i
(wi , wi−1) +

ηL i(wi )+ηDL i
(w,wi−1)] ≤ Dψ (w,w0). If we take T → ∞,

the sum still has to remain bounded, i.e.,
∞

∑

i=1

[Dψ−ηL i
(wi , wi−1) + ηL i (wi) + ηDL i

(w,wi−1)]

≤ Dψ (w,w0). (13)

Since the step size is small enough that ψ(·)−ηL i (·) is strictly

convex for all i , the first term Dψ−ηL i
(wi , wi−1) is nonnega-

tive. The second term ηL i(wi ) is nonnegative because of the

nonnegativity of the loss. Finally, the last term DL i
(w,wi−1)

is nonnegative because wi−1 ∈ B for all i . Hence, all the three

terms in the summand are nonnegative, and because the sum

is bounded, they must go to zero as i → ∞. In particular

Dψ−ηL i
(wi , wi−1) → 0, and ηL i (wi) → 0. (14)

This implies convergence (wi → w∞) and that all the

individual losses are going to zero. Since every data point is

being revisited after some steps, all the data points are being

fit. Therefore, w∞ ∈ W . �
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Fig. 7. We have trained the network from a few (six for MNIST and eight for CIFAR-10) initial points with four different SMDs, to obtain a number
of interpolating solutions (24 for MNIST and 32 for CIFAR-10). The plot shows the distance between a particular initial point (initial point 2 for MNIST
and initial point 4 for CIFAR-10) and each of the interpolating solutions. The smallest distance, among all the interpolating solutions, corresponds exactly
to the final point obtained from the particular initial point by SGD. This trend is observed consistently for all other mirror descents and all initializations
(see Tables VIII and IX in Appendix B in the Supplementary Material.

B. Closeness of the Final Point to the Regularized Solution

Next, we show that with the additional Assumption 2 (which

is roughly equivalent to fi (·) having bounded Hessian in B),

not only do the iterates remain in B and converge to the set

W but also they converge to a point which is very close to

w∗ (the closest solution to the initial point, in the Bregman

divergence). The proof is again based on the fundamental

identity of SMD.

Assumption 2: Consider the region B in Assumption 1.

fi (·) have bounded gradient and Hessian on the convex hull

of B, i.e., ‖∇ fi (w
′)‖ ≤ γ , and α ≤ λmin(H f i

(w′)) ≤

λmax(H f i
(w′)) ≤ β, i = 1, . . . , n, for all w′ ∈ conv B.

Theorem 4: Define w∗ = arg minw∈W Dψ(w,w0). Under

the assumptions of Theorem 3 and Assumption 2, the follow-

ing holds.

1) Dψ (w∞, w0) = Dψ (w∗, w0) + o(ǫ).

2) Dψ (w∗, w∞) = o(ǫ).

Proof of Theorem 4: Recall the identity (10) from

Lemma 6. Summing the identity for all i ≥ 1, we have

Dψ (w,w0) = Dψ (w,w∞) +

∞
∑

i=1

[Dψ−ηL i
(wi , wi−1)+ηL i(wi )

+ ηDL i
(w,wi−1)] (15)

for all w ∈ W . Note that the only terms in the right-hand side,

which depend on w, are the first one Dψ(w,w∞) and the last

one η
∑∞

i=1 DL i
(w,wi−1). In what follows, we will argue that,

within B, the dependence on w in the last term is “weak.”

To further spell out the dependence on w in the last term,

let us expand DL i
(w,wi−1):

DL i
(w,wi−1) = 0 − L i (wi−1) − ∇L i (wi−1)

T (w − wi−1)

= −L i (wi−1)

+ℓ′(yi − fi (wi−1))∇ fi (wi−1)
T (w−wi−1) (16)

for all w ∈ W , where the first equality comes from the

definition of DL i
(·, ·) and the fact that L i (w) = 0 for w ∈ W .

The second equality is from taking the derivative of L i (·) =

ℓ(yi − fi (·)) and evaluating it at wi−1.

By the Taylor expansion of fi (w) around wi−1 and using

Taylor’s theorem (Lagrange’s mean-value form), we have

fi (w) = fi (wi−1) + ∇ fi (wi−1)
T (w − wi−1)

+
1

2
(w − wi−1)

T H f i
(ŵi )(w − wi−1) (17)

for some ŵi in the convex hull of w and wi−1. Since fi (w) =

yi for all w ∈ W , it follows that

∇ fi (wi−1)
T (w − wi−1) = yi − fi (wi−1)

−
1

2
(w−wi−1)

T H f i
(ŵi )(w−wi−1)

(18)

for all w ∈ W . Plugging this into (16), we have

DL i
(w,wi−1)

= −L i (wi−1) + ℓ′(yi − fi (wi−1))

×

(

yi − fi (wi−1) −
1

2
(w − wi−1)

T H f i
(ŵi )(w − wi−1)

)

(19)

for all w ∈ W . Finally, by plugging this back into the

identity (15), we have

Dψ (w,w0) = Dψ (w,w∞) +

∞
∑

i=1

[

Dψ−ηL i
(wi , wi−1)

+ηL i (wi) − ηL i (wi−1)

+ηℓ′(yi − fi (wi−1))

(

yi − fi (wi−1)

−
1

2
(w − wi−1)

T H f i
(ŵi)(w − wi−1)

)]

(20)
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for all w ∈ W . Note that this can be expressed as

Dψ (w,w0) = Dψ (w,w∞) + C −

∞
∑

i=1

1

2
ηℓ′(yi − fi (wi−1))

× (w − wi−1)
T H fi

(ŵi)(w − wi−1) (21)

for all w ∈ W , where C does not depend on w

C =

∞
∑

i=1

[Dψ−ηL i
(wi , wi−1) + ηL i(wi ) − ηL i (wi−1)

+ ηℓ′(yi − fi (wi−1))(yi − fi (wi−1))]. (22)

From Theorem 3, we know that w∞ ∈ W . Therefore,

by plugging it into (21) and using the fact that Dψ (w∞, w∞) =

0, we have

Dψ (w∞, w0) = C −

∞
∑

i=1

1

2
ηℓ′(yi − fi (wi−1))(w∞

−wi−1)
T H f i

(

w′
i

)

(w∞ − wi−1) (23)

where w′
i is a point in the convex hull of w∞ and wi−1 (and

therefore also in conv B), for all i . Similarly, by plugging w∗,

which is also in W , into (21), we have

Dψ (w∗, w0) = Dψ (w∗, w∞) + C −

∞
∑

i=1

1

2
ηℓ′(yi − fi (wi−1))

× (w∗ − wi−1)
T H f i

(

w′′
i

)

(w∗ − wi−1) (24)

where w′′
i is a point in the convex hull of w∗ and wi−1 (and

therefore also in conv B), for all i . Subtracting the last two

equations from each other yields

Dψ (w∞, w0) − Dψ (w∗, w0)

= −Dψ (w∗, w∞) +

∞
∑

i=1

1

2
ηℓ′(yi − fi (wi−1))

×
[

(w∗ − wi−1)
T H f i

(

w′′
i

)

(w∗ − wi−1)

− (w∞ − wi−1)
T H f i

(

w′
i

)

(w∞ − wi−1)
]

. (25)

Note that since all w′
i and w′′

i are in conv B, by Assumption 2,

we have

α‖w∞ − wi−1‖
2 ≤ (w∞ − wi−1)

T H f i

(

w′
i

)

(w∞ − wi−1)

≤ β‖w∞ − wi−1‖
2 (26)

and

α‖w∗ − wi−1‖
2 ≤ (w∗ − wi−1)

T H f i

(

w′′
i

)

(w∗ − wi−1)

≤ β‖w∗ − wi−1‖
2. (27)

Furthermore, again, since all the iterates {wi } are in B, it fol-

lows that ‖w∞ − wi−1‖
2 = O(ǫ) and ‖w∗ − wi−1‖

2 = O(ǫ).

As a result, the difference of the two terms, i.e.,
[

(w∗ −

wi−1)
T H fi

(w′′
i )(w

∗ − wi−1) − (w∞ − wi−1)
T H f i

(w′
i )(w∞ −

wi−1)
]

, is also O(ǫ), and we have

Dψ (w∞, w0) − Dψ(w∗, w0)

= −Dψ(w∗, w∞) +

∞
∑

i=1

ηℓ′(yi − fi (wi−1))O(ǫ). (28)

Now, note that ℓ′(yi − fi (wi−1)) = ℓ′( fi (w) − fi (wi−1)) =

ℓ′(∇ fi (w̃i )
T (w − wi−1)) for some w̃i ∈ conv B. Since

‖w − wi−1‖
2 = O(ǫ) for all i and since ℓ(·) is differentiable

and fi (·) have bounded derivatives, it follows that ℓ′(yi −

fi (wi−1)) = o(ǫ). Furthermore, the sum is bounded. This

implies that Dψ(w∞, w0) − Dψ (w∗, w0) = −Dψ(w∗, w∞) +

o(ǫ) or equivalently

(Dψ (w∞, w0) − Dψ(w∗, w0)) + Dψ(w∗, w∞) = o(ǫ). (29)

The term in parentheses Dψ (w∞, w0)−Dψ (w∗, w0) is nonneg-

ative by the definition of w∗. The second term Dψ(w∗, w∞)

is nonnegative by convexity of ψ . Since both terms are

nonnegative and their sum is o(ǫ), each one of them is at

most o(ǫ), i.e.,
{

Dψ (w∞, w0) − Dψ (w∗, w0) = o(ǫ)

Dψ (w∗, w∞) = o(ǫ)
(30)

which concludes the proof. �

Corollary 5: For the initialization w0 = arg minw∈Rp ψ(w),

under the conditions of Theorem 4, w∗ = arg minw∈W ψ(w)

and the following holds.

1) ψ(w∞) = ψ(w∗) + o(ǫ).

2) Dψ(w∗, w∞) = o(ǫ).

Proof of Corollary 5: The proof is a straightforward

application of Theorem 4. Note that we have

Dψ(w,w0) = ψ(w) − ψ(w0) − ∇ψ(w0)
T (w − w0) (31)

for all w. When w0 = arg minw∈Rp ψ(w), it follows that

∇ψ(w0) = 0 and

Dψ (w,w0) = ψ(w) − ψ(w0). (32)

In particular, by plugging in w∞ and w∗, we have

Dψ(w∞, w0) = ψ(w∞)−ψ(w0) and Dψ (w∗, w0) = ψ(w∗)−

ψ(w0). Subtracting the two equations from each other yields

Dψ(w∞, w0) − Dψ (w∗, w0) = ψ(w∞) − ψ(w∗) (33)

which, along with the application of Theorem 4, concludes the

proof. �

VII. RELATED WORK

There have been many efforts in the past few years to study

deep learning from an optimization perspective (see [9], [20],

[22]–[26], [33]–[35]). While it is not possible to review all

the contributions here, we comment on the ones that are most

closely related to ours and highlight the distinctions between

our results and those.

Many recent papers have studied the convergence of the

(S)GD algorithm in the so-called “overparameterized” setting

(or “interpolating” regime), which is common in deep learn-

ing [9], [24], [26], [36]. Almost all these works, similar to ours,

rely on the initialization being close to the solution space (of

global minima), which is reasonable in highly overparameter-

ized models. However, our results are more general because

they extend to SMD.

On the other hand, even for the case of SGD, our results

are stronger than those in this literature, in the sense that not

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:19:55 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

only do we show convergence to a global minimum, but we

also show that the weight vector we converge to, w∞, say,

is close to the closest interpolating weight vector, w∗, say.

Denoting the initialization by w0, Oymak and Soltanolkotabi

[26] showed that for SGD, ‖w∞ − w0‖ is bounded by a

constant factor of ‖w∗ − w0‖. Theorem 4 shows the much

stronger statement that ‖w∞ − w0‖ = ‖w∗ − w0‖ + o(‖w∗ −

w0‖). We further show that w∞ and w∗ are very close to one

another, viz., ‖w∞ − w∗‖2 = o(‖w∗ − w0‖)), something that

could not be inferred from the previous results.

There exist a number of results that characterize the implicit

regularization properties of different algorithms in different

contexts [20], [21], [37]–[42]. The closest ones to our results,

since they concern mirror descent, are the works of [20]

and [21]. Gunasekar et al. [21] considered linear overparame-

terized models and showed that if SMD happens to converge

to a global minimum, then the global minimum will be the

one that is closest in Bregman divergence to the initializa-

tion, a result they obtain by examining the KKT conditions.

However, they do not provide any conditions for convergence

and whether SMD converges with a fixed step size or not.

Azizan and Hassibi [20] also studied linear models but derived

conditions on the step size for which SMD converges to the

aforementioned global minimum. Our current results extend

the aforementioned to nonlinear overparametrized models and

show that, for small enough fixed step size and for initial-

izations close enough to the space of interpolating solutions,

SMD converges to a global minimum, something which had

not been shown in any of the previous work. Assuming that

every data point is revisited often enough, the convergence we

establish is deterministic. Finally, we show that the solution

we converge to exhibits approximate implicit regularization,

something that was not known for nonlinear models.

VIII. CONCLUSION

In this article, we studied the convergence and implicit

regularization properties of the family of stochastic mirror

descent (SMD) for highly overparameterized nonlinear mod-

els. From a theoretical perspective, we showed that, under rea-

sonable assumptions, SMD with sufficiently small step size (1)

converges to a global minimum, and (2) the global minimum

converged to is approximately the closest to the initializa-

tion in Bregman divergence sense. Furthermore, our exten-

sive experimental results, on various initializations, various

mirror descents, and various Bregman divergences, revealed

that this phenomenon indeed happens in practical scenarios

in deep learning. This further implies that different mirror

descent algorithms act as different regularizers, a property

that is referred to as implicit regularization. The fact that

the ℓ∞-regularized solution showed a better generalization

performance than the other ones, while ℓ1 was the opposite,

suggests the importance of a comprehensive study of the

role of regularization, and the choice of the best regularizer,

to improve the generalization performance of deep neural

networks.
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