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Protein flexibility is an intrinsic property and plays a fundamental role in protein functions. Computational

analysis of protein flexibility is crucial to protein function prediction, macromolecular flexible docking, and

rational drug design. Most current approaches for protein flexibility analysis are based on Hamiltonian mechanics.

We introduce a stochastic model to study protein flexibility. The essential idea is to analyze the free induction

decay of a perturbed protein structural probability, which satisfies the master equation. The transition probability

matrix is constructed by using probability density estimators including monotonically decreasing radial basis

functions. We show that the proposed stochastic model gives rise to some of the best predictions of Debye-Waller

factors or B factors for three sets of protein data introduced in the literature.

DOI: 10.1103/PhysRevE.88.062709 PACS number(s): 87.15.−v, 87.14.et

I. INTRODUCTION

The importance of proteins to life and living organisms
cannot be overemphasized. Apart from providing structural
support in terms of tubulin, collagen, elastin, and keratin,
proteins also catalyze all of the reactions of metabolism,
regulate transcription and cell cycle, participate in signal
transduction, and work as immune agents. For a long time,
protein functions were believed to be determined by their
uniquely folded structures, which in turn, are determined
by their amino acid residue sequences [1]. This dogma has
been seriously challenged due to the discovery that partially
unfolded and intrinsically unfolded proteins are functional as
well [2,3]. However, protein structure, either in its folded or
unfolded form, still determines its function. Fortunately, the
rapid progress in molecular biology in the past two decades
has accumulated near a hundred thousand of protein structures
in the protein data bank (PDB). Unfortunately, the prediction
of protein functions from known protein structures remains a
formidable task. What is needed is the in-depth understanding
of the protein structure and function relation [4,5].

For a given protein structure, its geometric shape, elec-
trostatic potential, and flexibility are some of the most
relevant structural properties that determine its functions. The
importance of protein geometry and electrostatics to protein
functions is well known. However, the role of protein flexibility
in protein functions is often elusive. It was argued that protein
flexibility, not disorder, is intrinsic to molecular recognition
[6]. Protein flexibility is the ability to deform from the
equilibrium state under external forces. Under physiological
condition, proteins experience constant bombardment by the
fast-moving solvent molecules, ions, ligands, and cofactors—
the so called Brownian dynamics. In solid-state or crystallized
phase, proteins constantly interact with phonons generated
by the lattice dynamics. In response, protein spontaneous
fluctuations orchestrate with the Brownian dynamics or lattice
dynamics. The degree of protein fluctuations is determined by
both the strength of external stimuli and protein flexibility.

*Corresponding author: wei@math.msu.edu

Protein flexibility can be investigated by using a number of
experimental tools, including x-ray crystallography, nuclear
magnetic resonance (NMR), atomic force microscopy, and
optical tweezers. Apart from experimental means, protein
flexibility is frequently studied by theoretical and compu-
tational approaches. Although molecular dynamics (MD)
simulations are important for nonequlibrium processes and
are able to deliver snapshots to analyze protein flexibility
directly, they cannot yet be used to predict protein col-
lective motions at biologically relevant time scales with
quantitative accuracy [7]. In contrast, normal mode analysis
(NMA) [8–11], elastic network model (ENM) [12], Gaussian
network model (GNM) [13,14], and anisotropic network
model (ANM) [15] are capable of accessing the long-time
stability of proteins beyond the reach of molecular dynamics
simulations [9–12,14]. Parallel to the relation between time-
dependent and time-independent quantum dynamics, NMA,
ENM, GNM, and ANM can be regarded as time-independent
molecular mechanics approaches as they can be derived from
their corresponding time-dependent molecular mechanics by
using the time-harmonic approximation [16]. In the past few
decades, these methods have been employed to analyze protein
flexibility [17,18], protein thermal stability [19,20], enzyme
site activities [21–23], side-chain mobilities [24,25], protein
disordered regions [26,27], and binding [28]. Due to their
reduced representation of protein structures, they are capable
of investigating macroproteins and protein complexes, such
as hemoglobin [29], F1 ATPase [30,31], chaperonin GroEL
[32,33], viral capsids [34,35], and ribosome [36,37]. These ap-
proaches are often calibrated with experimental data—Debye-
Waller factors or B factors. Physically, the B factor is a measure
of the mean-squared atomic displacement due to thermal
motion and possible experimental uncertainties. Typically, a
flexible atom or particle has a large B factor while a rigid atom
or particle has a small B factor. The analysis of B factors sheds
light on the large-scale and long-time functional behaviors of
biomolecules. This analysis is complementary to atomic detail
simulations. Over years, flexibility analysis methods have been
improved, including the consideration of cofactors and the
periodicity of crystal structures [38–41]. The reader is referred
to review papers [7,42–44] for the status and state of the art.

062709-11539-3755/2013/88(6)/062709(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.062709


KELIN XIA AND GUO-WEI WEI PHYSICAL REVIEW E 88, 062709 (2013)

A common feature of the aforementioned models is
that they depend on the matrix diagonalization and mode
decomposition. Motions of a few slowest modes are interpreted
as collective and global behavior or functionality of the
biomolecule. Another common feature of the above men-
tioned methods is that they utilize deterministic Hamiltonian
dynamics or its time-independent representations. While, in
the microscopic world, deterministic Hamiltonian systems
typically have statistical or stochastic complements. However,
the stochastic nature of protein equilibrium structures is not
accounted for in the above mentioned models.

The objective of the present work is to introduce a stochastic
model for macromolecular flexibility analysis. Due to thermal
motions, macromolecules constantly fluctuate around their
equilibrium state. In our model, stochastic deviations are
described by a probability function. We assume that transi-
tion probabilities between different nonequilibrium states are
determined only by the structure of the protein. Therefore,
configuration changes of the macromolecule can be formulated
as a stationary Markov process. In the rest of this paper, we
discuss our theory and model in Sec. II. Section III is devoted
to the numerical validation of our model. Our prediction of B
factors is validated with experimental data. The performance
of the present stochastic model (SM) is compared that of the
state of the art methods in the field. This paper ends with a
conclusion.

II. THEORY AND MODEL

In probability theory, the Markov process is often used
to describe a time-dependent or ordered stochastic process
when the next state is determined only by the current state and
is irrelevant of all the events preceded it. This characteristic
is widely known as “memoryless”. Some stochastic systems
also satisfy a stationary property such that the joint probability
distribution stays unchanged when there is a shift in time or
space for all related terms. The combination of the stationary
property with the Markov process gives us the stationary
Markov process, which is directly related to the master
equation used in physics, chemistry, and biology. Although
these models are well developed and long established, their
potential applications in protein flexibility analysis have never
been fully explored, to our best knowledge.

In this work, we introduce a special stochastic model
designed for the analysis of macromolecular flexibility. Let us
consider a protein of N particles with the equilibrium reference
configuration specified by a 3N -dimensional position vector
r0 = (r0

1,r
0
2, . . . ,r

0
N ). Due to its intrinsic motion, the protein

configuration at time t is described by r = (r1,r2, . . . ,rN ) ∈

R
3N . Let us denote dj = ‖rj − r0

j‖2 the deviation from the

equilibrium in the j th particle and d = (d1,d2, . . . ,dN ) ∈ R
3N

a 3N -dimensional vector of derivation. We denote P(t) the
probability of finding the protein derivation d at time t . Here
P(t) = (P1(t),P2(t), . . . ,PN (t))T is a column vector. Assume
that protein configurational dynamics is a stationary Markov
process, one can derive the following master equation

dP(t)

dt
= AP(t). (1)

FIG. 1. (Color online) Structure and transition probability matrix

(TPM) for protein 1J27. (a) The structure of protein 1J27. The α

helices and β sheets are labeled and numbered. (b) TPM generated

by using Eq. (3) with σ = 3 Å and k = 2. Diagonal elements have

been excluded to emphasize nondiagonal transition probabilities. All

α helices and β sheets and their interactions are identified. (c) TPM

generated by using Eq. (4) with υ = 3. (d) TPM generated by using

Eq. (4) with υ = 1. The interactions between α helices and β sheets

can be easily identified.

where A is a transition matrix, which describes the transition
probability between different protein configurations.

To estimate the element of A, consider a configuration d
generated by an infinitesimally small perturbation (�) on the
ith particle

dj = �δij , j = 1,2, . . . ,N, (2)

where δij is a Kronecker δ function. Denote the distance
between the perturbed particle and any other particle as
dij ≈ ‖r0

i − r0
j‖2. We assume that the transition probability

for such an infinitesimally small derivation to propagate to
any neighboring particle decays monotonically with respect to
the distance. The transition probability matrix (TPM) can be
constructed by using probability density estimators [45,46],
including radial basis functions of exponential type

Aij =

{

e−(dij /σij )k , ∀i �= j, k > 0;

−
∑

j �=i Aij , ∀i = j,
(3)

and power-law type

Aij =

{
(

1
dij

)υ
, ∀i �= j, υ > 1;

−
∑

j �=i Aij , ∀i = j,
(4)

where σij are characteristic distances between particles. In
Eqs. (3) and (4), diagonal terms Aii are chosen so that the
detailed balance is maintained for the master equation (1). For
simplicity, we utilize a coarse-grained representation of protein
structures in terms of Cαs and set σij = σ in the present work.

062709-2



STOCHASTIC MODEL FOR PROTEIN FLEXIBILITY ANALYSIS PHYSICAL REVIEW E 88, 062709 (2013)

FIG. 2. (Color online) The relaxation process of the probability

after the impulse perturbation of the equilibrium configuration of

protein 1L11 at a given amino acid residue (the 82nd Cα). Left chart:

The residues in horizontal axis are in their native order. Right chart:

The residues in horizontal axis are listed in the descending order

according to their distances with respect to the perturbed residue.

To understand the behavior of the transition probability
matrix A, we consider protein 1J27, which has two α

helices and four β sheets as shown in Fig. 1(a). Both the
exponential type (3) and power-law type (4) of probability

density estimators are used to construct the matrix. For
the exponential type of radial basis functions, we choose
k = 2 and set σ = 10 Å in our test. The resulting transition
probability matrix is presented in Fig. 1(b). We examine
the transition probability matrix without the diagonal terms
so as to emphasize the interactions among protein residues.
Clearly, large transition probabilities occur for the nearest
neighboring particles, which means a perturbation introduced
at a given particle will almost certainly create derivations from
the equilibrium at nearest neighboring particles. Additional,
nonzero transition probabilities exist for particles that are
fairly close to the perturbed particle. Obviously, the transition
probability matrix itself reflects protein structural information
of connectivity and network topology, as shown in Fig. 1(b).
It can be seen that the connectivity inside an α helix is usually
represented by a thick and fat diagonal stripe, while β-sheet
interactions are characterized by stripes orthogonal to the
diagonal line. To be more specific, when two antiparallel β

sheets are close to each other, their interactions are portrayed
by stripes orthogonal to the diagonal line. While, when two
parallel β sheets are close to each other, they create stripes
parallel to the diagonal line in the transition probability matrix.

FIG. 3. (Color online) Comparison of B factors obtained from the proposed stochastic model and experiment. Power law probability density

estimators are used. (a) B factors for protein 1MIZ predicted with υ = 3.0 at correlation coefficient 0.849. (b) B factors for protein 1QD9

predicted with υ = 2.0 at correlation coefficient 0.782. (c) B factors for protein 1QUS predicted with υ = 2.0 at correlation coefficient 0.845.

(d) B factors for protein 1RWR predicted with υ = 2.0 at correlation coefficient 0.859.
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FIG. 4. The optimal parameter search for power-law type of

probability density estimators in Eq. (4). A set of 60 proteins is

used and the correlation coefficients averaged over the set plotted

with respect to the change of parameter υ. The maximal correlation

coefficient is reached when υ is around 2.5.

To further explore the transition probability matrix and
examine the performance of the power-law functions, we select
υ = 3 and 1 in Eq. (4). The resulting transition probability
matrices are plotted in Figs. 1(c) and 1(d). It is interesting
to note that Fig. 1(d) is able to illustrate some transition
probabilities due to long-distance interactions, such as the
interactions between two α helices. As shown in Fig. 1(a), β1

and β2 are quite far apart and parallel to each other. However,
their interaction can be clearly seen in Fig. 1(d).

Obviously, transition probability matrix A is a Hermitian
matrix and its eigenvalues are real. Mathematically, the
solution of Eq. (1) can be expressed as

P(t) =

N
∑

l=1

clξ
(l)erl t , (5)

where ξ (l) and rl are eigenvectors and eigenvalues of A, respec-
tively. Here, cl are coefficients and can be determined by initial
values of P. Instead of finding out the global solution of Eq. (1),
it is more useful to sample the response of a well-defined
perturbation to a given particle described by Eq. (2). Since the
diagonal elements of A are all real and negative, the probability
P(t) must decay toward the equilibrium, just like the free
induction decay of the spin dynamics in NMR experiments.
Therefore, we define the relaxation time (τi) as the time used
for P(t) to recover to a factor of 1/e after the perturbation given
in Eq. (2). Interestingly, the relaxation time τi is a measure of
the strength of ith particle’s interactions with its environment.
A strong interaction leads to a short relaxation time and a low
structural flexibility. Therefore, we are able to establish the
correlation between the structural flexibility and the relaxation
time τi . As a result, the relaxation time computed from the pro-
posed master equation must directly correlate with B factors.

To illustrate our ideas, we solve Eq. (1) numerically
with the second-order forward Euler scheme. We consider
Eq. (3) with k = 2 and σ = 6 Å. We set the initial value
as an impulse perturbation on the ith particle with i = 82,

i.e., Pj (0) = δij ,j = 1,2, . . . ,N . Figure 2 demonstrates the
relaxation process of the probability after the perturbation
of the equilibrium configuration of protein 1L11 on the
given particle. We have plotted residues in the horizontal
axis in two ways, namely, in their original order and in the
descending order according to their distances with respect
to the perturbed residue. Amazingly, the impulse relaxation
pattern with residues in the original order shown in Fig. 2 (left
chart) highlights the connectivity and interaction strength of
the perturbed residue. While the other pattern shown in Fig. 2
indicates that the perturbation gradually propagates from the
nearest neighboring amino acid residues to a large set of nearby
residues over a short time period before it diminishes finally.

III. RESULTS AND DISCUSSIONS

It remains to be proven that the proposed probability decay
carries detailed structural information as the free induction
decay in NMR. To this end, we utilize the relaxation time
to predict protein B factors and compare our prediction with

TABLE I. Comparison of B-factor prediction by parameter-free

stochastic model (pfSM), Gaussian normal mode (GNM), and normal

mode analysis (NMA) for small-sized data set [16]. The asterisk sign

indicates improved prediction with modified protein data.

PDB pfSM- pfSM-

ID N pfSM GNM [16] GNM NMA [16] NMA

1AIE 31 0.390 0.155 0.235 0.712 −0.322

1AKG 16 0.192 0.185 0.007 −0.229 0.421

1BX7 51 0.651 0.706 −0.055 0.868 −0.217

1ETL 12 0.939 0.628 0.311 0.355 0.584

1ETM 12 0.768 0.432 0.336 0.027 0.741

1ETN 12 0.075 −0.274 0.349 −0.537 0.612

1FF4 65 0.631 0.674 −0.043 0.555 0.076

1GK7 39 0.684 0.821 −0.137 0.822 −0.138

1GVD 52 0.629 0.591 0.038 0.570 0.059

1HJE 13 0.721 0.616 0.105 0.562 0.159

1KYC 15 0.841 0.754 0.087 0.784 0.057

1NOT 13 0.842 0.523 0.319 0.567 0.275

1O06 20 0.873 0.844 0.029 0.900 −0.027

1OB4 16 0.769 0.750* 0.019 0.930 −0.161

1OB7 16 0.556 0.652* −0.096 0.952 −0.396

1P9I 29 0.555 0.625 0.070 0.603 −0.048

1PEF 18 0.877 0.808 −0.069 0.888 −0.011

1PEN 16 0.291 0.270 0.021 0.056 0.235

1Q9B 43 0.767 0.656 0.111 0.646 0.121

1RJU 36 0.329 0.431 −0.102 0.235 0.094

1U06 55 0.386 0.434 −0.048 0.377 0.009

1UOY 64 0.653 0.671 −0.018 0.628 0.025

1USE 40 0.138 −0.142 0.280 −0.399 0.537

1VRZ 21 0.548 0.677* −0.129 −0.203 0.751

1XY2 8 0.118 0.562 −0.444 0.458 −0.340

1YJO 6 0.322 0.434 −0.112 0.445 −0.123

1YZM 46 0.847 0.901 −0.054 0.939 −0.092

2DSX 52 0.329 0.127 0.202 0.433 −0.104

2JKU 35 0.837 0.656 0.181 0.850 −0.013

2NLS 36 0.613 0.530 0.083 0.088 0.525

2OL9 6 0.529 0.689 −0.160 0.886 −0.357

2OLX 4 0.795 0.885 −0.090 0.776 0.119

6RXN 45 0.577 0.594 −0.017 0.304 0.273

062709-4



STOCHASTIC MODEL FOR PROTEIN FLEXIBILITY ANALYSIS PHYSICAL REVIEW E 88, 062709 (2013)

experimental data from x-ray crystallography. We compute the
relaxation time for a controlled impulse response process of
a given particle. This procedure is repeated over all particles
of interest in the molecule. The set of relaxation times {τi}

is then converted to B factors by using a standard linear
regression. Figures 3(a)–3(d) provide such comparisons for
four protein structures, namely 1MIZ, 1QD9, 1QUS, and
1RWR. Surprisingly, our new approach gives rise to very good
prediction of B factors for these proteins.

It is important to quantitatively assess the performance of
the proposed stochastic model for the B-factor prediction. For
this purpose, we make use of the correlation coefficient Cc

Cc =

N

i=1

(

Be
i − B̄e

)(

B t
i − B̄ t

)

[


N
i=1

(

Be
i − B̄e

)2

N

i=1

(

B t
i − B̄ t

)2]1/2
, (6)

TABLE II. Comparison of B-factor prediction in terms of cor-

relation coefficients by parameter-free stochastic model (pfSM),

Gaussian normal mode (GNM), and normal mode analysis (NMA)

for medium-sized data set [16]. The asterisk sign indicates improved

prediction with modified protein data.

PDB pfSM- pfSM-

ID N pfSM GNM [16] GNM NMA [16] NMA

1ABA 87 0.737 0.613 0.124 0.057 0.680

1CYO 88 0.736 0.741 −0.005 0.774 −0.038

1FK5 93 0.586 0.485 0.101 0.362 0.224

1GXU 88 0.681 0.421 0.260 0.581 0.100

1I71 83 0.375 0.549 −0.174 0.380 −0.005

1LR7 73 0.685 0.620 0.065 0.795 −0.110

1N7E 95 0.507 0.497 0.010 0.385 0.122

1NNX 93 0.773 0.631 0.142 0.517 0.256

1NOA 113 0.596 0.615 −0.019 0.485 0.111

1OPD 85 0.385 0.398 −0.013 0.796 −0.411

1QAU 112 0.678 0.620 0.058 0.533 0.145

1R7J 90 0.435 0.368 0.067 0.078 0.357

1UHA 83 0.675 0.638* 0.092 0.308 0.367

1ULR 87 0.596 0.495 0.101 0.223 0.373

1USM 77 0.833 0.798 0.035 0.780 0.053

1V05 96 0.592 0.632 −0.040 0.389 0.203

1W2L 97 0.612 0.397 0.215 0.432 0.180

1X3O 80 0.526 0.654 −0.128 0.453 0.073

1Z21 96 0.609 0.433 0.176 0.289 0.320

1ZVA 75 0.537 0.690 −0.153 0.579 −0.042

2BF9 36 0.517 0.680* −0.163 0.521 −0.004

2BRF 100 0.757 0.710 0.047 0.535 0.222

2CE0 99 0.588 0.529 0.059 0.628 −0.040

2E3H 81 0.690 0.605 0.085 0.632 0.058

2EAQ 89 0.740 0.695 0.045 0.688 0.052

2EHS 75 0.718 0.747 −0.029 0.565 0.153

2FQ3 85 0.748 0.348 0.400 0.508 0.24

2IP6 87 0.595 0.572 0.023 0.826 −0.231

2MCM 112 0.782 0.820 −0.038 0.643 0.139

2NUH 104 0.762 0.771 −0.009 0.685 0.077

2PKT 93 0.180 −0.193* 0.373 −0.165 0.345

2PLT 99 0.444 0.509* −0.065 0.187 0.257

2QJL 99 0.574 0.594 −0.020 0.497 0.077

2RB8 93 0.603 0.517 0.086 0.485 0.118

3BZQ 99 0.514 0.466 0.048 0.351 0.163

5CYT 103 0.420 0.331 0.089 0.102 0.318

where {B t
i ,i = 1,2, . . . ,N} are a set of predicted B factors by

using the proposed method and {Be
i ,i = 1,2, . . . ,N} are a set

of experimental B factors downloaded from the PDB. Here B̄ t

and B̄e the statistical averages of theoretical and experimental
B factors, respectively.

To systematically validate our SM, we consider a set of 60
protein structures downloaded from the PDB. All structures
of these proteins are obtained by the x-ray diffraction with
resolution about 2.0 Å. No multiple conformations exist in
these proteins, which means that for each protein, all the
occupancy terms equal 1.0. The power-law type of probability
density estimators in Eq. (4) is considered. We search the
optimal value of parameter υ by calculating correlation
coefficients averaged over 60 proteins in the range of [0.4, 5.1].
It is seen from Figure 4 that the best average correlation
coefficient is achieved around υ = 2.5. This result enables us

TABLE III. Comparison of B-factor prediction in terms of

correlation coefficients by parameter-free stochastic model (pfSM),

Gaussian normal mode (GNM), and normal mode analysis (NMA)

for large-sized data set [16]. The asterisk sign indicates improved

prediction with modified protein data.

PDB pfSM- pfSM-

ID N pfSM GNM [16] GNM NMA [16] NMA

1AHO 64 0.598 0.562 0.036 0.339 0.259

1ATG 231 0.605 0.497 0.108 0.154 0.451

1BYI 224 0.468 0.552 −0.084 0.133 0.335

1CCR 111 0.532 0.351 0.181 0.530 −0.002

1E5K 188 0.742 0.859 −0.117 0.620 0.122

1EW4 106 0.603 0.547 0.056 0.447 0.156

1IFR 113 0.706 0.637 0.069 0.330 0.376

1NKO 122 0.518 0.368 0.150 0.322 0.196

1NLS 238 0.575 0.523* 0.052 0.385 0.190

1O08 221 0.410 0.309 0.101 0.616 −0.206

1PMY 123 0.654 0.685 −0.031 0.702 −0.048

1PZ4 113 0.843 0.843 0.000 0.844 −0.001

1QTO 122 0.421 0.334 0.087 0.725 −0.304

1RRO 108 0.399 0.529 −0.130 0.546 −0.147

1UKU 102 0.648 0.742 −0.094 0.720 −0.072

1V70 105 0.431 0.162 0.269 0.285 0.146

1WBE 204 0.558 0.549 0.009 0.574 −0.016

1WHI 122 0.479 0.270 0.209 0.414 0.165

1WPA 107 0.528 0.417 0.111 0.380 0.148

2AGK 233 0.683 0.512 0.171 0.514 0.169

2C71 205 0.677 0.560 0.117 0.584 0.093

2CG7 90 0.494 0.379 0.115 0.308 0.186

2CWS 227 0.648 0.696 −0.048 0.524 0.124

2HQK 213 0.810 0.365 0.445 0.743 0.067

2HYK 237 0.586 0.515 0.071 0.593 −0.007

2I24 113 0.430 0.494 −0.064 0.441 −0.011

2IMF 203 0.611 0.514 0.097 0.401 0.210

2PPN 107 0.640 0.668 −0.028 0.468 0.172

2R16 176 0.474 0.618* −0.144 0.411 0.063

2V9V 135 0.599 0.528 0.071 0.594 0.005

2VIM 104 0.376 0.282 0.164 0.273 0.155

2VPA 204 0.772 0.576 0.196 0.594 0.178

2VYO 206 0.693 0.761 −0.068 0.739 −0.046

3SEB 238 0.768 0.826 −0.058 0.720 0.048

3VUB 101 0.641 0.607 0.034 0.365 0.276
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FIG. 5. (Color online) The comparison of correlation coefficients predicted by the GNM, NMA, and pfSM (υ = 2.5) for three sets of

proteins. (a) GNM vs SM for the small-sized protein set; (b) NMA vs SM for the small-sized protein set; (c) GNM vs SM for the medium-sized

protein set; (d) NMA vs SM for the medium-sized protein set; (e) GNM vs SM for the large-sized protein set; (f) NMA vs SM for the large-sized

protein set.

to obtain a parameter free stochastic model (pfSM) by setting
υ = 2.5.

To further validate the proposed SM for flexibility analysis,
we carry out a comparison study. We employ the coarse-grain
GNM, one of the cutting edge approaches in the field to
calibrate the present SM. The computer code for the GNM
is downloaded from the Jernigan Laboratory [47] with some
minor modifications to improve its performance. The cutoff
distance of 7 Å, which is near the optimal for the set of
proteins, is used in all the GNM calculations. Three data sets,
proposed by Park, Jernigan, and Wu [16], including relatively
small-, medium-, and large-sized proteins are utilized. It is
found that some data in these sets have multiple conformations

and missing residues. To use these data directly without ap-
propriate modifications would underscore theoretical methods.
Therefore, we carefully add in the missing residues and remove
the repeated atoms with lower occupancy values. As a result,
the prediction of GNM for modified proteins is significantly
improved from that reported in the literature [16]. Results
involving modified data are marked with an asterisk in Tables I,
II, and III. We also compare our results with those obtained
by using the coarse-grain normal mode analysis (NMA). The
related data are directly taken from Park et al. [16]. We use our
pfSM with the optimal value υ = 2.5. As shown in Figure 5,
our pfSM outperforms the GNM and the NMA in most cases.
The same conclusion can be reached by examining the detailed
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FIG. 6. (Color online) The comparison of B-factor prediction between the proposed SM model and GNM for protein 1MIZ. The result in

the left chart is the prediction by GNM with the correlation coefficient of 0.761. The result in right chart is from the proposed SM with the

correlation coefficient of 0.849.
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TABLE IV. The comparison of average correlation coefficients

calculated by pfSM, GNM, and NMA over three data sets.

Improvement Improvement

with respect to with respect to

PDB set pfSM GNM NMA GNM (%) NMA (%)

Small 0.578 0.541 0.480 6.80 20.4

Medium 0.605 0.555 0.469 9.01 29.0

Large 0.589 0.530 0.494 11.1 19.2

data in Tables I, II, and III. Figure 6 gives a comparison of
the B-factor prediction between the proposed SM model and
the GNM for protein 1MIZ. In this case, our method gives a
better overall prediction. However, both methods over predict
B factors around residue 130.

To further analyze the performance of pfSM, GNM,
and NMA, we compute the average correlation coefficient
predicted by each method for each data set. Based on the
details listed in Tables I, II, and III. The results of our analysis
are presented in Table IV for a comparison. It is seen that our
pfSM gives better results. Comparing with the GNM, pfSM
has about 11% increase in its B-factor prediction over the set
of large-sized proteins. The pfSM’s improvement over the set
of small-sized proteins is 6.8%. Therefore, the pfSM seems
to work relatively better on large-sized proteins. Apparently,
there is a huge improvement in the average correlation
coefficient over that predicted by the NMA for all the protein
structures considered. Although part of the improvement is
due to the fact that modified protein data sets were employed
in the pfSM calculations, pfSM still outperforms NMA when
a few modified protein data are not counted. The conclusion
that pfSM performs better than the NMA can also be drawn
from the well-known fact that the GNM outperforms the NMA
in B-factor prediction [16].

Although our method demonstrates its ability for the
accurate analysis of macromolecular flexibility, there exists
much room for its further improvement. It is well known that
cofactors and nearby structures in a protein crystal significantly
influence flexibility properties. Some ions, such as zinc ions,

play a central role in the stabilization of the protein. The
absence of this type of ion will dramatically change flexibility
properties. For instance, in Table II, the crystal structure of
protein 2PKT has cofactors C2H3O3 and Ca2+ and Cl2+.
Because this effect has not been considered in the present
work, the SM prediction is inaccurate with the correlation
coefficient being only about 0.180. Another limitation of the
present model is the use of the coarse-grain representation. In
our method, all amino acids are denoted by their Cα atoms
and treated equally. However, the size and the characteristic of
amino acids in a protein can vary significantly from each other
and lead to different flexibility behavior. The incorporation
of these properties in our model will definitely yield a better
method.

IV. CONCLUSION

Flexibility is an intrinsic property of proteins and is essential
for protein functions. Conventional flexibility analysis relies
on the Hamiltonian mechanics and matrix decomposition. We
introduce a stochastic model for macromolecular flexibility
analysis. An NMR-free induction-decay-like perturbation pro-
cess is designed to stimulate the probability transfer from the
nonequilibrium to equilibrium after an impulse perturbation.
We show that the speed of the probability transfer at each
residue correlates with its flexibility. As a result, we develop a
stochastic model for protein B-factor prediction. The proposed
method bypasses the construction of any Hamiltonian and does
not require the matrix diagonalization. Comparison with ex-
perimental data and established methods validates the present
approach for flexibility analysis. A further comparison with a
newly developed flexibility-rigidity index (FRI) approach [46]
is a topic for future research.
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