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A stochastic model of supercoiling-dependent transcription
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We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we
incorporate the experimental observation that polymerases create supercoiling as they unwind the
DNA helix, and that these enzymes bind more favourably to regions where the genome is unwound.
Within this model, we show that when the transcriptionally induced flux of supercoiling increases,
there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription
is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In
the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up-regulation
of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and
writhe should provide a pathway to down-regulate transcription.

This article has been accepted for publication in Physical Review Letters, May 2016.
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The dynamics of transcription is a topic of paramount
importance in cell biology and biophysics. It underpins
the expression and regulation of genes, which is crucial to
the development and function of all living organisms @]
To initiate transcription of a gene, cells rely on the bind-
ing of proteins such as polymerases and transcription fac-
tors, to the promoter — a DNA region shortly upstream of
the gene ﬂ] As there are a finite number of copies of such
proteins present within a cell, this process is inherently
stochastic [2-5].

In this work, we introduce a stochastic model of gene
expression, which is fundamentally different from previ-
ous studies as it couples transcription to the dynamics of
DNA twist and supercoiling. Supercoiling is a topological
property of DNA, arising from its chiral nature @, ,B]
For B-DNA in its relaxed state, the two strands of the
molecule wind around each other once approximately ev-
ery 10 base pairs (bp), forming a right-handed double he-
lix [1]. Twisting DNA away from this relaxed state, so as
to over or under-wind the double helix, introduces posi-
tive or negative supercoiling respectively; if large enough,
this torsional strain can lead to writhing, or to DNA
melting. Supercoiling thus refers to the difference in the
linking number of the two DNA strands, Lk, with re-
spect to that in the relaxed state, Lkg; the global Lk is a
topological invariant if the DNA is a loop or its ends are
constrained ﬂ], whereas it can vary for an open polymer
whose ends can rotate.

There are several observations which strongly suggest
that DNA supercoiling is intimately related to transcrip-
tion, and that it can regulate gene expression. First, the
“twin supercoiled domain” model M, @ﬂ] is based on
the long-standing theoretical observation that if rotation
of the RNA polymerase and its associated transcription
machinery is hindered, as is likely in the crowded in-

tracellular environment, then gene transcription leads to
the creation of positive supercoiling ahead of the track-
ing polymerase, and negative supercoiling in its wake.
For every 10 bp or so which are transcribed, the linking
number changes by ALk ~ +1 ahead of the polymerase
and by ALk ~ —1 behind it. Recent experiments have
quantified supercoiling by measuring the DNA binding
affinity of psoralen, a chemical which intercalates prefer-
entially where the double helix is under-wound ﬂﬁ, [15).
These studies have shown that human chromosomes are
organised into a set of supercoiling domains, whose struc-
ture is dramatically altered by inhibiting transcription.

Our model is based on these observations, and incor-
porates the dynamics of supercoiling into a stochastic
description of gene regulation. It exhibits a switch be-
tween two regimes: one where gene expression is ran-
dom, and one where it is tightly regulated by super-
coiling. Within our framework, this switch is triggered,
e.g., by increasing the amount of supercoiling injected
during each transcription event. The dynamics in the
supercoiling-regulated regime help explain a number of
experimental observations, such as the existence of tran-
scriptional bursts and the abundance of bidirectional
genes in the genomes of many organisms.

We model the DNA as a 1D lattice with spacing
Az =1 ~ 15 bp, the size of an RNA polymerase ﬂ, B]]
The DNA contains n genes, each of size A, whose pro-
moters are located at positions y; (j = 1,...,n) on the
DNA. Gene transcription is modelled as a stochastic pro-
cess ﬂﬁ] at each time-step, for each of N polymerases a
gene is selected at random and is activated by the poly-
merase binding at the promoter with rate k,,. Once a
gene is activated, the polymerase travels along the gene
body at a velocity v, so the position along the DNA of
the ¢—th polymerase which is transcribing, say, the j—th
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gene is z; = y; + vt;, where ¢; is the time since the poly-
merase was activated. The total time to transcribe any
gene is then 7 = /v, after which the polymerase unbinds
from the DNA and is free to transcribe another gene. [A
simpler model where a static polymerase generates su-
percoiling without travelling is discussed in [37)].]

We couple transcription to the local supercoiling den-
sity, o(z,t) = (Lk —Lkg) /Lko, where Lk is the local
linking number at position z. We propose the following
diffusive dynamics for o(z,t):

do(z,t) 0 [,00(z,t)
T % [DT - Jtr(zvt)] ’ (1)

N
Jo(z,t) = ZJi(ti)5(ﬂf —zi(ti))&i(t),

where D is the effective diffusivity of supercoiling along
DNA, and Ji(z,t) is the local flux of supercoiling (Fig.
1) arising due to the transcription of any of the genes ﬂﬁg]
We use periodic boundary conditions so that the over-
all level of supercoiling is conserved (this corresponds to
modelling a DNA loop). In Eq. (@), &(¢) is set equal to
0 when the ¢-th polymerase is inactive, and to 1 when
it is transcribing any of the n genes. The modulus of
the flux is J; = Jy (1 + vt;/1): it increases during tran-
scription to model the fact that the positive supercoiling
is racked up in front of the travelling polymerase. The
sign of J; depends on the direction of gene transcription.
Due to the observation that negative supercoiling can fa-
cilitate binding of RNA polymerases and transcription
factors ﬂﬁ, ], we further assume that k,, depends on
the local value of o at the promoter, op,. For simplicity
we choose a linear coupling, kon = komax{l — aoyp, 0},
where kg is the polymerase binding rate for Jy = 0, and «
quantifies the sensitivity to o,. The linear dependence of
kon on oy, is enough to give rise to highly non-linear dy-
namics. This is because the supercoiling created when a
gene is switched on favours its own transcription, as well
as that of upstream genes, whereas it hinders expression
of the genes downstream. These chains of positive and
negative feedbacks are at the basis of the non-linear tran-
scription dynamics described below.

There are three main dimensionless parameters in the
model. The first is the product of the transcription
rate and the transcription time, ® = (ko,N/n)7, which
measures how often the gene is on. The second mea-
sures how fast supercoiling diffuses away between tran-
scription events, ©® = (konN/n)A?/D. The third one is
J/D, and identifies the supercoiling generated near the
promoter while the gene is active [J = Jy(1 + A\/(2[))
is the average supercoiling flux during transcription].
In ﬂﬁ] we show that the average supercoiling at the pro-
moter can be estimated in terms of these parameters as
op ~ —[(®/(® + 1)]J/(2D). [This estimate should be
seen as a change from the baseline value of supercoiling,
~ —0.05 in bacteria.] Dimensional analysis further sug-
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FIG. 1: Schematic of the supercoiling density close to a tran-
scribed gene, in the frame of reference of the travelling poly-
merase (see also Suppl. Movie 1). The RNA polymerase
creates positive supercoiling (here speculatively depicted as
right-handed writhe) ahead of the gene, while it generates
negative supercoiling (here speculatively depicted as DNA
unwinding) behind. The supercoiling profile is obtained by
solving Eq. () with J/D = 1.7, and other parameters as
in m], except for n = N = 1. The gene is switched on at
time ¢ = 0, and the plot is for ¢ = 7; the transcription flux is
here a regularised delta function [37].

gests that J ~ vA. The main question is then whether
the average level of supercoiling generated triggers the
positive feedbacks highlighted above; experiments sug-
gest o, ~ —0.01 is enough to affect polymerase bind-
ing ﬂﬁ [1§]. What is the situation inside cells? The
diffusion constant of supercoils within naked DNA is
D ~ 0.1 kbp?/s or less [19]. Within bacteria, tran-
scription rates are ~ 10 RNA molecules per minute or
above HE], considering a typical gene size of 1 kbp and
an elongation rate of 100 bp/s, we get o, ~ —0.3. This
suggests that supercoiling can be relevant for transcrip-
tion in prokaryotes. In eukaryotes, transcription initia-
tion is slower due to the need for several transcription
factors to co-localise at a promoter; for example rates in
yeast and humans are about 10 and 1 transcripts per
hour respectively m, @] Given that for eukaryotes
v ~ 25bp/s, while X\ lies between 1.6 kbp (yeast) and
10 kbp (humans), we obtain g, ~ —0.03 (yeast) and
op ~ —0.13 (humans). Because D has not been mea-
sured for chromatin, these order-of-magnitude estimates
should be viewed with caution, yet they suggest super-
coiling may affect polymerase initiation in eukaryotes as
well [23].

Here and in what follows, we will choose parameters
which are relevant to bacterial DNA ﬂﬂ], and study how
the system behaves upon varying J. As discussed in ﬂﬁ],
the results we report here are representative of the sys-
tem’s behaviour in general. We start by considering a
case in which all genes are read in the forward direction,
from left to right. The genes are positioned randomly,
but with the constraint that the distance between neigh-
bouring genes is >1 kbp. For small J/D, the typical



values of o generated by transcription are modest (Fig.
2A, red curve, and Suppl. Movie 2): we call this the re-
lazed regime. The sequence of transcription events in this
regime is well described by a Poisson process: any gene
is read on average the same number of times, and the
total number of transcription events is ~ kg NT where T’
is the total simulation time. As J/D increases, the flux
of supercoiling injected by a polymerase becomes large
enough to change the transcriptional dynamics signifi-
cantly. Now the scale of variation of o is much larger
(Fig. 2A, green curve, and Suppl. Movie 3): we call this
the supercoiling-regulated regime. The value of o, is now
large enough to affect k., significantly, and this triggers
bursts in transcription of the same gene, and waves of
transcription (Fig. 2B, see also Suppl. Movies 3 and 4).
Genes are also no longer equally expressed: those with a
large gap between them and the nearest upstream neigh-
bour are up-regulated because they are less affected by
the build-up of positive supercoiling during transcription
(Fig. 2C).

As expected from the discussion above, the switch be-
tween the relaxed and supercoiling-regulated regimes is
associated with a rise in overall transcription rate (Fig.
2D). It is also linked to a change in the nature of the time
series describing the sequence of transcribed genes which
becomes non-Poissonian and displays temporal correla-
tions (due to bursting and waves of transcription). A
useful way to quantify such a change is via the “con-
ditional entropy” and “mutual information” ﬂa, @, @]
(definitions are given in [37]). The conditional entropy
is maximal and equal to log (n), if the transcription dy-
namics is a Poisson process (as is the case for J — 0),
whereas it equals 0 in the limit of a maximally corre-
lated process (e.g., when a single gene is repeatedly tran-
scribed). Fig. 2D shows that the conditional entropy
decreases with J/D in a sigmoidal way. The mutual in-
formation is a measure of the deviation of the observed
joint probability distribution for successive transcription
events, from that of a random process: for the case of
Fig. 2, it is close to 0 for J = 0, and is higher in the
supercoiling-regulated regime (Fig. Sl ﬂﬁ]) A semi-
analytic theory of transcription bursts in a single gene
model reproduces well the overall transcription rate of
Fig. 2. A simplified mean field theory also shows that
the switch is a crossover rather than a non-equilibrium
phase transition, leads to the estimate for o, discussed
above, and further suggests that supercoiling can affect
transcription if Jkora/(2D) ~ 1 or larger ﬂji

In reality, genes can be encoded either in the forward
or reverse strand of the DNA double helix m@], hence
the supercoiling flux can be directed either way along the
genome. To see how this affects our model, we study the
case in which some of the genes are transcribed left to
right, and others right to left (see Fig. 3). Figs. 3A and
B show that in the supercoiling-regulated regime (large
J /D), some gene pairs are up-regulated together (see Fig.
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FIG. 2: (A) Snapshots of o(z,t) in the relaxed regime (red,
J/D = 0.34) and in the supercoiling-regulated regime (green,
J/D = 2.55) for a 15 kbp DNA. (B) Portion of the time
series of the sequence of transcribed genes for J/D = 2.55.
A transcription wave can be seen as genes are transcribed
preferentially in the order 10, 9, ..., 1, 10, ...(see Suppl.
Movie 4; genes numbered from left to right). (C) Histograms
showing gene transcription probabilities for J/D = 0 and
J/D = 2.55 (average over 7 runs). The most transcribed
genes for J/D = 2.55 are (in order) 10, 9, and 6. (D) Plot
of the conditional entropy and the overall transcription rate
(scaled by koN; the blue line is the transcription rate pre-
dicted by the semi-analytic theory in [37]). Gene positions
for (A)-(D) are indicated in (A). Results for (C,D) were av-
eraged over 7 runs.

3B). These are the divergent pairs (adjacent genes which
point away from each other): when either is switched
on, negative supercoiling is generated between the genes,
which triggers further transcription in both. Within a
given run, we normally observe transcription of a single
divergent gene pair, where the selection mechanism is
fluctuation-dependent (Fig. S4 ﬂﬁ]), within several runs,
there is a ranking list of divergent pairs which depends
quite subtly on gene position (Fig. 3B). Transcription of
convergent genes instead leads to a build-up of positive
supercoiling, so is always strongly down-regulated.

In comparison to the case of genes which are all in
the same direction, random orientations lead to a more
marked peak in the mutual information, and to a sharper
drop in the conditional entropy (Fig. 3C). Divergent
transcription also yields a larger overall transcription rate
(again with respect to the case of parallel genes, see Fig.
3D). It is tempting to propose that this mechanism that
markedly favours the transcription and co-expression of
divergent pairs is amongst the reasons for the high abun-
dance of such promoter pairs in the genomes of several
organisms, including humans m, @] Furthermore, con-
sistent with our model, divergent gene neighbours in
yeast are often co-expressed, have low transcriptional
noise and, importantly, are often associated with essen-
tial genes which tend to be highly expressed ﬂ3__1|, @]

Within a cell, the level of supercoiling is not conserved
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FIG. 3: (A) Plot of the average value of o in the supercoiling-
regulated phase for a 15 kbp DNA with forward and backward
genes. (B) Histograms of transcription probabilities for the
same system with J/D = 0 (red bars), and J/D = 1.36 (blue
bars). The divergent pair 6, 7 is up-regulated because of the
trail of parallel genes in front of 6. (C) Conditional entropy
[scaled by log(n)] and mutual information (averaged over 200
runs for the same gene positions as in A-B). (D) Overall tran-
scription rate from all genes (scaled by koN, averaged over 7
runs), for the single orientation arrangement of genes in Fig.
2, and for a divergent arrangement where the genes occupy
the same region of DNA, but the first 5 are transcribed right
to left.

globally due to the presence of topological enzymes such
as type I and type II topoisomerase, which can relax lo-
cal supercoiling at a rate of ~ 0.1-1 supercoil/s [33]. It
is therefore of interest to include these enzymes in our
model; the simplest way is through a non-conserved re-
action term in Eq. (), as follows,

% = % [Dg_:; — Jue(, t)] — ktopo0, (2)

where Kop, is a relaxation rate; this is associated with a
length scale lyopo ~ v/ D/ktopo, Over which supercoiling-
mediated regulatory interactions are screened. Fig. 4
shows the effect of such enzymes in the set-up corre-
sponding to Fig. 3. Divergent gene pairs are strongly
up-regulated if kiopo = 0, but for Kyopo > 0 there is a
dramatic down-regulation of transcription (Fig. 4A and
4B). This is accompanied by a rise in the conditional en-
tropy (Fig. 4B); topoisomerases therefore rapidly lead to
a loss of correlations in the transcription process.

In conclusion, we presented a dynamical model for
supercoiling-dependent transcription, where a continuum
description for the evolution of supercoiling is coupled to
a stochastic transcriptional dynamics. Our model shows
a crossover between two distinct regimes. When the
supercoiling flux created as a polymerase transcribes a
gene is small, transcription is a random process. When
this flux is large, the dynamics become highly corre-
lated. These correlations can be measured using the con-
ditional entropy and mutual information of the transcrip-
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FIG. 4: (A) Histograms of transcription probabilities of the 10
bidirectional genes in Fig. 3 (with J/D = 2.55), with different
values of k¢opo/ko. (B) Conditional entropy and transcription
rate for the same system as A, as a function of kiopo/ko. Re-
sults were averaged over 6 runs.

tional time series. For parallel genes, supercoiling drives
transcriptional waves and bursts reminiscent of those ob-
served in high-resolution dynamical experiments in both
pro- and eukaryotes M@] It also regulates gene ex-
pression, promoting the transcription of genes which
have a larger gap separating them from their upstream
neighbours. When considering genes with random ori-
entations, transcription localises at divergent gene pairs,
which are highly up-regulated. This is consistent with the
observation that in yeast divergent gene pairs are often
highly expressed essential genes @], and may explain the
statistically surprising abundance of bidirectional pro-
moters within mammals ﬂﬁ, @] Finally, our theory pre-
dicts that including the action of topoisomerases, which
locally relax supercoiling, down-regulates transcription:
this agrees with the observation that inhibiting topo I can
boost eukaryotic transcription rates in vivo , ] Note
that we disregard other important topological enzymes,
such as the bacterial gyrase, whose role is to introduce,
rather than to relax, negative supercoiling: such enzymes
are known to promote transcriptional bursting ﬂﬁ]

We foresee at least three major ways in which this work
can be further pursued. First, we hope that our study
will stimulate quantitative experiments measuring gene
expression in vitro, where gene positions and directions
can be controlled, e.g., via DNA editing. Second, the
model could be refined by comparison with high resolu-
tion psoralen data on supercoiling domains in both pro-
and eukaryotes. Finally, it would be of interest to cou-
ple the dynamics of supercoiling to that of nucleosomes,
which can at the same time create a barrier for supercoil
diffusion, and localise twist and writhe.

CAB and DM acknowledge ERC for funding (ERC
Consolidator Grant 648050, THREEDCELLPHYSICS).
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Here we provide additional details and results for the travelling polymerase model presented in the main text. We
also discuss some variants of the model, including one in which polymerases are static. We also present some analytical
results, mainly obtained within the simpler static polymerase model.

TRAVELLING POLYMERASE MODEL: ADDITIONAL DETAILS AND VARIANTS CONSIDERED

The diffusive equation of motion for the supercoiling density, Eq. (1) in the main text, can be motivated as follows.
First, a good approximation for the free energy density of a supercoiled DNA with degree of supercoiling o is

A
f = 5 0'2 (83)

where A is a positive constant with appropriate dimensions @, E] In a DNA loop, or in a DNA region where the

ends are fixed, or not free to rotate, the overall degree of supercoiling is fixed, therefore the appropriate dynamics for
o(z,t) is that of model B [3],

90(@,8) _ pyg22 _ MAV?o(z,t) = DVZ0(z,t), (59
ot do

where z is the 1D position along the DNA, M is the mobility associated to the supercoiling density and ¢ is time. The
term % is the analogue of the chemical potential in the “standard” model B dynamics (i.e., for binary mixtures ﬂa] As
discussed in the text, Eq. (S4) means that the local degree of supercoiling diffuses, with effective diffusion coefficient
D = M A. We note that Eq. (S3) only holds for relatively small values of o [E, E] It would be possible, in principle,
to improve this by choosing a free energy functional which better captures the free energy cost of supercoiling beyond
the harmonic approximation. However, there are other aspects of the continuum model which break down for large o;
e.g., when the local supercoiling density becomes too negative, the polymerase would no longer indefinitely increase
its affinity for the promoter, or when ¢ is close to -1, so that the linking number of the DNA is close to 0, we would
no longer expect transcription to create positive or negative supercoiling. Therefore, we feel it better to maintain the
harmonic approximation which makes the model simpler, keeping in mind the caveat that it will break down for large
values of supercoiling (say, |o| > 1).

It is useful here to make a few other technical remarks on the model. First, the supercoiling flux associated with
transcription is proportional to a Dirac delta function (see Eq. (1) of the main text). Since in reality a polymerase will
have a finite footprint on the DNA, the Dirac delta function can also be substituted with its regularised representation,

5(z) — exp [—a?/(41%)] / (21V/m), (S5)

where x is the argument of the Dirac delta function and [ is the regularised support of the flux. In the simulations for
Figs. 2-4 in the main text (and also for Figs. S1-S6 below), the Dirac delta is substituted by a Kronecker delta 6, o,
hence regularisation occurs with [ ~ Az, the lattice spacing, which physically should be the size of a polymerase (~15
bp). In Fig. 1 in the main text we used the regularised delta of Eq. (S3), with / = Az. Second, while the baseline
model considers the case where the overall supercoiling integrates to 0, having an average non-zero supercoiling, ¢
would not affect the results (provided that the dependence on ko is on do = o — 0¢). Third, in the baseline model,
a polymerase can engage on a gene as soon as its promoter is empty, i.e., when the previous polymerase has moved
a single lattice spacing. In practice, a polymerase may need to be further away from the promoter before a second



can initiate another transcription event. We have performed additional simulations, which suggests that while this
fact quantitatively changes the overall transcription rate for a given value of the supercoiling flux, J, the qualitative
trends reported in the main text are preserved. Fourth, in the travelling polymerase model reported in the main
text the transcription flux increases during transcription to model the fact that the positive supercoiling is racked up
in front of the travelling polymerase. A constant Jy would not capture the asymmetry between the higher positive
supercoiling peak in front of the polymerase and the smaller negative supercoiling wake behind; we have seen that
it would, however, lead to qualitatively similar physics. Finally, when describing the model we imagine that the
polymerase moves along the DNA. However, a similar level of torsional stress arises if the polymerase is immobilised
and the DNA is reeled in to be transcribed [4].

In the main text, the switch between the relaxed regime and the supercoiling-regulated regime is described in terms
of some information theory quantities ﬂﬂ, ], the conditional entropy and the mutual information, which we define
mathematically here. These quantities are both defined in terms of a time series, here the sequence of the gene number
transcribed over time, {i,}, where e.g. i1 is the index of the gene activated during the first transcription event, i is
that activated during the second etc.

The “conditional entropy” of the transcription time series is defined as

S({ig}) = =Y pli, j) log [p(il)]; (56)

i,J

where p(i, 7) is the joint probability of observing the transcription of gene 7 followed by that of j as consecutive events,
while p(i|j) is the conditional probability of gene i being the next transcribed gene given that j was the last to be
transcribed. Note that in general p(i,j) # p(j,¢) (this is essentially due to the system being away from equilibrium).
The conditional entropy S({iy}) is maximal, and equal to log (n), if the transcription dynamics is a Poisson process,
as is the case when J = 0; it is instead equal to 0 in the limit of a maximally correlated process, for instance when a
single gene is repeatedly transcribed.

The “mutual information” of the series of transcription events is defined as

I({ig}) =Y pli, ) log[p(i, )/ (p(i)p())]; (S7)

i,

where p(i) is the overall probability that gene 7 is activated. The mutual information is equal to 0 if p(¢, 7) = p(7)p(j),
i.e. for a succession of randomly chosen genes; its value therefore measures the divergence of the joint probability
distribution for successive transcription events from that of a random process. In statistical mechanics systems it is
often found that the mutual information peaks at or close to phase transitions [!a], where correlations are maximal
(however the definition of mutual information for thermodynamic systems is different [6]).

TRAVELLING POLYMERASE MODEL: ADDITIONAL FIGURES

In this Section, we provide additional figures regarding the travelling polymerase model: these give more details
and also demonstrate that the results shown in the main text are not qualitatively affected by different parameter
choices.

Fig. S1 shows a plot of the mutual information for the case of genes with the same direction, as a function of J/D
(same parameters and gene positions as in Fig. 2 of the main text): there is a shoulder accompanying the crossover
between the uniform and the supercoiling-regulated regime.

Fig. S2 shows the transcription rate per gene as a function of J/D for the case of a single gene and a single
polymerase (red curve). The curves are scaled by the transcription rate at J/D = 0. The single gene system can
exhibit transcription bursts, but not waves, yet the overall transcription rate is similar to the overall transcription
rate per gene in the case of genes oriented in the same direction (green curve, same data as in Fig. 2D).

For concreteness and simplicity, in the text we have chosen to vary only Jy (hence J), keeping other parameters
constant (our parameter choice is relevant to bacterial DNA). This is sufficient because, as the supercoiling flux
changes, this varies all three dimensionless parameters identified in the main text:J/D, © and ®. However, it is also
of interest to examine the quantitative effect of other parameters. Therefore in Fig. S3 we show the effect of varying
Jo (hence J) when a different choice of the parameter kg, the baseline polymerase binding rate, is used. We show
both the transcription rate (Fig. S3A, scaled this time so that the value of 1 corresponds to all genes being constantly
transcribed) and the mutual information (Fig. S3B) for the parallel array of genes in Fig. 2, where the value of the
baseline polymerase binding rate without supercoiling, kg, is varied by two orders of magnitude.



Fig. S3A shows that in all cases there is a crossover between a uniform regime and one where supercoiling upregulates
transcription. Indeed, the curves show a similar crossover point when they are plotted as a function of JkyTa/D
— this scaling makes sense qualitatively since if genes are active less often (which is the case for smaller kq7), then
one expects that a larger flux is needed to enhance the transcription rate by a significant amount. Below we shall
present a mean field theory which further motivates theoretically this scaling. The main effect of changing k¢ is that
the crossover becomes sharper as ko decreases — again, our mean field theory will provide an explanation for this
observation.

Fig. S3B shows that the mutual information attains a similar value in the supercoiling-mediated regime, whereas
the peak corresponding broadly to the crossover point is more visible for small ky: again, this indicates that the
crossover is sharper in that case. For the parameter range investigated, we further always find transcription waves in
the supercoiling-regulated regime: these waves persist down to smaller values of Jkora/D for small k.

Finally, Fig. S4 shows the transcription probability for different runs in the case of randomly oriented genes
(positions as in Fig. 3 in the main text): the histograms show that in different runs, different gene pairs are
upregulated. The system therefore shows multistability: once a gene pair is chosen, transcription is localised there
for a long time (often for the whole run).
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FIG. S1: Plot of the mutual information versus J/D for the transcription dynamics in Fig. 2 of the main text (averaged over
7 runs).
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FIG. S2: Plot of the overall transcription rate (per gene) as a function of J/D for a model with only one gene (N = n = 1;
other parameters as in Fig. 2 of the main text) and for the case of genes oriented in the same direction (see Fig. 2 of the main
text). The overall transcription rate is normalised with the expected value at J/D = 0 in both cases: the behaviour is very
similar in the two cases.
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FIG. S3: (A) Plot of the overall transcription rate (per gene, and scaled such that it is 1 if all genes are transcribed constantly
all of the time) as a function of JkoTa/D for the same gene arrangement as in Fig. 2 of the main text, and for different values
of ko, the polymerase binding rate in the absence of supercoiling (all other parameters as in Fig. 2; the value of kg is given in
the legend, in s™', using the same mapping between simulation and physical units employed in the main text). The motivation
for plotting the curves as a function of JkoTa/D comes from the mean field theory discussed in Section “STATIC AND
TRAVELLING POLYMERASE MODELS: MEAN FIELD THEORY, AND SCALING”). (B) Plot of the mutual information
as a function of Jkora/D. The simulation with the smallest value of ko leads to a sharper increase of transcription rate with
supercoiling flux (panel A), and to a better defined peak in the mutual information (panel B). All curves shown in (A) and (B)
are averaged over 7 runs.
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FIG. S4: Plot of the relative transcription probability for the 10 genes in Fig. 3, for J/D = 1.02 and for three different runs.
Different divergent gene pairs are upregulated in different runs.
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STATIC POLYMERASE MODEL: NUMERICAL RESULTS

In this Section, we introduce and discuss a simpler model, where the polymerase does not travel along the gene
body, but upon activating it introduces a supercoiling flux for a period of time 7, over which the gene is transcribed.
This model is less realistic biologically, but simpler to work with analytically (see next Section). We refer to this as
the “static polymerase model”.

The static polymerase model is analogous to the travelling polymerase model in that a stochastic dynamics of
transcription is coupled to a diffusion-like equation for the supercoiling density, o, i.e.,

do(z,t) 0 [DM — Ju(z,t)] . (S8)

ot oz O

In the static polymerase model, the form of the supercoiling flux during transcription is given by

N
Joe(z,t) = Z Ji(t:)6(z — z:(t))&i (1), (S9)

where the sum is over the NV polymerases, and where &;(¢) is set equal to 0 when the i-th polymerase is inactive, and
equal to 1 when it is transcribing any of the n genes. When &; = 1, the polymerase sits at the promoter of the gene
it is transcribing: i.e., if the i-th polymerase is transcribing the j-th gene, then z; = y;. Finally, the modulus of the
flux is J; = £Jp, where the sign depends on gene direction as in the main model. Therefore, this represents the limit
where v = 0 in the travelling polymerase model. It is worth noting that in the static polymerase model, since the
polymerase always sits at the promoter, there can be only one polymerase transcribing a gene at a given time.

The dependence of k,, on supercoiling is taken to have a similar functional form as in the travelling polymerase
model (see main text),

kon = komax {1 — aop x,,0}, (S10)

however, in this case, op, x, is computed a distance zy upstream of the promoter of a given gene. Taking zyp = 0 as
in the travelling polymerase model would lead to artifical results, as, for instance, in a model with a single gene (at
z = 0), 0(0,t) = 0 for symmetry when the gene is off (see next Section).

Fig. S5 and Fig. S6 show the behaviour of the static polymerase model (for zy = 5Az) as a function of Jo/D
for the case of genes oriented in the same direction (Fig. S5) and for divergent transcription (Fig. S6). The trends
observed are qualitatively in agreement with those found with the travelling polymerase model (see Fig. 2 and Fig.
3 in the main text).
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FIG. Sh: Static polymerase model with genes in the same direction. (A,B) Plots (snapshots) of the local supercoiling density
in the relaxed phase (A, Jo/D = 0.3) and in the supercoiling-regulated regime (B, Jo/D = 3) for a 15 kbp DNA. The gene
positions are indicated in pink. (C) Histograms showing the transcription probability of the genes in A and B for Jy = 0 (red)
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STATIC POLYMERASE MODELS: EXACT RESULTS

In this Section we obtain some exact results and scaling relations; we will work within the static polymerase model,
but in the next Section we will also apply them to the travelling polymerase model.
We begin by considering the static polymerase model, where there is a single gene. We start from the equation for
o(z,t), and imagine that the gene is on:
Oo(z,t) 0 Oo(z,t)

T Tl e P B (510

where we use the boundary condition that ¢(0,¢) = 0, and consider no flux boundaries (so that the overall supercoiling
is fixed; we solve the equations on an infinite domain, so this implies ? = 0at z — £00). In steady state (W =0),

the solution of Eq. (S11)) is given by ‘

J,
o(z) = %sgn(m), (S12)
where sgn(z) is the sign function, so o = 2‘]—3 for positive z, and o = —2‘]—5 for negative x. This solution shows that

the typical value of the supercoiling density is |o| ~ Jo/D (however it is only accurate for a gene which is always on).

It is also of interest to examine how the solution evolves in time to yield Eq. (S12) at steady state. To address this,
we consider an initial condition with ¢ = 0, and we imagine that the gene is switched on at time ¢ = 0. Then, while
the gene is switched on, the Laplace transform of o(z,t), which we shall call §(z, s), with

o0
5z, s) = / dt exp(—st)o (s, 1), (S13)
0
satisfies the following equation
%6 . 8 (z)
Dw — §0 = —JOT, (814)

where ¢'(z) represents the derivative of the Dirac delta function.
One way to solve Eq. (S14) is to observe that the Green’s function, i.e. the solution of

g(z,x')
0z2

which decays to 0 at |z — z'| — oo, is given by

D —sg(z,z') = 6(z — ), (S15)

g(z,z') = exp (_;{/_BD_E — ) . (S16)

Then, the solution of Eq. (S14) is

Q>

(2,5) = /W da' 9(z,2) [—JOM] (S17)

— S

D exp =4/ Zal ) sgn(a)
9Ds P D ¥l ) S

In real space, the solution is found by inverse Laplace transform; at time ¢ = 7, when transcription stops in our model,
it is given by

5 (3v7)
o(x,7) = ——erfc sgn(z), S18
(@7) = 5perte (5. 75= ) san@) (518)
where erfc is the complement of the error function. This solution tends to Eq. (812) when 7 — oo; it also shows that,
while the gene is on, again the typical value of supercoiling density in the neighbourhood of the promoter is ~ Jo/D.

After the gene is switched off the supercoiling density satisfies the diffusion equation,
Oo(z,t) 0?

=D
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with the initial condition that o(z,7) is as given by Eq. (SI8). The solution can be written as

(z—2')?

< €XP [_ iDt } Jo ||
. ! !
o(z,t) = f_oo dx — Vb 2D erfc (2\/_T> sgn(z'), (S20)

where for simplicity we have shifted time so that the gene switches off at time ¢ = 0 and the solution holds for ¢ > 0.
Eq. (S20) can be used to infer that o(0,¢) = 0 (for the static polymerase model), and o(z,t) ~ ¢t~ 3/2 for large ¢ and
for x #0.

STATIC AND TRAVELLING POLYMERASE MODELS: MEAN FIELD THEORY, AND SCALING

We now use the results obtained from the last Section to build a simple mean field theory for our model.

We start from the observation that, within the static polymerase model, the on rate for RNA polymerase, kop,
depends on the extent of negative supercoiling upstream of the promoter (at zo < 0), according to the formula (see
main text and Eq. (510)),

kon = ko [1 — ao(z0,1)], (S21)

where, since this is always positive, we do not need the max function as in the main text.

We propose a simple mean field theory, where the value of o(zg,t) is replaced with the average supercoiling profile
over the whole simulation, 6(zp). An equation for & can be written down by finding the steady state solution of
Eq. (S1I) when the flux is replaced by its average Jod(z) kf:::_l, where % is the fraction of time that the gene is
on (this last formula can be obtained by realising that the polymerase has an on rate equal to k,,, and an effective off

rate equal to 1/7). If we do this, we find that

konT Jo

—_— . 22
konT +12D (822)

(wo) = —
We should note that this solution, as the previous ones, works for open, no flux, boundary conditions (our simulations
instead have periodic boundary conditions, but the scaling of & does not change).
We can now plug in this expression for & in Eq. (82I)), to get a self-consistent equation, similar in spirit to a mean
field theory,

konT J()

kow = ko [1 — a6 (kog )| ~ ko |1+ a—ronT J0 |
on = ko[l —ad(kon)] ~ ko |1+ ar—"7 055

(S23)

Eq. (S23) has a solution which depends smoothly on J—lg: in other words, there should be no discontinuity in the
transcription rate (proportional to ko, see below) as a function of Jy. Another way to understand this is to realise
that Eq. (823) is essentially equivalent to the mean field equation for the magnetisation versus temperature in the
Ising model in the presence of a non-zero magnetic field (the ko term): it is well known that this equation in this case
describes a smooth crossover and no thermodynamic phase transition.

While we have derived our mean field equation, Egs.(S22)) and (S23)) for the static polymerase model, numerically
we found that Eq. (S22) also applies well for the travelling polymerase model, with Jy replaced by J, the average
supercoiling flux during transcription. Specifically, for the travelling polymerase model, the average supercoiling
density at the promoter, which we call &, is given by

konT J ® J

= 24
konT + 12D &+ 12D’ (524)

5y = —
where ® = ko, 7 is one of the dimensionless numbers introduced in the main text, for N = n = 1. Eq. (824) is used
in the main text to estimate the supercoiling densities at promoters in bacteria, yeast and human cells.
By plugging Eq. (S24) into Eq. (S2I)), we can find an explicit expression for k,, in our mean field theory, which is
given by
h+ Vh2 + 4kyT

hout = (S25)

aJ
h = koT(l-}-E)—l.
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The overall transcription rate k; (of the single gene considered up to now in the simplified theory) can be estimated
as follows,

kon

ky = ————
t 1+ kont

(526)

where the correction ﬁ takes into account the fact that the maximum transcription yield per gene is equal to 1/7,
when the polymerase is transcribing the gene at all times. Fig. S7 shows some examples of the overall transcription
rate kg, for different values of ky7. As anticipated when analysing the static polymerase model, for any ko # 0, there
is no discontinuity in the transcription rate, so that the switch between uniform and supercoiling-regulated regime is
a crossover. The only limit in which this would become a true nonequilibrium transition is if ky — 0, while keeping
the product Jako7/D constant. Eqs. (S28) and (S26)) also highlight a useful criterion to determine when supercoiling
starts to significantly affect transcriptional rate (hence transcription): this occurs when

J_Oék()T
2D

~1. (S27)

In other words, the value of J/D (which is the parameter varied in the main text) at which we should expect the
crossover between the uniform and the supercoiling-dominated regime is equal to 2/(ake7). Eq. (S21) also motivates
the scaling used in Fig. S3.

Note that, as is the case in general for mean field approximations, the assumption that k,, depends on the average
supercoiling profile, &, is only appropriate when the supercoiling profile does not vary too much in time, so that
the instantaneous profile for o is close to the average one. This is the case when there is not enough time for the
supercoiling to diffuse away in between transcription events. The physical dimensionless parameter determining when
this is the case, in the travelling polymerase model, is © = %. If © is small, then diffusion is fast and while the
gene is off the supercoiling is much smaller than the average value, and our mean field theory is not valid.

Fortunately, even when O is relatively small (Fig. S8, where the minimum value of © is ~0.44) our numerical
results suggest that the value of o at the promoter, o, at the moment when the gene is switched on (which is the
relevant value to use in Eq. (821))), depends on k,, linearly for small k,,, so that the same qualitative considerations
apply as in our simplified mean field theory (i.e., the system displays a crossover rather than a phase transition as
J/D is increased). We can further perform a simulation to find the value of o, as a function of k., (kept constant for
each simulation, see Fig. S8 and its caption). We can then fit the resulting data with the following functional form,

akon

|UP| = bkon + 1

(S28)
where a and b are positive constants determined via fitting (see Fig. S8). At this point, we can follow the procedure
described above, where Eq. (S28) is plugged into Eq. (S2I) to yield a semianalytical estimate for ko,: this is an
improvement with respect to the mean field estimate, Eq. (S25)). In a system with one polymerase and one gene, the
rate kon determined self-consistently via Eq. (S21I) gives the overall transcription rate k; by using Eq. (S20G)). For a
system with N polymerases and n genes, substituting kon with kon/N/n we obtain the predicted transcription rate
per gene. This rate is a good approximation of the transcription rate per gene in the case of genes oriented along the
same direction (see the blue curve in Fig. 2D in the main text).
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transcription rate k;

FIG. S7: Plot of the transcription rate, found by using Eq. (825) and Eq. (526)), for o = 100 (as in the main text), and different
values of kon7 (see legend).
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FIG. S8: (A) Plot of the local supercoiling density (absolute value) at the promoter as a function of kon for a single gene, on
a lattice of size 1000 Az (with periodic boundary condition). To make this plot we run our simulations with a = 0 so that
kon can be fixed as an input. The fit is to Eq. (S28)), and the resulting parameters are a ~ 11.18 £ 0.02 and b = 9.85 & 0.02.
This simulation was performed with J/D = 2.55; in order to get the transcription rate as a function of J we further assumed
a linear dependence of o, on J overall (as in Eq. [522)).
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Captions for Supplementary Movies
Below are the captions for Suppl. Movies 1-4.

Suppl. Movie 1: An example of dynamics corresponding to Fig. 1 of the main text, showing detail of one
transcription event (note that the flux here is discretised as in Eq. (S3), with [ = 1).

Suppl. Movie 2: An example of dynamics corresponding to the relaxed regime, with J/D = 0.34, where all
genes are oriented along the same directions. All other parameters are as in Fig. 2 in the main text. The bottom
panel shows the number of the transcription event versus the number of transcribed gene. It can be seen that genes
are transcribed in a random sequence. Here and in the following Suppl. Movies 3 and 4, the flux here is discretised
as a Kronecker delta, as in Figs. 2-4 of the main text. Also note that, in order to cover the whole dynamics, the
frame rate is too fast to resolve single transcription events.

Suppl. Movie 3: An example of dynamics corresponding to the supercoiling-regulated regime, with J/D = 1.7.
All other parameters as in Suppl. Movie 2, or Fig. 2 in the main text. The bottom panel shows the histograms
of transcription events for each gene. It can be seen that some of the genes are transcribed more than others; the
speeded up dynamics also show a transcription wave going from right to left.

Suppl. Movie 4: As Suppl. Movie 3, but now the bottom panel shows the number of transcription events as a
function of number of transcribed gene. The bottom plot highlights the transcription wave, as genes are more likely
to be transcribed in the order 10, 9, ..., 1, 10, ....
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