Best
 Available Copy

STOCHASTIC MODELING AS A MEANS OF AUTOMATIC SPEECH RECOGNITION

Carnegie-Mellon Uliniversity

PREPARED FOR
Air Force Office of Scientific Research
Defense Advanced Research Projects Agency

APRIL 1975

DISTRIBUTED BY:

security classificaiton of twis page imken Jete Friered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COISPLET:NG FOR:
T. REPORT NUWEER AFOSR - TR - $75-1034$ a. GOVT ACCESSION NO,	3 recipient's catalos number
- TITLE (end Subititio) STOCHASTIC MODELING AS A MEANS OF AUTOMATIC SPEECH RECOGNITION	3. TYPE OF REPORT A PERIOO COVEREC Interim
7. AUTMOR(O) James K. Baker	- contract or gant number(e) F4462C-73-C-0074
9. Performing organization name ano aooress Carnegie-Mellon University Computer Science Dft Pittsburgh, PA 15213	10. PROGRAMELEMENTPROJECT. TASK AREA WORK UNIT NUME RS $61101 D$ A02466
11. controlling office name and aooress Defense Advanced Research Projects Agency 1400 Wilson Blvd Arlington, VA 22209	12. REPORT OATE APRII, 1975 13. NUMEER OF PAGES 114
14. MONITORING AGENCY NAME A ADDRESS(II dilleremt Irom Controfline Oifice) Air Force Office of Scientific Research/NM 1400 Wilson Blvd Arlington, VA 22209	Is. SECURITY CLASS. (ot thie 'OPDOR) UNCLASSIFIED IS. OECLASSIFICATION OOWNGRAOIN

OISTRIBUTION STATEMENT (Of the ebetract entered in Block 20. II dillerent from Report)

PRICES SUZJET TO CTaNGE
SUPPLEMENTARYNOTES

KEY WOROS (Continue on reverse elde if necessery end identlly by black number)

AOSTRA $=T$ (Continue on reverse side ll nocesiery end ldentily by block number)
Automatie reengnition of eontinumus speceh involies estimation of a sequence $\boldsymbol{X}(1), \mathbf{X}(2)$, $\mathbf{X}(3), \ldots, X(T)$ which is nol directly nbsersed (such as the words of a spoten utterance). based on a sequence $Y(1), Y(2), I(3), \ldots . Y(T)$ of related observations (stich as the sequence of acoustic parameter values) and a variety of sources of knowledere. Formally, we wish to find the sequence
 S), where A, L, P, S represent the acoustic-phonetic. Iexical, phonological, and syntactio-semantic knowledge. A speceh recoenition system must atiompt to approximate a solution to this problem, whether or not the system uses a formal stochastic model.

DD, form 1473 EOITION OF I NOV GS IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DelQ Enterea)

Block 20/Abstract

The DRAGON speech recuenition system models the knowledee sources as probahilistic function is of Markov processes. The assumption of the Markov propery allows the use of an optima' search strateg). The DRAGON system finds dhe sequence $\times(1: T)$ which maximizes the above probahility, as civen by the Marhor model. In effect. the system searches all pessible sentences in the erammar. all possible pronunciations of each sentence, and all possible dynanuc time warpings of eact, such phonetie string to hest fit it to the acoustic observations This netimal search is carricd oct by the procedure expressed in equations (-1) and (2).
(1)

$$
\begin{aligned}
& r(t, j)=\operatorname{Max}_{1}\{r(t-1, i) \operatorname{Pr}(X(t)=j \mid X(t-1)=i, A, L, P, S) \\
& \operatorname{Pr}(Y(t)=y(t) \mid X(1-1)=i, X(t)=j, A, l, P, S)\}
\end{aligned}
$$

Let $I(t, j)$ be any value of i for which the above maximum is achieved.

```
x ( t ) = 1 ( 1 + 1 , x ( t + 1 ) )
```

The use of a gencral theoretical framework, with an explicit representation for the solution process, greatly simplifics the speech recognition system. Equations (1) and (2) represent the entire recognition: arocess. Despite its simplicity the system can, to some degrec, use knowledge from each of the domeins A, L, P, and S.

A simplified implementation of the DRAGON system has been develor d using knowledec A and L, and sonic of the knowledec from S. This implementation has been tested on 102 utterances from 5 interactive computer tasks. The size of the itegrated Markov network representing the knowledge sources is $410,702,916,498$, and 2356 states, respectively. Tor the 5 tasks whose vocabulary sizes are $24.66,37,28$. and 194 words, respectively, and which have grammars of :aryin: the length of the uttorance and is giten approximately by the expression (recogntion tum; - iu: length $)(20.9+.167($ nct sizc $))$. Since a complete optimal search is performed, the recogenition time is independent of the amount of noise in the signal or the number of errors in interinedtate recognition decisions. The system correctly recognized 49\% of the utterances and correctly identified 83% of the 578 worls

STOCHASTIC MODELING AS A MEANS OF

AUTOMATIC SPEECH RECOGNITION

James K. Baker
April 1975

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Speech and Computer Science.

Mellon Institute of Science
Carnegie-Mellon University Pittsburgh, PA 15213

This work was supported by the Defense Advanced Research Projects Agency under contract F44620-73-C-0074 and is monitored by the Air Fore Office of Scientific Research.

STOCHASTIC MODELING AS A MIEANS OF AUTOMATIC SPEECH RECOGNITION James K. Baker Carnegic-Mcllon University

Automatic recognition of continuous speech involves estimation of a sequence $\mathbf{X}(1), \mathbf{X}(2)$. $\mathbf{X}(3) \ldots . . . X(T)$ which is not directly observed (such as the worls of a spoken utterance), based on a sequence $Y(1), Y(2), Y(3), \ldots, Y(T)$ of related observations (such as the sequence of acoustic parameter values) and a variety of sources of knowledge. Formally, we wish to find the sequence $x[1: T]$ which maximizes the a posteriori probability $\operatorname{Pr}(X|1: T|=x \mid 1: T]|Y| 1: T \mid=y!1: T], A, L, P$, S), where A,L, P, S represent the acoustic-phonetic, lexical, phonological, and syntactic-semantic knowledge. A speech recognition system must attempt to approximate a solution to this problem, whether or not the system uses a formal stochastic model.

The DRAGON speech recugnition system models the knowledge sources as probabilistir, functions of Markov processes. Ihe assumption of the Markov property allows the use of an optimal scarch strategy. The DRAGON system fillds the sequence $x[1: T]$ which maximizes the above probability, as given by the Markov model. In effect, the system searches all possible sentences in the grammar, all possible pronunciations of each sentence, and all possible dynamic time warpings of each such phonetic string to best fit it to the acoustic observations. This optimal search is carried out by the procedure expressed in equations (1) and (2).

$$
\begin{align*}
& r(t, j)=\operatorname{Max}, \mid r(t-1, i) \operatorname{Pr}(X(1)=j \mid X(t-1)=i, A, L, P, S) \tag{1}\\
& \operatorname{Pr}(\mathbf{Y}(1)=y(1) \mid \mathbf{X}(1-1)=i, X(1)=j, A, L, P, S)\}
\end{align*}
$$

Let $I(t, j)$ be any value of i for which the above maximum is achieved.
(2) $x(1)=1(1+1, x(1+1))$

The use of a general theoretical framework, with an explicit representation for the solution process, greatly simplifics the speech recognition system. Equations (1) and (2) represent the entire recognition process. Despite its simplicity the system can, to some degree, use knowledge from each of the domains A, L, P, and S.

A simplified implementation of the DRAGON system has been developed using knowledge A and \mathbf{t}, and some of the knowledge from 5 . This implementation has heen tested on 102 utterances from 5 interactive computer tasks. The size of the integrated Markov network representing the knowledge sources is $410,702,916,498$, and 2356 states, respectively, for the 5 tasks whose vocabulary sizes are $24,66,37,28$, and 194 words, respectively, and which have grammars of varying degrees of complexity. The time required for recognition of an utterance is proportional to the length of the utterance and is given approximately by the expression (recognition time) $=$ (ult length $)(20.9+0)(7($ nct size $))$. Since a complete optimal search is performed, the recognition time is indepenclent of the amount of noise in the sigrial or the number of errors in intermediate recognition decisions. The system correctly recognized 49% of the utterances and correctly identified 83% of the 578 worls.

ACKNOWLEDGEMENTS

I wish to thonh Leomard Baum, who introxduced me to the theory of a probabilistic function of a Markov process. Raj Reddy, who guided my research in specech recogmion, and Janel Maclver Baker. who introduced me to the problem of speech reeognition andl who made it all worthu hile. This researeh was supported in part by the Advaneed Research Projeets Ageney of the Department of Defense under contraet no. F44(,20-73-C-0074 and monitored by the Air force Office of Scientific Research. The final editing of the dissertation was done while the author was with the Speech Proeessing Group. Computer Seience Department. IBM Thomas J. Watson Rescareh Center.

TABLE OF CONTENTS

1. Introduction 1
II. General Moxdel 15
III. Representation of Knowledge Sources 22
iV. In:plementation 34
Appendix A-Phonetic Dictionary 64
Appendix B-Grammars 73
A, ppendix C-Examples from a Simple Language 84
Appendix D—Acoustic Parameter Values and Labels 92
Appendix E-Seripts of Utterances 96
Bibliography 104

LIST OF FIGURES

Chapler I
Figure I-Cirammar Network7
Figure 2-Word Nelwork x
Figure 3-Phone Network 8
Figure 4-Integrated Network y
Chapter II
Chapter III
Figure I-Gencral Word Prototype28
Chapter IV
Table I-Acoustic Scegment Labels 36
Table 2-Section of Dictionary 36
Figure 3-MAKDIC(llow chart) 37
Table 4-Section of Dictionary Network Listing 38
Figure 5-BNF granımar 39
Figure 6-Partially Connected Network 4)
[Figure 7-Sect wol (irammar Network 4)

Figure X—MAK(iRM (llow chart)
$11-43$

Figure 9—MARNI:T (flow charl)

Figure IO-GETPRIB (flow chart) 4h

Figure II—DRACiON (Flow chart) 50)-51

Tatic 12—Accuracy of Ulterances Recognized 53

Table 13—Accuracy of Words Identified 53

Table 14-Time Necded for Recognition 54

Table 15-Accuarcy and lime for Individual Uterances 55

Table 16-Uticrances Fir Interactive Formant Tracking Task 56

Table 17-I:rrors in F'ormant Tiask 57

INTRODUCTION

Speech recognition, a task which humans do efficiently and well, is very difficult to do by automatic procedures. There is a great deal of ambiguity in the actual acoustic signal-ambiguity which can be resolved only by applying other sources of knowledge in addition to the acoustic signal(|A1], [R7|, |N2|). In recent years much research has been devoted to deieloping the other sources of knowleciex that are available in analyring speech which is restricted to a specialized domain of discourse(|R4], [R5], [T1], [DI], [P2], |W3], [F2|, [B6], [W1], [1,1], [J3]). In such a specialized domain there is generally a restricted vocabulary, so one source of knowledge is the lexical knowledge. The utterances are constrained to be grammatical and sometimes the grammar is a special restricted one, so there is syntactic knowledge. In some of the systems the specialized domain is an interactive task with the computer as a participant. Thus there is a:` operationa! definition of whether an utterance is "meaningful" (that is, can the computer interpret the utterance in relation to the interactive task), and therefore there is a kind of semantic knowledge(|R6|).

In order to apply these sources of knowledge in speech recognition, it is necessary to represent this knowledge in a form that can be compared with the acoustic observations. There are two operations which are essential in any speech recognition system: searching and matching. Suppose one knowledge source, such as syntax, hypothesizes a word or a sequence of words. This hypothesis can only be verified by matching the words with the events observed by the other sovires of knowledge, such as the actual acoustic signal. A mateling procedure is needed to evaluate any particular hypothesis. A searching procedure is needed to explore the space of possible hypotheses.

SEARCHING AND MATCHING IN SPEECH RECOGNITION SYSTEMS

The various speech recognition systems which have been developed use a great variety of searching and matching procedures and employ them in many different ways. The DRAGON speech recognition system, the subject of this thesis, is based on a systematic use of a particular abstract model to represent many of the sources of knowledge needed for speech recognition. This
uniformity of epresentation then allows a powerful general scarching/matching technique to be applied to :he speech recognition system as a whole. First let's consider some of the ways in which searching and matching procedures are used in other speech recognition systens.

The HEARSAY I system (|E2|.|R3|, [R4|, |R5|) employs a hypothesize and test paradigm. There is a separate programming, module for each source of knowledge which is represented. Each module is responsible for generating hypotheses based on its own internal knowledge. En'h hypothesis is then verified by each of the modules (that is, each module matches the hypothesis against its own knowledge) and a combined rating is computed. The modules communicate with each other primarily by stating hypotheses about the sequence of words and each module has its own matching procedures for relating stech "word-level" hypotheses to its own specialized knowledge. The search strategy is basically a best-first tree search. Words are hypothesized proceeding left-to-right in the utterance. At any point in the alialysis new hypotheses are generated which are extensions of the best partial sequence of words obtain so far in the analysis. On the next round of the analysis, either the best such extension becomes the test partial sequence or, if all such extensions get sufficiently low ratings, a previous partial sequence iwhich had been the second best partial sequence) is reactivated.

In the HEARSAY II system ([L2]) the matching and search mechanisms are much more general and flexible. Hypotheses are not restricted to the word level, but instcad are organized into an indefinite number of levels ranging from sub-phonetic acoustic segements to semantics and pragmatics. There are a large number of independent knowledge source inodules. Each knowledge source repeatedly applies matching procedures to compare the data strusture of existing hypotheses with its internal knowledge base. Whenever a match is found the knowledge source takes the appropriate action to add an hypotiesis or otherwise modify the data structure. The search strategy consists of scheduling which knowledge sources get activatted and in what order, based on a variety of score: and ratings for the hypotheses that are in the data structure at a given time.

In the Automatic Recognition of Continuous Sperech (ARCS) systems (|D1|, |T1|, |T2|, |T3|. |P1|.|P2|, |R1|) a varicty of tests are applied to the acoustic sugnal to derive a (nosisy) phonetic
string and there is a language model for gencrating sequences of words. The conversion of the noisy phonctic string to an orthographic string is then performed by scarching and matching procedures. For each word there is a network representing all permitted pronunciations of the word. The conditional probability of a particular word producing a given phonetic string can be computed explicitly, and is used to measure the degrec of match. The search procedure is a best-first trec scarch implemented by a scquential decoding algorithm. Earlier versions of ihe ARCS system had the same general structure, but performed the matching at the phonetic level rather than at the word level.

The knowledge sources in the SPEECHLIS system ([B7], [NI], [R9], [W2], [W3]) represent their information in lattice structures which show all the alternatives at any point in time. The word-lattice is gencrated by matching each lexical item with the entrics in the segment lattice. A scmantic component scarches the word lattice to develop "theorics" of semantically related words. The semantic component continues to work on the theories with the greatest likelihood scorcs. When the semanties component can add no nore words to a theory, the theory is passed to a syntax component which performs a parse and fills in any gaps.

The CAS|'ER system ([F2], [K1]) performs a match between lexical items and a noisy phonctic scquence by using multiple dictionary entrics, phonological rules embedded in the dictionary, and a "degarbling" procedure. The scarch is controlled by an augmented context-frec grammar which performs a left-to-right, bottom-up parse.

The Vocal Data Management System ([B6], |R8|) develoned at SDC employs a strategy of "Predictive Linguistic Corstraints." The parser attempts to predict phrases based on a simple user model, thematic patterıing, and grammatical and semantic constraints. Fixed directional parsing is replaced by a more gelneral approach so that processing may be initiated at any point in the utterance. Lexical items are matched against the acoustiz-phonctic data by a word mapper and a syllable mapper. The word mapper handles alternate pronunciations of a word, decides likely times for syllable boundaries, and checks for co-articulation cffects across syllable boundaries. The syllable mapper comparcs a syllable candidate with the scquence of acoustic parameters.

The SRI Specech Understanding System (\{P3|. |P4].|WI|) uses a special "word function" for
each item in the lexicon. Each word function consists of a scries of Fortran subroutines that look for a match between its particular word and data from a varicty of sources based on parameters extracted from the acoustic signal. The parser executes a top-down, "hest-first" stalegy. In addition to its parsing function. it calls on the other components and coordinates information among them.

The Univac Speech Understanding System (|LI\|) uses a prosodically-guided strategy. Prosodic features are used to break sentences into phrases, locate the stressed syllables within those phrases, and guide procedures for both phone classification and nigher level linguistic analysis. This strategy requires a search procedure which is able to initiate processing at any point in the utterance as indicated by the prosodic features. Specific search and matching procedures have not yet been implemented for this system.

The specech recognition system being developed at the IBM Watson Research Center (|B1]. [J3]) is based on a linguistic sequential decoder. The decoder consists of four major subparts: I) a statistical model (f the language, 2) a phonemic dictionary and statistical phonological rules, 3) a phonctic matching algorithm, 4) word level search control. The seareh procedure is a stack decoding algorithin which secks that word sequence which lias the maximum a posteriori probability, conditional on the language and the observed acoustic sequence. Stitistical matching is done between hypothesized words and a noisy phonetic string obtained by acoustical analyses.

Even these greatly simpiffed descriptions make it clear that there is a great varicty of ways in which searching/matching strategies can be implemented. However, certain common features can be distinguistied. Most of the systems perform matching only at one level. Gencrally the matching is between lexical items and a noisy phonctic string (ARCS, SPI:I:CIILIS, CASPER, IEMWatsom). Thus for example, in these systems, words and phrases are not directly matehed to the acoustics. For most of the systems, the search is controlled primarily at the word level (HEARSAY I, ARCS, SPEECHLIS, CASPER, SDC. SRI, IBM-Witson). Only two systems (ARCS, IBM-Watson) have explicit statistical models from which to derive matehing scores.

In addition to the gencral purpose searching/matching which is usual'y used in transforming a noisy phonetic string to a word string, several specialized precedures are used. Sl)(has a mapping
between syllables and acoustic parameters. SRI matches words directly with acoustics. The early ARCS system matched the language directly onto the noisy phonetic string. The segment data in the SPEECHI IS system is a lattice of alternatives, so matching even a single lexical item involves a small lattiee search. Each of the modules in the HEARSAY systems ineludes specialized matching procedures.

FEATURES OIE TIIE DRAGON SYSTEM

The fundamental idea behind the DRAGON system is that cach of the knowledge sources can be represented by a single, gencral, abstract model. Then powerful general search/match algorithms can be employed without worrying about all the special characteristies of cach individual knowledge sourec. These special characteristics are not ignored, but they get ineorporated into the data structures and not into the searching/matching proeedures. The model which is used throughout the DRAGON system is that of a prohabilistic function of a Markov process[B8].

The sequence of random variables $\mathbf{Y}(1), \mathbf{Y}(2), \mathbf{Y}(3), \ldots, \mathbf{Y}(\mathrm{F})$ is said to be a probabilistie function of a Markov process if there is a sequence of random variables $\mathbf{X}(1), \mathbf{X}(2), \mathbf{X}(3), \ldots$. $X(T)$ such that the sequences of X 's and Y 's satisfy cquations (5) and (6) of Chapter II. The techniques for analyzing such a system are deseribed in Chapter II. The interpretation is that the Y 's are a sequence of random variables that we ohserve and which depend probabilistically on the X 's which we do not obscrve. We wish to make inferenecs about the values of the X 's from the observed values ol the Y's. Chapter III describes how the knowledge sourees in a speceh recognition system can be wepresented in terms of this type of model. Chapter IV deseribes a simplified implementation of these ideas. Periommance results are given which show that even this greatly simplified implementation is a complete and powerful speech reeognition system.

The important features of the DRAGON system are:

1) Gencrative form of model;
2) Hierarehica! arran ement of knowledge sources;
3) Integrated network representation:

Chapler I- INIRODUCIION

4) General theoretical framework:
5) Oplimal stochastic scarch.

In comparing the features of different speech recognition systems, attention is often focused on the control structures and the methods of communication among the knowledge souree modules. Thus a system might be characterized by whether the analysis proceeds top-down or bottom-up (or some mixture), whether there is a best-first tree search or some other control mechanism, and whether the analysis proceeds in a strict left-to-rif;ht fashion or can start at any point in the ulterance. For several reasons, the DRAGON system cannot be casily characterized by these conventional dichotomies, so the discussion of them is postponed until the major features of the system are described.
(1) Generative form of the model

The generative form is a natural one for a probabilistic function of a Markov process. Generative rules are formulated as conditional probabilities. For example, if we know which phone occurs at a given lime, vocal traet models allow us to prediet the values of the acoustic parameters. That is. a conditional probability distribution is defined in acoustic parameter space. If we know which word occurs during a given segment of time, phonological rules allow us to estimate the prohability of various phone sequences representing different pronunciations of the word. A statistical model lor the errors of an automatic phone elassifier allows us lo calculate the probability of the classifier producing a specific sequence of labels, conditional on the true sequence of phones being a particular phone sequenee. The grammar for a specific task domain produces a conditional probability distribution in the space of word scyuences such that ungrammatical sequences have ecros prohability.

Each of the knowledge sources in the DRAGON system is represented in a generative form as a probabilistic function of a Markov process. However, Bayes' theorem allows the computation to be perlormed analynically. The model tells the conditional prohability of producing a specific sequence ol acomstic parameler values Irom a specific sequence of words. Applying Bayce
theorem, we can compute the a posteriori probability of a sequence of words from the observed sequence of acoustic paramcter valucs.
(2) Hierarchical arrangement of knowledge sources

The sources of knowledge are organized into a hierarchy based on the following observation: The "higher" levels of a specel recognition system change state less frequently than the "lower" levels. Thus a single syntactic-semantic state corresponds to a sequence of several words; a single word corresponds to a sequence of several phoncs; and a phone corresponds to a sequence of acoustic parameter valucs. The hicrarchy is not absolute-for cxample, syntax and semantics arc logether a single multi-lcvel process-but it provides a convenient mcans for combining the Markov processes which represent the individual sources of knowledge.

To sec how the knowledge can be represented as a hicrarchy of gencrative models, Ict's consider a simplified exainple. Consider a language with only two sentences: "What did you sce?" and "Where did you go?" At the word level this language can be represented by the network shown in Figure 1.

GRAMMAR NETWORK

FIGURE I

This model is generative in the sense that if we know a partial sequence of words (e.g. "What did") the model tells exactly which word can come next ("you"). But we do not directly observe the words (we only observe the associated acoustic events), so we must compute the a posteriori probability of any word sequence using the techniques of Chapter II.

WORD NETWORK

FIGURE 2
In the next lower level of the hierarchy we represent the relationship between the words and the phones. To keep the network simple, only a single pronunciation is represented for each word. For example, the network for "what" is shown in Figure 2. It is also possible to add another level to the hierarchy conticuting the phones to the expected acoustic parameter values. The siop consonants and the dipthongs are broken up into several sub-phonemic segments. The network for $\left[t^{h}\right]$ is shown in Figure 3. The connection with acoustic parameters is then represented by a table giving the statistical distribution of parameter values for each type of segment. Phonological and acoustic-phonelic rules, which are omitted from this example, could be represented either at the broad phonelic level (such as, if the / / is flapped) or at the aeoustic segment level (wheller the $/ 1 /$ is released and its degrec of aspriation, if released).

PHONE NETWORK

(where - represents the panse portion, and t^{h} represents the release/aspiration)

FIGURE 3

The nokles in ligure 3 have ares which point back to themselves because we are representing two processes which are inynchroious with respect to each other. That is, the acoustic parameters are measured at fixed lime intervals (say once every 10 milliseconds), but eitch sub-phonemic

step every 10 milliseconds, then the process may stay in the same state for several units of time, as indicated by an are returning to the same node. A phone which consists of a single acoustic segment is represented be a phone network with a single node, but with a loop from the node back to itself, again indicating that the process may stay in this state for several units of time.
(3) Integrated network representation

To deseribe a point in the hierarehical state space, we must deseribe its position in a network at each level of the hierarchy. For example, the deseription (I) "the pause segment" of (2) "the $\left[t^{h}\right]^{\prime \prime}$ of (3) "the word 'what'," descibes a partieular point in the hierarehical state space in our simple example. Sinee each of the networks is finite, it is possible to define a new network with a separate node for each point in the hierarehieal space. In terns of the knowledge represented, this new network and the hicrarchy of networks are equivalent. The change is primarily one of convenienec. The integrated network representing our simplified example is shown in Figure 4.

INTEGRATED NETWORK

FIGURE 4

Actually it is possible to represent nore knowledge in the integrated network than in the hierar=hical system. For example, phonological rules which apply aeross word boundaries (such as the palatalization in the word pair "did you") may be used to make modifications to the network. Note that the integrated network, because it is derived in a special way from a hierarehy, is very
sparse. In the example each node (except the end nodes) is connected to (has an are pointed toward) only itself and one other node. Even with a more general language and networks. representing phonological rules, almost atly node that is not adjacent to a word boundary would be connected aniy to itself and one, two, or three other nodes. Thus, in a network with thousands of nodes. there are only two or three ares per node (instead of the thousands which would be possible). This property of sparseness has impications for the implementation of the speech recognition system, as is discussed in Chapters II and IV.

The size of the integrated network for a given task depends on the vocabulary size, the complexity of the grammar, and on some of the details of the implementation. The five tasks discussed in Chapter IV have vocabula, y sizes of $24,66,37,28$, and 194 words, respectively. The number of nodes in the integrated network is $410,702,916,498$, and 2356, respectively. Even the largest network is small enough so that the recognition system deseribed in Chapter IV can keep all of its intermediate computational results in the computer's core memory with no need to use secondary storage.

Note that we go from a group of separate knowledge sources to an integrated network representation in essentially three steps. First, each knowledge souree is represented as a probabilistic function of a Markov process. The details of this step are described in Chapter III. In this chapter the skeleton of the idea is exposed by waly of the associated network. Sceond, the knowledge soures are arranged in a hierarehy. In a sense, it is this step which is crucial. It relies on the special relationships amorig the knowledge sources for specech recognition systems. It would not necessarily be applicable to knowledge sourees for other prohlens even if the knowledge sourees are representable as probabilistic functions of a Markov process. Third. the hicrarchy of networks is converted into an equivalent single network (and the hierarchy of Markov processes is replaced by a single Markov process). Athough this final step changes the apparent external structure of the system, it does not ehange the substanee.

(4) General theoretical framework

As stated hefore. the IDRACON system relies throughout on ; particular ahsiract mondel-ihat of a probabilistic lunction of a Markon process. A scyucnce of random variaties $Y(1)$. $\mathcal{Y}(2)$.
$\mathbf{Y}(3) \ldots, Y(T)$ is said to be a probabilistic function of the Markor process $\mathbf{X}(1), \mathbf{X}(2), \mathbf{X}(3), \ldots$. $\mathbf{X}(T)$ if these random sequences satisfy equations (5) and (6) of Chapter II. These equations may be paraphrased as requiring that, for any $t, X(t)$ depends only on $X(t-1)$ and $Y(t)$ depends only on $X(t)$ ind $X(t-1)$. Chapter III describes how various knowledge sources may be represented by such a model.

The formulas that the model produces are similar to the formulas used in other statistically based speech recognition systems (ARCS and IBM-Watsnn). In certain ways, either system can be considered as a special calse of the other. The difference is more one of emphasis than one of kind. The emphasis in the DRAGON system is one of representing each of the knowledge sourees in a uiform theoretical framework. Thus specialized procedures for handling the data for a particular knowledge source are avoided.

The only specialized procedurss are those used in selting up the integrated network to represent the combined knowledge sourecs. In recognizing a particular utterance, the only procedure which is used is one which is based only on the general properties of a probabilistic function of a Markov process. For example, the type of specialized procedure whicit is absent is one which would take acoustic parameters and with a complicated set of rules, thresholds, and decisions produce a raw phonetic string intended to be as close as possible to a phonetic transeription of the utterance. As explained in Chapter III, il such a procedure is available, the DRAGON system can use the phonetic string which is prodeced. But on the other hand, if such a procedure is not used, the DRAGON system can operate directly on the acoustic parameters, since the acoustic-phonetic knowledge can be represented as a probabilistic function of a Markov process and be incorporated into the hicrarchy.
(5) Optimal stochastic scarch

The Markov model used in the DRAGON system requires a finite state space. In that sense it is less general than the augmented network systems (SPEECHLIS, CASPER, SRI) and stack
decoding statistical systems (ARCS, IBM-Watson). Howevor, a large finite network can represent most of the important information and some of the things which it cannot represent are irrelevant in a recognition problem in which the input is a ncisy pionetic string with arbitrary insertions and deletions. The finite state space and the Markov model make possible the powerful algorithms which are deseribed in Chapter II.

The search algorithm of the DRAGON system is unique in that rather than search a tree the tree of possible word sequences) one branch at a time in some best-first or depth-first manner, it searches the entire space of all possible paths through its network. All paths of a given length are, in effect, searched in parallel. At the end of the analysis a path is obtained which is an optimum over all possible paths through the network. This path represents that interpretation of an utterartee which, among all possible interpretations, best matches the given observed values of the acoustic parameters.

To search this entire space may seem to be drasic, but with the Markov model and the algorithms of Chapter II, it can be done very efficienlly. These algorithms are not new. The inductive computation of the best partial sequence, as done by equation (18) of Chapter II, is an application of dynamic p;ogramming to the general network search problem(|B9j). It correspends 10 an algorithm used in communications and coding theory, known as the Viterbi algorithm(|VI|). There are other algorithms for sequential decoding(|FI|.|JI|,|J2|), which are also based on maximizing the a posteriori probability according to such a stochastic moxdel, and several of them have been successfully applied to speech recognition (ARCS and IBM-Watson).

The number of computations required to search the space of all possible pathe through the network is proportional to (the kength of the utterance) times (the number of ares in the network). For a given network, the computation time is linear in the length of the utterance and is independent of the amount of noise ar the number of errors in any input string. This property is in :harp contrast to depth-first or hest-first algorithons for which there is no effective upper bound for the amount of computation (except a seatch of the enfire trec, one branch at a time). The sequential search algorithms do. in fact, occasionally need to be terminated before completion of the analysis because they extainst the available time or storage.

On the other hand, although the Markov model permite a complete optimum search in a time that is lincar in the length of the utterance, the proportionality lactor is large, especially for large vocabularies. Many things could he done to reduce the computation time required by the DRAGON system, and they are an important and interesting area for future research, but in the work reported in this thesis there has been no attempt to minimize the computation time. Lowerre (|L3|) has rewritten the IDRAGON program to execute nuch faster with no change in recognition results. The computation times given in Chapter IV, therefore, should be regarded as an upper bound on the amount of time required hy the techniques presented in this thesis and as a demonstration that complete optimal search is not impossible.

The DRAGON system cannot be characterized as cither top-down or hottom-up hecause it has aspects of hoth types of system. The models are given in a generative form, which is nomal for top-down systems. However, by applying Bayes formula the analysis proceeds in the analytic rather than the synthetic direction. But even more significant is the fact that the integrated representation makes it impossible to distinguish whether the acoustic knowledge is helping to Jirect the syntactic anialysis, or if the syntactic knowledge is helping to direct the acoustic analysis. Instead of a system with separate components with specific feed-back and feed-forward mechani..ns for transmitting information, the system is completely integrated.

The DRAGON system represents an extrence position in terms of its seareh strategy. Most systems use some form of hest-first tree seareh with procedures for backiracking when the analysis requires it. By contrast, the DRAGON system uses a complete optintal search, which would be like a breadth-first tree scarch except the Markov model reduces the tree search to a much smaller network search.

The particular implementation which is discussed in Chapter IV is restricted to a striet left-to-right :Inalysis, and the formulas in Chapters II and III have heen expressed in that form. It would be possitic to generalize this system :o have the analysis proceed from any point in the utterance, but because there is already a complete optimal scarch, there is no advantage in Joing so. It is not necessary to start the analysis at "islands of reliability" hecause any path which pives the correct interpretation of such an island is eventually considered in the optimal seareh (unlike a
best-first search in which analyzing unreliable data first can cause the correct interpretation of later reliable data never to be considered). Because the computation time is a linear function of the length of the utterance there is no computational advantage in breaking the utterance into several pieces.

The remainder of this thesis is divided into three chapters. Chapter II describes the abstract model which is used in the DRAGON system. In the DRAGON system each source of knowledge is represented as a probabilistic function of a Markov orocess(iB8]). Chapter II presents the general mathematical properties for such systems, but omits the details which are specific to speceh recognition. Chapter III presents techniques for representing the knowledge sourees necessary for speceh :eognition. Sometimes several alternative techniques are described for iepresenting a particular source of knowledge. Some of the representation techniques described in Chapter III are used in the simple implementation discussed in Chapter IV. Some of the other techniques have been tested in separate modules bu! no! in a complete recognition system. Some of the techniques have not yet been tested. In particular, no altempt has been made to represent a semantic component or even to obtain a weighted probabilistic grammar. Chapter IV describes a speech recognition system, based on the general model of Chapter II, obtained by implementing some of the representation techniques presented in Chapter III. A summary is presented of recognition results for 102 utterances. The system correctly recognized 49% of the 102 utlerances and correelly identificd 83% of the 578 words.

INTRODUCTION

The DRAGON speech recognition syster, utilizes the theory of a probabilistic function of a Markov process. In this chapter an introduction is given to the general theory. Chap: : 111 explains how the knowledge sources in a speech recognition system can be represented.

Let $Y(1), Y^{\prime}(2), Y(3), \ldots, Y(T)$ be a sequence of random variables representing the external (acoustic) observations. Let $\mathbf{X}(1), \mathbf{X}(2), \mathbf{X}(3), \ldots, \mathbf{X}(T)$ be a sequence of random variables representing the internal states of a stochastic process such that the probability distributions of the \mathbf{Y} 's depend on the values of the \mathbf{X} 's, but the \mathbf{X} 's are not directly observed. As a convenient abbreviation we use a bracket and colon notation to represent sequences. Thus, Y/1:Tirepresents $\mathbf{Y}(1), Y(2), Y(3), \ldots, Y(T)$ and $X[1: T]$ represents $X(1), X(2), X(3), \ldots, X(T)$. Let $y[1: T]$ be the observed sequence of values for the random variables $\mathbf{Y}[1: T]$.

GENERAL FORMULATION

We wish to make inferences about the sequence $X[1: T]$ in light of the knowledge el $y[1: T]$. For example, we would like to know the conditional probability $\operatorname{PROB(X}(t)=j \mid Y[1: T]=.\{1: T])$ for each t and j (the conditional probability of a specific internal state at a specific time, given the entire sequence of external observations). Assuming we have a model for speech production, we can evaluate the a priori probability $\operatorname{PROB}(\mathrm{X}[1: T])$. Assuming a model for the generation of acoustic events associated with a specific sequence of internal states, we: can evaluate the conditional probability $\operatorname{PROB}(\mathrm{Y}[1: t|=\mathrm{y}[1: \mathrm{T}]| \mathrm{X}[1: \mathrm{T}]=\mathrm{x} \mid 1: \mathrm{T}]$) (That is, the model yields conditional probabilities of external observations. given the sequence of internal states). Thus we know the conditional probabilities in the generative or synthetic form.

We can compute the desired conditional probabilities using Bayes' formula
(1) $\operatorname{PROB(X}(t)=j|Y| 1: T]=y \mid I: T])$
$=\operatorname{PROB(X}(1)=j, Y[1: T]=y(1: T \mid) / \operatorname{PROB}(Y \mid 1: T]=y[1: T])$
if we can evaluate the factors on the right hand side. The numerator is given by
(2) $\operatorname{PROB}(X(t)=j, Y|1: T|=y|1: T|)$

$$
\begin{aligned}
& \left.\left.=\Sigma_{x|1: T|, \times(1)=1} P \operatorname{PROB} i X[1: T]=x|1: T|, Y[1: T]=y \mid 1: T\right]\right) \\
& \left.\left.\left.\left.=\Sigma_{x|1: T| \times(1)=1} P \operatorname{PROB}\left(Y_{1}^{\prime} 1: T\right]=y|1: T||X| 1: T\right]=x \mid 1: T\right]\right) P R O B(X|1: T|=x \mid 1: T]\right)
\end{aligned}
$$

where the sum is taken over all possible sequences $x|1: 1|$ subject to the restriction $x(1)=j$. (The joint probability of an internal sequence and an external sequence is the produr:t of the a priori probability of the internal sequence and the conditonal probability of the external sequence given by the model. The probability for the event $X(t)=j$ is obtained by summing over all internal sequences which meet that restriction.) We can evaluate the a priori probability that $\mathrm{Y} \mid: \mathbf{T}$] would te $\mathrm{y} \| \mathrm{I}: \Gamma$ as
(3) $\operatorname{PROB}(\mathrm{Y}|1: T|=y|1: T|)$

$$
=\Sigma_{x|1: T|} P R O B(Y|1: T|=y|1: T||X| 1: T|=x| 1: T \mid) \operatorname{PROB}(X|1: T|=x|1: T|)
$$

where the the sum is taken over all possible sequences $x \mid 1: 1 \%$. (The total probability of an external sequence is the sum of its joint probability with all possible internal sequences.)

Therefore
(4) $\operatorname{PROB}(X(t)=j|Y| 1: T|=y| 1: T \mid)$
$=\operatorname{PROB}(X(1)=j, Y|1: T|=y|1: T|) /$ PROB $|Y| 1: T|=y| 1: T \mid)$
where the sum in the denominator is taken over all sequences $x|l: l|$ and the sum in the numerator is taken over all such sequences subjeet to the restriction $x(t)=j$. (This is the probability of the internal event $X(t)=j$ conditional on the observed external sequence, as desired.)

The derivation of equation (4) is just a standard application of Bayes' theorem. It represents a formal inversion of the conditional probabilities from the gencrative form to the antilytic form. (Note: The word "analytic" in used here in a special sense. "Analytic" means "taking apart" as
opposed to "synthetic," "gencrative," or "putting together." In terms of our model, the gencrative form predicts the obscivations (\mathbf{Y} 's) in terms of the internal sequence (X 's). The analytic form computes the a posteriori probability of the X 's conditional on the cbserved \mathbf{Y} 's.) The speechrecognition knowledge sources provide the conditional probabilities in a generative form. They must be converted into an analytic form to make inferences about a particular uttcrance from the observed acoustics. However, the formal inversion formula given in equation (4) is not computationally practical since in general the sct of all possible sequences $x[1: T]$ is prohibitively large. It is necessary to apply the restrictions of a more specific model to obtain a computationally efficient formula.

MARKOV MODEL

The DRAGON speech recognition system assumes that the sequences represent a probabilistic function of a Markov process[B8]. Specifically, it is assumed that the conditional probability that $X(t)=j$ given $X(t-1)$ is independent of t and of the values of $X[1: t-2]$ and that the conditional probability that $Y(t)=k$ giver $X(t)$ and $X(t-1)$ is independent of t and of the valucs of any of the other X 's and Y 's. Let $B=\left\{b_{i, j, \mathrm{~h}}\right\}$ and $A=\left\{a_{i, j}\right\}$ be arrays such that
(5) $\operatorname{PROB}(Y(t)=y(t)|X[1: t]=x[1: t], Y[1: t-1]=y| 1: t-1])$
$=\operatorname{PROB}(Y(t)=v(1) \mid X(t-1)=x i(-1), X(t)=x(t))$
$=b_{x(1-1) \times x(1), y(1)}$
and
(6) $\operatorname{PROB}(X(1)=x(1)|X| 1: 1-1|=x| 1: 1-1])$

$$
\begin{aligned}
& =\operatorname{PROB}(X(t)=x(t) \mid X(t-1)=x(t-1)) \\
& =a_{x(t-1), x(t)}
\end{aligned}
$$

This restriction to a Markov model is the fundamental assumption which allows the DRAGON system to be practical. In the Markov model the conditional proabilities depend only on $X(t)$ and
$X(1-1)$ and not on the entire sequence $X|I: T|$ as in cquations (I) to (4). This specialization makes it possible to evaluate the desired conditional probabilities by an indirect but computationally efficient procedure.

The Markov assumption might be paraphrased by saying that the conditional probabilities are independent of context, but such a simple statement would be misteading. Since the state space of the Markov process for our speech recognition application has not yet been formulated, the assumption of the Markov properties should be regarded as a prescription to be followed in the formulation of the state space. Specifically, two situations which differ in "relevant" context must be assigned two separate states in the state space of the randore variables $X|I: T|$. Then all "relevant" context is included in the state space description, and the conditional prebabilities are indeed independent of further context. The fundamental assumption of the DRAGON system is that it is possible to incel this prescription and still have a state space of manageable size.

Under the assumptions of equations (5) and (6) we have
(7) $\operatorname{PROB}(X|1: s|=x|1: s|)=\operatorname{PROB}(X(1)=x(1))\left(11_{\left(-2 s^{3}\right.}(11-11, x(1))\right.$.
(The a priori probability of a given internal state sequence is the product of the transition probabilities for all the transitions in the sequence.) To simplify, add a special extra state to the Markov process: Let $X(0)$ be this special state and definc $\left.i_{x(101.1}=\operatorname{PROB(X} \mathbf{X}(1)=j\right)$. Similar conventions are assumed throughout this thesis, unlews specifically nentioned otherwise. Then
(8) $\operatorname{PROB}(\mathbf{X}|1: s|=x|1: s|)=\mid I_{1=1,0} S_{111-11,: \times 111}$

Also

(the model-defined probability of an external sequence, conditional on the internal sequence) where $b_{\text {ntol }, \text {. }}$ is defined appropriately. Combining (k) and (9) yiclds

(the joint probability of an internal sequence and an external sequence as given by the Markov model).

To make possible the efficient computation of the sums in equations (3) and (4), we introduce the probabilities of partial sequences of states and observations ([B8]). Using (2) with $t=T=s$ and using (10), we can set
(11) $a(s, x(s))=\operatorname{PROS}(X(s)=x(s), Y[1: s]=y[1: s])$

$$
=\Sigma_{x|1: s-1|} \Pi_{1-1, a^{2}}{ }_{x(1-1), x(1)} b_{x(1-1), x(1), y(1)}
$$

where the sum is over all possible sequences $x[1: s-1]$. (This is ine joint probability of the partial external sequence, up to time s, and the event that the process is in state $x(s)$ at time s.) Let
(12) $\beta(s, x(s))=\operatorname{PROB}(X(s)=x(s), Y[s+1: T]=y[s+1: T])$

$$
=\Sigma_{x|x+1: T|}\left[I_{1-s+1, T^{2}}{ }_{x(1-1), x(1)} b_{x(1-1), x(1), y(1)}\right.
$$

where the sum is over all pessible sequences $x[s+1: T)$. (This is the joint probability of the partial external sequence from time $s+1$ to the end, and the event that the process is in state $x(s)$ at time s.) The benefit of introducing the functions α and β is that the values of $\alpha(s, j)$ for a given s can be computed from the values of $a(s-1, j)$. Similarly, β for a given s can be computed from the values of β for $s+1$.

RECOGNITION EQUATIONS

In fact
(13) $a(s, j)=\Sigma_{i} a(s-1, i) a_{i, j} b_{i, j, y(s)}$
(because every seouence $x[1: s]$ must have $x(s-1)=i$ for some i)
and
(14) $\beta(s, j)=\Sigma_{i} \beta(s+1, i) a_{i, i} b_{i, i, y(s+1 I}$
$B u: \alpha(T, j)=\operatorname{PROB}(X(T)=j, Y[1: T]=y[1: T])$ hence
(15) $\operatorname{PROB}(Y||: T|=y| I \cdot|\mid)=-\dot{j}, a(T, j)$.

We can compute the conditional probability distribution for $\mathbf{X}(1)$
(16) $\operatorname{PROB}(X(t)=j|Y| I: T|=y| 1: T\})$
$=\operatorname{PROB}(X(1)=j, Y|1: T|=y|1: T|) / \operatorname{PROB}(Y|I: T|=y|I: T|)$
$=\alpha(t, j) \beta(t, j) / \Sigma, \alpha(T, i)$.

In speech recognition problems, we usually want to know the partieular sequenee $x \mid 1: T$] which maximizes the joint probability $\operatorname{PROB}(X|I: T|=x|I: T|, Y|I: T|=y|I: T|$). Again, the problem call be solved by induction from partial sequences (|B9|). Let

Then γ may be computed by
(I8) $\gamma(1, j)=\operatorname{Max}_{i} \gamma(1-1, i) a_{1, j} b_{1,,, y 11}$.

Notice that equation (18) is just like equation (13) except that Max has been substituted for … It is convenient to save "back-pointers" while computing γ. Therefore, let $I(1, j)$ be any valuc of ifor which the maximum is achieved in equation (18). Then a sequence $x \mid 1: T$ for which $\operatorname{PROB}(X|I: T|=x \mid I: T], Y \mid I: T]=y|I: T|)$ is maximized is obtained by
(19) $x!T)=j$. where j is any inde x such thatt $y(T, j)=\operatorname{Max} y(T, i)$
and
(20) $x(1)=1(1+1 . x(1+1)), \quad 1=1-1, T-2, \ldots, 2,1$.

So far the alliolysis has asmomed that the matrices \mathcal{A} and 13 are fixed and known. However. if A and B are not known but must be estimated. then the a and β couputed above may be used to obtain a Bayesian a poweriori re-estimation of A and 13 . The matrix A is re-estimated by

$$
=\frac{\Sigma_{t=1, T-1} \alpha(t, i) a_{i, j} b_{i, j, y(t+1)} \beta(!+1, j)}{\Sigma_{(-1,1, T-1} \alpha(t, i) \beta(t, i)}
$$

The matrix B is re-estimated by

$$
\begin{aligned}
& =\frac{\Sigma_{1=1, T-1: y(t+11-k} \alpha(t, i) a_{i, j} b_{i, j, k} \beta(1+1, j)}{\Sigma_{(=1, T-1} \alpha(t, i) a_{i, j} b_{i, j, y(t+1)} \beta(t+1, j)}
\end{aligned}
$$

In fact it can be shown ([B8]) that
(23) $\operatorname{PROB}\left(Y[1: T]=y[1: T] \mid\left\{\hat{a}_{i, j}\right],\left\{\hat{b}_{i, j, k}\right\}\right) \geq \operatorname{PROB}\left(Y[1: T]=y\left[1: T| |\left\{a_{i, j}\right],\left\{b_{i, j, k}\right\}\right)\right.$.

Thus, each time the re-estimation equations (21) and (22; are used, new matrices are obtained sucit that the estimated probability of the observations $Y[1: T]=y[1: T]$ is non-decreasing. Since this estimated probability is a continuous function of the matrix entries (in fact, a polynomial with terms as given by equation (10)), and since the matrix entries are constrained to a compact set (because the entries are non-negative and the row sums are 1), this estimated probability must converge for any sequence of matrices obtained by repeated use of the re-estimation equations. Hence ine re-estimation given by equations (21) and (22) may be used repeatedly in an attempt to obtain $\left\{a_{i, j}\right\}$ and $\left\{b_{i, j, k}\right\}$ which maximize $\operatorname{PROB}\left(Y[1: T]=y[1: T] \mid\left\{a_{i, j}|,| b_{i, j, k}\right\}\right)$. Thus we can obtain an approximation to maximum likelihood estimates for $\left\{a_{i, j}\right\}$ and $\left\{b_{i, j, k}\right\}$.

In re-estimating the matrices A and B, the special structure of the speech recognition problem can be used to good advantage. Although it is convenient to use a single integrated model for the actual analysis and recognition of utterances, the re-estimation of the struetural matrices can be performed separately for each of the levels in the hierarchy. Also note that any entry in A or B which is zero remains zero in the re-estimations of equations (21) and (22). Therefore we are able to maintain and utilize the sparseness of these matrices in the re-estimation process.

INTRODUCTION

Each of the knowledge sources in a speceh recognition system can be represented in terms of the general model of Chapter II. The total hierarchical system also fits such a model, and it is the tota! system to which the estimation procedures of Chapter II are applied. This chapler explains the representation of knowledge from each of the sources and their integration into the hierareliy.

REPRESENTATION OF ACOUSTIC-PHONETIC KNOWLEDGI:

riere are several choices as to how to represent acoustic-phonetic knowledge. A decision must be made whether acoustic observalions should be preprocessed hy specialized proceciures or whether the stochastic model should deal directly with the acoustic parameters. The representation problem is casior assuming specializerd preprocessing, so ennsider this case first.

Assuane that at each time ($1 \leq 1 \leq T$), an acoustic observation is made. Each such observation consists of a vector of values of a set of acoustic parameters, which in the stochastic model is represented by a vector-valued random variable $Y(1)$. There is a sequence of phones $P[I: J]$ which is produced during the time interval $I \leq 1 \leq T$. Assume that the phones oceupy disjoint segments of time: that is, assume there is a scquence $s_{0}<s_{1}<s_{2}<s_{1}<\ldots<s_{\text {, }}$ such that $\mathbf{P}(\mathrm{j})$ lasts from observation $\mathbf{Y}\left(\mathrm{s}_{1-1}\right)$ throtgh observation $\mathrm{Y}\left(\mathrm{s}_{\mathrm{j}}-1\right) . \quad\left(\right.$ Set $\mathrm{s}_{0}=1, \mathrm{~s}_{\mathrm{j}}=\mathrm{T}$.)

Let pll:J be the actual sequence of phones in an utterance and let y|l:T| be the actual observed sequence of acoustic parameters. For eonvenience, also introduce a special initialization phone $p(0)$ which is issigned a special value to allow the initial probabilities to have the same form as the transition probabilities later in the sequence. Since the actual times $s_{1}, s_{2}, s_{1}, \ldots, s_{-1}$ are nott known, it is necessary to associate each arhitary segment of time with some phone. For each pair of times t_{1} and t_{2} let $S\left(t_{1}, t_{2}\right)$ he that value of j for which the expression (Min($\left.s_{1}, t_{2}\right)$-Max $\left(s_{1-1}, l_{1}\right)$) is maximized. (that is. we associate with the pair t_{i} and t_{2} the index of the phone segment which has the greatest interval in common with the interval from t_{1} to t_{2}.) if $t_{2} \leq 1$, then set $S\left(t_{1}, t_{2}\right)=0$.

The acoustic preprocessor tries to estimate a plonctic tianscription from the acoustics alone. By lowking lor discontinuities or rapid changes in the acomstic parameters, the preprocessar divides
the sequence up into K phone-like segments $\left.\mathbf{Y}\left[1: t_{1}-1\right], Y\left[t_{1}: t_{2}-1\right], Y\left(t_{2}: t_{3}-1\right], \ldots, Y \mid t_{K-1}: t_{K}-1\right]$. Then an attempt is made ta classify each segment $Y\left[t_{k-1}: t_{k}-1\right]$ using some form of pattern recognition procedure. Let $t_{0}<t_{1}<t_{2}<\ldots<t_{k}$ be the segment boundary times as decided by the preprosessor and iniitưuce the random variable $D(t)$ which is I if there exists a k such that $t_{k}=t$ and is 0 otherwise. Let $F(k)$ be the label assigned by the preprocessor to the segment $\mathbf{Y}\left[t_{k-1}: t_{k}-1\right]$. (For completeness, set $t_{k}=t_{0}=1$ for $k<0$, and $t_{k}=t_{k}=T$ for $k>K$.)

With some pattern matching procedures it is possible to directly estimate conditional probabilities. When using such a procedure, let

$$
\text { (1) } B(p, k)=\operatorname{PROB}\left(Y \mid t_{k-1}: t_{k}-1\right]=y\left[t_{k-1}: t_{k}-1\right] \mid P\left(S\left(t_{k-1}, t_{k}\right)=p\right)
$$

(the probability that segment k corresponds to phone p as estimated by the pattern matching procedure). On the other hand, the pattern matching procedure might yield only a label $\mathbf{F}(\mathbf{k})$ representing a best gucss as to the underlying phone. In such a case, it is necessary to estimate the conditional probabilitics from statistics of performance of the pattern matcher on hand-labeled data. Let $\mathrm{f}[1: \mathrm{K}]$ represent the actual scquence of labels generated by the pattern recognizer for the utterance being considered. Then se:
(2) $B(p, k)=\operatorname{PROB}\left(F(k)=f(k) \mid P\left(S\left(t_{k-1}, t_{k}\right)\right)=p\right)$.
(The probability that segment k corresponds to phone \boldsymbol{p} is estimated as the probability that a segment labeled $f(k)$ corrcsponds to phone p.) where the conditional probability is estimated by the frequency of such events in a set of training utterances.

In addition to estimating the probability of substitutions or confusions, it is necessary to estimate the probability of the preprocessor producing either too many or $t 00$ few scgments. The probability of such events may be estimated from their frequency of occurrenee in a set of training utterances. Let

$$
\text { (3) } \begin{aligned}
E\left(p_{1}, p_{2}, n\right) & =\operatorname{PROB}\left(D\left(t_{k-2}\right)=D\left(t_{k-1}\right)=D\left(t_{k}\right)=1, D\left(t_{k-2}+1: t_{k-1}-1\right]=0 . D\left(t_{k-1}+1: t_{k}-1\right]=0 \mid\right. \\
& \left.P\left(S\left(t_{k-2}, t_{k-1}\right)\right)=p_{1} . P\left(S\left(t_{k-1}, t_{k}\right)\right)=p_{2}, S\left(t_{k-1} \cdot t_{k}\right)=S\left(t_{k-2}, t_{k-1}\right)+n\right) .
\end{aligned}
$$

(The probability that the segmenter finds one boundary between a segment corresponding to phonc p_{1} and a segmellt corresponding to phone n_{2}, given that the phones are actually n positions apart in the sequenee of phones.) If the acoustic preprocessor is reliable, then $E\left(p_{1}, p_{2}, n\right)$ should be small ecept for $n=1$ and should be negligible for $n>2$. In an implementation of the DRAGON system which uses an acoustic preprocessor, it has arbitrarily been assumed that $E\left(p_{1}, p_{2}, n\right)=0$ for $n>4$. Note that $E\left(p_{1}, p_{2}, 0\right)$ is undefined and meaningless unless $p_{1}=p_{2}$.

We can now estimate the conditional probability of the sequence $\mathbf{Y | I : T]}$ given the sequence $\mathbf{P}[\mathrm{I}: \mathrm{J}]$.
(4) $\operatorname{PROB}(Y|I: T|=y|1: T||P| O: J|=p| 0: J])$
$=\sum_{n|1: K|, C(K)=j} B(p(z(k)), k) E(p(z(k-1)), p(z(k)), n(k))$.
where $z(k)=\Sigma_{i=1 . A} n(i)$ and the sum is taken over all sequenees $n|I: K|$ such that $\%(K)=J$. (13y convention $\boldsymbol{z}(0)=0$.) This equation is a special case of equation (9) of Chapter II.

In order to apply the theory of a probabilistic function of a Markov process, it is necessary to speeify the transition probabilities for the phone sequence P|I:JJ. It is the task of the other sourees of knowledge to speeify these probabilities. Phonological rules may be represented either direetly or indireetly in the estimates of $E\left(p_{1}, p_{2}, n\right)$ and $B(p, k)$, but all higher levels of the hievarehy deal only with the sequence $P \| I J J$ and are insulated from the acoustics $Y|I: I|$ or the labels FII:K].

Even if no special preprocessing is assumed, it is not difficult to represent the acousticphonetie knowledfe, but there is a penalty of extra computation. Direct estimation of the conditic:nal probability $\operatorname{PR} \operatorname{OB}(\mathrm{Y}|\mathrm{I}: \mathrm{T}|=\mathrm{y}|1: \mathrm{T}||\mathrm{P}| \mathrm{I}: \mathrm{S}|=\mathrm{P}| \mathrm{I}: \mathrm{J} \mid$) is similar (o) the problem of machinc-aided segmentition and labeling(|B2|). Similar algorithoms have also been used for word-spotting in continuous spech (|B4|, |BII|) and for isolated word recognition (|II|). The essential idea is an clastic change of the time scale to optimally mateh a sequence of acoustic observations to as açuence of prototypes.

To relate the phones to the acoustic ohservations requires knowledge of the acoustic phenomena which are expected with each phonc. In line with the probabilistic approach, each phone is assumed to be associated with a stochastic process which produces acoustic parameter values for each instance of the phone. The statistical propertics of the stochastic process associated with any particular phone are to be estimated from occurrences of the ploone in a set of training utteranecs which have already been segmented and labeled.

Each acoustic observation is to take a value from a finite set D. Assume that for each phone p there is a positive-integer-valued random variable Z_{p} and a family of random variables X_{p} (1). $X_{p}(2), X_{p}(3), \ldots, X_{p}\left(Z_{p}\right)$ with values in D. Let $f_{p, n}$ be the conditional probability function (5) $f_{p, n}(x(1), x(2), x(3), \ldots, x(n))=\operatorname{PROB}\left(X_{p}|1: n|=x|1: n| \mid Z_{p}=n\right)$.

Let $g_{p}(n)=\operatorname{PROB}\left(\mathbf{Z}_{p}=n\right)$. The interpretation is that \mathbf{Z}_{p} is the duration of an instance of phone p and $X_{p}\left[1: z_{p}\right]$ are the acoustic observations made during that instance of p.

Let $\mathrm{y} \|: T$] be the sequence of observations made for the utterance being analyzed. Let $\mathrm{p}|\mathrm{I}: \mathrm{J}|$ the the sequence of phones in the utterance. Let $\mathrm{U} \mid \mathrm{I}: \mathrm{J}$ be the sequence of boundary times for the phones. That is, $\mathbf{U}(1)<\boldsymbol{U}(2)<\boldsymbol{U}(3)<\ldots<\boldsymbol{U}(\mathrm{J})$ and. for cach j . $\mathbf{P}(\mathrm{j})$ lasts from obscrvation $\mathbf{Y}(\mathbf{U}(\mathrm{j}-\mathrm{I})$) to observation $\mathbf{Y}(\mathbf{U}(\mathrm{j})-\mathrm{I})$. Suppose a set of ohservations $\mathbf{Y}|\mathrm{I}: \mathrm{T}|$ and times $\mathrm{U}|: J|$ are produced by applying in succession the stochastic processes for each of the phones $\mathbf{P}(1)$ through $\mathbf{P}(J)$ and concatenating the observations, the individual processes being independent. Then the probability of producing the ohserved sequence is
(6) $\operatorname{PROB}(\mathrm{Y}|I: T|=y|I: T|, U|I: J|=u|I: J||P| I: k|=p| I: J \mid)$
$=\| \|_{1-1, J}\left(f_{m 11, u(1) \cdot w,-1)}(j \mid u(j-1): u(j)-I)_{g_{m(1)}}(u(j)-u(j-1) \|)\right.$.

The segmentation and lateling problem consists of finding the correet sed of values for the sequence U|I:J. Representing the acoustic-phonetic knowledge in a specel recognition system is similar, except the transitions among the phones are aleteranined by probabilities specified by other sources of knowledge rather than being a known sequence.

Note that our mentel is such that lor a given k and ul k : J we call crallatte
(K) $\operatorname{PROB}(Y|u(k): T|=y|u(k): T|, U|k: J|=u|k: J||P| I: J|=p| I: J \mid)$
$=\| \|_{i=k+1}\left(f_{p(i) . u(i)-u(j-1)}(y|u(j-1): u(j)-1|) E_{p(j)}(u(j)-u(j-1))\right)$;
that is, the probability dees not depend on $\mathrm{U} \mid 1: \mathrm{k}-11$. The process is an example of a probabilistic function of a Markov process with the vector ($k . U(k)$) being the state variable of the Markov process. The problem of nachine-aided labeling can be solved by the techniques of Chapter II.

Introduce the function

(9)

$$
\gamma_{1}(j, t)=\operatorname{Max}_{u|1: J| . u(j)=1}(\operatorname{PROB}(Y[|: 1-1|=y|1-1| \text {. U| } 1: j|=u| 1: j| | P|1: J|=p|1: J|)) .
$$

That is, $\gamma_{1}(j, t)$ is the prohability of the best sequence leading up to the state (j, t). The function γ_{1} may be calculated according to equation (18) of Chapter II. Thus
(10) $\left.\gamma_{1}(j, 1)=\operatorname{Max}_{a}\left(\gamma_{1}(j-1,1-k)\right)_{p(j, k}(y[1-k: t-1]) g_{m i j}(k)\right)$.

Let $K(j, 1)$ be any value of k for which this naximum is achieved. Then after γ_{1} and $K(j, 1)$ have been calculated for all j and t . the best sequenee $\mathrm{u} \mid \mathrm{I}: \mathrm{J}$ is obtained by
(11) $u(j)=u(j+1)-k(j+1 . u(j+1))$
where $u(J)=r$.

If we are willing to assume that $X_{p}(1), X_{p}(2), X_{p}(3), \ldots, X_{p}\left(Z_{p}\right)$ are independent and indentically distributed and that
(12) $E_{p}(n)=(1-a) a^{\prime \prime}$, for some a independent of p.
then an even simpler computation is possible. It is not claimed that these additional assumptions are realistic (the acoustic propertics of real phones are much noore complicated). However, they do produce reasonathe resulls with a great savings in computation.

The extra assumptions allow us to ignore the durations of the phones by factoring out a factor which is the same for all sequences $\mathbf{u l} 1: J$, namely the factor $(1-a)^{\prime}{ }^{7}$ '. Let's reformulate the Markov process, ignoring duration information. Let the state (j, t) correspond to the event $\mathrm{U}(\mathrm{j}-1$) $\leq 1<\boldsymbol{U}(\mathrm{j})$ wilh $\mathrm{U}(\mathrm{j}-1)$ otherwise unrestricted (time I oecurs during phome $\mathbf{P}(\mathrm{j})$). L.el $\gamma_{2}(\mathrm{i}, \mathrm{I})$ be
the probability for the best sequence leading up to the state (j, t) and producing the sequence $y[1: t]$. Then γ_{2} mily be calculated by
(13) $\gamma_{2}(j, t)=\operatorname{Max}\left(\gamma_{2}(j-1, t-1), \gamma_{2}(j, t-1)\right) \operatorname{PROB}\left(X_{p(1)}=y(1)\right)$.

Then the sequencé $u|1: J|$ may be calculated by
(14) $u(k)=$ (the greatest integer value of t
such that $t<u(j+1)$ and $\left.\gamma_{2}(j-1, t-1)>\gamma_{2}(j, t-1)\right)$.

In machine-aided labeling it is only necessaiy to consider a single sequence p|1:J|. In a speech recognition problem, we wish to maximize not only over all possible sequences u[1:J) but also over all possible phonetic sequences $\mathrm{p}[1: J$, subject to the transition probabilities determined by the higher levels of the hierarehy. The computation of a lunction like γ_{1} or γ_{2} is not performed separately at the acoustic level, but is performed on a Markov process representing the integrated hicrarchy.

REPRESENTATION GF LEXICAI. KNOWLEDGE AND PHONOIOGICAL RULES

This section discusses the computation of the conditional probabili:y $\operatorname{PROB}(\operatorname{Pl}|: J|=\mathrm{p} \mid 1: J] \mid$ $W[1: 1]=W[1: 1]$) where $W[1: 1]$ is the sequence of words in the utterance and $P[1: J]$ is the sequence of phones. Each word is represented by an abstract network to which we may apply the reestimation procedure of equations (21) and (22) of chapter 11. The prototype word network: consists of several columns of nodes (to simplify the discussion, assume that there are exactly two nodes per column) with each node conneeted to itself and to every node in its column and in the two following columns. Silch a network is shown in figure 1 , where only the ares leaving from one particular node have been shown.

If each node corresponds to a phone, then an are which stays in the same column represents insertion of an extra segment At this level we are primarily interested in representing insertions (and other phonological phenomena) made by the speaker, but as already mentioned tiocre is always a ehoice between representing a given phenomenon at this level (where word-level context

GENERAL WORD PROTOTYPE

0

0
0

FIGURE I
is known) or at the acoustic-phonetic level (where only one phone of context is known). An are which skips a column represents a missed or deleled segment.

Let $\mathbf{Y}(\mathrm{t})$ be the phone which occurs at time t . Note that in this hierarchical system, the sequence which is the (unobserved) internal sequence at one level is the external sequence for the next higher level. Whether the acoustic level assumes a preprocessor or not, this next level assumes as its external sequence a sequence of phones (except there are several phenomena which could be represented at either level). Let $X(t)=\left(X_{1}(t), X_{2}(t)\right)$ be the internal state in our absitract word model, where
$I \leq X_{1}(1) \leq C, X_{1}(t)=$ column number at time 1
$1 \leq X_{2}(1) \leq R, X_{2}(1)=$ row number at time !
where C is the number of columns in the abstract model and R is the number of rows. For the purpose of this discussion, we take C fixed at the number of phonemes in the canonical version of the word (stored in a dictionary) and take R fixed at 2. Various values of C and R can be used and tested against the actual data.

This abstract network with the associated conditional probabilities represents the probability distribution of possible pronunciations of the word. We assume that the phonetic sequences sorresponding to instances of the word are gencrated by a Markov process. Let
(15) $A\left(\left(c_{1}, r_{1}\right),\left(c_{2}, r_{2}\right)\right)=\operatorname{PROB}\left(X(1)=\left(c_{2}, r_{2}\right) \mid X(t-1)=\left(c_{1}, r_{1}\right)\right)$
(16) $B((c, r), p)=\operatorname{PROB}(Y(1)=p \mid X(t)=(c, r))$

If we are given a collection of instances of a particular word W, and have estimates for A and B, we can use equatioris (21) and (22) to re-cstimate A and B for the word W. Phonological rules which produce extra segments or deleted scgments are represented by A and substitutions are represented by B. Phonological rules which apply across word boundaries can be represented by having several extra states at the beginning and end of each word and having the initial probability distribution depend on the context.

Several variations of this lexical model are a!so worth considering. If the acoustic level estimates not just the phones but the transemes (pairs of phones as estimated by the acoustic transition between them, as in the ARCS and IBM-Watson systems) then the lexical level should have the distribution of $Y(t)$ depend not just on $\mathbf{X}(t)$ but also on $\mathbf{X}(t-1)$. It is possible to integrate the acoustic and lexical levels and directly re-estimate the representation of a word in terms of the acoustic parameters. This approach is being followed by Bakis. Another approach is to obtain a network epresenting the possible pronunciations of a word by applying a list of phonological rules written as production rules and applied to a baseform representation of the word. Automatic procedures for applying such a list of rules for the purpose of speceh recognition systems have been developed by Cohen and Mercer|C1] and by Barneti|B5|.

The explicit representation of phonological rules in the network is casily achicved at an expense of doubling or tripling the number of nodes in the network. However, it is not exsential that an exhaustive set of phonological rules be used. In fact, the implementatiot of the DRAGON system described in Chapter IV has no explicit phonological rules and only one canonical pronuniation for each word. The reason that this representation is possible is that any phonological phenomena which are not introduced explicitly will be treated at the aconstic-phonetic level. Thus phonological substitntions can be mimicked by adjusting the probabilities in the B and E (equations (1), (2), and (3)) which represent the probabilities of substitutions and inscrtions and deletions at the acoustic level. The disadvantage of this approach is that the matrices represent less context than is available in the explicit representation of the phonological rules at the lexical level.

There is a werendipitous inenerit in using the matrices 13 and I : wopresent aconstic-phonetic knowledge independently from the representation of the phonological rules. If the matrices B and E. are estimated by running the acoustic preprocessor on a collection of training ultcrances, then any phonological rules which are left out in the prepared labeling of the training utterances are automatically absorbed ints .he estimates of B and E. Thus a perfect hand-labeled transeription of the training utterances is not only unnecessary, bist undesirable. The best labeling for training purposes is an automatically generated labeling from a procedure knowing the sequenee of words and having exactly the sarice lexical knowledge and phonological rules as the speech recognition system.

REPRESENTATION OI: SYNTACTIC ANU SEMANTIC KNOWLEDGE

In building the integrated network, the lexical and phonological rule procedures take as input a network representation of the syntax and semanties in which each node of the network represents a wurd. It is elear that any regular (finite state) grammar ean be represented by a finite network. In a speech recognition system the distinction between a regular grammar and an arbitrary context-free or context-dependent grammar is somewhat artificial. Consider the language generated by a particular grammar, not the sequence of words, but the sequence of acoustic events. It is not unreasonable to assume, for example, that the entries in :he aeoustie-phonetic matrix B(p,k) are all non-2ero, although perhaps very small. Such a result would automatically be the case with pattern reeognition based on a posteriori probabilitities if the conditional probability distributions for the acoustic parameters are multi-variate normal distributions.

But if each entry in $13(\rho, k)$ is non-scro, then at the acoustic level the language must include all possible sequences. Such a language cang of course, te represented by a finite network grammar. Thus the issot beconos not one of generating the proper language, but rather one of accurately modeling the conditional probabilities. The conditional probabilities may be context-dependent even for a language gencrated by a context-frec grammar. The approach which has been used in the DRAGON system has been to conlarge the finite grammar to allow the conditional probabilities I: be more accurately represented, but not to try to retain all of the context of the actual tanguigere.

The properties of probabilistic grammars have been studied by several investigators (|B10|. [E1], [F3|, |G2]. |H|], |S||,|S2|, |T4]). A probabilistic finite state grammar is a special case of a probabilistic function of a Markov process in which the entrics in the motrix $\left\{b_{i, j, k}\right\}$ of equation (5) of Chapter II afe all zeros or ones (only the transitions are probabilistic). Thus such a grammar ean be immediately represented in terms of our general model. However, there is still the problem of estimating the transition probabilities.

The gencral abstract model is not as well suited to representing semantic knowledge as it is to representing the other sources of knowledge which have been discussed. In the implementation deseribed in Chapter IV. there bils been no attempt to represent semantic knowledge. In fact, atl argument could be made that, since there is no process corresponding to understanding the sentence, whatever knowledge is represented by the abstract stochastic model is of neeessity not semantic knowledge. However, it should be noted that it is not necessary for the stochastic model to directly represent the semantic knowledge itself. but rather it is necessary for the model to represent the influence of the eemantic knowledge on the probability distributions of possible sequences of words.

For example, it is possible to have a specialized task-specific module which is capable of understanding the utterances of a given task and which is capable of representing the set of utteranees which are possible in a given context. The HEARSAY speech understanding system employs such a mechanisill for the VOICE CHESS task. The task is to recognize chess moves that are spoken by a user who is playing a game of chess against the computer. The system has a separate module eonsisting of a chess playing program, TECH. Not only does the TECH program play ehess with the user. but when it is the user's turn to move. TECH lists for the recognition system all moves which are possible in the given position and even rates the moves. Thus the TECH program provides semantic guidance for the recognition system. A similar mechanism may be used to obtain semantic knowledge for the DRAGON system. Or.ce the list of legal moves is obtained and rated, this information may be used in setting the transition probabilities for the probabilistic gramınar. The fine details may be lost, but much of the information will be represented. the quality of the representation depending on the complexity of the grammir.

There is even a mechanism by which the stochastic mosel can oblain some semantic information without a specialized module. Consider the goal of mimiching a human being who is trying to guess the next word in an utterance when given some limit ad amount of context. This person, who is capable of understanding the utterance, could use whatever semantic knowledge is available from the limited context. In this situation the semantic knowledge is more limited than that which is used by the TECH program, which knows the entire sequence of previous moves and hence the current board position, but it is still of value to the speech recognition system. The problem of obtaining the statistics for this type of semantic knowledge is part of the general problem of estimating the Iransition probabilitics for a probabilistic grammar.

The transition probabilities for the grammar network can be estimated from statistics for a set of training sentences. A large set of training sentences should be used, but they only need to be Iranscribed orthographically, not phonctically, at this level of the hicrarchy. If Bayesian statistics are used, the a priori probabilities could be set to achieve the same effeet as a non-probabilistic use of the grammar. The a posteriori probabilities would then be at striet improvement (as judged by performance on the training sentences).

To the extent to which the statistics of the training sentences reflect the true probabilities for spontaneous utterances for the specific lask. the probability netwerk represents not only the syntax of the task but also all of the predictive information which can be obtained from the semantics of the available context. That is, if the truc probabilitics were known, the probability network would be all optimal predictor for a given amount of context, and therefore would predict at least as well as a human who is given the same amount of context and who presumably is capable of understanding the sentence (atthough the context in this case is not necessarity the whole sentence).

Inter-sentence semantics can also be introduced into the probability nelwork. Onc way to use inter-sentence semantics is to employ a user model. Suppose there is a model for the uncer in a particular task such that the the model gives probabilities for the user transitioning among a finite number of states depending on the types of utterances which the user has made. Conceptually this model fits in casily as an extra level of the Markov hierarchy. Computationally it requires that
conditional probabilities be estimated separately for cach user state. A user model is especially valuable if eertain key sentences trigger user transitions with probability one and if for each uscr state only a small subset of the general grammar is used. Then there is a savings in both the computation and the storage requirements.

SUMMARY

Each of the major sourees of knowledge in a speech recognition system can be represented as a stochastic process (usually in more than one way). In speech recognition each knowledge source involves an idealized process $\mathbf{X}(1), \mathbf{X}(2), \mathbf{X}(3), \ldots, \mathbf{X}(T)$ which is not observed and a process $\mathbf{Y}(1), \mathbf{Y}(2), \mathbf{Y}(3), \ldots, Y(T)$ depending on the \mathbf{X} process. The \mathbf{Y} process is either direetly observed or is inferred from lower level knowledge sourees in the speech recognition system. Such a dual process can be moxdeled as a probabilistic function of a Markov process. In the DRACON system such a model is used for each of the knowledge sources.

The speech recognition knowledge sources fit into a hierarchy such that the integrated system also is a probabilistic function of a Markov process. Such a simple gencral model for speceh recognition permits a recognition program which is just a simple implementation of gencral network search aleorithms. Such an implenientation of the DRAGON system is deseribed in Chapter IV.

INTRODUCTION

In Chapter II, the general properties of a probabilistic function of a Markov process were discussed. Chapter III explained some of the ways in which the knowledge sourees of a continuous speech recognition system can be represented by such a model. This chapter describes an implementation of a complete speech recognition system based on these models. This implementation is intended as a preliminary system demonstrating the practicality of building a complete system based entirely on the abstract Markov model. It is not intended as a final system demonstrating the full power of the techniques described here. Each knowledge source is given a simplified representation, and the probabilities in the networks are estimated a priori rather than by any automatic re-estimation procedure.

The system is simple, but it is a complete speech recognition system. Starting with knowledge represented in conventional forms-a context-free grammar, a phonetic dictionary, an arbitrary set of acoustic parameters-there is a set of programs for constructing the integrated Markov model. and a general recognition program which can recognize speech for any task based on the integrated network which has been constructed by the other programs. There is some training which is dependent on the talker and on the set of acoustic paramters, but which is independent of the task. This training is done by selecting by hand a set of prototypes for the acoustic segments from a set of utterances by the talker for whom the system is to be trained.

This implementation of the DRAGON system consists of five programs: MAKDIC, MAKGRM, MAKNET, GETPRB, and DRAGON. For each program, a bricf desciption will be given of what is does and of how it does it. The system has been tested on a set of 102 utterances with about 20 utterances from each of 5 interactive computer tasks. The 5 tasks are VOICE CHESS (the user speaks his moves while playing chess against the computer), DOCIOR (the user asks medical questions and the computer simulates a pationt), DESK CALCULATOR (the computer acts as a desk calculator for spoken commands). NEWS (the computer gives the current news stories whose subjects match a spoken specification), and FORMANT (the computer generates various kinds of graphic displays of speech data. according to spoken requests). The grammars for thest 5 tasks are given in Appendix 13. some sample utleranies in Appendix \mathfrak{E} :.

MAKDIC

MAKDIC reads a phonetic dietionary and writes a file describing a network representation fo: each word in the dietionary. It is this program which would contain any knowledge of within-wort phonological rules. Aetually, the current implementation of DRAGON does not use any explicit phonological rules, so the output of MAKDIC is just a one-to-one translation of the phonetic dietionary. Each word is represented by a linear network with each node conneeted to itself and to the following node.

A phonetic dietionary including all the words for the 5 tasks is given in Appendix A. The dictionary is written at a very broad phonetic level and has been edited by hand to break up dipthongs and stops into acoustic segments. Certain groups of phones which were distinet in the original dietionary were replaced by a single symbol for each group. This grouping was performed when the phones within a group were practically indistinguishable under the acoustic parameterization used in this implementation. The hand editing was designed to achieve an effeet like the lexical model of equations (III.15) and (III.16) of Chapter III, with $\mathrm{C}=1$.

The list of acoustic segment types which appear in the dietionary is given in Table I. A section of the dietionary is shown in Table 2. The complete dictionary is Appendix A. A flowchart of the MAKDIC program is shown in Figure 3, and a section of its output file is shown in Table 4. In this implementation, since no phonological rules are applied, the MAKDIC program just goes through the dietionary word-by-word and goes through each word phone-by-phone.

The section of output shown in Table 4 is interpreted as follows: 251 is the index of the word "with" in the dictionary. 4 is the number of phonetic segments in the word. For each of the 4 phonetic segments there are two lines. The first 1 in line 2 is the index of the current phonetic segment within the word. 0 is the internal code for this segment type, "-". The next I indieates the number of ares leading to this node from nodes other than tself. $\mathbf{0}$ is the probability of this node being skipped. 900 indicates that the probability of the are from this node to itself is $\mathbf{9 0 0}$. (All probabilities are multiplied by 1000 and truneated to integers.) Next follows a list of all the nodes (other than the node itself) with ares leading to the current node (in each case there is only one). The 0 in line 3 is the index within the word of the node which has an are leading to the

ACOUSTIC SEGMI:NI I.ABLLS

AX	silence. pause, voice-bar (A)BOUT
B	A(B)OUT (relcase-aspiration portion)
AH	N(U)MBNESS
T	(T)ELL (release-aspiration portion)
AE	H(A)MMING
S	(S)EVEN, (Z)ERO
1	(L)ET
Uw	D(0)
F	(I)EVER. WI(TH)
ER	(R)OOK, FEV(ER)
EH	L(E)T
IH	K(I)NG
D	(DIVVIDE (relcase-aspiration portion)
P	(P)AWN (release-aspiration portion)
N	(N)INE
AO	P(AW)N
AA	(O)CTAL
M	(M)UMPS
SH	Bl(SH)OP. MEA(S)URE
K	(K)ING (relcase-aspiration portion)
IY	QU(EE)N
NX	KI(NG)
G	(G)IVE (release-aspiration portion)
Y	(Y)OU
\checkmark	FIV)E
W	(W)E
OW	ZER(O)
WH	(QU)EEN (release-aspiration and devoiced semi-vowel)
HH	(H)AMMING
UH	R(OO)K

TABLE I

SECTION OF DICTIONARY

WITH	- WIHF
USING	- Y UWS IH NX
HAMMING	- IIH AEM IH NX
HANNING	- HH AEN IH NX
BILACKWEI.L.	- BI. AE - K W EHL
RECTANGUI.AR	K - ER EH-K - TEHIHN - G Y UWI. AA ER
TRIANGULAR	- TER AAIHEHIHN - GY UW LAAER
FREQUENCY	- FERIY - K W EHN - SIY
BANDWIDTII	- 13 AEN - DWIH-DF
CENTER	- SEHN - TER
CUTOI:F	-KAH-TAOF
L.OW	- I. OW
PASS	- P AES
HIGIH	- HIH AA IH

TABLI: 2
current node. The Io() indicates that the probability of following this are is .ICN. The remaining

phonetic segments are represented similarly.

SECIION OF DICTIONARY NETWORK LISIING

```
25I WITH 4
    1 0-10900
    0 100
    216W I O 900
    1 100
    328 IH I O 900
    2100
    47 F I 0 900
    3100
```


TABLE 4

MAKGRM

MAKGRM reads a context-free grammar specified by a BNF representation and writes a nctwork representation of a related finite-state grammar. In the current implementation cach appearance of a terminal symbol in the BNF is represented by a separate node in the network, but all appearanecs of each non-terminal symbol are linked together. This linking implics a loss of context. For the tasks for which this implementation of the DRAGON system has been used, the original BNF grammars have been hand edited so that any non-terminal symbol which appeared in two contexts which were important to keep distinet was replaced by two distinct non-terminal symbols. A limited expansion of this type could have been performed by the MAKGRM program itself, but since it was a one-time task, it was done by hand instead.

An example of an expansion of a non-terminal symbol is the symbol <piece> in the VOICE CHESS grammar (Appendix B). The symbol <piece> names the piece laking the action. <piecch> is part of the lecation for that piece. <piecec> is a piece being captured, and <piceed>
is either part of the location to which a piece is moving or part of the location on which a piece is being captured.

Note that if either the left contexts or the right contexts are identical f. - wo uses of the same non-terminal, then the uses do not need to be distinguished. If the left contexts are identical, then there is no context information to be remembered. If the right contexts are identical, then the left context information does not influence the interpretation of the rest of the sentence. Note that <pieced> has two different uses in the CHESS grammar, with different left contexts, but identical right contexts.

The current version of MAKGRM performs a straight-forward translation of the BNF. Each production is represented by a simple linear network. All the productions with a particular left hand side are linked together with a dummy node at each end. These dummy nodes are then linked to any nodes in the grammar which represent uses of the non-terminal symbol that is the left hand side of these productions. A part of the FORMANT grammar is shown in Figure 5. Figure 6 shows the network in which each production has been represented by a simple linear network. Figure 7 shows the network after the initial and final nodes for each non-terminal symbol have been linked to the uses of that non-terminal. A flowehart for MAKGRM is given in Figure 8.

BNF GRAMMAR

```
<phr>::= <spce>
    <phr><spee>
<spec>::= A <wind> WINDOW OF <num> POINTS
    <num> COEFFICIENTS
    FILE NUMBER <num>
    UTTERANCE NUMBER <num>
```


PARTIALLY CONNECTED NETWORK

```
<phr>::=
    <spec>
                            <phr> -.-.---.....--.- <spec>
<spec>::= A 
```

FILE $\cdots \rightarrow$ NUMBER $\rightarrow \rightarrow$ <num>
UTTERANCE \rightarrow NUMBER $\rightarrow-\rightarrow$ num>

FIGURE 6

FIGURE 7

MAKGRM

Scan input line to get next symbol

If symbol is cnclosed in brackets $<>$ (it is a non-terminal) then
I) Mark current node as non-terminal
2) Find symbol in list of non-terminals; set SYMNUM to the index of the symbol in the list.
3) $\operatorname{NODENUM}=$ NODENUM +1

FIGURE X

FIGURE, X (cont.)

MAKNET

MAKNET takes as input a network representation of a grammar (produced by MAKGRM) and a network representation of the dietionary (produced by MAKDIC). It produces an integrated network by substituting the appropriate word network for each node in the grammar network. Phonological rules which apply aeross word boundaries could be used to adjust the network after the substitution.

MAKDIC. MAKGRM, and MAKN CT must keep track of the transition probability associated with each are of the network. At present simple default values are used. MAKDIC assigns a probability of .9 to any are leading from a node back to itself, and .1 for any are leading to the next node. This corresponds to acoustie parameters sampled onee every 10 milliseconds, with no presegmentation, and an average phone duration of 100 millisceonds, based on the acoustiephonetic model of eqations (III.12). (III. I3), and (III.14).

The complete input and output for MAKGRM and MAKNET is shown for a simple language in Appendix C. First the simple BNF grammar is given. Next the output file of MAKGRM is shown. Consider the productions with the non-terininal symbol <1squest> as the left-hand side.

The sub-network for these productions begins with the line "<request>::=6-2 1 ." The 6 is the node number for this node, which is the special initial node for this left-hand side. - 2 indicates that this node is associated with the second non-lerminal symbol. I indicates that this node has only I are leading to it. (In this implementation, each are is listed with the node to which the are points and transition probabilities are given conditional on the state after the transition. rather than in the conventional form presented in Chapter II. This form has been chosen for the convenience of tiec implementation, the two theoretical models are cquivalent.) $\mathbf{2}$ (on the next line)
is the node number of the node with an are leading to the current node, and 1000 indieates that the probability of following this are is 1.000 .
"Compute" is the word associated with the next node, which is node 7. It is a terminal symbol and 291 is its index in the diclionary. This node has 1 predecessor, which is node 6 (with probability 1.000). Node X is associated with the third (-3) non-terninal symbol <fune-phr>. The node has I predecessor, node 7. Node 9 is associated with the word "Use" which has index 222. The node has 1 predecessor, node 6 (which is the initial node for this set of production:). Node 10 is associated with the non-terminal symbol <param: phr>, and its only predecessor is node 9. Node 11 is the final node for this set of productions (with <request> as the left-hand side). It has two predecessors, node 17 and node 32, which are equally likely. Node 17 is the final node for the productions for the symbol <fune-phr>, which is issiaciated with node 8 . Node 32 is the final node of the productions for the symbol <param-phr>.

MAKGRM assigns an equal probability to all ares leading to the same node. This default condition implies that the DRAGON system is currently using no semantic knowledge, not even statistically (except for any semantic knowledge which is included in the grammar itsclf).

The output of MAKNET is a cembination of the outputs of MAKDIC and MAKGRM. Each nodi corresponds to an acoustic segment. Except at word boundaries, each ne de has only one predecessor besides ixself. Notice that there are many nodes marked " - ". These silence nodes are common because the dietionary indicates that every word begins with a silence (because the word may be preceded by a pause). The dynamic time warping is sufficiently powerful that these silenees can be allowed throughout the network. If no silence is actually present in the acoustic signal, then the dynimic time warping will strink the duration of tinse assigned to the " - " node to a single 10 mitiinistond segment.

GETPRB

GETPRB takes as input a set of acoustic parameter valucs and produces as output a vector of probability estimates. Each entry in the probability vector represents the conditional probability
of producing the given set of acoustic parameter values, conditional on the actual phone at the time of the acoustic observation being the phone corresponding to that particular position in the probability vector.

GETPRB
\downarrow
Do for PHONENUM $=1$ to (number of phonetic labels)

FIGURE 10

Any convenient set of acoustic parameters and any matching procedure could be used here.
The current version of the DRAGON system uses 12 acoustic parameters sampled once every 10 milliseconds. The basic parameters are an amplitude measure and a zero-crossing-count for each of five filter bands, and for the unfiltered signal. The five filter bands are

Abstract

AI, ZI: 2(X)-4(N) Hert\%. A2, 22: 4001-800 Hert\%. A3, Z3: 800-1600 Hert\%. A4, Z4: 1600-3200 Hertz AS, 25: 3200-6400 Hertz AU, ZU are for the unfiltered signal.

The vector of twelve parameters is normalized in a non-linear fashion by dividing $A 1, Z 1, A 2$, Z2, A3, Z3, A4, Z4, A5, 25 cach by the sum of the twelve paramters and multiplying by 1000 . No attempt has been made to find an optimal non-linear transformation; this transformation has been selectec by informal experimentation with a small number of alternative transformations. The reason a transformation is introduced is that so many of the consonants are so low in amplitude in all the bands that they are difficult to separate by any simple metric. The measurements on the unfiltered signal, $A U$ and $Z U$, are not normalized, so they retain the information of overall amplitude.

The amplitude measurcs and zero-crossing counts are normalized together because, especially for the low amplitude cases that we are trying to separate, the zero crossing counts also give a kind of amplitude mcasure. This phenomenon occurs because the zero erossing counter only counts cycles which exceed a certain threshold. Thus for signals whose amplitude is ncar the threshold, the zero crossing count is actually a sensitive measure of the amplitude. For strong signals the zero crossing count measures the frequency of the major speetral peak within a particular band.

GETPRB measures the distance between a particular vector of (normalized) acoustic parameter values and a particular prototype by a simple Euclidean distance. However, there are several prototypes for each phone. The prototypes were selected by hand from a set of 50 training sentences spoken by the same talker as the one on whom the system has been tested.

Onc prototype for cach phonc was found among the 50 sentences by hand. Each prototype was just the (normalized) vector of acoustic parameter values for some 10 millisccond segment occuring during an instance of the desired phone. Using the GETPRB from these initial proto-
types, DRAGON was run as a machine-aided labeling program on the same 50 sentences (that is, DRAGON was told the sequence of words in each sentenee, but not the times at which they occured).

The output of the machine-aided labeling was then carefully checked by hand (there were about one or two corrections per sentence). The labels produced by GETPRB were then eompared with this hand-eheeked segmentation. Whenever there was a steady-state acoustie segment for which no prototype had probability greater than .I, a new prototype was added for the phone which the hand segmentation marked as oceuring at that time.

An arbitrary transformation is applied to convert the Euclidean distance measure to an estimate of the conditional probability. The transformation is given by ecuation (1).
(1) $P=\operatorname{Max}\left(0, \operatorname{Min}\left(1,\left(1000 /\left(\sum_{i=1.12}\left(A_{5}(i)-A_{p}(i)\right)^{2}\right)\right)\right)\right)$.
where $A_{5}(i)$ is the value of the i th acoustie parameter for the eurrent sample, and $A_{p}(i)$ is the value of the i th acoustie parameter in the prototype.

A sample of the acoustir: labeling produced by GETPRB is given in Appendix D for a portion of the utterance "Use a Hamming window of five hundred twelve points." First a table of the values of the 1% (normalized) acoustic parameters is given; then a table of the top 7 prototypes for each 10 millisecond segment is given. Each row in each table represents one 10 millisecond segment. The segment number is in the first column. In the parancter table the remaining columns are the values of $Z 1, ~ A 1, Z 2, A 2, Z 3, A 3, Z 4, A 4, Z 5, A 5, Z U$, and $A U$, respectively.

In the table of labels, each label is followed by a number which is its index in the list of prototypes. Frequently several prototypes for the same label occur among the top 7 prototypes. The final two eolumns are the squares of the Euelidean distanees from the current set of aeoustie parameter valucs to the best and second best prototypes.

From time 95 to time 108 , the parameters are almost all 0 , and " - " is the best prototype. Then " Y " is the best label from 109 to 111. "UW" is best. or one of the best. from 113 to 134. Occasionally another label (IY, AX, L) is rated best, but none of these labels seores high through-
out the time from 113 to 134. This section of time would reliably be marked as "UW." from the acoustic information alone. The section from 136 to 138 is a transition between the "UW" and the "S," and no label scores well. From 139 to 144 is the "S." Notice that parameters A4 and $\mathrm{Z4}$ are $\mathbf{0}$ throughout this segment. This is a feature for distinguishing "S" from "SH." and the system reliably labels "S" and "SH" with these acoustic parameters.

There is no real acoustic evidenec for the word "a," and the vowels and nasals of the word "Hamming" are not very clear. At this point the value of an integrated system with other sources of knowledge becomes clear. Rather than doing scgmentation and labeling from the acoustics alone, the system makes all decisions in terms of the integrated network representation. The system was able to select, using the labels shown here, the word "Hamming" over all alternatives, ineluding the word "Hanning." However, the system missed the word "twelve" later in the utterance.

DRAGON

The main recognition program, DRAGON, is just an implementation of equations (18), (19). and (20) of Chapter II. The B inatrix is provicied in implicit form by the procedure GETPRB. The A matrix is represented by the network produced by MAKNET and the default transition probabilities. In comparison with a gencral transition matrix, the matrix is very sparse (almost all of its entries are zero). The network corresponds to a compacted representation of the transition matrix. Each node in the network corresponds to a row of the matrix, and each non-zero entry in that row corresponds to an are in the network leaving that node. Sinee there are usually only two non-zero entries per row, the representation is very compact. Thus the 2356×2356 element transition matrix for the formant tracking task is stored in a few thousand memory locations.

Equation (20) of Chapter II requires that a back pointer be saved telling the best way to get to each node at each point in time. Again it is possible to make use of the extreme sparseness of the A matrix. Since a list is kept of all ares leading to a given node, a compact back pointer can be kept using only enough bits to select one of the short list of ares. These back pointers are stored as variable length bytes, fitting as many pointers per memory location as possible. This packed representation of the back pointers makes it possible for the current version of DRAGON to kee;

DRAGON

FIGURE II
all the back pointers for a six second utterance in core memory. In fact, the back pointers for a given 10 millisecond segment for the formant tracking task fit in 73 memory locations (36 bits each).

A flowehart of the DRAGON program is shown in Figure 11. The program performs the computation of equation (18) for $t=1, T$. Each node j is considered in turn. Since in this implementation the implieit $b_{i, j, k}$ is independent of i, the value of i for which the maximum occurs in equation (18) depends only on $\gamma(t-1, i)$ and $a_{i, j}$. This value is found and saved as a back pointer. If p is the phone corresponding to node j, then the $b_{i, j, k}$ for the current acoustic parameter values is the number which GETPRB returns in position p of the probability vector. The computation of $\gamma(t, j)$ is completed by multiplying by this factor.

Once the computation of equation (18) has been done for $t=1$ through T, the back pointers are retrieved according to equations (19) and (20). The maximum in equation (19) is taken only over those nodes which represent the end of a complete utterance. For the grammars which have actually been used, this set has always consisted of a single node. As the back pointers are traced back, the optimal sequence of internal states for the Markov process is obtained. Since each node in the network corresponds to an acoustic segment within the acoustic realization of a particular phoneme, which is within a particular word, which is in a particular place in the grammar, the sequence of states determines the word sequence, the phone sequence, the segmentation times, and the parse of the sentence. Whichever sequence is of interest can be printed out.

PERFORMANCE RESULTS

The current implementation of the DRAGON system has been tested on a total of 102 utterances, with about 20 utterances from each of five interactive computer tasks (described briefly on page 34). In Tables 12-14, the performance of the DRAGON system is compared with the performance of the HEARSAY speech understanding system. Because this implemertation of the DRAGON system has no semantic component, the semantic module of the HEARSAY system was disabled for this experiment. These results were obtained by Lowerre| 1.3) in a study of the comparative strengths and weakinesses of the two systems. Both of the systems used the 12 acoustic parameters deseribed above, sampled once every 10 milliseconds.

The percentage of utterances correctly recognized in each task by each system is given in Table 12. All 102 of these utterances are by the same talker. The percentage of words correctly idemified is given in Table 13. The amount of computation time required by the current system is given in Table 14. These times are the anount of central processor time on a PDP-10 computer as a multiple of the length of the utterance.

Overall th: DRACOON system recognized 49% of the 102 utterances and identified 83% of the 578 words. An utterance is counted as being correctly recognized if all of the words in the utterance are correctly analyzed. Because of factors such as varying sentence lenyth, the percentage of words correctly identified is more stable for different tasks that the percentage of utterances recognized. Notice that the DRAGON system maintuined a level of 84% of thic word correctly

ACCURACY OF UTTERANCES RECOGNIZED

size of						
Texicon	no. of ults	Hearsay $\%$ correct	Dragon \% correct	Hearsay $\%$ missed	Dragon $\%$ missed	
Chess	24	22	32	68	9	0
Doctor	66	21	24	76	33	0
DesCal	37	23	22	17	13	8
News	28	18	50	50	11	0
Formant 194	18	33	33	44	5	
		102	31	49	21	3

The \% correct figure is the percent of the total uttisrances that were correctly recosnifed. The \% missed fisure is the percent of the total utterances that were completely missed. t.e. no wordk were eoprectly identilied.

TABLE 12

ACCURACY OF WORDS IDENTIFIED

Tasksize of lexicon	no. of words	Hearsay \% $\%$ corrcet	Dragon \%/w corrcct	
Chess	24	130	69	94
Doctor	66	92	49	88
DesCal	37	116	53	63
News	28	98	74	84
Formant	194	142	33	84
-		578	55	83

TABLE 13
identified on the interactive formant tracking task.

The FORMANT task is considerably more complex than the other tasks. It has a vocabulary of 194 words and an infinite language with approximately 16^{n} sentences of length n words. Each of the other tasks has a finite language with the number of possible sentences ranging up to several hundred million. The IIEARSAY system was able to recognize 33% of the ulterances for this task, but it only identified 33% of the 142 words. It missed 44% of the utterances completely, and the standard deviation of its computation time is higher than for the other tasks.

This implementation of the: ORAGON system was developed using training sentences (by the

TIME NEEDED FOR RECOGNITION

	Hearsay ave. times real time	Sid. Dev.	SD/ave	Dragon ave. times real time	Std. Dev.	SD/ave	Sizc of Dragon nctwork
Chess	13.7	2.6	.19	48.0	.6	.013	410
Doctor	9.4	3.8	.40	67.4	1.1	.016	702
DesCal	15.5	9.4	.61	83.1	1.0	.012	916
News	10.8	6.4	.59	54.7	.6	.011	498
Formant	44.4	23.5	.53	173.8	3.3	.019	2356

For the DRAGON system:
$($ recognition time $)=($ utt length. $)(20.9+.067($ net size $))$
This is accurate to within about 3%.

TABLE 14

same talker) from the tasks CHESS, DOCTOR, and FORMANT. The HEARSAY system was developed for tasks CHESS, DOCTOR, DESCAL, and NEWS. In no instance were any of the utterances used in training the systems included in the test results reported here. One reason the performance of the DRAGON system on the DESCAL task was inferior to its performanec on the other tasks is that the DESCAL task includes several words which are syintactically equivalent and which are phonetically similar under the analysis used by the current system. No attempt has been made to provide extra phonctic prototypes for this task.

The small standard deviation in processing time for different utterances within a task is a feature of the optimal search algorithm used in the DIRAGON system. A complete search is done for the glohally optimum path th:ough the network. The Markov inodel allows this global optimum to be found in a time which is proportional to the length of the utteranec. If the words are clear and casily recognized, the complete scarch takes just as long as when the words are unclear and difficult (t) recognize. On the other hand, the system never takes longer than this fixed time. and it always finds some path through the network. In Table 15, results are given for an carlier version of the DRAGON system for cach of the 18 utterances in the FORMANT task. The
property which should be notieed in these figures is that the processing time docs not depend on how many errrors are made in analyzing an utterance.

ACCURACY AND TIME FOR INDIVIDUAL UTTERANCES

Task: Interactive Formant Tracking

Phrase*	In	\#Oul	\#Cor	mScmCor Lengih	Mitin	Aco	
1	6	6	6	6	2170	126.9	18.7
2	9	8	8	8	4270	119.4	18.7
3	8	8	8	8	3730	119.4	18.3
4	9	8	7	7	3690	118.5	18.6
5	7	7	5	5	3490	123.7	18.6
6	9	9	9	9	5670	115.9	18.5
7	10	10	10	10	4510	121.2	18.4
8	7	7	7	7	3200	124.5	18.3
9	11	11	11	11	5120	118.1	17.6
10	7	6	6	6	3300	120.0	17.5
11	4	4	4	4	3070	119.6	18.5
12	10	9	8	8	4480	118.0	18.7
13	4	4	4	4	2760	124.0	18.8
14	4	3	0	0	2300	131.2	18.5
15	10	9	8	9	4260	126.3	19.2
16	11	11	7	8	5160	119.7	18.7
17	10	10	8	9	4060	121.9	17.9
18	6	6	6	6	3110	123.4	17.9

```
(words correcti/twords inl - Kiz
(words correctl/iwords nut) - .\4%)
(words semantically corrcoll/iwiwds (tut) - .919
sin - Number of words in actunl (innul) phrace
Out - Number of wirds in outmut phrase
*Cor - Number iff word conrecily inkntificd
SemCor - Number of wurds semantically cowrect (crror irrekvant to (avk)
Length - Duration if sheave in millicecomds
Main - (commutation lome of main recognitwon routinc)/Iength
Acn - Icomputaivon time of imonusics mudulel/Length
```


TABLE 15

The IX utteranees are shown in Table 16. In each pair the actual utterance is given, followed by the utteranee which the DRAGON system found as the oplimal path in its model. The systern, correctly recognized 8 of the 18 utteranees. If we consider "compare" (in sentence 15) to have the same meaning as "look at", and if we consider "compare A and B " to be equivalent to "compare A with $B^{\prime \prime}$ (in sentence 9), then 10 of the 18 sentences or 55% are semantically correct. A sophishicated semantic eomponent might he able to correet some of the other errors. Appendix E also shows the correct and estimated utteranees for the other two tasks for this implementation
Utterances for Interactive Formant Tracking Task

1) I want to do formant tracking.
I want to do formant tracking.
2) Use a Hamming window of five hundred twelve points.
Use a Hamming window of five hundred
\qquad points.
3) Use utterance number six of file number five. Use utterance number six of file number five.
4) Increment the willdow in steps of one hundred points. Increment the window in steps of four points.
5) For each window, display the fourier spectrim. For each window, disolay the formant tracks.
6) Compute the L.PC smoothed spectrum using the autocerrelation method. Compute the LPC smoothed spectrum using the autoco:relation method.
7) Compute the roots of the inverse filter using Rairstow's method. Compute the rogts of the inverse filter using Bairstow's method.
8) Display the imaginary part of the roots. Display the imaginary part of the roots.
$9)$ I want to compare the autocorrelation method with the covariance method. I want to compare the autocorrelation method and the covariance method.
9) Increment the window by one hundred points. Increment the window by one \qquad points.
10) Display the FFI spectrum. Display the fFT spectrum.
11) Use a Hanning window of two hundred fifty-six points. Use a Hanning window of two hundred \qquad six hertz.
12) Display the FFT spectrum.
Display the firl spectrum.
13) Compute the llilbert transform. Use two points.
14) I want to look ot image enhancement with different parameters. 1 want to combure image enhancement with diflerent parameters.
15) Display the simetroyram with a pre-emphasis of six decibels per octave. Display the spectrouram to a pre-emphasis of six thousand five hertz.
$17)$ Use a ceiling of thirty with a floor of \%ero. Use a ceiling of ten to a floor of \%ero.
$18)$ For each utterance display the spectrogram. For each utterance display the spectrogram.

TABLE 16
of DRAGON, and 9 sentences in the AP News task and x sentences in the formant task for an
earlicr version of DRAGON.

By considering the speeific words which the system identified ineorreetly, it is possible to gain some insight about the places at which the model is weakest and/or the task is most diffieult. The errors for the FORMANT task are given in Table 17.

ERRORS IN FORMANT TASK

	aetual phrase	substitution
2)	Iwelve	
4)	one hundred	four
5)	Fourier spectrum	formant tracks
9)	with	and
10)	hundred	
12)	fifty	
	points	hertz
14)	(entire sentence missed)	
15)	look at	compare
16)	with	10
	decibels per octave	thousand five hertz
17)	thirly with	tento

TABLE 17

Six of the twelve places at which errors oceur involve numbers. It is not surprising that numbers are the greatest point of weakness. In any coatext in which a number can occur, any number less than one billion is considered grammatieal (sometimes ineluding zero). The system has no source of knowledge other than acousties to select which of the one billion possible numbers was aetually
spoken. Recognizing a number imbedded in continuous speceh from acoustic information alone is a difficult task, and the one-out-of-a-billion selection is usually beyond the ability of this simple general system.

The prepositions and conjunctions are the second greatest source of errors. These function words are usually short and unstressed, so the acoustic information is very unrcliable. Previous speech recognition studies ([T3]) have shown that short words are missed more often than long words, and that unstressed function words are missed even more often than other short words. On the other hand, it is often possible to "understand" a sentence as a whole without correctly identifying all the prepositions and conjunctions.

Of the remaining errors, two are caused entircly by a weakness in the model. The oritinal BNF grammar specifics that a "window" length (sentence (12)) be given as a number of "points," and a "pre-emphasis" be specified in "decibels per octave" or "db per octave." In translating the BNF grammar to a finite state grammar, these restrictions were removed. These restrictions could have been retained in the finite state grammar, but only by having a larger state space. Six copics of the number sub-grammar would suffice to distinguish the uscs of number with different right contexts ("points", "hertz", <res-unit>. "cocffficients". "per octave", and end-of-phrase). If these two errors were corrected with an expanded grammar, all of the remaining semantically important errors would be numbers, excepi for sentences (5) and (14).

The eserent simple implementation of the DRAGON system has been designed merely to demonstrate the practicality and power of its general concepts. Clearly many improvements are possible. For example, the acoustic data could be pre-processed and organized into phone-like segments. Then the calculations represented by cquations (II.18) and (II.20) would only need to te done for each segment rather than for each 10 millisecond acoustic parameter sample. This reformulation would speed up the calculation in the main recognition program by a factor of about three or four. Especially for larger tasks, substantial savings in computation time can be achicved by employing less than a complete optimal search. A careful study must be done to determine the trade-offs between performance and amount of computation with sub-optimal techniqucs. More sophisticated models are possible for the knowledge sources, which ought to improve the perform-
ance alt'tough they would gencrally increase the amount of compuiation. A true probabilistic gramnar would allow a statistical representation of some semantics as well as a more accurate grammar.

CONCLUSIONS

Let's review the major features of the DRAGON speech recognition system and consider how these features influence the performance of this implementation. Some of the features of the DRAGON system contribute to its simplicity and ease of implementation, while others give it its power.

(1) Generative form of the model

The fact that the abstract model represents knowledge sources in a generative form made MAKGRM and MAKDIC inuch simpler to implement. The DRAGON network explicitly represents a finite state grammar. Although the underlying stochastic process is assumed to be Markovian, sufficient context is included in the formulation of the state space so that the finite state grammar is represented exactly. It is not necessary to make any compromise to represent the inverse of grammatical productions based on local context. In this regard the DRAGON system shares some of the advantages of the top-down recognition systems. On the other hand, the present implementation is limited to a finite state space, so MAKGRM translates any context-free Erammar to a related finite state grammar
(2) Hierarchical arrangement of knowledge sourees

The arrangement of the knowledge sources into a conceptual herarchy simplifies the implementation of ithe IDRAGON system by allowing a modularity that separates the details of the representation of the knowledge sourees from the recognition program. In this simple implementation this modularity is expressed in the fact that MAKGRM, MAKDIC, MAKNET, GETPRB, and DRAGON are independent programs with well-defined communication. In a more sophisticated implementation the modularity could progress even further and would 'e even more valuable.

The hierarchical arrangement is also reflected in the sparseness of the transition matrix for the integrated process. This sparseness has played an important role in this implementation of the DRAGON system. The explicit network representation allows us to directly access the non-zero entries of the transition matrix, thus avoiding unnecessary computations in the formal equation (II.IR). The bit-packed representation of the back pointers allows the entire recognition computation to be performed using core memory.

(3) Integrated network representation

This implementation of the DRAGON system integrates the segmentation and labeling into the hierarchy, so the optimal search algorithm performs the segmentation and labeling along with the word identification and parsing. A price is paid in terms of the amount of computation time because the underlying Markov process steps once for every 10 millisecond segment, rather than once for every phone-like segment. However, even this simple implementation can show the advantage of an integrated system compared to a system attempting to make decisions based on any one knowledge source in isolation. The help which the recognition procedure gets from other sources of knowledge allows the segmentation and labeling to be done reliably even with the crude acoustic pararin:ters and simple metric used in GETPRB.

(4) General theoretical frainework

The presence of a general theoretical framework greatly simplified the implementation of the DRAGON system. It is this feature which has made it possibi: to construct a complete speech recognition system with limited manpower. It has been necessary to compromise the theoretical framework in a few places (notably the GETPRB procedure and the lexical model), bitt in general there has been much less special purpose programming than there would have been without the abstract model. The abstract model has been sufficiently flexible that very few compromises have bee, necessary in deciding what knowledge to represent (with the important exeeption of semantic knowledge, which has been omitted entirely). The only significant example is that the grammar represented in the network is a finite state grammar rather than a general context-free grammar. This restriction has not been a significant handicap for the 5 tasks which have been implemented so far.
(5) Optimal stochastic search

The optimal search strategy is probably the most unique feature of the DRAGON system. It has a significant disadvantage in requiring extra computation. However, the special features of the Markov model allow an optimal search algorithm for which the amount of computation is not nearly as great as might naively be supposed. This implementation of the DRAGON system, despite many drawbacks and simplifications, has shown that an optimal search is possible and practical.

The advantages of optimal stochastic search come from avoiding early decisions which might be wrong. By extending all partial paths in parallel we are, in effeet, delaying all deeisions until all context, past and future, has been considered. The amount of "context" is determined by the formulation of the Markov state space. In the highly stylized grammars used in these interactive computer tasks, the "context" often reaches all the way back to the beginning of the utterance. Thus the optimal search strategy may delay the deeision about the first word of the utterance until the effect of this decision on the entire sentence has been eonsidered.

FUTURE WORK

There are many improvements which can be made even within the framework of the eurrent system. The introduction of a sophisticated acoustic preprocessor, while departing from the philosophy of building an entire system from the same abstract model, would result in a signifieant increase in computational speed. The techniques for using such a preprocessor within the gencral DRAGON system are described in Chepter III (equations (9), (10), and (11)).

The lexical model could be improved either by introducing phonologieal rules or by using the general lexical model of Chapter III. Lither model could be trained using the procedure represented by equations (21) and (22) of Chapter II.

The syntactie-semantic model would be improved by introducing estimates of the conditional probability distributions into the grammar. Given a task with a known grammar, this estimation mainly involves the collection of statistics for a large corpus of utterances from a dialogue in the inter-aetive computer task. Even for a task with an unspecified grammar, an attempt ean be made

Chapler IV - IMPLEMENTATION

to approximate the grammar using the re-estimation procedure of equations (21) and (22) of Chapter II.

The assumption of a finite state space (and hence a finite state grammar) is not essential. Markov processes may have infinite state spaces, and much of the theory used here carries through. There are serious problems which must be solved to obtain a practical implementation, but they are not insurmountable. For example, equation (18) of Chapter II can be generalized to apply to an arbitrary context-free grammar, at the expense of making the number of computations proportional to T^{3} rather than to T . By segmenting the utterance into syllables, T would be the number of syllables and $\mathbf{T}^{\mathbf{3}}$ might not be too large.

What general implications can be drawn from the results of the DRAGON speech rccognition system? The DRAGON system differs from most other speech recognition systems in threc important ways: (1) the use of Markov models, (2) the use of the same abstract model to represent each of the knowledge sources, and (3) the optimal search strategy.

Since the state space can be formulated to include specific context information, the assumption of the Markov property in the models is not so much an assumption as it is a prescription to be followed in the formulation of the state space. The results for this simple implementation demonstrate that this prescription can be followed well enough to get reasonable recognition while kecping the state space of manageable size. However, because the FORMANT task took 173.8 times real time and because the size of the DRAGON network grows with the size of the vocabulary, there is a significant area for future research. Techniques need to be developed which ean more efficiently represent more complex tasks.

The use of a general abstract model has greatly facilitated the development of the DRAGON system and has important implications. Lowerre ([L3]) has been able to analyze the main recognition program to produce an optimized program which produces identical results but is much faster than the original program. Work is being done to adapt the DRAGON system to run on a minicomputer. Newell ([N3]) has suggested that the simplicity of the DRAGON system would allow it to be uesd as a "benchmark" system. Any more sophisticated system must justify its greater complexity by recognizing speech either in less time or more accurateiy than the sef ron
system.

A major motivation for constructing de DRAGON system has been to demonstrate that speech recognition based on complete optimal search is practical. Clearly, however, a complete search is not the most efficient procedure. The most important area for future research is to develop techniques such that the complete Markov search is an upper bound on the amount of computation, but such that much less computation time is used exploring parallel paths when the correct path is clear.

00100	＂月号	－ $\boldsymbol{\text { 日 }}$
80200	＂RE＂	－ $\boldsymbol{A E}$
09308	＂дн＂	－AH
80408	＂${ }^{\text {O＂}}$	－ $\mathrm{MO}^{\text {O }}$
80500	＂яム＂	－ AR UH
88600	＂RY＂	－AR IH
88780	＂8＂	－ B IY
80808	＂CH＂	－SH
80908	＂D＂	－ $\mathrm{D}^{\text {IY }}$
81000	＂EH＂	－EH
81100	＂ER＂	－ER ER
01200	＂EY＂	－EH IH
81300	＂F＂	－EH F
01480	＂Filler	－
01580	＂G＂	－ 6 IY
81688	＂ HH^{\prime}	－EH IH－SH
01780	＂I＂	－AR IH
81808	＂ IH^{\prime}	－IH
81900	＂IY＂	－IY
02080	＂JH＂	－SH
02108	＂K＂	－K EH IH
82280	＂L＂	－EH L
82300	＂${ }^{\text {＂}}$	－EH M
82400	＂N＂	－EH N
82500	＂NULL＂	－
02688	＂NX＂	－IH NX
02788	＂OH＂	－OH
82808	＂OY＂	－ AO IH
02988	＂P＂	－P IY
03000	＂R＂	－ AR ER
03180	＂S＂	－EH S
83200	＂SH＂	－SH
03300	＂T＂	－T IY
03400	＂UH＂	－UH
03500	＂UW＊	－UH
83680	＂V＂	－V IY
83700	＂HH＂	－H\％
03808	＂Y＂	－H AR IH
83908	＂Z＂	－S IY
84080	＂ 2 H ＂	－SH
84100	＇s	． 5
84200	A	－9x
64300	ABOUT	
04400	PBOVE	－ AX －B R $\mathrm{H}^{\text {V }}$
84500	ABSOLUTE	－\quad－BES AXL UH－T
84608	ABSOLUTE	－AE－b S OHL UH－T
84708	ACOUSTIC	－AX－K UHS－T IH－K
84808	ADC	－EH IH－d irs iy
84900	ADD	－ AE － D
05008	hovanced	
85100	AFRAID	－aX F ER EH IH－o
05200	AIRPLANE	－ENER－PL PE IH N
05300	AIRPLANES	－EHER－PLEh IH N－S
05480	ALL	－ $\mathrm{AOL}_{\text {L }}$
05500	ALPHA	－ ah l f ax $^{\text {a }}$
05600	AN	－AE N
85780	AN	－ $\mathrm{AX} \times$
85880	ANALYSIS	－ax N me L ih S in S
05908	ANAL YZE	－AENL PR IH S
86888	AND	－ $\mathrm{aX} \times-\mathrm{C}$
06100	ANESTHETIZED	－AX NEHS－TAXS AX－S－D
06200	ANOTHER	－AH N AHFER
96300	ARE	－AR ER AX
06480	AS	－ fE S
06538	ASP IRATED	－he S－P IH ER EH IH－TEH－D

06660	ASPIRATION	
06700	AS THMA	- AE S M AX
06800	At	- AE-T
06900	A TAL	- $A+$ - T A ¢ !
07000	at tacheo	- $A R-$ T $A E-S H$ - T
87100	autocorrelatio	ON - AO-T OH - K RO ER EH L EH Ih Sh ax m
07200	auful	
87300	BABY	- behin - $\mathrm{B}_{\text {Ir }}$
07400	BACK	- 8 AE - K
07500	backeo	- B at - K - 0
87600	BRO	- 8 at - 0
07700	bairstow	- b ae er S - Toul
07800	BAIER	- BEHIH - K ER
07900	BRLL	- B A L
88000	balleo	- 8 AR L - 0
88100	BALLS	- B AR L 5
88200	BANOLIOTA	- B MEN-DNJH-Of
08300	barred	- b aber-o
08400	aecomes	- B AX - K ahins
08500	BEEN	- B AX ${ }^{\text {N }}$
08608	BECINNINC	
08708	BENT	- behn-t
08800	8510	- 8 Eh ih - toh
08900	8iRo	- B ER - 0
09000	BISHOP	- 8 IH SH AX - P
09100	BISHOP'S	- B IH Sh AX - P S
09200	BLACIUELL	- BL AE-KHEHL
09300	bleeoing	- blity - 0 in hx
09600	BOTTLE	- 8 AR - TL
09500	BOUNORRY	- b am ar n - oer ir
09600	BOY	- 8 Ao ih
09700	BURST	- ber S - t
89800	BY	- 8 AR IH
09300	calculate	- k at l - k y uil lemin - t
10000	CRPTURES	- K ne - P - Shers
10100	CASTLE	- K be S L
10200	CASTLES	- KaEs L S
10300	CASTRATEO	- kres - terehih - tax - o
10400	CAT	- K ne - T
10500	Category	- K AE - I AX - C AOER IY
10600	CEILING	- S ir lim nx
10700	CENTER	- 5 eh N-ter
10800	CENTISECONOS	- S EHN-T IHSEH-K日X M-OS
18900	CENTRALIZEO	- 5 EH N T ER L AR IH S-0 - ${ }^{\text {S }}$
11000	CEPSTRAL	- KEH-PS - TERL
11100	CEPSTRALLY	- KEH-PS - TERLiY
11200	CEPSTRUM	- K EH-P S - Iter ah in
11300	CHANCE	- SH Ell N - ${ }^{\text {c }}$
11400	CIICCR	- SH EH - K
11500	CHEST	- SH Ell S - T
11600	CHICIEN-POX	- Sh Ih - K AX N - P AR - K
11700	CHINA	- SH AR IH N AX
11800	CHURCH	- SH ER - SH
11900	Cigarettes	- S Ih - cereh - t s
12000	Circumisiseo	- S AX ER - K AH M S AX - $\mathrm{S}^{\text {- }}$
12100	cloudr	
12200	clustering	- kl ah s - ter in mx
12300	COEFFICIENTS	- K OL EH F IH SH IH M - T S
12400	COMMA	
12500	COIIPARE	- K Ah M - P ater
12600	COMPILE	- K AIIH-P ARIHL
12700	COIIPUTE	- K An M - p y Un-t
12800	CONSIOER	- K an N-S in - Oer
12900	CONSTRLITION	- K AXN - S - T ER AH - K SH AX N
13000	continuous	

13100	COVARİNCE	- kon vae er iy aen - 5
13200	Cratips	- kir men-ps
13300	CREAM	- R ER IY M
13400	Cres	- R er ehf
13500	Cuksur	- kers er
13600	cutiff	- 1 a - 1 qo for
13700	CYCLES	- S main - kls
13800	OB	- Dir - bir
13900	DEAD	- DEH-D
14000	debug	- dir - bap-g
14100	debucging	- Diy - bax - ginne
14200	decibels	- dens in-behls
14300	decimal	- Dehsml
14480	delete	- onaxlir - t
14500	delita	- o ehl - : $\mathrm{ah}^{\text {a }}$
14600	denimlizeo	- dehn-il brims - d
14700	DEPRESSED	- dir - perehs - d
14800	DERIVATION	- o me er ih veh ih Sh ax n
14900	DESIGNING	- o ax s or ihn ih nx
15000	DESIRE	- o ill s apither
15100	DETAIL	- diy - ieh ihl
15200	DID	- 0 IH - O
15300	different	- dimfern-i
15400	dicital	- 0 Ih - gin-ti
15500	display	- Dax s - pleh in
15600	DIVIDE	- dinvona ih - d
15700	DIVIDES	- dimvarim-ds
15800	Dizziness	- dins iynax s
15300	DO	- 0 Ull
16000	DOS	- D no - ¢
16100	DDING	- d Uni in nx
16200	domajn	- don mehinn
16300	DJNE	- D Oh N
16400	DDUBLE-U	- Dom-bly y
16500	DOIN	- D AR UR N
156500	ORIM	- der in nx - k
16701	Darmalic	- d abinn am min-k
16800	EnCH	- Ir - ir Sh
16900	Ensy	- Ir S ir
17000	Editing	- eh - din - tin mx
17100	EIGHT	- EH IH-I
17200	eighieen	- Eh in - i irn
17330	EIGHTY	- EH IH- i Ir
17400	elevaied	- ehlemvehin-teh-d
17500	ELEVEN	- ir leh vax n
17600	En-PASJENT	- man - p pras am n
17700	ENII	- EHN-D
17800	ENHONCEMENT	- ax n he arn s - maxn-t
17900	EPSILON	- EH-ps ihl of n
18000	ESTIIRTIDN	- ens - tidmehin shax n
18150	EVER	- on ver
18200	exEcute	- Eh - K S ax - K ob Uh - t
18300	EXTRA	- Eh - K S - ter ax
18400	FACI	- F AE-k-1
18560	FACTOR	
18500	FANT	- F mian - t
18700	FASt	-f ams - t
18800	father	- f or dher
18900	Fathorit	- fae fax m
19000	ferther	- F EH DH ER
19100	- ERTURE	- Fir - its er
19200	fever	- fir vir
19300	FEVERISH	- f ir Ver in Sh
13400	FFi	- ehfehf-tiy
19500	FIFTEEN	- finforiyn

19600	FIfiy	- F IH F - i iv
19700	FILE	- F AR IHL
19800	FILTER	- F IHL - ter
19900	Filiereo	-FIHL-TER - O
20000	FINRL	- F RR IH NL
20100	FIND	- F RR IH N = O
20200	FiNOING	- F AR IH N - O IH NX
20300	FIRST	- F ERS - T
20400	five	- F AR nX V
20500	FLAP	- FLAE-P
20600	FLOOR	- F L ADER
20700	FODL	- F UIIL
20800	TOR	- F AD ER
20900	FDRMANT	- F ho er m men - t
21000	FOUR	- F RD W ER
21100	FDURIER	- F mo er iy eh ih
21200	FOURTEEN	- F R E ER - T IY N
21300	FOURTY	- F ADER - T iY
21400	france	- F ER AEN-S
21500	Freouency	- F ER IY - K Hehn - S iy
21600	FREOUENTLY	- F ER IY - K hax - - itiy
21700	FRICTIONAL	- F ER IH - K Sh ax m
21800	FRONTEO	- F er ah n - teh - o
21900	FUNCTION	- F RH N - K SH AX N
22000	CRItIR	- G REM MH
22100	GE 1	- G EH-T
22200	GETS	- G EH-TS
22300	cive	- 6 IH V
22400	glottal	- G L RA - 1 L
22500	60	-6011
22600	coes	- coun s
22700	COES-10	- 6 dil S - t mx
22800	G.OING	- G On in nx
22904	GOnorrilea	- G an ner iy ax
23000	GRAMHIRR	- G ER Me MER
23100	CRailiatical	- g er mx m me - tim - K L
23200	CRAPHICS	- Ger ae f IH-K S
23300	GRASS	- G ER aE S
23400	HRO	- HH RE - 0
23508	hamiling	- he me M in nx
23600	HRANING	- har men ith nx
23700	Have	- Hin Pe v
23800	HERD	- HHEH - O
23900	headacies	- HHEH - O IH AX - K S
24000	HEAOL INES	- HHEH - OLAR IHN-S
24100	HELLO	- IH EH L OH
24200	HERE	- HH IHER
24300	HERTI	- HHER - T 5
24400	HIGH	- he an Ih
24500	HIJACKING	- he an in - Sham - kin nx
24600	HILBERI	- HHIHL - ber - T
24700	HOSP ITALIZED	- hir nr S - p ax L ax s - 0
24800	H0い	- he ra H
2:900	HUNDRED	- HH RH N - O ER EH - 0
25000	HYPOTHESIS	- hH RA IH - P arfits ins
25100	1	- AR IH
25200	ICE	- ar in s
25300	ILL	- IHL
25400	IIHACE	- IH M IH - SH
25500	Imacinary	- in mam - g inn ae er jy
25600	immunizeo	- in my unnax s - 0
25700	IN	- III $\mathrm{H}_{\text {I }}$
25800	INCREMENT	- IH N - K Er ax mehn - t
25900	INITIAL	- IH N IH SH L
26000	INJURED	- IH N - SH ER - 0

26100	INSERT	- In N - S ER - it
$26: 00$	instance	- IIIN-S - T AEN-s
20300	inieractive	- in n - iter me - K - i in v
26400	Into	- IHN - T U
26500	INVERSE	- Ihn V er S
26600	IS	- AX 5
26700	ISRAEL	- IH S ER IY L
26800	11	- IH - I
26900	I IAI URA	- IH - I ah - \% er ah
27000	JNIES 5	- SHEHIHMS
27100	JuDCE	- SH OH- D - SH
27200	k Ing	- K IH NX
27300	kINC'S	-kinnes
27400	Y.NICHT	- N an III- 1
27500	M NiCht's	- N An IH- TS
27600	Label	-LEH IH-8L
27700	labelinc	- Lemin - bilin mx
27800	Lnbels	-LEM IH-8 L S
27900	Lar ynceal izeo	
28000	LERRN	- Lern
28108	LEFT	- Lem \%-T
28200	LENCTH	- 1. $n \times N X-f$
28300	LESION	-LIY SAXN
28400	LESIONS	-LIY SAXN-S
28500	LET	- L EH-I
28600	LILY	-L IHL IY
28780	Linenr	- Lime irer
28680	LION	- L ma ih uh n
28300	LIP	- EHL Ail IH - P IY
-9000	LIST	-I IH S - 1
23100	LItERAL.	-LIH - IER L
29200	LORO	- L Oill - 0
29300	LOCFIL Ized	- L OHI - K L AR In S - d
29400	LOC	- L AO-c
29500	LDCARItMm	- L mo - che er infm
29600	LONC	- L no nx
29709	LDOK	- L UH - K
29800	LOII	- L 011
21900	LOHERED	- 1 OH ER - D
30420	LPC	- Eh L - piys ir
30100	mortel	- M AR ER - K L
30:00	MARE INC	- M an er - kinnx
30300	mate	- M IN IH--
30400	max	
30590	mair	- M EH IH
30600	ME	- M Ir
30700	htosies	- Miysls
3080 n	meajure	- M Ell SHER
30900	ME THDD	- M EIIF AH - D
31000	methoos	- MEHFOH-OS
31100	MICROSECONOS	- M An IH-K ER OWS Eh-Kax m-os
31200	MILO	- n NA IHL-O
313 CO	MILLION	- M IIIL LII AX N
31400	MILLISECONOS	- M IHLIHSEH-K AXN-OS
31500	HIN	- IIIIN ${ }^{\text {a }}$
31600	linus	- M An IIIn all s
31700	Mou	- M NH-D
31800	POOIFIER	
31900	mom	- mon m
32000	hove	- n Uliv
32100	hoves	- n ullvos
32200	Movfs-io	- M UHVS - I ax
32390	nucll	- M NR - $\mathrm{SH}^{\text {H }}$
32400	munps	- MnX M-ps
32500	MUROER	- M ER - ${ }^{\text {E ER }}$

32600	nasalized	- N EH Ih S L AR IH S - o
32760	mausea	- n motah shax
. 32806	NECAT	
32900	NE THORK	- NEH - THER - K
33000	NEW	- N UVI
33100	NEHTON	- N UW - T AX N
33200	NIME	- N AR IH H
33300	nineteen	- n AR IH N - tiyn
33400	NINETY	- N An IH N - T ir
33500	NIXON	- N Ih - K S AX N
33600	N0BOOY	- N OH- B A - D ir
33700	NON-SPEECH	- N AR N - S - P IY - Sh
33800	NOH	- N AR UW
33900	NUTIAER	- N AIIM-ber
34000	numbness	- N Ah ax minax s
36100	nuts	- NAX-TS
34200	OBOE	- $\mathrm{OH}-\mathrm{BOH}$
36300	OC TAL	- A A - K- TL
34400	octave	- An - K-teh v
34500	Of	- AO V
34600	OF	- ax V
36780	Of TEN	- กo RH F AX n
34800	ON	- $\mathrm{no} \mathrm{N}^{\text {N }}$
34900	ONE	- H AH N
35000	oreration	- nh - per me iy shax n
35100	OR	- ho er min
35200	OROER	- - ER - 0 er
35300	overeat	- onver ir - t
35400	Pain	- P aX ih n
35508	PAINS	- Paximens
35600	PRLATALIzEO	- phel he - tl ha in s - d
35700	PARAME TER	- pax er memeh-ter
35808	parame ters	- per ae max - ters
35900	PART	- P AR ER - $\mathrm{T}^{\text {d }}$
36000	PASS	- Pras s
36100	PAIIN	- P AON
36200	PEAK	- P ir - K
36300	PEATS	- PIY-KS
36400	PER	- P ER
36500	PERIOD	- piner iy ax - o
36500	PHONE	- F oun N
36700	PHONEME	- F olln irn
36800	Phonemic	- F AX N IY M in - K
36900	PHONETIC	- F ax neh-tih-k
37000	PHRASE	- F ER EH IH S
37100	PICICING	- P If - r. in nx
37200	PITCH	- P IH - T SH
37300	PLOT	- FL AR - T
37400	PLUS	- PL an 5
37500	POINTS	- P ROIT N - TS
37600	POP	- P An - P
37708	POSITION	- Pax s it shax n
37800	POSITIONS	- Pax S Ih S! M AX N - S
37900	POST-ELPHASIS	- Poors - TEHMf ah S ins
38000	POT	- PAR - T
38100	POHER	- P or her
38200	PRE-EIIPHASIS	- per ir ehma mh sims
38300	PREOICTION	- PER IY - D III - K SH aX N
38480	PREOICTIVE	- Per ax - dih - K-tin V
38500	PRESENT	- pereh sehn-t
38600	PRIMARY	- Per an in meher iy
38700	PRONY	- PER OUN IY
38800	PROTECOL	- PEROH - TOU-K CoL
38900	PUP	- Pnh-p
39008	Put	- P UH - T

39100	0	- K AA UH
39200	OUEEN	- lih ir n
39300	duekn's	- Lin IY N - S
39600	Rabiner	- er fin - binner
39500	roised	- er ehins - d
39600	Rape	- er de in-p
39700	Rating	- er eh in - timmx
39800	REAL	- ER IY L
39900	Rectiancular	- er in-k - tehinn-gyunlaber
40000	REDUCED	- ER IH - OUN 5-T
40100	RELEASED	- ER IHL IY S. 1
40200	REOUEST	- ER ir - K hins - t
40300	resolution	- ER EHS OHL UH Shax n
40400	retracteo	- er iy - ter am - k - Teh-o
40500	retroflexeo	- erehteroufleh-ks - d
40600	RICHT	- er ni in-t
40703	ROAR	- ER OH ER
40800	RDBINSON	- er mo - binn - s ahn
40980	ROOR	- ER UH - K
41008	Roor 'S	- ER UH - X S
41100	ROOT	- ER UII - T
41200	FROTS	- cr un- its
41300	ROSES	- er on s ins
41600	ROUNDE 0	- er aqu un - o en - d
41500	RIISSIA	- ER AX SH aX
41600	SAY	- S EH IH
41700	Scale	- S-KEHIHL
41898	SCHRFIER	- Shem infer
41900	SChili	- SH H Aa
42000	SECO:0	
42100	SECONIARY	- S EH-K an n - demerir
42200	SECTION	- S EM-K Sh ax n
42303	SEE	- S IY
42400	SE CMENT	- S EH-CMax - T
42500	Slcue	- S CH-CHEH In
42630	Sthience	- SEHN- ITHN-S
42700	SERICUS	- S Iller irax 5
42800	Seven	- Steh Vax m
42900	SEVEN	- S EH V EH N
43000	Seventien	-S Ell VEHN- T IY N
43100	seventy	- SEMVEHN-tiy
43200	SEVERE	- S AXVIHER
43300	SEX	- S EH-rs
43400	Sumar	- Sh mher - p
12500	Shurt	- Sh mo er - t
43600	SHOUID	- SHUH-D
43700	SHCH	- SH OH
43800	sicr	- S IH - K
43500	SIOE	- S ma In - 0
44000	Silemice	- S Raihlenn-s
44103	SIMULATION	- simay urlehin Shax n
44200	Sinc,	- S IH NX
44300	SIETER	-S IH S - ter
44403	SIT	- S IH-T
44500	six	- S IH - K S
44600	Sixtren	- S IH-K S - Tiyn
44700	sixir	- S IH - K S - I IY
44800	SLASH	- S L AE SH
44500	Stione	- S M OH - K
45900	Smuotheo	- s M Uirl - 0
$45: 10$	Stinotiling	- S M UHIT in mx
45200	SPEAICP	- S - PiY - K ER
-53C0	SPECIFICAIION	- S - pehs infih-keh jh shax m
454 PO	SPECISAL	- S - PEH-L-TERL
45500	SPiC Thocrin	- S - Peh - K - ter oh - C er me m

4，600	SPLCITRUM	
45700	SPEECH	－S－P IY－I SH
45800	SIART	－S－T An ER－T
45900	SIARTING	－S－T an er－T IH NX
46000	sinie	－S－T［HIH－T
46100	Stenoy	－S－TEH－DIY
$46: 00$	STEPS	－S－TEH－PS
46300	STOP	－S－ 1 pr－P
46400	STORE	－S－ 1 ROER
46500	Stories	－S－T AOER IY S
40600	S：RESS	－S－tereh s
46700	SUR－PITONE IIC	－S AH－A F nX NEH－1 IH－K
468.0	SUR－SEGMENT	－S Ali－B SEH－CMEHN－T
46930	SUCHEN	－S $A M$－ 5 AX N
47050	SUMRHRY	－ 5 AX M ER IY
47100	Su？CERY	－S ER－SHER IY
47200	SYLLRBIC	－S IHL AE－BIH－K
47300	SYHROL	－S 111 M －B AOL
47400	SYAIHESIS	－S IIIN F AXS IH S
47500	Tก｜\％	－I EH IH－K
4.600	1HES	－i EHIH－K 5
47700	103\％	－ 1 ne $3-1$
47800	TE：L	－「 Ell L
47900	16 ${ }^{\text {d }}$	－「EHN
48000	TERTIIRY	－t er sil iy eher iy
48100	TESIING	－：EH S－T IH NX
48.00	IHAT	－dil ae－ 1
48300	IHE	－DH AX
43400	Thein	－F EH IH－I Ax
48500	THIN	－F IIIN
4.500	THIRO	－Fir－ 0
437100	IHIRTEEN	－FIR－T IYN
48600	THIF Y Y	－$-[R-1$ IY
48900	THOF：	－F no ER N
49000	Thoushno	－roll s ae n－o
49100	THFEE	－firlr
45.2010	1111E	；¢fin iH1
49300	11：185	－「 Нค IIHMS
49480	TITLE	－Taraje－ 1 l
49500	10	－ 1 ax
47600	1FACI ING	－t fr nt－I．Ih mx
47780	tentis	－iterne－ $\mathrm{k}^{\text {c }}$
49280	TRAIN	－ier eh in n
49790	TRONALRIPTION	－I ER ne N－S－I：er Ih－P Sh ax N
50000	TPSNIF URES	－IEP NEN－S F ROER \boldsymbol{H}
50100	WGINGIPION	－ler ae n－s in sh ax n
50200	TRIGNGUL HR	－iterin in eh in n－G y unl an er
50300	TRILIEO	－IER IH L－o
50400	turepcul 0sis	－ 1 IIH－BER－K Y UNL ONS AX；
5030	THELE	－ 111 EHLV
58 BnO	phlniy	－IHEHN－I IY
50100	V：IU	－I UII
50800	1140	－IN UH
50300	UN－STRESJED	－AII N－S－I EPEH S－O
51000	Un＇OUNDE O	－ani n er ar uh n－o eh－o
$51: 40$	litill	－ Or－T IHL
51200	UR INF	－Y IR AXN
51300	US	－an 5
51400	USE	－Y UNIS
51500	us：mrs	－Y IJH 5 III NX
516,00	UTtERONCE	－AH－ERE\｜N－S
51700	V． U UE	－Vat l Y JN
51800	VE DL	－VIYL．
51900	VELARİEO	－Viyl ma er ar in s－d
$5: 000$	VIEINAM	－VIHEH－TN AE M

Appendix A-PHONETIC DICTIONARY
Page 72

- V ดО IH S - O
- V nO IH SLEHS
- O AR - B L AR UH
- 4 NE - G AX N
- W RA N - T
- W AO ER
- W AO - TER - G AE IH - T
- HEHIHVF PO ER M
- H IY
- H AO AX
- ller
- H AH - 1
- H GIX N
- W IIE ER
- WH III - SH
- H IH N - O OW
- HIHF
- HER-0
- $\mathrm{CH}=\mathrm{K}$
- N A 1 IH
- YEHL OH
- YEHS
$-\quad \mathrm{Hx}$
- YER
$-S$ IY
- S IHER OH
- S UW

$\begin{aligned} & 88108 \\ & 88208 \end{aligned}$; SUB-GRAMAMR FOR FORMANT TRACKING SUB-TASK.		
80388	<flform-sent>: : $=$	[<flrequest>	
88488		[1 reques ${ }^{\text {d }}$	
89508	<flrequest>: $:=$	<tidesire-sent>	
88688		<t!param-sent>	
08788 边			
08898	<tidesire-sent>ti=	1 MANT TO DU <fltask>	
80908			
81880	<fltask>1:=	FORMANT TRACKIMG	
81180		time domain amalysis	
81280		PITCH MRRKING	
81388		PHONETIC BOUNDARY hirking	
81488		PHONETIC LABELING	
81580		PHONETIC TRANSCRIPTION	
81588		hCOUSTIC FERTURE LRBELIMG	
01788		GRAMMATICAL CATEGORY DERIVATION	
81880		GRAMMAR SPECIFICATION	
81988		netuork editimg	
82888		PARAMETER TESTIMG	
82100		DEBUGGIMG	
82288		SIMULATION	
82388		HYPOTHESIS RATIMG	
82480		FRCTOR ANALYSIS	
02588		CLUSTERING	
82608		display construction	
82788		SPEECH SWWTHESIS	
82888		digital filter desicwing	
82980 (
83888		<f!param-sent>t: $=$	<flcommand>
83188		<f!intro><f!command>	
83288 e			
83388	<flcommand>: $=$		
83488		<f!compute><f! func-phr>	
83458		<f!compute><f!func-phr> USING <f!meth-type> METHOD	
83588		<f!plot><i!plot-itom>	
83688		<f!compars><t!alter-1ist>	
83788		INCREMENT THE < li incre-spec> <f!incre-prep> <f!nine-digit> POIWTS	
83880			
83988	<flintrosti=	1 mant to	
84888		FOR ERCH <illiter-itam>	
84188 (
84280	<iliter-itemil:	Phrase	
84388		PHONE	
84480		PHONEME	
84588		SEGMEMT	
84688		HINDOU	
84768		FUNCTION	
84888		TIME	
84988		POSITION	
85890		SENTEMCE	
95188		UTTERANCE	
O5288			
05388	<f!param-phr>: $=$	<t!param-spec>	
65488		<f!param-phr><f!prap><f!param-spee>	
05508			
05608	<1!param-spec>: $=$	FILE MUMBER <flnine-digit> UTTERANCE MUMBER <f!nine-digit>	
95788			
85908		A <f!wind-type> WIMDOW Of <ilnine-digit> POIWTS	
86888		A <fifreq-spec> OF <t\|nine-digit> MERTZ	

12408		
12588	<ildib>tis	DECIBELS
12688		DB
12788		
12888	<flcompute>ti=	COMPUTE
12980		calculate
13306		FIND
13188		CET
13288		take
13380		CONSIDER
13408		
13888	<flfunc-phr>tis	THE <f!comp-func>
13988		the rutocorrelation function
14808		THE COVARIANCE FUNCTION
14188		THE FFT
14288		THE FRST FOURIER TRRNSFORM
14308		THE FOURIER TRQMSFORM
14488		THE HILBERT TRANSFORM
14608		THF LINEAR PREDICTION COEFFICIENTS
14780		THE LINERR PREDICTION FILTER
14808		THE INVERSE FILTER
14908		THE SPECTRUM
15888		the cepstrum
15188		THE < [Ispec-adj> SPECTRUM
15158		THE ROOTS
15208 (
15300	<flcomp-func>: : $=$	<f!func-part>
15400		<f!func-part> OF <f!func-phr>
15508 er		
15600	<f!func-part>: $=$	ROOTS
15700		PEAKS
15808		IMRGINARY PART
15908		REAL. PART
16800		LOGARITHM
16108		qbsolute value
16288 er		
16308	<t!plot>: $=$	PLot
16488		display
16580		SHOW
16608 er		
16780	<flplot-item>: ${ }^{\text {a }}$	THE SPECTROGRAM
16718		THE SPECTROGRAM <f!prep><f!param-phr>
16800		THE UAVEFORM
16908		THE FORMANT TRACKS
17888		THE FUNCTION
17188		<f!func-phr>
17288 (<riunc-phr>		
17388	<flspec-adj>: $=$	Smoothed
17488		<f!smth-meth> SHOOTHED
17588		< I spec-me th>
17680 -		
17788	<lispec-meth>1:=	CEPSTRAL
17800		Linenp predictive
17988		inversi Filtered
18808		FFT
18188		FRSt FOURIER TRQmsForn
18288		FOURIER
18308		
18498	<ilsmeth-meth>: $=$	CEPSTRRLLY
18500		LINEAR PREDICTIOW

24688
24780 24800 24980 25800 25100 25288 25388 25488 25588 25688 25788 25808 25980 26888 26188 26288
thirteen
FOURTEEN
FIFTEEN
SIXTEEN SEVENTEEN EIGHTEEM NINETEEW

DNE
TWO THREE FOUR FIVE
SIX SEVEN EICHT NINE

88180			
80280			
88300	<QUERY>1: $=$	[<request>)	
88460 (0 (
00509	<REQUEST>1:m	LET <PRONOUMA> HAVE <COLL-SUM>	
00680		GIVE <PRONOUNB><NOUN-PWRRSE>	
88708		GIVE <PRONOUNB>COLL-SUM>	
00806		TELL <PRONOUNC><COLL-SUM>	
00908		TELL <PROWOUNC><QUANTIF IER>CNOUM-PHRRSE>	
01100 TELL <PRONOUNC><TELL-QUAW > SSUN-PMMRSE>			
01288		<COLL-SUM> : :	<SUM-PHRASE>
81300	ALL <SUM-PMRASE>		
81408	SEX		
81508			
81680	<SUM-PHRASE>: $:=$	THE <SUMMRRIESB>	
81708		THE <SUMMRRIESA> AMD <SUMMRRIESB>	
81808			
$\theta 1988$	<SUMMARIESA>:1=	Stories	
82808		hendimes	
92108		SUMMARY	
82288			
82218	<SUMMRRIESB>1:=	STORIES	
02228		headimes	
82238		SUMMRRY	
82248			
02388	<TELL-QUAN> 1 :	<QUANTIFIER> RBOUT RLL ALL	
82488			
92508			
02688			
02788		ME	
82888		us	
82938			
82918	<PRONOUNB> 1 : $=$	ME	
82928		us	
82938			
82948	<PRONOUNC> 1 $^{\text {a }}$ =	MEUS	
82958			
82968			
93008	<QUANTIFIER>1: $=$	ALL ABOUT ABOUT	
83180			
83203			
$8: 308$	<NOUN-PHRASE>1: $=$	<NOUNA> AND <NOUNB> <NOUNA> OR <NOUNB> <NOUMB>	
A3400			
83580			
? 008			
83708	<NOUMA> : $1=$	france	
93880		AIRPLAME HIJACKIMG	
83980		HIJACKIMG	
04880		CHIMA	
84108		ISRaEL	
84280		hurder	
84308		Mixom	
84488		RAPE	
84588		RUSSIA	
84680		SEX	
84788		AIRPLANES	
84808		VIETMAM	
94980		URR	
05830		THE VIETMAM MOT	

matergate
THE HATERGATE
FRANCE
AIRPLRME HIJACKIMG
HIJACKIME
CHINA
ISRREL
hurder
NIXON
RAPE
RUSSIA
SEX
AIRPLANES
VIETMRM
URR
THE VIETNRM URR
MATERGATE
the matergate

86180	<royeld>t:=	KIMG
86288		QuEEW
063es		
06480	<bnrd>ite	BISHOP
06588		KWIGHT
06688		ROOK
86780		
86888	<royalb>t: $=$	KIMC
06988		QUEEM
87888		
87188	<bnrb>1: $=$	BISHOP
87280		KWIGHT
07380		ROOK
87488		
87588	<royale>tio	KING
87688		dueen
87798		
87800	<bnre>:1:	BISHOP
87988		KWIGHT
88808		ROOK
88188		
88288	<square>1: $=$	ONE
88308		т ${ }^{\text {¢ }}$
88488		THREE
88588		FOUR
88688		FIVE
88788		SIX
88880		SEVEM
88988		EIGHT
89808		
09108	<squarea>s: $=$	ONE
89288		т ${ }^{\text {¢ }}$
09386		three
89488		FOUR
89588		FIVE
99688		SIX
09788		seven
09808		EIGHT
89988		
18888	<motion>tis	T0
18188		MOVES-TO
10288		GOES-TO
18388		
18488	<takes>t: $=$	TAKES
10588		CRPTURES
18688		
18788	<castle-movertim	Castle
18888		CASTLE ON <royale> SIDE
10998		CASTLE <royale> SIDE
11888		
11188	<royale>ti=	KING
11300		QueEm
11488	<check-uord> t =	CHECK
11508		Mate

```
        00100
        0 0 2 0 0
        00300
        00400
        00508
        80600
        00708
        00800
        0090日
        01000
        01188
        01288
        81300
        01488
        01508
        01600
        01700
        01800
        01908
        02000
        02100
        42200
        023C0
        02480
        82508
        02698
        0:708
        9280e
        82900
03300
63100
03200
83388
63400
6350
03600
03700
03990
83980
04003
04188
04280
84306
04400
34500
04508
347C0
84800
84908
35000
85100
052月年
05300
05^00
45%80
05600
05780
85800
85908
0600日
```

```
                ONF FOR THE OOCTOR INTERVIEM. 7S TERMIMOL MOROS.
<HEAO>:I= \ <SENTENCE>)
<HEAO>:I= \ <SENTENCE>)
<SENTENCE>:I= <INTEROGB> <HABIT-VERB>
<SENTENCE>:I= <INTEROGB> <HABIT-VERB>
        <INTEROCC> <SYMPTOH>
        <INTEROCC> <SYMPTOH>
        <INTEROCO> <SYMPTOH> <AOS>
        <INTEROCO> <SYMPTOH> <AOS>
        <INTEROCE> <SYMPTOHS> <ROJ>
        <INTEROCE> <SYMPTOHS> <ROJ>
        <INTEROGG> <PHYS-CONO>
        <INTEROGG> <PHYS-CONO>
        <INTEROGG> <PERSONAL-STATE,
        <INTEROGG> <PERSONAL-STATE,
        <INTEROGH> <VERBA> <AILMENT>
        <INTEROGH> <VERBA> <AILMENT>
        <INTEROGH> <VERBB> <PARTICIPIAL>
        <INTEROGH> <VERBB> <PARTICIPIAL>
        <H\rangle <INTEROGF> <PARTICIPIAL,
        <H\rangle <INTEROGF> <PARTICIPIAL,
        <INTEROCD> <PERSONAL-NOUN> <PERSOWRL-AOJ>
        <INTEROCD> <PERSONAL-NOUN> <PERSOWRL-AOJ>
<W>:I= WHERE
<W>:I= WHERE
        HHEN
        HHEN
<QUQNTIFIER>:I = OFTEN
<QUQNTIFIER>:I = OFTEN
    LONG
    LONG
    frEqUENTLY
    frEqUENTLY
    MUCH
    MUCH
<INTEROCA>: : = HOW
<INTEROCA>: : = HOW
        HOH <QUANTIFIER>
        HOH <QUANTIFIER>
<INTEROGB>::= DO YOU
<INTEROGB>::= DO YOU
        <INTEROCA> OO YOU
        <INTEROCA> OO YOU
<INTEROLC>:1= UHERE IS THE
<INTEROLC>:1= UHERE IS THE
<INTEROGO >: : IS THE
<INTEROGO >: : IS THE
        IS YOUR
        IS YOUR
<INTEROGE>:I: ARE THE
<INTEROGE>:I: ARE THE
    ARE YOUR
    ARE YOUR
<INTEROGF >:I= HERE YOU
<INTEROGF >:I= HERE YOU
    HERE YOU EVER
    HERE YOU EVER
-INTEROGG>::= ARE YOU
-INTEROGG>::= ARE YOU
    <INTEROGF,
    <INTEROGF,
<INTEROCH>::= HAVE YOU
<INTEROCH>::= HAVE YOU
        <INTEROCA> HAVE YOU
        <INTEROCA> HAVE YOU
<VERBA>1:= HAO
<VERBA>1:= HAO
        EVER HAD
        EVER HAD
<VERBB>::= BEEN
<VERBB>::= BEEN
        EVER beEn
        EVER beEn
<HABIT-VERB>::= SMOKE
<HABIT-VERB>::= SMOKE
        ORINK
        ORINK
        OVEREAT
        OVEREAT
        SHOKE <SHOKEY-AOJ>
        SHOKE <SHOKEY-AOJ>
<SHOKEY-RUJ>I:= CIGARETTES
<SHOKEY-RUJ>I:= CIGARETTES
        POT
        POT
    GRass
```

 GRass
    ```
```

 06:80
 0f288 <SYMPTOM>:I= PAIN
 0630e
 86408
 86500
 06688
 86788
 06808
 86988
 87888
 87108
 87288
 07308
 87408
 07589
87600
87700
87800
07980
88000
88100
8288
08300
8840e
0850
08608
88700
0 8 8 8 8
0 8 9 0 8
09008
09100
09200
09308
09480
09508
89608
09700
09800
09988
1000e
10108
18200
10308
10400
18500
10688
18788
18800
10980
11088
11180
11208
1 1 3 8 8
11480
11580

```
```

 NUMBNESS
    ```
    NUMBNESS
    NAUSEA
    NAUSEA
    DIZZINESS
    DIZZINESS
    BLEEDIMG
    BLEEDIMG
<SMMPTOMS>t:= HEROACHES
<SMMPTOMS>t:= HEROACHES
    PAINS
    PAINS
    CRAMPS
    CRAMPS
    CHEST PAIMS
    CHEST PAIMS
    LESIONS
    LESIONS
<AILHENT>::m MUHPS
<AILHENT>::m MUHPS
        MEASLES
        MEASLES
        CHICKEN-POK
        CHICKEN-POK
        TUBERCULOSIS
        TUBERCULOSIS
        ASTHMA
        ASTHMA
        GONORRHEA
        GONORRHEA
        CLOUDY URINE
        CLOUDY URINE
        SURGERY
        SURGERY
        AN OPERATION
        AN OPERATION
<ADJ>::= SEVERE
<ADJ>::= SEVERE
    MILD
    MILD
    BAD
    BAD
    CONTINUOUS
    CONTINUOUS
    SHARP
    SHARP
    SERIOUS
    SERIOUS
<PHYS-COND>::= SICK
<PHYS-COND>::= SICK
    ILL
    ILL
    IN PQIN
    IN PQIN
    FEVERISH
    FEVERISH
    DEAD
    DEAD
<PERSONAL-STATE>:I= RFRAID OF SURGERY
<PERSONAL-STATE>:I= RFRAID OF SURGERY
    CASTRATED
    CASTRATED
<PERSONAL-NOUW>::= URINE
<PERSONAL-NOUW>::= URINE
    HEAD
    HEAD
<PERSOMAL-ADJ>::= CLOUDY
<PERSOMAL-ADJ>::= CLOUDY
    ATTACHED
    ATTACHED
<PARTICIPIAL>::= HOSPITRLIZED
<PARTICIPIAL>::= HOSPITRLIZED
    CIRCuMCISED
    CIRCuMCISED
    ANESTHETIZED
    ANESTHETIZED
    CASTRATED
    CASTRATED
    AFRAID OF SURGERY
    AFRAID OF SURGERY
    IMMUMIZED
    IMMUMIZED
    ImJured
    ImJured
    SERIOUS
```

 SERIOUS
    ```
```

88188
08288
88388
88488
80588
80688
80700
80808
00990
01800
01180
81288
8 1 3 0 8
81480

```
<sentence>:t= [ <request>]
```

<sentence>:t= [<request>]
<request>it= COMPUTE <func-phr>
<request>it= COMPUTE <func-phr>
USE <param-phr>
USE <param-phr>
<func-phr>:t= <function>
<func-phr>:t= <function>
<function> USING <param-phr>
<function> USING <param-phr>
<function>::= THE <name> TRQNSFORM
<function>::= THE <name> TRQNSFORM
<name>1:= HILBERT
<name>1:= HILBERT
FOURIER
FOURIER
<param-phr>:t: <param-spec>
<param-phr>:t: <param-spec>
<param-spec> WITH <param-phr>
<param-spec> WITH <param-phr>
<param-spec>:t= A LENGTH OF FIVE MUMDRED TMELVE POINTS
<param-spec>:t= A LENGTH OF FIVE MUMDRED TMELVE POINTS
A HANHING HINDOW

```
    A HANHING HINDOW
```

| 181 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 182 | | | | |
| 44 | | | | |
| <sentencesti= | | 1 | -1 | - |
| 1 | 2 | 181 | 1 | |
| | | 1 | 1000 | |
| <request> | | 3 | -2 | 1 |
| | | 2 | 1000 | |
| 1 | 4 | 182 | 1 | |
| | | 11 | 1000 | |
| ENDOF <sentence> | | 5 | -1 | 1 |
| | | 4 | 1000 | |
| <request>s: ${ }^{\text {co }}$ | | 6 | -2 | 1 |
| | | 2 | 1000 | |
| COMPUTE | 7 | 291 | 1 | |
| | | 6 | 1000 | |
| <func-phrs | | 8 | -3 | 1 |
| | | 7 | 1000 | |
| USE | 9 | 222 | 1 | |
| | | 6 | 1000 | |
| <param-phr> | | 10 | -6 | 1 |
| | | 9 | 1000 | |
| ENOOF <reques $1>$ | | 11 | -2 | 2 |
| | | 17 | 580 | |
| | | 32 | 500 | |
| <tunc-phr>is: | | 12 | -3 | 1 |
| | | 7 | 1800 | |
| <funclion> | | 13 | -4 | 1 |
| | | 12 | 1008 | |
| <tunction> | | 14 | -4 | 1 |
| | | 12 | 1809 | |
| USING | 15 | 252 | 1 | |
| | | 22 | 1090 | |
| <param-phr> | | 16 | -6 | 1 |
| | | 15 | 1808 | |
| ENOOF < lunc-phr> | | 17 | -3 | 2 |
| | | 22 | 508 | |
| | | 32 | 508 | |
| - lunctions:: $=$ | | 18 | -4 | 2 |
| | | 12 | 580 | |
| | | 12 | 508 | |
| | 19 | 156 | 1 | |
| | | 18 | 1888 | |
| -name ${ }^{\text {a }}$ | 28 | -5 | 1 | |
| | | 19 | 1889 | |
| TRANSFOPM | | 21 | 388 | 1 |
| | | 26 | 1080 | |
| ENDOF-function> | | 22 | -4 | 1 |
| | | 21 | 1808 | |
| ename >: : $=$ | | 23 | -5 | 1 |
| | | 19 | 1898 | |
| hilbert 24 | | 381 | 1 | |
| | | 23 | 1088 | |
| FOURIER 25 | | 299 | 1 | |
| | | 23 | 1080 | |
| ENDOF enames | | 26 | -5 | 2 |
| | | 24 | 588 | |
| | | 25 | 508 | |
| <param-phr>i:= | | 27 | -6 | 3 |
| | | 9 | 333 | |

| 2 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | | | | | | | | | |
| 135 | | | | | | | | | |
| | - | 8 | 8 | "NULL" | | 8 | 988 | | 8 |
| 2 | | 6 | 181 | 1 | 1 | | | 88 | |
| | | 1 | 188 | | | | | | |
| 3 - | | 8 | 8 | "null ${ }^{\text {a }}$ | | 1 | 988 | | 8 |
| | | 2 | 1888 | | | | | | |
| 4 - | | 8 | 182 | | 1 | | | 98 | |
| | | 23 | 188 | | | | | | |
| 5 - | | 8 | 8 | "NULL" | | 1 | 988 | | 8 |
| | | 4 | 1808 | | | | | | |
| 6 - | | 8 | 8 | "NULL" | | 1 | 988 | | 0 |
| | | | 1888 | | | | | | |
| 7 - | | 0 | 291 | compute | | 1 | | 8 | 988 |
| | | 6 | 188 | | | | | | |
| 8 K | | 5 | 291 | compute | | 1 | | 8 | 988 |
| | | 7 | 188 | | | | | | |
| 9 | RH | 24 | 291 | 1 compute | | | | 8 | 98 |
| | | 8 | 188 | | | | | | |
| 18 | 1 | 13 | 291 | compute | | - | | 8 | 988 |
| | | 9 | 188 | | | | | | |
| 11 | - | 8 | 291 | Compute | | 1 | | 8 | 988 |
| | | 18 | 188 | | | | | | |
| 12 | P | 1 | 291 | computa | | 1 | | 8 | 988 |
| | | 11 | 188 | | | | | | |
| 13 | Y | 18 | 29. | compute | | 1 | | 8 | 988 |
| | | $: 2$ | 188 | | | | | | |
| | | 19 | 291 | 1 compute | | 1 | | θ | 988 |
| | | 13 | 188 | | | | | | |
| 15 | - | 8 | 291 | compute | | 1 | | 8 | 988 |
| | | 14 | 188 | | | | | | |
| 16 | T | 3 | 291 | COMPUTE | | 1 | | 8 | 988 |
| | | 15 | 188 | | | | | | |
| 17 | - | 8 | 8 | "NULL" | | 1 | 988 | | 8 |
| | | 16 | 1888 | | | | | | |
| 18 | | 6 | 222 | USE | 1 | | 8 | 988 | |
| | | 6 | 188 | | | | | | |
| 19 | | 18 | 222 | USE | 1 | | 8 | 988 | |
| | | 18 | 188 | | | | | | |
| | | 19 | 222 | 2 USE | 1 | | 8 | 988 | |
| | | 19 | 188 | | | | | | |
| 21 | | 18 | 222 | USE | 1 | | 8 | 988 | |
| | | 28 | 188 | | | | | | |
| 22 | | 8 | 8 | "NULL" | | 1 | 988 | | θ |
| | | 21 | 1888 | | | | | | |
| 23 | | 8 | 8 | "NULL" | | 2 | 988 | | 8 |
| | | 34 | 588 | | | | | | |
| | | 78 | 588 | | | | | | |
| 24 | | 8 | θ | "NuLL" | | 1 | 988 | | 8 |
| | | 16 | 1888 | | | | | | |
| 25 | | 8 | 0 | "NULL" | | 1 | 988 | | 8 |
| | | 24 | 1888 | | | | | | |
| 26 | | 8 | | "NULL" | | 1 | 988 | | 8 |
| | | 24 | 1888 | | | | | | |
| 27 | | 8 | 252 | USING | | 1 | 8 | 988 | |
| | | 51 | 188 | | | | | | |
| 28 | | 18 | 252 | USING | | 1 | 0 | 988 | |
| | | 27 | 188 | | | | | | |
| 29 | UW | 19 | 252 | 2 USING | | 1 | 0 | | 88 |

| 38 | | | 188252 USING | | 1 | 0 | 985 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | S | 18 | | | | | | |
| | | | 188 | | | | | |
| 31 | IH | 28 | 252 | USING | 1 | \bullet | 90 | 308 |
| | | | 188 | | | | | |
| 32 | NX | 15 | 252 | USIMS | 1 | - | | 308 |
| | | | 188 | | | | | |
| 33 | - | 8 | 8 | "nuLL" | 1 | 900 | | 1 |
| | | | 1888 | | | | | |
| 34 | - | 8 | 8 | "NULL" | 2 | 800 | | 0 |
| | | | 588 | | | | | |
| | | | 588 | | | | | |
| 35 | - | 8 | 8 | "NULL" | 2 | 980 | | 1 |
| | | | 588 | | | | | |
| | | | 588 | | | | | |
| 36 | - | 0 | 156 | the | 1 | - | 900 | |
| | | | 188 | | | | | |
| 37 | OH | 9 | 156 | THE | 1 | 0 | 985 | |
| | | | 188 | | | | | |
| 38 | AX | 38 | 156 | THE | 1 | 8 | 980 | |
| | | | 188 | | | | | |
| 39 | - | 8 | 8 | "NULL" | 1 | 988 | | 1 |
| | | | 1888 | | | | | |
| 48 | - | 8 | 388 | TRANSFORM | | 1 | - | 998 |
| | | | 188 | | | | | |
| 41 | T | 3 | 388 | TRANSFORM | | 1 | - | 980 |
| | | | 188 | | | | | |
| 42 | ER | 25 | 388 | TRANSFORM | | 1 | \bullet | 980 |
| | | | 188 | | | | | |
| 43 | RE | 26 | 388 | TRA'SSFORM | | 1 | - | 980 |
| | | | 188 | | | | | |
| 44 | N | 14 | 388 | TRANSFORM | | 1 | 0 | 980 |
| | | | 188 | | | | | |
| 45 | - | 8 | 388 | TRANSFORM | | 1 | 0 | 988 |
| | | | 188 | | | | | |
| 46 | S | 18 | 388 | TRANSFERM | | 1 | 0 | 980 |
| | | | 188 | | | | | |
| 47 | F | 7 | 338 | TRANSFORM | | 1 | \bullet | 980 |
| | | | 188 | | | | | |
| 48 | RO | 22 | 388 | TRANSEORM | | 1 | - | 980 |
| | | | 188 | | | | | |
| | ER | 25 | 388 | TRANSFORM | | 1 | 8 | 980 |
| | | | 188 | | | | | |
| 58 | M | 13 | 388 | TRANSFORM | | 1 | - | 980 |
| | | | 188 | | | | | |
| 51 | - | 8 | 0 | "NULL" | 1 | 988 | | 8 |
| | | | 1888 | | | | | |
| 52 | - | 8 | | "NULL" | 1 | 980 | | \bigcirc |
| | | | 1888 | | | | | |
| 53 | - | 8 | 381 | hilbert | 1 | | | 988 |
| | | | 188 | | | | | |
| 54 | HH | 12 | 381 | Hilbert | | 1 | θ | 980 |
| | | | 188 | | | | | |
| 55 | IH | 28 | 381 | HILBERT | | 1 | - | 908 |
| | | | 188 | | | | | |
| 56 | L | 17 | 381 | hilbert | 1 | 8 | | 998 |
| | | | 188 | | | | | |
| 57 | - | c | 301 K | hilbert | 1 | 0 | | 988 |
| | | | 180 | | | | | |
| 58 | B | 2 | 381 | HILBERT | 1 | 0 | - 9 | 908 |

Appendix C-EXAMPLES FROM A SIMPLE LANGUAGE

| 2: JK | | A | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 : | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | θ | θ | 0 |
| 96: | 8 | 8 | θ | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| 97: | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | θ | 0 | 8 | 0 |
| 98: | 0 | 0 | 8 | 8 | 8 | 0 | 0 | 8 | 0 | 0 | 1 | 0 |
| 99: | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | - 0 | 0 | 0 | 0 |
| 188: | 8 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 181: | 8 | 8 | 8 | 8 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 8 |
| 182: | 8 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | θ | θ | 6 | 0 |
| 103: | 0 | 0 | 8 | 8 | 8 | 0 | θ | 0 | 0 | 8 | 1 | 8 |
| 184: | θ | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | θ | 0 | 6 |
| 185: | 8 | 8 | 8 | 8 | 8 | 8 | 0 | 0 | 8 | 8 | 8 | 8 |
| $186:$ | 8 | 8 | 8 | 8 | 0 | 0 | 8 | 0 | θ | 8 | 8 | 0 |
| 187 : | 8 | 8 | θ | 8 | 8 | 8 | 0 | θ | 8 | 0 | θ | θ |
| 108: | 8 | 0 | 0 | 8 | 8 | 0 | 8 | 50 | 8 | 0 | 5 | 4 |
| 189: | 8 | 16 | 8 | 5 | 0 | 0 | 219 | 21 | 384 | 98 | 52 | 12 |
| 118: | 8 | 34 | 0 | 4 | 0 | 8 | 257 | 34 | 253 | 85 | 63 | 12 |
| 111: | 27 | 28 | 8 | 7 | 0 | 1 | 285 | 58 | 269 | 62 | 143 | 46 |
| 112: | 28 | 25 | 0 | 9 | 0 | 4 | 172 | 62 | 282 | 78 | 178 | 52 |
| 113: | 32 | 33 | 12 | 14 | 8 | 5 | 152 | 54 | 238 | 85 | 191 | 84 |
| 114: | 25 | 46 | 33 | 21 | 7 | 18 | . 58 | 72 | 265 | 76 | 164 | 99 |
| 115: | 18 | 50 | 33 | 37 | 16 | 14 | 15s | 188 | 251 | 76 | 117 | 115 |
| 116: | 16 | 61 | 31 | 46 | 22 | 22 | 144 | 180 | 241 | 66 | 159 | 119 |
| 117: | 15 | 60 | 31 | 49 | 39 | 24 | 149 | 189 | 246 | 57 | 135 | 123 |
| 113: | 28 | 64 | 33 | 55 | 58 | 38 | 138 | 87 | 258 | 46 | 151 | 114 |
| 117: | 21 | 65 | 34 | 55 | 97 | 34 | 158 | 68 | 246 | 48 | 89 | 188 |
| 120: | 26 | 73 | 41 | 58 | 114 | 44 | 145 | 48 | B 226 | 38 | 93 | 103 |
| 121: | 25 | 98 | 48 | 66 | 125 | 54 | 159 | 41 | 175 | 28 | 68 | 95 |
| 122: | 32 | 181 | 48 | 65 | 143 | 57 | 161 | 34 | 196 | 28 | 38 | 91 |
| 123: | 32 | 116 | 42 | 78 | 141 | 56 | 167 | 32 | 146 | 21 | 43 | 99 |
| 124: | 32 | 122 | 54 | 74 | 154 | 58 | 145 | 23 | 141 | 25 | 38 | 187 |
| 125: | 38 | 132 | 36 | 86 | 157 | 53 | 96 | 19 | 191 | 25 | 38 | 185 |
| 125: | 36 | 168 | 48 | 117 | 157 | 52 | 64 | 25 | 149 | 26 | 35 | 92 |
| 127: | 43 | 169 | . 47 | 135 | 166 | 58 | 52 | 24 | 116 | 23 | 35 | 86 |
| 128: | 42 | 164 | 46 | 166 | 168 | 68 | 69 | 25 | 91 | 19 | 35 | 81 |
| 129: | 44 | 165 | 46 | 180 | 151 | 66 | 71 | 20 | 74 | 19 | 35 | 88 |
| 130: | 34 | 154 | 53 | 281 | 138 | 63 | 88 | 19 | 77 | 18 | 35 | 69 |
| 131: | 31 | 127 | 62 | 288 | 159 | 65 | 95 | 18 | 48 | 19 | 43 | 67 |
| 132: | 26 | 118 | 66 | 172 | 184 | 66 | 92 | 28 | 59 | 20 | 35 | 65 |
| 133: | 30 | 97 | 57 | 148 | 193 | 58 | 84 | 19 | 118 | 21 | 47 | 62 |
| 134: | 25 | 90 | 65 | 123 | 166 | 54 | 119 | 38 | 147 | 22 | 39 | 51 |
| :35: | 38 | 181 | 78 | 121 | 232 | 54 | 187 | 28 | 68 | 24 | 35 | 41 |
| 136 : | 42 | 184 | 98 | 184 | 287 | 56 | 58 | 22 | 38 | 24 | 43 | 32 |
| 137: | 37 | 98 | 98 | 68 | 233 | 42 | θ | 10 | 192 | 37 | 52 | 30 |
| 138: | 45 | 82 | 15 | 33 | 27 | 21 | 0 | 3 | 337 | 79 | 94 | 23 |
| 139 : | 29 | 37 | 1 | 5 | 8 | 0 | 8 | 0 | 371 | 58 | 243 | 11 |
| 148: | 31 | 25 | 0 | 4 | 0 | 0 | 0 | 0 | - 255 | 46 | 292 | 10 |
| 141: | 0 | 18 | 8 | 8 | 8 | 0 | 0 | 0 | 377 | 30 | 318 | 18 |
| 142: | 8 | 1 | 0 | 0 | 0 | 0 | 8 | 0 | 262 | 39 | 358 | 18 |
| 143: | 0 | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 389 | 25 | 483 | 12 |
| 144: | 8 | θ | 1 | 0 | 0 | 0 | 0 | 8 | 387 | 33 | 283 | 18 |
| 145: | 8 | 0 | 0 | 8 | 0 | 8 | 0 | 0 | 8 | 0 | 5 | 5 |
| 146: | 263 | 87 | θ | 185 | θ | 78 | 0 | 17 | 0 | 0 | 22 | 4 |
| 177: | 8 | 93 | 8 | 93 | 0 | 62 | 0 | 15 | θ | 0 | 43 | 4 |
| 1:8: | 0 | 108 | 0 | 388 | 0 | 58 | 0 | 0 | θ | 0 | 9 | 2 |
| 149: | 0 | 8 | 8 | 50 | 8 | 0 | 0 | 0 | θ | 0 | 1 | 1 |
| 150: | 8 | 0 | 8 | 0 | 8 | 0 | 0 | 8 | θ | 8 | 1 | 0 |
| !51: | 8 | 8 | 0 | 0 | 0 | 0 | 8 | 0 | 8 | 8 | 1 | θ |
| 152: | 0 | 8 | 8 | 8 | θ | 8 | 8 | 8 | θ | 8 | 1 | 0 |
| 153: | θ | 8 | 0 | 8 | θ | 8 | 8 | 8 | θ | θ | 1 | 0 |

| 154: | 0 | 10 | - 0 | 08 | 08 | 0 | - | 0 | θ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 155: | - | 8 | 0 | $0 \cdot$ | - 8 | 0 | | - 0 | 0 | - | | |
| 156: | , | - | - | - 25 | 5 9 | 25 | | 89 | - | 25 | 68 | |
| 157: | - | 3 | 3 | - 38 | - 13 | 36 | 312 | 96 | 143 | 28 | 97 | 5 |
| 158: | 0 | 7 | 791 | 1183 | 111 | 14 | 7163 | 75 | 67 | 25 | 60 | 6 |
| 159: | 41 | 27 | 79 | 3174 | 63 | 54 | 118 | 59 | 77 | 39 | 56 | 8 |
| 168: | 36 | 27 | 75 | 5177 | 97 | 41 | 1 | 52 | 94 | 41 | 48 | 9 |
| 161: | 33 | 49 | 85 | 5220 | 47 | 42 | 2188 | 69 | 44 | 49 | 51 | 89 |
| 162: | 52 | 68 | 67 | 67198 | 62 | 31 | 1 | 62 | 123 | 54 | 43 | 86 |
| 163: | 51 | 68 | 864 | 4151 | 81 | 27 | 122 | 51 | 145 | 54 | 35 | 83 |
| 164: | 68 | 89 | 87 | 37138 | 47 | 23 | 111 | 54 | 187 | 69 | 43 | 72 |
| 165: | 46 | 92 | 73 | 3186 | 29 | 22 | 133 | 49 | 162 | 63 | 55 | 75 |
| 16fi: | 38 | 78 | 59 | 977 | 42 | 28 | 168 | 68 | 193 | 49 | 75 | 75 |
| 167: | 40 | 66 | 52 | 256 | 25 | 18 | 247 | 88 | 96 | 67 | 184 | 4 |
| 168: | 22 | 58 | 52 | 246 | 32 | 15 | 235 | is | 91 | 71 | 149 | 91 |
| 169: | 39 | 51 | 58 | 846 | | | 197 | 92 | 152 | 72 | 122 | 4 |
| 178: | 83 | 55 | 62 | 2184 | 8 | 24 | 181 | 52 | 87 | 34 | 72 | 17 |
| 171: | 28 | 48 | | 453 | 3 | 24 | 287 | 57 | 82 | 43 | 76 | 17 |
| 172: | 0 | 14 | | 837 | - | 23 | 242 | 42 | 32 | 37 | 185 | 17 |
| 173: | 0 | 5 | 5 | 538 | 8 | 38 | 131 | 70 | 35 | 48 | 115 | 14 |
| 174: | 0 | | 3 | 318 | 0 | 18 | 255 | 62 | 62 | 29 | 137 | 14 |
| 175: | 8 | 8 | 0 | 014 | 0 | 17 | 338 | 63 | 0 | 21 | 138 | 17 |
| 176: | 0 | 4 | 8 | -17 | 0 | 22 | 158 | 53 | 8 | 26 | 151 | 13 |
| 177: | 8 | 11 | | - 27 | 11 | 31 | 69 | 35 | 83 | 39 | 135 | 14 |
| 178: | 28 | 28 | 63 | 38 | 68 | 68 | 124 | 86 | 124 | 40 | 65 | 37 |
| 179: | 27 | 12 | 59 | 9113 | 84 | 59 | 61 | 78 | 176 | 49 | 65 | 72 |
| 188: | 16 | 13 | 44 | 4188 | 68 | 59 | 188 | 88 | 289 | 48 | 114 | 169 |
| 181: | 18 | 17 | 52 | 2115 | 71 | 69 | 185 | 93 | 173 | 58 | 76 | 58 |
| 182: | 22 | 17 | 45 | 5189 | 75 | 57 | | 65 | 286 | 57 | 85 | 126 |
| 183: | 25 | 19 | 54 | 4122 | 79 | 69 | 117 | 51 | 175 | 67 | 81 | 121 |
| 184: | 22 | 17 | 58 | 8117 | 88 | 62 | 122 | 32 | 215 | 68 | 89 | 137 |
| 185: | 27 | 17 | 62 | 2135 | 76 | 83 | 185 | 38 | 175 | 68 | 77 | 146 |
| 186: | 21 | 16 | 54 | 127 | 78 | 184 | 118 | 38 | 179 | 43 | 97 | 154 |
| 1871 | 26 | 18 | 50 | 0122 | 66 | 113 | 111 | 51 | 183 | 43 | 85 | 151 |
| 188: | 24 | 21 | 56 | ¢ 187 | 78 | 111 | 137 | 52 | 192 | 32 | 77 | 145 |
| 189: | 31 | 29 | 63 | 3128 | 1.87 | 128 | 164 | 68 | 77 | 11 | 64 | 118 |
| 198: | 46 | 37 | 59 | 155 | 186 | 168 | 158 | 42 | 5 | | 56 | 32 |
| 191: | 28 | 63 | 14 | 189 | 215 | 148 | 175 | 51 | 0 | 8 | 35 | 32 |
| 1921 | 38 | 71 | 35 | 38 | 178 | 73 | 234 | 43 | 17 | 28 | 68 | 38 |
| 193: | 29 | 67 | 69 | 38 | 137 | 64 | 264 | 68 | 48 | 15 | 67 | 38 |
| 194: | 25 | 78 | 37 | 34 | 138 | 56 | 265 | 53 | 74 | 17 | 88 | 58 |
| 195: | 14 | 52 | 48 | 184 | 88 | | 156 | | 242 | 33 | 92 | 88 |
| 196: | 14 | 59 | 52 | 184 | 59 | 28 | 145 | 46 | 266 | 45 | 77 | 186 |
| 197: | 14 | 51 | 54 | -99 | 56 | 28 | 167 | 36 | 256 | 44 | 180 | 96 |
| 198: | 16 | 53 | 61 | 98 | 58 | 28 | 161 | 48 | 253 | 48 | 80 | 89 |
| 199: | 17 | 56 | 64 | 92 | 71 | 19 | 149 | 39 | 261 | 49 | 72 | 88 |
| 200: | 22 | 78 | 51 | 98 | 57 | 22 | 215 | 39 | 198 | 33 | 81 | 52 |
| 201: | 48 | 114 | 85 | 126 | 55 | 21 | 277 | 34 | 19 | 24 | 43 | 36 |
| 282: | 181 | 238 | 198 | 178 | | 35 | 8 | 17 | - | 2 | 18 | 22 |
| 203: | 115 | 238 | 287 | 115 | 8 | 23 | - | 7 | 8 | 8 | 18 | 28 |
| 204: | 135 | 279 | 126 | 126 | 8 | 18 | - | 8 | - | 8 | 18 | 17 |
| 205: | 234 | 375 | 8 | 93 | 0 | 15 | 0 | 0 | 0 | θ | 13 | 5 |
| 286: | 283 | 264 | - | - 94 | 8 | 37 | - | 0 | 0 | 0 | 13 | 4 |
| 287: | 8 | 147 | | 285 | - | 58 | 0 | 0 | - | 8 | 13 | 7 |
| 288: | 8 | 135 | 27 | 189 | 8 | 81 | 8 | θ | θ | 8 | | 12 |
| 209: | 263 | 115 | 105 | 157 | - | 73 | 0 | 0 | 0 | 0 | 13 | 14 |
| 210: | 120 | 76 | 125 | 96 | 149 | 76 | 0 | 4 | 0 | 8 | 35 | 38 |
| 211: | 83 | 88 | 132. | . 98 | 213 | 186 | 8 | 2 | 0 | 8 | 39 | 58 |
| 212: | 51 | 94 | 83 | 117 | 161 | 158 | 31 | 8 | 8 | 18 | 63 | 96 |
| 213: | 25 | 61 | 39 | 96 | 111 | 164 | 82 | 66 | 76 | 24 | | 96 |

| | | USE | | N0 | | NOOH | | five | HUNDRED | THELV | VE PO | Oints | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95: | - | 1 | F | 29 | V | 36 | S | 41 | K 162 | F | 28 | HH | 49 | 0 | 4018 |
| 96: | - | 1 | F | 29 | v | 36 | s | 41 | K 162 | F | 28 | HH | 49 | 8 | 4018 |
| $97:$ | - | 1 | F | 29 | v | 36 | S | 41 | K 162 | F | 28 | HH | 49 | - | 4018 |
| $98:$ | | 1 | F | 29 | v | 36 | S | 41 | K 162 | F | 28 | HH | 49 | 1 | 3925 |
| 99: | | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 0 | 4018 |
| 108: | | 1 | F | 29 | V | 36 | S | 41 | K 162 | F | 28 | HH | 49 | - | 4818 |
| 101: | | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 8 | 4018 |
| 102: | | 1 | F | 29 | v | 36 | S | 41 | K 162 | F | 28 | HH | 49 | 0 | 4018 |
| 103: | | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 1 | 3925 |
| 184: | | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 0 | 4818 |
| 185: | | 1 | F | 29 | V | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 0 | 4018 |
| 186: | | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 8 | 4818 |
| 187: | | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | - | 4018 |
| 108: | | 1 | F | 29 | K | 162 | HH | H 49 | $\checkmark 36$ | 5 | 11 | F | 28 | 2541 | 4173 |
| 109: | Y | 84 | 6 | 27 | 0 | 19 | IY | Y 143 | 017 | P | 12 | p | | 15497 | 19760 |
| 110: | Y | 84 | P | 8 | 0 | 17 | 6 | 27 | P 12 | IY | 143 | | 145 | 7952 | 16759 |
| 111: | Y | 84 | 0 | 19 | 0 | 17 | SH | H 42 | N 65 | T | 15 | IY | 143 | 5772 | 11438 |
| 112: | D | 19 | Y | 84 | UH | 94 | IV | Y 143 | SH 42 | N | 65 | 1 | 15 | 9944 | 12132 |
| 113: | UN | 94 | N | 65 | IY | Y 143 | D | 17 | Y 84 | IH | 141 | 1 | 15 | 7324 | 8440 |
| 114: | Ir | 143 | UW | 94 | N | 65 | Y | 84 | 1H 141 | , | 19 | 0 | 17 | 5798 | 6852 |
| 115: | IY | 143 | UH | 94 | N | 65 | IH | H 141 | UH 86 | IH | 137 | Y | 84 | 4681 | 8643 |
| 1:5: | UH | 94 | IY | 143 | IH | 141 | N | 65 | IH 137 | IY | 142 | UH | 86 | 3845 | 7153 |
| 117: | UH | 94 | IY | 143 | UH | 86 | IH | 141 | IH 137 | Ir | 65 | IY | 142 | 069 | 66 |
| 118: | UH | 94 | UH | 86 | IY | 1163 | N | 65 | IH 137 | IH | 141 | ER | 123 | 3932 | 8808 |
| 119: | UH | 86 | ER | 123 | IY | Y 143 | UH | 94 | IH 137 | AX | 150 | N | 65 | 2253 | 3575 |
| 120: | UH | 86 | ER | 123 | AX | $\times 151$ | UH | 94 | IH 137 | AX | 150 | IY | 143 | 3089 | 5253 |
| 121: | AX | 151 | UH | 86 | AX | 149 | AX | $\times 147$ | ER 123 | UH | 88 | UH | 91 | 5418 | 8832 |
| 122: | AX | 151 | AX | 147 | UH | 88 | UH | - 86 | AX 149 | ER | 123 | UH | 91 | 4688 | 9942 |
| 123: | AX | 151 | UH | 91 | UH | 88 | AX | $\times 149$ | AX 147 | | 165 | ER | 122 | 5697 | 7339 |
| 124: | UH | 91 | AX | 151 | UH | 88 | AX | $\times 149$ | fix 147 | UH | 93 | ER | 122 | 379 | 8287 |
| 125: | UW | 88 | AX | 151 | W | 93 | ER | R 122 | 118 149 | | 80 | UH | 86 | 13226 | 15364 |
| 126: | UH | 88 | UH | 93 | UH | 91 | AX | $\times 149$ | ER 122 | AX | 151 | | 88 | 12985 | 14210 |
| 127: | UH | 88 | UH | 93 | L | 83 | L | 82 | UH 91 | ax | 33 | L | 81 | 15452 | 17811 |
| 128: | UW | 88 | U | 82 | UH | 193 | L | 83 | $\checkmark \quad 33$ | AX | 154 | UH | 91 | 13468 | 13786 |
| 129: | L | 82 | UH | 88 | H | 33 | L | 83 | U4 93 | AX | 154 | RO | 187 | 9821 | 15039 |
| 130: | L | 82 | UH | 88 | ค0 | 187 | AX | $\times 154$ | UH 93 | , | 33 | | 83 | 6763 | 13411 |
| 131: | L | 82 | AX | 154 | AO | 187 | ER | R 120 | $v \quad 33$ | UH | 88 | L | 83 | 6554 | 11283 |
| 132: | L | 82 | ER | 120 | AX | 154 | UH | 188 | $\checkmark 33$ | UH | 91 | NX | 78 | 11697 | 12394 |
| 133: | UW | 88 | UH | 91 | ax | 151 | AX | $\times 155$ | Ax 149 | UH | 93 | 1 | 82 | 9854 | 17034 |
| 134: | UH | 88 | AX | 151 | AX | 149 | UH | 91 | AX 147 | UH | 93 | | 165 | 4751 | 7173 |
| 135: | nx | 152 | ER | 120 | UH | 91 | 1 | 55 | NX 78 | , | 53 | UH | 88 | 124.4. | 14788 |
| 136: | M | 55 | ER | 125 | HH | 45 | M | 53 | HH 47 | AX | 152 | - | | 13385 | 14771 |
| 137: | L | 80 | ax | 155 | AX | 151 | UH | 88 | ER 125 | HH | 45 | HH | 47 | 27523 | 36606 |
| 138: | F | 38 | | 163 | 0 | 20 | T | 14 | L 80 | Ir | 143 | H | 19 | 23654 | 26352 |
| 139: | + | 14 | 5 | 38 | | 40 | 5 | 39 | F 30 | IV | 19 | 0 | 29 | 4633 | 17775 |
| 140: | S | 48 | T | 14 | 5 | 38 | F | 30 | D 20 | 1 | 13 | 0 | 19 | 2359 | 20085 |
| 141: | 5 | 38 | T | 14 | | 39 | S | 40 | 019 | F | 30 | 0 | 20 | 3061 | 10319 |
| 142: | 5 | 40 | 5 | 38 | T | 14 | 5 | 39 | F 38 | 0 | 20 | | 19 | 6336 | 18190 |
| 143: | S | 38 | | 39 | T | 14 | 5 | 48 | D 19 | SH | 43 | T | 15 | 2094 | 2125 |
| 144: | T | 14 | 5 | 38 | S | 39 | s | 40 | D 19 | , | 38 | 0 | 20 | 5596 | 7138 |
| 145: | - | 1 | F | 29 | v | 36 | 5 | 4. | K 162 | F | 28 | HH | 49 | 50 | 3578 |
| 146: | N | 62 | - | 3 | N | 59 | H | 75 | N 66 | 1 | 52 | N | 58 | 18583 | 20927 |
| 147: | DH | 37 | k | 162 | HH | 50 | v | 36 | HH 49 | - | | 0 | 16 | 6219 | 8257 |
| 148: | H | 78 | H | 73 | | 107 | L | 82 | H 77 | AD | 109 | 1 | 79 | 7605 | 35088 |
| 149: | - | 1 | F | 29 | | 162 | v | 36 | HH 49 | no | 41 | F | 28 | 2502 | 6422 |
| 150: | - | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 25 | 3925 |
| 151: | | 1 | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 1 | 3925 |
| 152: | - | | F | 29 | v | 36 | 5 | 41 | K 162 | F | 28 | HH | 49 | 1 | 3925 |
| 153: | - | | F | 29 | v | 36 | S | 41 | K 162 | F | 28 | HH | 49 | 1 | 3925 |


```
AP Nons Retrloval Task,
Let me have all the storles.
Let me have all the storles.
Give me France.
Give me France.
Tell me all about Nixon.
Tell me all about Nixon.
Tell me about Katergate.
Tall me about Hatergate.
Tall us all about China.
Tall us all about China.
Give us Russia.
Give us Russia.
Tell me all about Isreal.
Tell me all about Isracl.
Let me have the headilnes.
Let me have the headilines.
Give me the summary.
Give me the summary.
```

```
Interactive formant tracklng task:
I mant to do formant tracking.
I bunt to do formant trackIng.
Use a Hamming.wlndou wlith flve hundred, imalve.polnts.
Use * Hanning window to live hundred, four points.
Increment the window in steps of one hundred points.
Incroment the window in steps of one hundred points.
For each window, compute the fast Fourlor transform.
For each wlndow, compute the last Fourler iransform.
Display the Fourler spectrum.
Dlsplay the Fourler spectrum.
Display the LPC smoothed spectrum.
Display the LPC smoothed spectrum.
Dlsplay the cepstrally smoothed spectrum.
Dlsplay the cepsirally smoothed spectrum.
Use a pre-omphasis of six db por octave.
Use a pro-emphasis of slxiy db por octave.
```

```
Medicai questionalr task!
Do you smoke?
Do you smoke?
Do you drink?
Do you drink?
Do you have numbness?
Is your numbness?
Where is the pain?
Where is the pain?
Have you had mumps?
Is your numbness?
Are your headaches severe?
Are your headaches severe?
Are you in pain?
Are you in pain?
Where were you hospltailized?
Where were you hospitalized?
When were you immunized?
When were you immunized?
Have you been circumcised?
Have you been circuncised?
ls the pain severe?
ls the pain severe?
Have you ever been anesthefized?
Have you ever been anesthetized?
Have you ever been injured?
Have you ever been injured?
Have you ever had on operation?
Have you ever had an operation?
How often do you have nausea?
How often have you had af operation?
How long have you had as thma?
How long have you had asthma?
```

Appendix E-SCRIPTS OF UTTERANCES

Is your dizziness continuous?
Is your dizziness continuous?
Are you afrald of surgery?
Are you afrald of surgery?
How much do you weigh?
How much do you smoke?
Is your urine cloudy?
Is your urine cloudy?
Here you ever hosplialized?
Were you ever hosplialized?

```
Voice chese task:
Paun goes to king four.
Pawn goes to king four.
Knight moves to king blshop three.
Knight moves to king blshop three.
Blshop goes to bishop four.
Bishep goes to bishop four.
Knight on king bishop three goes to knight flve.
Knight on king hishop three goes to king flve.
Paun captures paun.
Pawn captures pawn.
Knight on king knight flve captures paun on king bishop seven.
Knight on king knight tive captures paun on king bishop seven.
Queen goes to bishop three.
Queer goes to bishop three.
Knight goes to bishop three.
Knight pawn goes to bishop three.
inight captures knight on queen live.
Knight captures knight on paun tour.
King to queen one.
King to queen one.
Knight takes pawn.
Knlght takes pamn.
Knight captures rook on queen rook elght.
Knight captures rook on queen rook !wo.
Queen goes to queen five.
Queen goes to queen five.
Pawn on queen two goes to queen four.
Paun on queen two goes to queen four.
Bishop moves to knlght five, check.
Bishop moves to knight five, check.
Bishop goes to knight five, chork.
Bishop goes to knight five, check.
```

Queen on queen five captures queen, check.
Queen on queen one captures queen, check.
Queen movas to quean five, check.
King moves to quesen flive, check.
Queen takes blshop on queen six.
Queen takes bishop on queen six.
Rook moves to king one.
Rook moves to king one.
Rook moves to king seven, check.
Parn moves to king seven, check.
Queen moves to queen bishop seven.
Queen moves to queen bishop seven.

```
Interacilve formant tracklng task:
l want to do formant tracking.
I want to do formant trackIng.
Uee a Hamming w!ndow of flve hundrad twelve polnte.
Uee Hamming wIndow of flve hundred polnte.
Use utterance number elx of flle number flve.
Use utterance number six of flie number flve.
Increment the wIndow In etepe of one hundred polnte.
Increment the wlndow In etepe of four polnte.
For each wlndow, display the Fourler epectrum.
For each window, dleplay the formant tracke.
Compute the LPC mmoothed opectrum uelng the autocorrelatlon method.
Compute the LPC emoothed epectrum uelng the autocorrelation method.
Compute the roote of the inveree |llter Ueing Balreton' method.
Compute the roots of the Inverse fllter uelng Balretow' method.
Dlsplay the Imaglriry part of the roote.
Dleplay the Imaglnary part of the roote.
I want to compare the autocorrelatlon method wlth the covariance method.
I want to compare the autocorrelation method and the covariance method.
Increment the wlndow by ons hundred pointe.
Increment the wlndow by one polnte.
Dleplay the FFT opectrum.
Dleplay the FFT spectrum.
Use a Hannlng wlndow of two hundred, fifty-olx polnte.
Use Hannlng wlndow of two hundred, elx heriz.
Display the FFT epectrum.
DIsplay the FFT epectrum.
Compute the HIIbert tranciorm.
Uee tmo points.
I want to look at Image enhancement wlth different parametere.
I want to compare Image enhancement wlth different parametere.
Display the spectroyram witho-prommphasis of stx-dectbets pur-octave.
Dleplay the epectrogram to a pre-mmphaele of elx thoueand flve hertz.
```

Use a culling of thirty with a floor of zero.
L'se a celling of ten to a floor of zero.
For each utierance display the spectrogram.
For each utferance display the spectrogram.

BIBLIOGRAPHY

[A1] Alter, R., "Utilization of Contextual Constraints in Automatic Speech Recognition," IEEE Trans. on Audio and Electroacoustics, Vol. AU-16, 1968, pp. 6-11.
[B1] Bahl, L.R., "Overview of the IBM Speech Recognition System," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, p. 55.
[B2] Baker, J.K., "Machine-Aided Labeling of Connected Speech," In Working Papers in Speech Recognition-II, Computer Science Department, Carnegie-Mellon University, 1973.
[B3] Baker, J.K., "The DRAGON System—An Overview," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 24-29.
[B4] Bakis, R., personal communication.
[B5] Barnett, J.A., "A Phonological Rule Compiler," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, pp. 188-192.
[B6] Barnett, J., "A Vocal Data Management System," IEEE Trans. on Audio and Electroacoustics, Vol. AU-21, 3, June, 1973.
[B7] Bates, M., "The Use of Syntax in a Speech Understanding System," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 112-117.
[B8] Baum, L.E., "An Inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of a Markov Process," Inequalities, Vol. 1II, 1972, pp. 1-8.
[B9] Bellman, R.E., Dynamic Programming, Princeton University Press, 1957.
[B10] Booth, T.L., "Probability Representation of Formal Languages," IEEE Tenth Annual Symposium on Switching and Automata Theory, November, 1969.
[B11] Bridle, J.S. "An Efficient Elastic-Template Method for Detecting Given Words in Connect-
ed Speech." British Acoustical Society "'Spring Meen ed Speech." British Acoustical Society "Spring Meeting", London, 1973.
[C1] Cohen, P.S., and R.L. Mercer, "The Phonological Rule Component of a Speech Recognition System," Proc. 1EEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, pp. 177-187.
[D'] Dixon, N.R., and C.C. Tappert, "Intermediate Performance Evaluation of a Multi-stage System for Automatic Recognition of Continuous Speech," IBM, for Rome Air Development
Center, RADC-TR-73-16, 1973 .
[E1] Ellis, C.A., "Probabilistic Languages and Automata," Rept. No. 355, Department of Computer Science, University of Illinois, October, 1969.
[E2] Erman, L.D., R.D. Fennell, V.R. Lesser, and D.R. Reddy, "System Organizations for Speech Urderstanding: 1mplications of Network and Multiprocessor Computer Architectures for AI," Proc. 3rd Inter. Joint Conf. on Artificial Intelligence, Stanford, Ca., 1973, pp. 194-199.
[F1] Fano, R.M., "A Heuristic Discussion of Probabilistic Decoding," IEEE Trans. on Inform.
Theory, IT-9, pp. 64-74, 1963.
[F2] Forgie, J.W., "Overview of the Lincoln System," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, p. 27.
[F3] Fu, K.S. and T. Li, "On Stochastic Automata and Languages," Information Sciences, Vol. 1,
pp. 403-420, 1969 .
[G1] Garvin, L., and E.C. Trager, "The Conversion of Phonetic into Orthographic English: A Machine Trenslation Approach to the Problem," AD425819, 1963.
[G2] Grenander, U., "Syntax-Controlled Probabilities," Tech. Report, Division of Applied Mathematics, Brown Uiaiversity, 1967.
[H1] Huang, T. and K.S. Fu, "On Stochastic Context-free Languages," Information Sciences, Vol. 3, pp. 201-224, 1971.
[II] Itakura, F., "Minimum Prediction Residual Principle Applied to Speech Recognition," iEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, jp. 67-71.
[J1] Jelinek, F., "A Stack Algorithm for Faster Sequential Decoding of Transmitted Information," IBM Research Report, RC-2441, April, 1969.
[J2] Jelinek, F., "A Fast Sequential Decoding Algorithm Using a Stack," IBM Journal of
Research and Development, 13, pp. 675-685, 1969 Research and Development, 13, pp. 675-685, 1969.
[J3] Jelinek, F., L.R. Bahl, and R.L. Mercer, "Design of a Linguistic Statistical Decoder for the Recognition of Continuous Speech," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, pp. 255-260.
[K1] Klovstad, J.W., and L.F. Mondshein, "The CASPER Linguistic Analysis System," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 118-123.
[L1] Lea, W.A., M.F. Medress, and T.E. Skinner, "A Prosodically-Guided Speech Understanding Strategy," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 30-37.
[L2] Lesser, V.R., R.D. Fennell, L.D. Erman, and D.R. Reddy, "Organization of the HEARSAY II Speech Understanding System," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 11-23.
[L3] Lowerre, B.T., "A Comparative Performance Analysis of Speech Understanding Systems," Computer Science Department, Carnegie-Mellon University, (in preparation).
[N1] Nash-Webber, B., "Semantic Support for a Speech 乙 verstanding System," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 124-128.
[N2] Newell, A., J. Barnett, J. Forgie, C. Green, D. Klatt, J.C.R. Licklider, J. Munson, R. Reddy, and W. Woods, Speech Understanding Systems: Final Report of a Study Group, North-Holland, 1973.
[N3] Newell, A., "Speech Understanding Systems(tutorial)" invited paper at IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974.
[P1] Paul, J.E. jr., and A.S. Rabinowitz, "An Acoustically Based Continuous Speech Recognition System," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, pp. 63-67.
[P2] Paul, J.E., A.S. Rabinnwitz, J.P. Riganati, V.A. Vitols, and M.L. Griffith, "Automá.ic Recognition of Continuous Speech: Further Development of a Hierarchial Strategy," Rockwell International Corp., RADC-TR-73-319, 1973.
[P3] Paxton, W.H., "A Best-First Parser," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, pp. 218-225.
[P4] Paxton, W.H., and A.E. Robinson, "A Parser for a Speech Understanding System," Proc. 3rd

Joint Conf. on Artificial Intelligence,Stanford, Ca., 1973, pp. 216-222.
[R1] Rabinowitz, A.S., "Phonetic to Graphemic Transformation by Use of a Stack Procedure," Proc. IEEE Symposium c" Speech Recognition, Pittsburgh, Pa., 1974, pp. 212-217.
[R2] Reddy, D.R., and A.E. Kobinson, "Phoneme-to-Grapheme Translation of English," IEEE Trans. on Audio and Electroacoustics, Vol. AU-16, 1968, pp. 240-246.
[R3] Reddy, D.R., L.D. Erman, and R.B. Neely, "The C-MU Speech Recognition Project," Proc. IEEE System Sciences and Cybernetics Conf., Pittsburgh, Pa., 1970.
[R4] Reddy, D.R., L.D. Erman, and R.S. Neely, "A Modei and a System for Machine Recognition of Speech," IEEE Trans. Audio and Electroacoustics, AU-21, 3, June, 1973, pp. 229-238.
[R5] Reddy, D.R., L.D. Erman, R.D. Fennell, and R.B. Neely, "The HEARSAY Speech Understanding System: An Example of the Recognition Process," Proc. 3rd Inter. Joint Conf. on Artificial Intelligence, Stanford, Ca., 1973, pp. 185-193.
[R6] Reddy, D.R., and A. Newell, "Knowledge and Its Representation in a Speech Understanding System," in L.W. Gregg(ed.) Knowledge and Cognition, Lawrence Erlbaum Assoc., Washington, D.C., 1974, chap. 10.
[R7] Reddy, D.R., "On the Use of Environmental, Syntacti ι, and Probabilistic Constraints in Vision and Speech," Computer Science Department, Stanford University, 1969.
[R8] Ritea, H.B., "A Voice-Controlled Data Management System," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, pp. 28-31.
[R9] Rovner, P., B. Nash-Webber, and W.A. Woods, "Control Concepts in a Speech Understanding System," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 136-139.
[S1] Salomaa, A., "Probabilistic and Weighted Grammars," Information and Control, Vol 15, pp. 529-544, 1969.
[S2] Santos, E.S., "Regular Probabilistic Languages," Information and Control, Vol. 23, pp.58-70, 1973.
[S3] Shoup, J.E., "Research on Speech Communications and Automatic Speech Recognition," Repart No. AFOSR-70-1170TR, Speech Communications Research Laboratory, Inc., Santa Barbara, Ca., 1970.
[T1] Tappert, C.C., N.R. Dixon, D.H. Beetle, Jr., and W.D. Chapman, "A Dynamic-Segment Approach to the Recognition of Continuous Speech: An Exploratory Program," IBM, for Rome Air Development Center, RADC-TR-68-177, 1968.
[T2] Tappert, C.C., and N.R. Dixon, "A Procedure for the Adaptive Control of the Interaction between Acoustic Classification and Linguistic Decoding in Automatic Recognition of Continuous Speech," Proc. 3rd Joint Conf. on Artificial Intelligence,Stanford, Ca., 1973.
[T3] Tappert, C.C., "Experiments with a Tree Search Method for Converting Noisy Phonetic Representation into Standard Othography," EEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 129-135.
[T4] Turakainen, P., "On Stochastic Languages," Information and Control, Vol. 12, pp. 304-313,
1968.
[V1] Viterbi, A.J., "Error Bounds for Convolutional Codes and an Asymptotically Optimum

Ducoding Algorithm," IEEE Trans. on Information Theory, Vol. IT-13, April, 1967.
[W1] Walker, D.E., "The SRI Speech Understanding System," Proc. IEEE Symposium on Speech Recognition, Pittsburgh, Pa., 1974, pp. 32-37.
[W2] Woods, W.A., and J. Makhoul, "Mechanical Inference Problems in Continuous Speech Understanding," Proc. 3rd Joint Conf. on Artificial Intelligence,Stanford, Ca., 1973, pp. 200-207.
[W3] Woods, W.A., "Motivation and Overview of BBN SPEECHLIS, An Experimental Prototype for Speech Understanding Research," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, February, 1975, pp. 2-10.

