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STOCHASIIC MUDFI.INCJ AS A Ml ANS OK AU IOMA1IC SPI-ECH RECOGNITION 
James K  Baker 

Carncgic-Mellon University 

Automatic rrcojimtion of connnuous speech involves estimation of a sequence X(l). X(2), 
X(3). , X(T) which is nm directly ohscrscd 'such as the words of a spoken utterance), based on 
a sequence Y( I). Y(2), VO). . Y(T) of rcLitcd observations (such as the sequence of acoustic 
parameter values) and a variety ol sources of knowledge. Formally, we wish to find the sequence 
x|l T| which maximizes the u posienon probability Pr( X| I :T|=x| l:T| | Y| I :T|«.y! I :T|. A, I, P, 
S ). where A, L, P, S represent the acoustic-phonetic, lexical, phonological, and syntactic-semantic 
knowledge A speech recognition system must attempt to approximate a solution to this problem, 
whether or not the system uses a formal stochastic model 

The DRAGON speech recognition system models the knowledge sources as probabilistic 
functions of Markov processes, i he assumption of the Markov property allows the use of an 
optimal search strategy The DRAGON system finds the sequence xjlTI which maximizes the 
above probability, as given by the Markov model In effect, the system searches all possible 
sentences in the grammar, all possible pronunciations of each sentence, and all possible dynamic 
time warpmgs of each such phonetic string to best fit it to the acoustic observations. This optimal 
search is carried out by the procedure expressed in equations (I) and (2). 

(1) y(t,j) = Max, | y(t-l.i)Pr( X(l) = j | X(t-I ) = i. A,L,P,S ) 
Pr(Y(t)«y(t) | X(t-l)-i. X(t)=j, A.l.P.S) } 

Let l(t,j) be any value of i for which the above maximum is achieved. 

(2) x{t) - 1(1+1. x(t+l)) 

The use of a general theoretical framework, with an explicit representation for the solution 
process, greatly simplifies the speech recognition system. Equations (I) and (2) represent the 
entire recognition process. Despite its simplicity the system can, to some degree, use knowledge 
from each of the domains A,L,P, and S. 

A simplified implementation of the DRAGON system has been de.eloped using knowledge A 
and L, and some of the knowledge from S. This implementation has been tested on 102 utterances 
from 5 interactive computer tasks The size of the integrated Markov network representing the 
knowledge sources is 410. 702, 916, 49H, and 2356 states, respectively, for the 5 tasks whose 
vocabulary sizes are 24. 66, 37, 28. and 194 words, respectively, and which have grammars of 
varying degrees of complexity. The time required for recognition of an utterance is proportional to 
the length of the utterance and is given approximately by the expression (recognition time) = (utt 
lcngth)(2().9 + .067(nct size)) Since a complete optimal search is performed, the recognition 
lime is indepeiulent of the amount of noise in the signal or the number of errors in intermediate 
recognition decisions The system correctly recognized 49% of the utterances and correctly 
identified K3% of the 578 words. 
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INTRODUCriON 

Speech recognition, a task which humans do elficiently and well, is very difficult to do by 

automatic procedures   There is a great deal of ambiguity in the actual acoustic signal—ambiguity 

i which ccn be resolved only by applying other sources of knowledge in addition to the acoustic 

signal(|AI|. |R7|, |N2|) In recent years much research has been devoted to (fc-.dopmg the other 

sources of knowled^- that are available in analyzing speech vhich is restricted to a specialized 

domain of discoursedR4|. M |TI|. |DI|. |P2|. |W3|. |F2|. |B«|. !W1|. |LI|. |J3|). In such a 

specialized domain there is generally a restricted vocabulary, so one source of knowledge is the 

lexical knowledge The utterances arc constrained to be grammatical and sometimes the grammar 

is a special restricted one. so there is syntactic knowledge In some of the systems the specialized 

domain is an interactive task with the computer as a participant Thus there is a • operationa1 

definition of whethor an utterance is "meaningful" (that is. can the computer interpret the 

utterance in relation to the interactive task), and therefore there is a kind of semantic 

knowlcdgc(|R6|) 

In order to apply these sources of knowledge in speech recognition, it is necessary to represent 

this knowledge in a form that can be compared with the acoustic observations There are 'wo 

operations which arc essential in any speech recognition system: searching and matching Suppose 

one knowledge source, such as syntax, hypothesizes a word or a sequence of words This hypothe- 

sis can only be verified by matching the words with the events observed by the other soirees of 

knowledge, such as the actual acoustic signal. A matching procedure is needed to evaluate any 

particular hypothesis A v.-arching procedure is needed to explore the space of possible hypothes- 

es. 

SEARCHING AND MATCHING IN SPEECH RECOGNITION SYSTEMS 

f 

The various speech recognition systems which have been developed use a great variety of 

searching and matching procedures and employ them in many different ways The DRAGON 

speech recognition system, the subject of this thesis, is based on a systematic use of a particular 

abstract model to represent many of the sources of knowledge needed for speech recognition. 1 his 
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umformily of icprtscnlation then allows a powerful general Ncarching/malchmt: technique to be 

applied to '.he speech recognition system as a whole first let s consider some of the ways in which 

searching and matching procedures are used in other speech recognition systems. 

The HEARSAY I system (|E2|. (R3|. |K4I. |R5|) employs a hypothesize and test paradigm. 

There is a separate programming module for each source of knowledge which is represented. Each 

module is responsible for generating hypotheses based on its own internal knowledge ^n.h 

hypothesis is then verified by each of the modules (that is, each module matches the hypothesis 

against its own knowledge) anu a combined rating is computed The modules communicate with 

each othei primarily by stating hypotheses about the sequence of words and each module has its 

own matching procedures for relating such "word-level" hypotheses to it-, own specialized 

knowledge. The search strategy is basically a best-first tree search. Words are hypothesized 

proceeding lefl-to-nght in the utterance. At any point in the analysis new hypotheses are 

generated which are extensions of the best parti.il sequence of words obtain so far in the analysis. 

On the next round of the analysis, either the best such extension becomes the test partial sequence 

or. if all such extensions get sufficiently low ratings, a previous partial sequence (which had been 

the second best partial sequence) is reactivated. 

in the HEARSAY II system ((L2)) the matching and search mechanisms arc much more 

general and flexible Hypotheses are not restricted to the word level, but instead arc organized 

into an indefinite number of levels ranging from sub-phonetic acoustic segcmenls to semantics and 

pragmatics. There arc a large number of independent knowledge source modules. Each knowl- 

edge source repeatedly applies matching procedures to compare the data structure of existing 

hypotheses with its internal knowledge base Whenever a match is found the knowledge source 

takes the appropriate action to add an hypotnesis 01 otherwise modify the data structure. The 

search strategy consists of scheduling which knowledge sources get activated and in what order, 

based on a variety of score, and ratings lor the h>pothcses that are in the data structure at a given 

time. 

In the Automatic Recognition of Continuous Speech (ARCS) systems i|l>l |, |TI|, \J2l lJi\, 

|PI|. |l»2|. |RI|) a variety of tests are applied to the acoustic signal to derive a (noisy) phonetic 
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siring and there is a language model for generating sequences of words. The eonversion of the 

noisy phonetic string to an orthographic string is then performed by searching and matching 

procedures. For each word there is a network representing all permitted pronunciations of the 

word. The conditional probability of a particular word producing a given phonetic string can be 

computed explicitly, and is used to mensure the degree of match. The search procedure is a 

best-first tree search implemented by a sequential decoding algorithm. Earlier versions of the 

ARCS system had the same general structure, but performed the matching at the phonetic level 

rather than at the word level. 

The knowledge sources in the SPEFCHLIS system (|B7|, |N1|, (R»|. |W2|, |W3|) represent 

their information in lattice structures which show ill the alternatives at any point in time. The 

word-lattice is generated by matching each lexical item with the entries in the segment lattice. A 

semantic component searches the word lattice to develop "theories" of semantically related words. 

The semantic component continues to work on the theories with the greatest likelihood scores. 

When the semantics component can add no more words to a theory, the theory is passed to a 

syntax component which performs a parse and fills in any gaps. 

The CASPER system (1F2), |KI|) performs a match between lexical items and a noisy 

phonetic sequence by using multiple dictionary entries, phonological rules embedded in the 

dictionary, and a "degarbling" procedure. The search is controlled by an augmented context-free 

grammar which performs a left-to-right, bottom-up parse. 

The Vocal Data Management System (|B6). |R8|) developed at SDC employs a strategy of 

"Predictive Linguistic Constraints." The parser attempts to predict phrases based on a simple user 

model, thematic patterning, and grammatical and semantic constraints. Fixed directional parsing is 

replaced by a more general approach so that processing may be initiated at any point in the 

utterance. Lexical item*- are matched against the acoustic-phonetic data by a word mapper and a 

syllable mapper. The word mapper handles alternate pronunciations of a word, decides likci« 

times foi syllable boundaries, and checks for co-articulation effects across syllable boundaries. 

The syllable mapper compares a syllable candidate with the sequence of acoustic parameters. 

The SRI Speech Understanding System (|P3|, |P4|. |WI |) uses a special "word function" for 
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each ilcm in Ihc kxkon bach word Funcliun consists of a scries of l-orlran subroulincs lhat look 

for a match between its particular word and data from a variety of sources barvcd on parameters 

extracted from the acoustic signal The parser executes a top-down, "best-first" strategy. In 

addition to its parsing function, it calls on the othir components and coordmaies information 

among them. 

The Univac Speech Understanding System (|LI|) use;» :i prosodically-guided strategy 

Prosodic features are used to break sentences into phrases, locate the stressed syllables within 

those phrases, and guide procedures for both phone classification and nigher level linguistic 

analysis. This strategy requires a search procedure which is able to initiate processing at any point 

in the utterance as indicated by the prosodic features. Specific search and matching procedures 

have not yet been implemented for this system. 

The speech recognition system be.ng developed at the IBM Watson Research Center (|BI|. 

|J3|) is based on a linguistic sequential decoder The decoder consists of four major subparts: I) a 

statistical model i f the hnguage. 2) a phonemic dictionary and statistical phonological rules. 3) a 

phonetic matching algorithm. 4) word level search control Ihc search procedure .s a stack 

decoding algonth.n which seeks that word sequence which has the maximum a posienon 

probability, conditional on the language and the observed acoustic sequence Statistical matching 

is done between hypothesized words and a noisy phonetic string obtained by acoustical analyses. 

Even these greatly simplfied descriptions make it clear that there is a great variety of ways in 

which searching/matching strategies can be implemented However, certain common features can 

be distinguished Most ol the systems perform matching only at one level. Generally the matching 

is between lexical items and a noisy phonetic string (ARCS. SIMTCIIUS, CASPER. IBM- 

Watson) Thus lor example, in these systems, words and phrases are not directly matched to the 

acoustics. For most of the systems, the search is controlled primarily at the word level 

(HEARSAY I. ARCS. SPEECHEIS. CASPER. SDC. SRI. IBM-Watson) Only two systems 

(ARCS. IBM-Watson) have explicit statistical models fron which to derive matching scores. 

In addition to the general purpose searching/matching which is usual'y used in transforming a 

noisy phonetic stn.ig to | word string, several speciah/ed p'ocedures are used. SDC has a mapping 
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bclwccn syllables ami acousiic paramclcrs. SRI matches words diretlly wilh acouslirs. The early 

ARCS system matched the language directly onto the noisy phonetic string. The segment data in 

the SPUtCHI IS system is a lattice of alternatives, so matching even a single lexical item involves a 

small lattice search Each of the modules in the HEARSAY system^ includes specialized matching 

procedures. 

FEATURES Ol HIE DRAGON SYSTEM 

The fundamental idea behind the DRAGON system is that each of the knowledge sources can 

be represented by a single, general, abstract model. Then powerful general searcl./maich 

algorithms can be employed without worrying about all the special characteristics of each individu- 

al knowledge source These special characteristics arc not ignored, but they get incorporated into 

the data structures and not into the searching/matching procedures. The model which is used 

throughout the DRAGON system is that of a probab.listic function of a Markov process|B8J. 

The sequence ..I random variables Y(l), Y(2), Y(3) Y( I)   is said to be a probabilistic 

function of a Markov process if there is a sequence of random variables X(l). X(2). X(3)  

X(T) such that the sequences of Xs and Vs satisfy equations (5) and (6) of Chapter II. The 

techniques for analyzing such a system arc described in Chapter II. The interpretation is that the 

Ys are a sequence of random variables that we observe and which depend probabilistically on the 

Xs wiiich we do not observe Wc wish to make inlercnces about the values of the Xs from the 

observed values ol the Ys. Chapter III describes how the knowkd^ sources in a speech recogni- 

tion system can be ^presented in terms of this type- of model. Chapter IV describes a simplified 

implementation of these ideas. Performance results are given which show that even this greatly 

simplified implementation is a complete and powerful speech recognition system. 

The important features ol the DRAGON system are: 

1) Generative form of model; 

2) Hierarchical arran ement of knowledge sources; 

3) Integrated network representation; 

»MM 
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4) General Ihcurclicul framework; 

5) Opiimjl stoehaslie seareh 

In companng ihc features of different speech recognition systems, attention is often focused on thc 

control structures and the methods o' communication among the knowledge source m.nJules Thus 

a system might be characterized by whether the analysis proceeds top-down or bottom-up (or 

some mixture), whether there is a best-first tree search or some other control mechanism, and 

whether the analysis proceeds in a strict left-to-rir.ht fashion or can start at any pomt in the 

utterance. For several reasons, the DRAGON system cannoi be easily characterized by these 

conventional dichotomies, so the discussion of them is postponed until the major features of the 

system are described 

(I) Generative form of the model 

The generative form is a nalu.al one for a probabilistic lunction of a Markov process 

Generative rules are formulated as conditional probabilities for example, if we know which 

phone occurs at a jjvtn lime, vocal tract models allow us to predict the values ol the acoustic 

parameters. That is. a conditional probability distr.bution is defined in acoustic parameter space 

If we know which word occurs during a given segment of time, phonological rules allow us to 

estimate the probab.lity of various phone sequences representing different pronunciations of the 

word A statistical model lor the errors of an automatic phone classifier allows us to calculate the 

probability of the classifier producing a specific sequence of labels, conditional on the true 

sequence of phones being a particular phone sequence The grammar for a specific task domain 

produces a conditional probability distribution in the space of word sequences such that ungram- 

malical sequences have zero probability 

Each of the knowledge sources in the DRAGON system is represenkd in a generative lorm as 

a probabilistic function of a Markov pnK:css However. Baycs' theorem allows the computation to 

be perlormed analytically The model tells the conditional probability of pnulucmg a specific 

sequence of acoustic parameter values Irom a specific sequence ol  words     Applying Hayes 
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Ihcorcm. wc can compulc the a posterior, probabilily of a sequence of words from ihe observed 

sequence of acoustic parameter values. 

(2) Hierarchical arrangement of knowledge sources 

The sources of knowledge are organized into a hierarchy based on the following observation: 

The "higher" levels of a speech recognition system change state less frequently than the "lower" 

levels. Thus a single syntactic-semantic state corresponds to a sequence of several words; a sins'e 

word corresponds to a sequence of several phones; and a phone corresponds to a sequence of 

acoustic parameter values. The hierarchy is not absolute—for example, syntax and semantics are 

together a single multi-level process—but it provides a convenient means for combining the 

Markov processes which represent the individual sources of knowledge. 

To see how the knowledge can be represented as a hierarchy of generative models, let's 

consider a simplified example. Consider a language with only two sentences: "What did you see?" 

and "Where did you go?" At the word level this language can be represented by the network 

shown in Figure I. 

GRAMMAR NETWORK 

where —-► did ► you ► go 

what —--► did ► you ► see 

FIGURE I 

This model is generative in the sense that if wc know a partial sequence of words (e.g. "What did") 

the model tells exactly which word can come next ("you").   But we do not directly observe the 

words (we only observe the associated acoustic events), so wc must compute the a posteriori 

probability of any word sequence using the techniques of Chapter II. 

- - -  — 
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WORD NETWORK 

— /w/—* /A/—*/t/ 

FIGURE 2 

In the next lower level of the hierarchy we represent the relationship between the words and 

the phones. To keep the network simple, only a single pronunciation is represented for each word 

For example, the network for "what" is shown in Figure 2. It is also possible to add another level 

to the hierarchy connecting the phones to the expected acoustic parameter values. The slop 

consonants and the dipthongs are broken up into several sub-phonemic segments. Tne network 

for (l | is shown in Figure 3 The connection with acoustic parameters is then represented by a 

table giving the statistical distribution of parameter values for each type of segment. Phonological 

and acoustic-phonetic rules, which are omitted from this example, could be represented either at 

the broad phonetic level (such as. if the /t/ is flapped) or at the acoustic segment level (whether 

the /t/ is released and its degree of aspciation. if released). 

PHONE NETWORK 

OO 
•-   -----   t 

(where - represents the pause portion, and th represents the release/aspiration) 

FICiURE ) 

The nodes in Figure I have arcs which point back to themselves because we are representing 

two processes which are asynchronous with respect to each other. That is. the acoustic parameters 

are measured al fixed lime intervals (say once every 10 milliseconds), but each sub-phonemic 

acoustic segment las.s lor M unkno vn period ol lime   So. if we lime our stochastic process at one 
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step every 10 milliseeoiuls, then ihe proeess may slay in Ihc same slale for several units of lime, as 

indiealed by an arc reluming lo ih;.- same node. A pnone which consists of a single acoustic 

segment is represented be a phone network with a single node, but with a loop from the node back 

lo itself, again indicating that the process may slay in this state for several units of time. 

(3) Integrated network representation 

To describe a point in the hierarchical stale space, we must describe its position in a network 

at each level of the hierarchy. For example, the description (I) "the pause segment" of (2) "the 

|t )" of (3) "the word 'what'," descibes a particular point in the hierarchical slate space in our 

simple example. Since each of the networks is finite, it is possible to define a new network with a 

separate node for each point in the hierarchical space. In terms of the knowledge represented, this 

new network and the hierarchy of networks are equivalent. The change is primarily one of 

convenience. The inlegrated network representing our simplified example is shown in Figure 4. 

INTEGRATED NETWORK 

Jw|--|rl--lrl--|VBl--ldh|-^|ll-^|VBr--|dh^ly|,--T,^(lBJ.^jLV, 

Mw|--|AI--|-|--|thl--lVB|--(dh|-^|l|-^|VB)-^|dh| -fyl -|u|-^|s| -T 

FIGURE 4 

Actually it is possible lo represent more knowledge in the inlegraled network than in the 

hierarchical system. For example, phonological rules which apply across word boundaries (such as 

the palatalization in the word pair "did you") may be used lo make modifications to the network. 

Note lhat the inlegraled network, because it is derived in a special way from a hierarchy, is very 
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sparse. In ihc example each node (except ihe end nodes) is conncclcd lo (has an arc pointed 

toward) only itself and one other node. Even with a more general language and networks 

representing phonological rules, almost any node that is not adjacent to a word boundary would be 

connected omy to itself and one. two. or three other nodes. Thus, in a network with thousands of 

nodes, there arc only two or three arcs per node (instead of the thousands which would be 

possible). This property of sparscness has implications for the implementation of the speech 

recognition system, as is discussed in Chapters II and IV. 

The size of the integrated network for a given task depends on the vocabulary size, the 

complexity of the grammar, and on some of the details of the implementation. The five tasks 

discussed in Chapter IV have vocabula.y sizes of 24. 66. 37. 28. and 194 words, respectively. The 

number of nodes in the integrated network is 410. 702. 916. 49X. and liSi. respectively. Even 

the largest network is small enough so that the recognition system described in Chapter IV can 

keep all of its intermediate computational results in the computer's core memory with no need to 

use secondary storage. 

Note that we go from a group of separate knowledge sources to an integrated network 

representation in essentially three steps. First, each knowledge source is represented as a probabil- 

istic function of a Markov process. The details of this step are described in Chapter III. In this 

chapter the skeleton of the idea is exposed by way of the associated network. Second, the 

knowledge sources are arranged in a hierarchy. In a sense, it is this step which is crucial. It relies 

on the special relationships amor.g the knowledge sources for speech recognition systems. It would 

not necessarily be applicable to knowledge sources for other problems even if the knowledge 

sources are rcpresentable as probabilistic functions of a Markov process. Third, the hierarchy of 

networks is convened into an equivalent single network (and the hierarchy of Markov processes is 

replaced by a single Markov process). Athough this final step changes the apparent external 

structure of the system, it does not change the substance. 

(4) General theoretical framework 

As stated before, ihe »KA(;ON system relies throughout on a particular abstract model—that 

of a prohabilislk (unction ol ;i Markov process    A sequence of random variahics Y( I). Y(2). 

--* —  - -  it „  -  '—- 
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V(3).... . V(T)  is said la be a probabilislic function of the Markov process X(I). X(2). X(3). 

X(T) if these random sequence« sat.sfy equations (5) and (6) of Chapter II. These equations may 

be paraphrased as requiring that, for any ,. X(,) depends only on X(t- I) and Y(t) depends only on 

HH   nd X(t-I).   Chapter III descr.bcs how various knowledge sources may be represented by 

such u model. 

The formulas that the modci produces are similar to the formulas used in other statistically 

based speech recognition sys.ems (ARCS and IBM-Watson). In certain ways, either system can 

be consKlered as a spcc.al case of the other. The d.fferencc .s more one of emphasis than one of 

kind. The emphasis in the DRAGON system is one of representing each of the knowledge sources 

in a u „form theoretical framework. Thus speciali.ed procedures for handling the data for a 

particular knowledge source are avoided. 

The only spec.alized procedure are those used in setting up the integrated network to 

represent the combined knowledge sources.    In recognizing a particular utterance, the only 

procedure which is used is one which is based only on the general properties of a probabilistic- 

function of a Markov process.   For example, the typ. of specialized procedure which is absent is 

one which would take acoustic parameters and with a compl.cated set of rules, thresholds, and 

decisions produce a raw phonetic string intended to be a. close as possible to a phonetic transcrip- 

Uon of the utterance.   As explained in Chapter III. ,1 such a procedure is available, the DRAGON 

system can use the phonet.c str.ng wh.ch is produced.  But on the other hand, if such a procedure is 

not used, the DRAGON system can operate directly on  the acoustic parameters, since the 

acoust.c-phonet.c knowledge can be represented as a probabilist.c function of a Markov process 

and be incorporated into the hierarchy. 

(5) Optimal stochastic search 

The Markov model used in the DRAGON system requ.res a finite state space.  In that sense it 

is less general than the augmented network systems (SPEECHUS. CASPER. SRI) and slack 
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decoding sialiMical syslcms (ARCS. IBM-Wal«,,,). However, a large finile network ean represent 

most of the important information anJ M>mc of the things which it cannot represent are irrelevant 

in a recognition problem in which the input is a ndsy p.,onetic siring with arbitrary insertions and 

deletions The finite state space and the Markov model make possible the powerful algorilh 

which are described in Chapter II. 

ms 

The search algorithm of the DRAGON system is un.que in that rather than search a tree (the 

tree of possible word sequences) one branch at a time in some best-first or depth-first manner, it 

searches the entire space of all possible paths through its network. All paths of a given length are. 

•n effect, searched in parallel At the end of the analysis a path it obtained which is an optimum 

over all possible paths tnrough the network. This path represents .hat interpretation of an 

utterance which, among all possible interpretations, best matches the given observed values of the 

acoustic parameters. 

To search this entire space may seem to be drastic, but with the Markov model and the 

algorithms of Chapter II. it ean be done very efficiently. These algorithms are not new The 

inductive computation of the best partial sequence, as done by equation (IX) of Chapter II. is an 

application of dynamic programming to the general network search problem(|B»)). It corresponds 

to an algorithm used in communications and coding theory, known as the Viterbi algorilhm(|V| |) 

There are other algorithms for sequential decodingdH |. |JI|. |J2|). which are also based on 

maximizing the a posicnon probability according to such a stochastic model, and several of them 

have been successfully applied to speech recognition (ARCS and IBM-Watson). 

The number of computations required to search the space of all possible paths through the 

network is proportional to (the length of the utterance) times (the number of arcs in the network). 

For a given network, the compulation lime is linear in ihe length of the utterance and is independ- 

ent -.f the amount of noise or the number of errors in any input string. I his property is in harp 

contrast to depth-first or bcsl-firsi algorithms for which there is no effective upper bound for the 

amount of computation (except a seaich of the emire tree, one branch at a lime). The sequential 

search algorithms do. in fj.ci. occasionally need to be terminated belore completion of the analysis 

because they exhaust the available lime or storage. 

 - - - . . 1-    .-.-.. 
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On the other hand, allhough the M;.rk,.v model pern.ilv , a.mplete optimum search in a time 

that k hnear m the length <,l the utteranee. the pn.porlionalily (actor .s large, especially for large 

vocabularies. Many tl.mgs could be done to reduce the computation lime required by the 

DRAGON system, and they are an important and interesting area for future research, but m the 

work reported in this thesis there has been no attempt „, minimi/c the computation time Lowerrc 

(|L3|) has rewmten the DRAGON program to execute much faster with no change in recognition 

results. The computation limes given in Chapter IV, therefore, should be regarded as an upper 

bound on the amount of lime req.-red by the techniques presented in ih.s thesis and as a demon- 

stration that complete optimal search is not impossible 

The DRAGON system cannot be characterized as either top-down or bottom-up because it 

has aspects of both types of system The models are given ,n a generative form, which is normal 

for top-down systems However, by applying Bayes' formula the analys.s proceeds in the analytic 

rather than the synthetic direction But even more significant is the fact that ihe integrated 

representation makes it impossible to distinguish whether the acoustic knowledge is helping to 

Jireet the syntactic analysis, or | the syntaclie knowledge is helping to direct the acoustic analysis. 

Instead of a system with separate components with specific feed-back and feed-forward mecha- 

ni;..ps for transmilling information, the system is completely inlegmled. 

The DRAGON system represents an extreme posil.on in terms of its search strategy. Mosl 

systems use some form of best-first tree search with procedures for backtracking when the analysis 

requires it. By contrast, the DRAGON system uses a complete optimal search, which would be like 

a breadth-first tree search except the Markov model reduces the tree search to a much smaller 

network search 

The particular implementation which is discussed in Chapter IV is restricted to a strict 

lefl-to-nght analysis, and Ihe formulas in Chapters II and III have been expressed in lhal form It 

would be possible to generalize this system ■<, have the analysis proceed from any point in the 

utlcrance. but because there is already a complete optimal search, there is no advantage in doing 

so. It is not necessary to start the analysis at "islands of reliability" because any path which gives 

the correct mterpretat.on of such an island is eventually considered in the optimal search (unlike a 
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bcsi-firs. search in wh.ch analyzing unreliable dala firsi can cause ihe correct inicrprelaiion ..f 

laier reliable dala never »« be considered) Because Ihe compu.aiion lime is a linear function of 

the length of the utterance there is no computational advantage in breaking the utterance into 

several pieces. 

The remainder of this thesis is divided into three chapters Chapter 11 describes Ihe abstract 

model wh.ch » used in the DRAGON system. In the DRAGON system each source of knowledge- 

is represented as a probabilistic function of a Markov vocess(iBSj). Chapter II presents the 

general mathematical properties for such systems, but omits the details which are specific to speech 

recognition. Chapter 111 presents techniques for representing the knowledge sources necessary for 

speech -cognition. Sometimes several alternative techniques arc described for .eprescnting a 

particular source of knowledge. Some of the represenialion techniques described in Chapter III 

.-re used in the simple implementation discussed in Chapter IV Some of the other techniques have 

been tested in separate modules bu- not in a complete recognition system. Some of the techniques 

have not yet been tested In particular, no attempt has been made to represent a semantic 

component or even to obtain a weighted probabilistic grammar Chapter IV describes a speech 

recognition system, based on the general model of Chapter II. obtained by implementing some of 

the represenialion techniques presented in Chapter III A summary is presented of recognition 

results for 102 utterances. The system i jrrcctly recognized 49% of the 102 utterances and 

correctly identified K3% of the 57H words. 

-  __ __. ■MMMM 
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INTRODUCTION 

The DRAGON speech recognition sysiei.i utilizes the theory of a probabilistic function of a 

Markov process In this chapter an introduction is given to the general theory. Chap--' III 

explains how the knowledge sources in a speech recognition system can be represented 

Let Y(l). l'(2), Y(3) Y(T) be a sequence of random variables representinu the external 

(acoustic) observations.   Let X(l). X(2). X(3) X(T) be a sequence of random variables 

representing thw internal states of i stochastic process such that the probability distributions of the 

Ys depend on the values of the Xs. but the Xs are not directly observed As a convenient 

abbreviation we use a bracket and colon notation to represent sequences.  Thus, Y| I Tj represents 

Y(l). Y(2). Y(3) Y(T) and X| I :T| represents X( I), X(2). X(3) X(T)    Let y| I T| be the 

observed sequence of values for the random variables Y( I :T|. 

GENERAL FORMULATION 

We wish to make inferences about the sequence X| l:T| in light of the knowledge el y(I.T|. 

For example, we would like to know the conditional probability PROB( X(t)«j | Y(I:TJ» |I:TI ) 

for each t and j (the conditional probability of a specific internal state at a specific time, given the 

entire sequence of external observations) Assuming we have a model for speech production, we 

can evaluate the a prior, probability PROB( X(I:T| ). Assuming a model for the generation of 

acoustic events associaud with a specific sequence of internal states, w« can evaluate the condi- 

tional probability PROB( Y|l:t|-y|l T| | X(l:Thx|l:Tl ) (That is. the model yields conditional 

probabilities of external observations, given the sequence of internal states). Thus we know the 

conditional probabilities in the generative or synthetic form. 

We can compute the desired conditional probabilities using Bayes formula 

d)PROB(X(t)-j I Y|l:T)-y|l:T|) 

- PROB( X(t)-j. Y| I :T)-y| I :T| ,/PROB( Y| I :T|-y| I :T| ) 

if we can evaluate the factors on the right hand side.  The numerator is given by 
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(2)PROB( X(0«j.Y|l  !|.y|| T|) 

- ^.„^„„..PROBi X| I :T)-x| I :TJ. Y( I :T)-y( I :T| ) 

- **mm iPROB< Yi I :Tl-yl' T| I X| I :T|-x| I :Tj )PROB( X| I :Tj-x| I :T|) 

where the sum is uken over all posMblc sequences xll:l| subject to the restriction x(t)-i. (The 

)oint probability of an internal sequence and an external sequence is the produr t of the a priori 

probability of the internal sequence and the conditonal probability of the external sequence given 

by the model The probability for the event X(l)-j is obtained by summing over all internal 

sequences which meet that restriction ) We can evaluate the a pnon probability that Y|I:T| 

would be y| l:T| as 

(3)PROB( Yll:T|-yllT|) 

-I.|1T|PROB(Y|l T|.y|l:T| | X| 1:1>x| I T| )PROB( X| l:T|-x| l:T|) 

where the the sum is taken over all possible sequences xj I :T|.  (The l..tal probability of an external 

sequence is the sum of its pint probability with all possible internal sequences.) 

Therefore 

(4)PROB( X(t)-j | Y|l Thy|l:T|) 

- PROB( Xd)»). Y| I T| = y| I :T| )/PROB( Y| I T|.y| I :T| ) 

-.,. r ,.n.,PROB( Y| I T| = y| I :T| | X| I :T]-x| I :T| )PROB( Xj I :Tj = x| I :T| ) 

-.n l|PROB( Y|n|=y|II| j Xjl T|-x|I.T|)PROB(X|l:T|-x|l:T|) 

where the sum in the denominator is taken over all sequences x| I :T| and the sum in the numerator 

is taken over all such sequences suhjeel to the restriction x(t) = j (This is the probability of the 

internal event X(t) = j conditional nn the observed external sequence, as desired.) 

The derivation of equation (4) is just a standard applica'.ion of Bayes' theorem. It represents a 

formal inversion of the conditional probabilities from the ge.ieralive form to the iinalylie form. 

(Note    I he word "analytk" is used here In a special sense     'Analytic" means "taking apart" as 

■-■---■ - ' ■'■" 
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opposed to "synthetic," "generative." or "putting together." In terms of our model, the generative 

form predicts the obseivations (Y's) in terms of the internal sequence (Xs). The analytic form 

computes the a posienori probability of the Xs conditional on the observed Vs.) The speech- 

recognition knowledge sources provide the conditional probabilities in a generative form They 

must be ronverted into an analytic form to make inferences about a particular utterance from the 

observed acoustics. However, the formal inversion formula given in equation (4) is not computa- 

tionally practical since in general the set of all possible sequences x| 1 :TJ is prohibitively large. It is 

necessary to apply the restrictions of a more specific model to obtain a computationally efficient 

formula. 

MARKOV MODEL 

The DRAGON speech recognition system assumes that the sequences represent a probabilistic 

function of a Markov process(B81. Specifically, it is assumed that the conditional probability that 

X(t)-j given X(t-l) is independent of t and of the values of Xll:t-2J and that the conditional 

probability that Y(t)=k giver X(t) and X(t-l) is independent of t and of the values of any of the 

other X's and Y's.  Let B = { b, J k j and A « j a^ | be arrays such that 

(5) PROB( Y(t)-y(t) | X(l:tJ-x(!:t]. Yl l:t-ll-y|l:t- I]) 

- PROB( Y(t)=y(t) I X(t-l)-x(t-l).X(t)=x(t)) 

" Dx(l-I).«(l).y«l( 

and 

(6) PROB( X(t)-x(t) I X|l:t-l|-x|l:t-IJ) 

-PROB(X(l)«x(t) I X(l-I)=x(t-I)) 

ai>(i-i).«(i) 

This restriction to a Markov model is the fundamental assumption which allows the DRAGON 

system to be practical   In the Markov model the conditional proabilities depend only on X(l) and 

• 

< - - '■ ■ 
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X(l-I) and niH on ihc entire sequence X|I:T| as in equations (I) to (4) This specialization 

makes it possible to evaluate the desired eonditiunal probabilities by an indirect but eomputational- 

ly efficient procedure. 

The Markov assumption mi^ht be- paraphrased by saymj; that the conditional probabilities arc 

independent of context, but such a simple statemenl would be misleading. Since the slate space of 

the Markov process lor our speech recognition application has not yet been formulated, the 

assumption of the Markov properties should be regarded as a prescription to be followed in the 

formulation of the state space Specifically, two situations which differ in "relevant" context must 

be assigned two separate states in the stale space of the random variables X|I:T| Then all 

"relevant" context is included in the state space description, and the conditional probabilities arc- 

indeed independent of further context The fundamental assumption of the DRAGON system is 

that it is possible to meet this prescription and still have a state space of manageable si/c. 

Under the assumptions of equations (5) and (6) we have 

IT)  PROB( X|l s| = x|l:s| ) = PROB( X(l) = x(l) *", IJ%W „V 

(The a priori probability of a given intcnal state sequence is the product of the transition 

probabilities for all the transitions in the sequence.) To simplify, add a special extra state to the 

Markov process; let x(0) be this special state and define a,,,,,, = PMMM X(l)»j ). Similar 

conventions are assumed throughout Miis thesis, unless specifically mentioned otherwise.   I hen 

»1  PROU(X|ls| = x|ls|) = lli.lsa%(,.lMm 

Also 

(9) PROU(Y|l s| = y|l:s| | X| I s|.x| I :s| ) . Il.^b,,,.,,....^ 

(the model-defined probability of an external sequence, conditional on the internal sequence) 

where bi|(lljk is defined appropriately,  ("ombinmg (X) and (9J yields 

(10) PROW XI I :s| = x| I s|. Y| I :s|=y| I ;s| ) . If,,, .a,...,, „„b..,  „..„„... 
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(the joinl probability of an internal sequence and an external sequence as given by the Markov 

model). 

To make possible the efficient computation of the sums in equations (3) and (4), we introduce 

the probabilities of partial sequences of states and observations (|B8|| Using (2) with t-T-s and 

using (10), we can set 

(11) a(s.x(s)) - PRO»( X(s)-x(s). Y| 1 :si-yl I s)) 

^IM w***fm luwrbw D.KD.yd) 

where the sum is over all possible sequences x[l:s-l]. (This is ;ne joint probability of the partial 

external sequence, up to time s, and the event that the process is in state x(s) at time s.) Let 

(12) ß(sMs)) - PROB( X(s)-x(s). Yls+ 1 :T)-yls+1 :T) ) 

" 2,«t>4l:T|"l-t«I.Tai(i-l)j|0°«(l-l).«IO,y4l) 

where the sum is over all possible sequences xIs+I:TJ. (This is the joint probability of the partial 

external sequence from time s+1 to the end, and the event that the process is in stale x(s) at time 

s.) The benefit of introducing the functions o and ß is that the values of o(s,j) for a given s can be 

computed from the values of a(s- l.j). Similarly, ß for a given s can be computed from the values 

of ß for s+1. 

RECOGNITION EQUATIONS 

In fact 

(13) «(s.jJ-JXs-l.Oa.X,^, 

(because every scuucncc x|! :s| must have x(s-1 )-i for some i) 

and 

(14) /Hs.jJ-Z.Ws-H.Oa^b,,,,..,, 

Bu'. «(T,j) - PROB( X(T)-j( Y| I :T|-y| I :T) ) hence 

———M^a, 
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(15) PRüB(Y|l:'r|->|l.r|)-Vift(| j, 

Wc can compulc ihc cuiuliiional probabilily dislribution lor X(l) 

(16) PROB(X(l) = j | Y|l:T|-y|l:T)) 

- PROB( X(l)-j. Y| I :T|-yl I :T| )/PROB( Y| I H-y| I :T| ) 

-o(l.j)^(l.j)/i:in(T.i). 

In speech recognition problems, wc usually wanl lo know ihc particular sequence x| I :TJ which 

maximizes ihc j.,inl probabilily PROB( X| I ;T>x| I: r|. Y| I :T|-y| | :T| ). Again, ihe problem can 

be solved by inüuclion from partial sequences (|B9|).  Lei 

(17) y(l.j)-Maxilll_1|PROB(X|l:t-l|.x|l:t-l|.X(l)-j.Y|l:l|-y|l:i|) 

Then y may be computed by 

(IK) y(l.j)- Max.yd-I.Da,^,,,. 

Notice that equation (IK) is just like equation (1.1) except that Max has been subsiituled for i:. It 

is convenient to save "back-pointers" while compuling y. Ihcrefore. let l(t.j) be any value of i lor 

which the maximum is achieved in equation (IK) I hen a sequence x|l:T| for which 

PROB( X| I :T|-x| I :T). Y| I :T|.y| I :T| ) is maximized is obtained by 

(19) x(T) « j. where j is any index such that y( I .j) = Maxiy( I ,i) 

and 

(20) x(t) - Kt+I.xd+D).   i=|_|.T_2 2.1 

So far the analysis has assumed that the matrices A and » are fixed and known. However, if 

A and B are not known but must be estimated, then the n and /< computed above may be used to 

obtain a Bayesian a poMenan re-estimation of A and B. The matrix A is rc-estimated by 

.     A       2:i.ir_lPROB(X(t) = i.X(t+l) = j I Y|l:T|=y|l:T|. |ail|.|b,,J) 
(21) a, j ■   ' 

i:(.l).lPRC)B(X(t) = i | Y|l:l>y|l:l|. laj.lb^l ) 

MMMMMM 
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^....T-.-d.Da.jb^.^^C+l.j) 

2:i-i.T-(«(».'Wt.') 

The in>trix B is re-estimated by 

,w^        2.-i.T-.;y,.+l,..PROB(X(t)-i.X(t+l)-j| YlLtl-ylLTU^Ub.^l) 
(22) bUJl , Z       '"' 

2,. j.iPROB( X(t)-i, X(t+l)-j | Yll:T]-y(l:T). ja^J. ibjJk} ) 

2i-i.T-i;,(fii.il
a(l.')agbla^(t+«.J) 

2i-i.T-ia<t'')*gbij.,(.*i^(t+I.J) 

In fact it can be shown ((88)) that 

(23) PROB( YII:Tl-yIl:TJ | f^). j^j ) > PROB( YII:TJ-yIl:Tl | {aj. {b,^} ). 

Thus, each time the re-estimation equations (21) and (22* are used, new matrices are obtained 

suth that the estimated probability of the observations Y|l:TJ-yll:T) is non-decreasing. Since 

this estimated probability is a continuous function of the matrix entries (in fact, a polynomial with 

terms as given by equation (10) ). and since the matrix entries are constrained to a compact scl 

(because the entries arc non-negative and the row sums are I), this estimated probability must 

converge for any sequence of matrices obtained by repeated use of the re-estimation equations 

Hence ine re-estimation given by equations (21) and (22) may be used repeatedly in an attempt to 

obtain ja^l and \b,4X\ which maximize PROB( Y(l:TJ-yll:T] | {aj, |bj4ll| ). Thus we can 

obtain an approximation to maximum likelihood estimates for {a; } and {bj J. 

In re-estimating the matrices A and B. the special structure of the speech recognition problem 

can be used to good advantage. Although it is convenient to use a single integrated model for the 

actual analysis and recognition of utterances, the re-estimation of the structural matrices can be 

performed separately for each of the levels in the hierarchy. Also note that any entry in A or B 

which is zero remains zero in the re-estimations of equations (21) and (22). Therefore we are able 

to maintain Mid utilize the sparseness of these matrices in the re-cstimation process. 

-   ■ -.■...■■ . .   .^J____^_^MM.^^^ti 
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INTRODUCriüN 

Each of the knowledge sources in a speech MMpMM sysiem can k- rcpresenlcd in Icrms of 

the general model of ChapCer II. The lolal hierarchical sysiem also fits such a model, and il is the 

iota! sysiem lo which the estimalion procedures of Chapter II arc applied. This chapter explains 

the rcpresematiun of knowledge from each of the sources and their inlcgralion into the hierarchy. 

REPRESENTATION OF ACOUSTIC-PHONETIC KNOWLEDGE 

riiere are several choices as to how to represent acoustic-phonetic knowledge. A decision 

must be made whether acoustic observaiions should be prcprocesscd by specialized procedures or 

whether the stochastic m.nlcl should cVal directly with the acoustic parameters The representa- 

tion problem is easier assuming speciali/vd preprocessing, so consider this case first. 

Assu.ne that at each time i ( I < t < T ). an acoustic observation is made. Each such 

observation consists of a vector of values of a set of acoustic parameters, which m the stochastic 

model is represented by a vector-valued random variable Y(t). There is a sequence of phones 

FUJI which is pr.Kluced during the time interval I < t < T Assume that the phones occupy 

disjoint segments of time; that is. assume there is a sequence s0 < s, < s, < s, < ... < Sj such that 

P(j) lasts from observation Y(sM) through observation Y(s - I).  (Set s, = I, s  = T.) 

Let p|l:J| be the actual sequence of phones in an utterance and let y|l:T| be the actual 

observed sequence of acoustic parameters. For convenience, also introduce a special initialization 

phone p(()) which is assigned a special value to allow the initial probabilities (o have the same form 

as the transition probabiliiies later in the sequence.  Since the actual times s,. s,. s, s,., are not 

known, it is necessary lo associate each arhitrury segment of lime with some phone. For each pair 

of times t, and t: lei «1,4,1 be that value of j lor which the expression tMin^.i^-Maxts ,.1,)) is 

maximized. (That is. we associate with the pair !. and I, the index of the phone segment which has 

the greatest interval in common with the interval from l, to tj.) If t, < I. then set S(l .t ) - 0. 

I he acoustic preprocessor tries lo estimate a phonetic Uanscriplion from the acoustics alone. 

Hy looking lor discontinuities or rapid changes in the acoustic parameters, the preprocessor divides 
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the sequence up into K phone-like segments Yll.l.-IJ. Ylt.Uj-l). Vll^tj-IJ Ylt     :t -IJ. 

Then an attempt is made to classify each segment YU^.^-IJ using some form of pattern 

recognüion procedure. Let t,, < t, < ^ < ... < tK be the segment boundary times as decided by the 

preprocessor and introduce the random variable D(t) which is I if there exists a k such that tk - t 

and is 0 otherwise. Let F(k) be the label assigned by the preprocessor to the segment 

VK.,:^-1 ]. (For completeness, set tk - t,, - I for k < 0. and lk - lK - T for k > K.) 

With some pattern matching procedures it is possible to directly estimate conditional probabil- 

ities. When using such a procedure, let 

(1) B(p.k)-PROB(Y|tk.l:t11-IJ-y(tli_1:tli-lJ j PWt^.iJ.p ) 

(the probability that segment k corresponds to phone p as estimated by the pattern matching 

procedure). On the other hand, the pattern matching procedure might yield only a label F(k) 

representing a best guess as to the underlying phone. In such a case, it is necessary to estimate the 

conditional probabilities from statistics of performance of the pattern matcher on hand-labeled 

data. Let f|l:K) represent the actual sequence of labels generated by the pattern recognizer for 

the utterance being considered. Then set 

(2) B(p.k) - PROB( F(k)-f(k) | P(S(tk_l.tll))-p ). 

(The probability that segment k corresponds to phone p is estimated as the probability that a 

segment labeled f(k) corresponds to phone p.) where the conditional probability is estimated by 

the frequency of such events in a set of training utterances. 

In addition to estimating the probability of substitutions or confusions, it is necessary to 

estimate the probability of the preprocessor producing either too many or loo few segments. The 

probability of such events may be estimated from their frequency of occurrence in a set of training 

utterances. Lei 

(3) E(pl.p2.n)-PROB(D(lk.2)-D(lk.))-D(tk)-l.D|lk.2+l:.k.1-|)-0. DUll.1 + l:tk-l)-0 | 

PW^V,))-?,. PWl^.t^-p,. S(tk.l.lk)-S(tk.2.lk.|)+n ). 

— --  ■   ■  - M^^MBMMUMIM  J 
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(The probabilily lhai ihc segmcnier finds one boundary between a seamen corrcsrn.nding lo 

phone p, and a siTmcni corresponding to phone p2. given that the phones are actually n positions 

apart in the sequence of phones.) If the acoustic preprocessor is reliable, then ECp.^.n) should be 

small <cept for n-l and should be negligible for n>2 In an implementation of the DRAGON 

system which uses an acoustic preprocessor, it has arbitrarily been assumed that l^p.^.n) » 0 for 

n>4. Note that Etp.^.u) is undefined and meaningless unless p, » p . 

We can now estimate the conditional probability of the sequence Y|I:T) given the sequence 

(4) PROB(Yll:T|-y|l:T| | P|0:J|-p(0:ll ) 

- z«li KU(M.jB(P<z(IO).IOE(p(z(k-l)).p(z(k)).n(k)). 

where z(k) ■ S^.^nti) and the sum is taken over all sequences n| l:K| such that z(K) ■ J.   (By 

convention z(0) - 0.) I his equation is a special case of equation (9) of Chapter 11. 

In order to apply the theory of a probabilistic function of a Markov process, it ,s necessary to 

specify the transition probabilities for the phone sequence P|I:J|, h is the task of the other 

sources of knowledge to specify these probabilities. Phonological rules may be represented either 

directly or indirectly in the estimates of E(p1.p2.n) and B(p.k). but all higher levels of the hierarchy 

deal only with the sequence P|I:J) and are insulated from the acoustics Y|I:T| or the labels 

HI:K|. 

Even if no special preprocessing is assumed, it is not difficult lo represent the acoustic- 

phonetic knowledge, but there is a penalty of extra compulation. Direct estimation of the 

conditional prohabili.y PROBf Y( I :T| = y| l:T| | P| I :J|.p| I :J| ) is similar lo the problem of 

machine-aided segmenlaiion and labcling(|B2|). Similar algorithms have also been used for 

WTd-spotting in continuous speech (|B4|, |BII|) and for isolated word recognition (|ll|). The 

essential idea is an elastic change of the lime scale lo optimally match a sequence of acoustic 

observations lo a sequence ol prototypes. 
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.nom- To rclalc Ihc phones lo ihc acouslic ..bscrvaiions requires knowledpe ofihe acoustic pher 

ena which arc cxpec.cd wi.h each phone. In line with .he probabilistic approach, each phone is 

assumed to be associated with a stochastic process which produces acoustic parameter values for 

each instance of the phone The statistical properties of the stochastic process associated with any 

particular phone are to be estimated from occurrences of the phone in a set of training utterances 

which have already been segmented and labeled. 

Each acoustic observation is lo take a value from a finite set D   Assume that for each phone p 

there is a positive-integer-valued random variable Zp and a family of random variables X (1) 

X,(2). XpO) Xp(Zn) with values in D.  Let fpB be the conditional probability function 

(5) fp.n(x(l).x(2).x(3) x(n)) - PROB( Xp| l:n|-x(l:n) | Zp-n ) 

Let gp(n) - PROB( Zp-n ). The interpretation is that Zp is the duration of an instance of phone p 

and X,,! I :zpJ are the acouslic observations made during that instance of p. 

Let y| I :T| be the sequence of observations made for the utterance being analyzed. Let p| I :i) 

be the sequence of phones in the utterance. Let U| I :J| be the sequence of boundary times for the 

phones. That is. U(l) < U(2) < U(3) < < U(J) and. for each j. P(i) lasts from observation 

Y'U(j- I)) to observation YCUij)- I). Suppose a set of ohservalions Y| 1 :T| and limes U| I J | arc 

produced by applying in succession the stochastic processes for each of the phones P( I) through 

P(J) and concatenating the observations, the individual processes being independent. Then the 

probability of producing the observed sequence is 

(6) PROB(Y|l:T|-y|l:T|.U|l J| = u|l:J| | P| I :k| = P| I :J| ) 

" ,,i-u(f
Ix)i.u()1.l„1-i(<)lu<J-n:u(j)-l|)gi)()|(u(j)-u(j-l))). 

The segmentation ami labeling problem consists of finding the correct set of values for the 

sequence U|I:J|. Representing the acoustic-phonetic knowledge in a s|Kech recognition system is 

similar, except the transitions among the phones arc determined by probabilities specified by other 

sources of knowledge rather than being a known sequence 

Note that our HIIKICI IS such that lor a given k and ii|k J| wc can evaluale 

MMM 
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(K) PROB(V|u(k):T|-y|u(k):r|.U|k:J|-u|k:J| | Pj l:J|-p| l:J| ) 

" ,,i-k*ij(rwii.uii.-u.l-i.(yluO-1):u(i)-1l)j:p,))(u(j)-u(j-1))), 

that is. the probability docs not depend on U(i:k-11 The process is an example of a probabilistic 

function of a Markov process with the vector (k.U(k)) being the stale variable of the Markov 

process. The problem of machine-aided labeling can be solved by the techniques of Chapter II. 

Introduce the function 

(9) Y.O.O-Max^.^^PRQBfVlrt-ll-yll-H.UII.jl-ulliJl | P| I.JJ-p| I.JJ ) ). 

That is. y.O.t) is the probability of the best sequence leading up to the state (j.t). The function y, 

may be calculated according to equation (18) of Chapter II. Thus 

(10) y.lj.t) - Maxk( Y.lj-l.l-k)fWj)k(y|t-k:t-l))gp4i|(k) ). 

Let K(j.t) be any value of k for which this maximum is achieved Then after y, and K(j.t) hjvc 

been calculated for all j and t. the best sequence u| I :J| is obtained by 

(11) u(j)-u(j+l) - K(j+I.u(j+I)) 

where u(J) = T. 

If we arc will.ng to assume that Xp( 1). Xp(2). Xp(3) %,&,) are indepemlcnt and mdenti- 

cally distributed and that 

(12) gp(n) - (I -a)an , lor some a iiulcpendcnt of p, 

then an even simpler computation is possible. It is not claimed that these additional assumptions 

are realistic (the acoustic properties of real phones arc much more complicated). However, they 

do produce reasonable results with a great savings in computation. 

The extra assumptions allow us to ignore the durations of the phones by factoring out a factor 

which is the same for all sequences u| l:J|. namely the factor (l-a)JaT. Lefs reformulate the 

Markov process, ignoring duration information. Let the state (j.t) correspond to the event U(j- I) 

< l < U(j) with U(i- I) otherwise- unrestricted (time t occurs during phone P(j)).   Let y.lj.t) be 

■- ■ ■ 
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Ihc probability fur the best sequence leading up to the state (j.t) and producing the sequence 

y| I :t|. Then y, m:iy be calculated by 

(13) y2(i.O - Max( Yj(j-I.t-I), Y2(j.t-I) )PROB( Xp()(.y(t) ). 

Then the sequence u| I :J| may be calculated by 

(14) u(k) ■ (the greatest integer value of t 

such that t < u(j+ I) and y2(j- I .t-1) > y2(i,t- I) ). 

In machine-aided labeling it is only necessary to consider a single sequence p| I :J|. In a speech 

recognition problem, we wish to maximize not only over all possible sequences u| I ;J) but also over 

all possible phonetic sequences p(l:J|, subject to the transition probabilities determined by the 

higher levels of the hierarchy The computation of a function like yl or y1 is not performed 

separately at the acoustic level, but is performed on a Markov process representing the integrated 

hierarchy. 

REPRESENTATION OF LEXICAL KNOWLEDGE AND PHONOLOGICAL RULES 

This section discusses the compulation of the conditional probabili'y PROB( P| l:J|=p| |:JJ | 

W| l:l)«w(l:l| ) where W| l:l| is the sequence of words in the utterance and P| l:J| is the sequence 

of phones. Each word is represented by an abstract network to which we may apply the rc- 

estimation procedure of equations (21) and (^2) of chapter 11. The prototype word network 

consists of several columns of nodes (to simplify the discussion, assume that there are exactly two 

nodes per column) with each node connected to itself and to every node in its column and in the 

two following columns Such a network is shown in ligure I, where only the arcs leaving from one- 

particular node have been shown. 

If each node corresponds to a phone, then an arc which stays in the same column represents 

insertion of an extra segment At this level we arc primarily interested in representing insertions 

(and other phonological phenomena) made by the speaker, but as already mentioned tnerc is 

always a choice between representing a given phenomenon at this level (where word-level rontext 

-   -      — 
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GENERAL WORD PROTOTYPE 

FIGURE I 

is known) or al ihc acoustic-phonetic level (where only one phone of context is known).  An arc 

which skips a column rcpre-jents a missed or deleted segment. 

Let Y(t) be the phone which occurs at time t. Note that in this hierarchical system, the 

sequence which is the (unobserved) internal sequence at one level is the external sequence for the 

next higher level. Whether the acoustic level assumes a preprocessor or not. this next level 

assumes as its external sequence a sequence of phones (except there are several phenomena which 

could be represented at cither level). Let X(t) - (X.U). X2(t)) be the internal state in our abstract 

word model, where 

• < X^t) < C. X^t) me column number at lime t 

I < X2(t) < R, X2(t) = row number at time t 

where C is the number of columns in the abstract model and R is the number of rows, lor the 

purpose of th.s discussion, wc lake C fixed at the number of phonemes in the canonical version of 

the word (stored in a dictionary) and lake R fixed al 2. Various values of C and R can be used and 

tested agains! the actual data. 

This abstract network with the asso.:ialed conditional probabilities represents the probability 

distribution of possible pronunciations of the word. Wc assume that the phonetic sequences 

corresponding to instances of ihc word are generated b   a Markov process. Let 

(t5) A((cl.rl).(c2.r2)) = PROB(X(t)=(c2.r2) j X(t-l)-(cl.rl) ) 

  --- 
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(16) B( (c.r).p ) . PROü( Y(t)«p | X(0-(c.r) ) 

If we arc given a collcciion of instances of a particular word W. and have estimates for A and B. 

we can use equations (21) and (22) to re-estimale A and B for the word W Phonological rules 

which produce extra segments or deleted segments are represented by A and substitutions are 

represented by B Phonological rules which apply across word boundaries can be represented by 

having several extra states at the beginning and end of each word and having the initial piobability 

distribution depend on the context. 

Several variations of this lexical model are a'so worth considering If the acoustic level 

estimates not just the phones but the transemes (pairs of phones as estimated by the acoustic 

transition between them, as in the ARCS and IBM-Watson systems) then the lexical level should 

have the distribution of Y(t) depend not just on X(t) but also on X(t- I) It is possible to integrate 

the acoustic and lexical levels and directly re-estimate the representation of a word in terms of the 

acoustic parameters This approach is being followed by Bakis Another approach is to obtain a 

network 'cpresenting the possible pronunciations of a word by applying a list of phonological rules 

written as production rules and applied to a bascform representat.on of the word Automatic 

procedures for applying such a list of rules for the purpose ol speech recognition systems have 

been developed by Cohen and Mercer|CT | and by Barnelt|B5| 

The explicit representation of phonological rules in the network is easily achieved at an 

expense of doubling or tripling the number of nodes in the network However, it is not essential 

that an exhaustive set of phonological rules be used In fact, the implementation of the DRAGON 

system described in Chapter IV has no explicit phonological rules and only one canonical pronun- 

iation for each word The reason that this representation is possible is that any phonological 

phenomena which arc not introduced explicitly will be treated at the acoustic-phonetic level. Thus 

phonological substitutions can be mimicked by adjusting tin probabilities in the Ü and E 

(equations (I). (2). and (3)) which represent the probabilities of substitutions and insertions and 

deletions at the acoustic level The disadvantage of this approach is that .he matrices represent 

less context than is available in the explicit representation of the phonological rules at the lexical 

level. 
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rhcre is a Ncrciidip.UHiN hcncfil in usini; ihc malnccs H ami B U. rcprcscnl aouslk-phonclic 

knowledge indcpentlcmly from Hie rcprcscnlaiion of «he phonolojiical rules If ihe matrices B and 

I. arc esiimalcd by runmn): Ihe acoustic prepfoccssor on a colleclion of training utterances, then 

any phonotopcal rules which are left out in the prepared labeling of the training utterances arc 

automatically absorbed int. he estimates of B and E. Thu. a perfect hand-labeled transcription of 

the tram.ng utterances is not only unnecessary, bjt undesirable. The best labeling for training 

purposes is an automatically generated labeling from a procedure knowing the sequence of words 

and having exactly the sann; lexical knowledge and phonological rules as the speech recognition 

system. 

REPRESENTATION Ol SYNTACTIC AND SEMANTIC KNOWLEDGE 

In building the iniegratcd network, the lexical and phonological rule procedures take as input a 

network representation of the syntax and semantics in which each node of the network represents 

a word It is clear that any regular (finite state) grammar can be represented by a finite network. 

In a speech recognition system the distinction between a regular grammar and an arbitrary 

context-free or context-dependent grammar is somewhat artificial. Consider the language 

generated by a particular grammar, not the sequence of words, but the sequence of acoustic events. 

It is not unreasonable to assume, for example, that the entries in the acouslic-phoncllc matrix 

B(p.k) arc all non-/ero, although perhaps very small Such a result would automatically be the 

case with pattern recognition based on a povenon probabilitities if Ihe conditional probability 

distributions for the acoustic parameters arc multi-variate normal disiribulions. 

But | each entry in H(p.k) is non-/ero. then at Ihe acoustic level Ihc language imisl include all 

possible sequences Such a language can. of course, be represented by a finite network grammar. 

Thus Ihe issue hecomes not „ne of generating Ihe proper language, hut rather one of accurately 

modeling the conditional probabilities. The conditional probabilities may be context-dependent 

even for a language generated by a context-free grammar The approach which has been used in 

the DRA(;ON system has been to enlarge the finite grammar to allow the conditional probabilities 

Hi he more accurately represented, but not to try to retain all of Ihe conlexl of Ihe aelual language. 
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Tlic properties ol prohubilislie grammars have been sludied by several invesligalurs (|BIO|. 

IC1), |F3I. 1C2), |lil |. |SI|, |S2|. |T4|). A probabilislic finile stale grammar is a special case of a 

probabilistic function of a Markov process in which the entries in the matrix {b, J of equation (5) 

of Chaplcr II afe all zeros or ones (only the transitions are probabilistic). Thus such a grammar 

can be immediately represented in terms of our general model. However, there is still the problem 

of estimating the transition probabilities. 

The general abstract model is not as well suited to representing semantic knowledge as it is to 

representing the other sources of knowledge which have been discussed. In the implementation 

described in Chapter IV. there 'MS been no attempt to represent semantic knowledge. In fact, an 

argument could i->c made that, since there is no process corresponding to understanding the 

sentence, whatever knowledge is represented by the abstract stochastic model is of necessity not 

semantic knowledge. However, it should be noted that it is not necessary for the stochastic model 

to directly represent the semantic knowledge itself, but rather it is necessary for the model to 

represent the influence of the ..emantic knowledge on the probability distributions of possible 

sequences of words. 

For example, it is possible to have a specialized task-specific module which is capable of 

understanding the utterances of a given task and which is capable of representing the set of 

utterances which are possible in a given context. The HtARSAY speech understanding system 

employs such a mechanism for the VOICE CHESS task. The task is to recognize chess moves that 

are spoken by a user who is playing a game of chess against the computer. The system has a 

separate module consisting of a chess playing program. I ECU. Not only does the TECH program 

play chess with the user, but when it is the user's turn to move. TECH lists for the recognition 

system all moves which are possible in the v.iven position and even rales the moves Thus the 

TECH program provides semantic guidance for the recognition system A similar mechanism may 

be used to obtain semantic knowledge for the DRAGON system. Or.ce the list of legal moves is 

obtained and rated, this information may be used in selling the transition probabilities for the 

probabilistic grammar 1 he fine details may be lost, but much of the information will be represent- 

ed, the quality of the representation depending on the complexity of the grammar. 
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There is even a mcehanwm by wh.eh ihc Mochaslic m.Klel can «bia.n some semanlie informa- 

lion wiihout a spcciali/cd module. Consider ihe jsoal of mimickinj. a human bcinj; wh«. is iryinji lo 

guess the next word in an utterance when given some limif :d amount of context. This person, who 

is capable of understanding the utterance, could use whatever semantic knowledge is available 

from the limited context. In this situation the semantic knowledge is more limited than that wh.ch 

is used by the TECH program, which knows the entire sequence of previous moves and hence the 

current board position, but it is still of value lo the speech recognition system. The problem of 

obtaining the slat.stics for ih.s type of semantic knowledge is part of the general problem of 

estimating the transition probabilities for a probabilistic grammar 

The transition probabilities for the grammar network can be estimated from statistics for a set 

of training sentences A large set of training sentences should be used, but they only need to be 

transcribed orthographically. not phonetically, at this level of the hierarchy. If Bayesian statistics 

arc used, the a pnon probabilities could be set to achieve the same effect as a non-probabilistic 

use of the grammar The a pouenon probabilities would then be a strict improvement (as judged 

by performance on (he training sentences). 

To the extent to which the statistics of the trainmp sentences reflect the true probabilities for 

spontaneous utterances for the specific task, the probability nctw< rk represents not only .he- 

syntax of the task but also all of the predictive information which can be obtained from the 

semantics of the available context That is. if the true probabilities were known, the probability 

network would be an optimal predictor for a given amount of context, and therefore would predict 

at least as well as a human who is given .he same amount of context and who presumably is 

capable of understanding the sentence (although the ..«ntext ... th.s case is not necessarily the 

whole sentence). 

Inter-sentence semantics can also be- introduced into the probability network One way lo use 

mter-scntence semantics .s to employ a user m.Klel Suppose there is a nMKlel for the user in a 

particular task such that the the model gives probabilities for the user transitioning among a finite 

number of states depending on the types of utterances which the user has made Conceptually this 

n..Hlel f.ts m easily as an extra level ..I the Markov hierarchy    Computationally .. reijuires that 
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condicional probabiliucs be- cs.ima.cd separately for each user sla.e. A user model is especially 

valuable if certain key sciences trigger user transitions w.th probabtlity one and if for each user 

state only a small subset of the general grammar is used. Then there is a savings in both the 

computation and the storage requirements. 

SUMMARY 

Each of the major sources of knowledge in a speech recognition system can be represented as 

a stochastic process (usually in more than one way).  In speech recognition each knowledge source 

involves an idealized process X(l). X(2). X(3) X(T) which is not observed and a process 

V(,)• ^^ Y(3) Y(T) dcpC,U,in8 on the X P^css.  The Y process is either directly observed 

or is inferred from lower level knowledge sources in the speech recognition system.   Such a dual 

process can be modeled as a probabilistic function of a Markov 

such a model is used for each of the knowledge sources. 

process.   In the DRAGON system 

The speech recognition knowledge sources fit into a hierarchy such that the integrated syste m 

also is a probabilistic function of a Markov 
process    Such a simple general model for speech 

recognition perm.ts a recognition program which is Just a simple implementation of general 

network search algonthms    Such an .mplementation of the DRAGON system is described in 

Chapter IV. 
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INTRODUCTION 

In Chapter II. .he general properlies of a probabilistic funcl.on of a Markov process were 

ducMssed Chapter III explained some of the ways in which the knowledge source, of. continuous 

speech recognition system can be represented by such a model. This chapter describes an 

implementation of a complete speech recognition system based on these models. This implementa- 

tion is intended as a preliminary sys,em demonstrating the practicality of building a complete 

system based entirely on the abstract Markov model. It is not intended as a final system demon- 

strating the full power of the techniques described here. Each knowledge source is given a 

simplified representation, and the probabilities in the networks are estimated a pnon rather than 

by any automatic re-estimation procedure. 

The system is simple, but it is a complete speech recognition system. Starting with knowledge 

represented in conventional forms-a context-free grammar, a phonetic dictionary, an arbitrary set 

of acoustic parameters-there is a set of programs for constructing the integrated Markov model, 

and a general recognition program which can recognize speech for any task based on the mtegrated 

network which has been constructed by the other programs There is some training which is 

dependent on the talker and on the set of acousuc paramters. but which is independent of the task. 

This training is done by selecting by hand a set of prototypes for the acoustic segments from a set 

of utterances by the talker for whom the system is to be trained. 

This implementation of the DRAGON system consists of five programs: MAKDIC. 

MAKGRM. MAKNF.T. GETPRB. and DRAGON For each program, a brief desciption will be 

given of what is does and of how it does it. The system has been tested on a set of 102 utterances 

with about 20 utterances from each of 5 interactive computer tasks The 5 tasks are VOICE 

CHESS (the user speaks his moves while playing chess against the computer). DOCTOR (the user 

asks medical questions and the computer simulates a patient). DESK CALCULATOR (the 

computer acts as a desk calculator lor spoken commands). NEWS (the computer gives the current 

news stories whose subjects match a spoken specification), and EORMANT (the computei 

generates various kinds of graphic displays of speech data, according to spoken requests). The 

grammars for thcsi 5 tasks arc given in Appendix U, some sample utterances in Appendix E. 

^^MH^MM 
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MAKDIC 

MAKDIC reads a phonetic dictionary and writes a file describing a network representation fo 

each word in the dictionary. It is this program which would contain any knowledge of within-word 

phonological rules. Actually, the current implementation of DRAGON does not use any explicit 

phonological rules, so the output of MAKDIC is just a one-to-one translation of the phonetic 

dictionary. Each word is represented by a linear network with each node connected to itself and to 

the following node. 

A phonetic dictionary including all the words for the 5 tasks is given in Appendix A.   The 

dictionary is written at a very broad phonetic level and has been edited by hand to break up 

dipthongs and stops into acoust.c segments.  Certain groups of phones which were distinct in the 

original dictionary were replaced by a single symbol for each group. This grouping was performed 

j when the phones within a group were practically indistinguishable under the acoustic parameteri- 

j zation used in this implementation.   The hand editing was designed to achieve an effect like the 

lexical model of equations (111.15) and (111.16) of Chapter III. with C-l. 

The list of acoustic segment types which appear in the dictionary is given in Table I. A 

section of the dictionary is shown in Table 2. The complete dictionary is Appendix A. A flow- 

chart of the MAKDIC program is shown in Figure 3. and a section of its output file is shown in 

Table 4. In this implementation, since no phonological rules arc applied, the MAKDIC program 

just goes through the dictionary word-by-word and goes through each word phone-by-phone. 

The section of output shown in Table 4 is interpreted as follows. 251 is the index of the word 

"with" in the dictionary. 4 is the number of phonetic segments in the word. For each of the 4 

phonetic segments there are two lines. The first 1 in line 2 is the index of the current phonetic 

segment within the word. 0 is the internal code for this segment type. "-". The next I indicates 

Ihe number of arcs leading to this node from nodes other than .self. 0 is the probability of this 

node being skipped. 900 indicates that the probability of the arc from this node to itself is .900. 

(AH probabilities are multiplied by 1000 and truncated to integers.) Next follows a list of all the 

node, (other than the node itself) with arcs leading to the current node (in each case there is only 

one).   The 0 in line 3 is the index with.n the word of the node which has an arc leading to the 

■ -      - 
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ACOUSTIC MJOMHtrr l.AULLS 
silence, pause, voice-bar 

AX (A)ROLn 
B A(B)OUT (release-aspiration portion) 
AH N(U)MBNtSS 
T (T)ELL (release-aspiration portion) 
AE ll(A)MMING 
S (S)EVEN.(Z)ERO 
L (L)ET 
UW D(0) 
F (DEVER. WI(TH) 
ER (R)OOK. FEV(ER) 
EH L(E)T 
IH K(I)NG 
D (DliV'IDE (release-aspiration portion) 
P (P)AWN (release-aspiration portion) 
N (N)INF. 
AO P(AW)N 
AA (O)CTAL 
M (M)UMPS 
SH BI(SH)OP. MEA(S)URE 
K (K)ING (release-aspiration portion) 
IY OU(EE)N 
NX KI(NG) 
G (G)IVE (release-aspiration portion) 
Y (Y)OU 
V FI(V)E 
W (W)E 
OW 7.ER(0) 

WH (OU)EEN (release-aspiration and devoiced semi-vowel) 
HH (H)AMMING 
UH R(00)K 

TABLE I 

SECTION OE DICTIONARY 

WITH - W IH F 
USING - Y UW S IH NX 
HAMMING - HH AE M IH NX 
HANNING -HHAENIHNX 
BLACKWEI.l -BLAE-KWEHL 
RECTANGUI AK- IR EH - K - T EH III N - G Y UW L AA ER 
TRIANGULAR - T ER AA IH EH IH N - G Y UW L AA ER 
FREOUI NCY - E ER IY - K W EH N - S IY 
BANDWIDTH - B AE N - D W IH - D F 
CENTER - S EH N - T ER 
CUTOFF - K All - T AO F 
LOW _ L OW 
PASS - P AE S 
HIGH - HH AA IH 

TABLE 2 

current node   The 100 indicates that the probability of rollowin): this arc is .100   The remaining 
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MAKUIC 

1 
Do for WRDNUM« i to (number of words in 
dictionary) 

Read entry from phonetic dictionary 

Output a line giving current word and number 
of phones in current word 

i 
Do for PHNNIJM = I to (number of phones 
in word) 

Output a line; 
(PHNNUM)   (PHNCODE)    1    (SKIPPRB) 
(REPEATPRB) 

I 
Output: 
(PHNNUM-1) (I O-REPEATPRB) 

i 
End of word? 

NO 

YES 

End of dictionary? 

NO 

i, YES 

FIGURE 3 

phonetic segments arc represented similarly. 

■   - - 
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SCCI ION OF DICHONARY NLTWORK LISTING 

251   WITH 4 

1 0 -   I  0 9()ü 

0 100 

2 16 W  I  0 900 

1 100 

3 28 IH   I  0 900 

2 100 

4 7 F  I  0 900 

3 100 

TABLE 4 

MAKGRM 

MAKGRM reads a coniexl-frcc grammar specified by a BNF rcpresenla.ion and wriics a 

nciwork representation of a related fmite-stale grammar. In the current implementation each 

appearance of a terminal symbol in the BNF is represented by a separate node in the network, but 

all appearances of each non-terminal symbol are linked together. This linking implies a loss of 

context. For tho tasks for which this implementation of the DRAGON system has been used, the 

original BNF grammars have been hand edited so that any non-terminal symbol wh.ch appeared in 

two contexts which were important to keep distinct was replaced by two distinct non-terminal 

symbols. A limited expansion of this type could have been performed by the MAKGRM program 

itself, but since it was a one-time task, it was done by hand instead. 

An example of an expansion of a non-terminal symbol is the symbol <piece> in the VOICE 

CHESS grammar (Appendix B,. The symbol <piece> name, the piece taking the action. 

<p.eccb> is par. of the location for that piece. <piecec> is a piece being captured, and <pieeed> 

^■B 
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is eilhcr part of the localion lo which a piece is moving or part of the location on which a piece is 

being captured. 

Note that if cither the left contexts or the right contexts are identical f. • two uses of the same 

non-terminal, then the uses do not need to be distinguished. If the left contexts are identical, then 

there is no context information to be remembered. If the right contexts are identical, then the left 

context information does not influence the interpretation of the rest of the sentence. Note that 

<pieced> has two different uses in the CHESS grammar, with different left contexts, but identical 

right contexts. 

The current version of MAKGRM performs a straight-forward translation of the BNF. Each 

production is represented by a simple linear network. All the productions with a particular left 

hand side arc linked together with a dummy node at each end. These dummy nodes are then 

linked to any nodes in the grammar which represent uses of the non-terminal symbol that is the left 

hand side of these productions. A part of the FORM ANT grammar is shown in Figure 5. Figure 6 

shows the network in which each production has been represented by a simple linear network. 

Figure 7 shows the network after the initial and final nodes for each non-terminal symbol have 

been linked to the uses of that non-terminal. A flowchart for MAKGRM is given in Figure 8. 

BNF GRAMMAR 

<phr>::« <spec> 

<phr><spec> 

<spcc>::- A <wind> WINDOW OF <num> POINTS 

<num> COEFFICIENTS 

FILE NUMBER <num> 

UTTERANCE NUMBER <num> 

FIGURE 5 
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PARTIALLY CONNECTED NETWORK 

<phr>::- <spcc> 

<phr> — ■* <spcc> 

<spec>: A —^ <wind> —* W!NDOW --* OF —- <nuni> - 

<num> -—► COEFFICIENTS 

FILE—* NUMBER —- <num> 

UTTERANCE —• NUMBER —* <nuni> 

* POINTS 

FIGURE 6 

SECTION OF GRAMMAR NETWl 

FILE —-► NUMBER —-/<num>- *y| 

U1TERANCE —. NUMBER -V<nuin> 

FIGURE 7 

■■ - - 
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MAKGRM 

i 
Read BNF grammar to find all non-terminal 
symbols 

\y 

SetNODENUM=l 

Read one line of BNF grammar 

i 
If line begins with a non-terminal symbol fol- 
lowed by ::= then 
1) Set up final node for previous left-hand 
side. Set NODENUM=:NODENUM-»-1 
2) Set up initial nod-j for current left-hand 
side. Set NODENUM = NODENUM+l, 

Predecessor of current node is set to be initial 
node of current left-hand side. 

Scan input line to get next symbol 

I 
If symbol is enclosed in brackets <> (it is a 
non-terminal) then 
1) Mark current node as non-terminal 
2) Find symbol in list of non-terminals; set 
SYMNUM to the index of the symbol in the 
list. 

3) NODENUM-NODENUM+I 

1 
FIGURE K 

J 
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MAKGRM(cum.) 

1 

Otherwise symbol is a terminal symbol then 
1) Mark node as a terminal. 
2) Find symbol in lexicon; set SYMNUM to 
index of word in lexicon. 
3) NODENUM-NODENUM + I 

End of line? 
if yes then mark last node as the end of a 
production. 

NO 

->2 

YES 

NO 

E^d of grammar? * 3 

YES 

Do for NODENUM-I to (number of nodes 
which have been creates) 

i* 
If current node is the initial node for a non- 
terminal symbol, then introduce an arc into 
the network connecting each node represent- 
ing a use of this non-terminal with this initial 
node. 

If current node is the final node for a non- 
terminal, then introduce an arc connectin 
each node which ends a prouuetion for this 
non-terminal with this final IMKJC. 

FIGURE K (com.) 

  ^  . _ 
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MAKGRM(conl ) 

4 

If predecessor of current node is a non- 
terminal, then connect final node for that 
non-terminal with current node. 

I 
Last node? 

YLS 

Output a representation of the network. 

i 

NO 

-5»   5 

FIGURE « 

MAKNET 

MAKNFT takes as input a network representation of a grammar (produced by MAKGRM) 

and a network representation of the dictionary (produced by MAKDIC). It produces an integrat- 

ed network by substituting the appropriate word network for each node in the grammar network. 

Phonological rules which apply across word boundaries could be used to adjust the network after 

the substitution. 

MAKDIC, MAKGRM. and MAkV I must keep track of the transition probabililv associated 

with each arc of the network. At present simple default values are used. MAKDIC assigns a 

probability of .9 to any arc leading from a node back to itself, and I for any arc leading to the 

next node. This corresponds to acoustic parameters sampled once every 10 milliseconds, with no 

presegmentation, and an average phone duration of KM) milliseconds, based on the acoustic- 

phonetic model of eqations (III 12». (Ill 13), and (III 14). 

The complete input and output for MAKGRM and MAKNET is shown for a simple language 

in Appendix C. First the simple BNF grammar is given Next the output file of MAKGRM is 

shown.  Consider the productions with the non-terminal symbol <:i>.-iest> as the left-hand side 
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MAKNET 

; 

Read network dictionary 

Read grammar network 

Do for NODLNUM-I to (number of nodes 
in grammar network) 

Replace node with ihe word network for the 
word associated with this node. If this is an 
initial or final node for a non-terminal, use a 
special network consisting only of a word- 
boundary marker. 

I NO 

Last node? 

YES 

Output a representation of the network 

I 
riGURE 9 

The sub-network for these productions begins with the line "<rcqucsl>::- 6 -2 I." The 6 is 

the node number for this node, which is the special initial node for this left-hand side. -2 

indicates that this node is associated with the second non-terminal symbol. I indicates that this 

node has only I arc leading to it. (In this implementation, each arc is listed with the node to which 

the arc points and transition probabilities are given conditional on the slate after the transition, 

rather than in the conventional form presented in Chapter II. This form has been chosen for the 

convemence of l.V implementation, the two theoretical models arc equivalent.) 2 (on the next line) 

--   - —-* 
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is Ihe node number of ihc node wiih an arc leading to the current node, and 1000 indicates that the 

probability of following this arc is I 000 

"Compute" is the word associated with the next node, which is node 7. It is a terminal symbol 

and 291 is its index in the d.clionary This node has 1 predecessor, which .s node 6 (with probab.l- 

ity 1.000) Node 8 is associated w.th the third (-3) non-terminal symbol <func-phr>. The node 

has 1 predecessor, node 7. Node 9 is associated with the word "Use" wh.ch has mdex 222 The 

node has 1 predecessor, node 6 (which .s the in.tial node for th.s set of product.on ) Node 10 is 

associated with the non-terminal symbol <pararr phr>. and its only predecessor is node 9. Node 

11 is the fmal node for th.s set of product.on (w.th <request> as the left-hand side). It has two 

predecessors, node 17 and node 32. wh.ch arc equally likely. Node 17 is the fmal node for the 

productions for the symbol <func-phr>. which is . Kialed with node 8 Node 32 .s the fmal 

node of the product.ons for the symbol <parani-phr> 

MAKGRM assigns an equal probability to all arcs leading to the same node This default 

condition .rnplies that the DRAGON system is currently using no semant.c knowledge, not even 

statistically (except for any semant.c knowledge which « mcluded in the grammar itself). 

The output of MAKNirr is a combination of the outputs of MAKDIC and MAKGRM Each 

noo. corresponds to an acoustic segment. Except at word boundaries, each m Je has only one 

predecessor bes.des iKelf Not.ce that there are many nodes marked "-". These silence nodes are 

common because the d.cl.onary md.cates that every word begins with a silence (because the word 

may be preceded by a pause) The dynamic time warping is sufficiently powerful that these 

silences can be allowed throughout the network If no s.lence .s actually present m the acoust.c 

signal, then the dynamic time warp.ng will »Kink the duration of time assigned to the "-" node to 

a single 10 rr.iüi.^cond segment. 

GETPRB 

GETPRB takes as input a set of acoustic parameter values and produces as output a vector of 

probabil.ty estimates    lach entry .n the probab.li.y vector represents the cond.t.onal probahil.ty 
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of producing the given « of acoustic parameicr values, condilional on the aciual phone at the time 

of the acoustic ob«:rvation being the phone corresponding to that particular position in the 

probability vector. 

GETPRB 

i 
Do for PHONENUM-I to (number of phonetic 
labels) 

Compare current acoustic parameters with each 
prototype of current phone Find the prototype 
which is the minimum Jistance from the current 
parameter vector. 

i 
P»Max(O.Min(I.IOOO/l'|,||2(A<(i)_A|t(i)^)) 

i 
PRB(PHONENUM) - P 

VK 

Last phone? 

i YFS 
FIGURE 10 

3 NO 

Any convent-nt set of acoustic paramciers and any matching procedure could be used here 

The currcnt ver«on of the DRAGON system uses 12 acousuc parameters sampled once every 10 

nulliseconds The basic parameters are an amplitude measure and a «ro-crossing-count for each 

of five filter bands, and fw the unfiltered signal. The five filter bands are 

J 
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AI.ZI: 2(K)-4(M) Hcrl/ 

A2. Z2; 40()-XüO Hertz 

A3.Z3: «00-1600 Hen/ 

A4, Z4: 1600-3200 Hertz 

A5. Z5: 3200-64(K) Hertz 

AU, ZU are for the unfiltercd signal. 

The vector of twelve parameters is normalized in a non-linear fashion by d.viding Al. ZI. A2. 

Z2. A3, Z3. A4. Z4, A5. 7.5 each by the sum of the twelve paramters and multiplying by 1000. No 

attempt has been made to find an optimal non-linear transformation; this transformation has been 

selecteo by informal experimentation with a small number of alternative transformations. The 

reason a transformation is introduced is that so many of the consonant» are so low in amplitude in 

all the bands that they are difficult to separate by any simple metric. The measurements on the 

unfiltercd signal, AU and ZU, are not normalized, so they retain the information of overall 

amplitude. 

The amplitude measures and zero-crossing counts are normalized together because, especially 

for the low amplitude cases that we are trying to separate, the zero crossing counts also give a kind 

of amplitude measure This phenomenon occurs because the zero crossing counter only counts 

cycles which exceed a certain threshold. Thus for signals whose amplitude is near the threshold, 

the zero crossing count is actually a sensitive measure of the amplitude For strong signals the zero 

crossing count measures the frequency of the major spectral peak within a particular band. 

ÜETPRB measures the distance between a particular vector of (normalized) acoustic 

parameter values and | particular prototype by a simple Euclidean distance. However, there art- 

several prototypes for each phone. The prototypes were selected by hand from a set of 50 training 

sentences spoken hy the MM talker as the one on whom the system has been tested. 

One prototype for each phone was found among the 50 sentences by hand. Each prototype 

was just the (normalized) vector of acoustic parameter values for some 10 millisecond segment 

occuring during an instance of the desired phone.   Using the GETPRB from these initial proto- 

■«•^—Hif—^l 
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lypcs. DRAGON was run as a machine-aided labeling program on ihe same 50 senlenees (lhal is. 

DRAGON was lold the sequence of words in each sentence, but not the times at which they 

occured). 

The output of the machine-aided labeling was then carefully checked by hand (there were 

about one or two corrections per sentence). The labels produced by GETPRB were then com- 

pared with this hand-checked segmentation. Whenever there was a steady-stale acoustic segment 

for which no prototype had probability greater than . I. a new prototype was added for the phone 

which the hand segmentation marked as occuring at that time. 

An arbitrary transformation is applied to convert the Euclidean distance measure to an 

estimate of the conditi   ial probability. The transformation is given by ecuation (1). 

(DP- Max( 0. Min( I. (1000 / a,_U2( As(;) - AP(i) )2 )))). 

where As(i) is the value of the i th acoustic parameter for the current sample, and Al.(i) is the 

value of the i th acoustic parameter in the prototype. 

A sample of the acoustir labeling produced by GETPRB is given in Appendix D for a portion 

of the utterance "Use a Hamming window of five hundred twelve points." First a table of the 

values of the 12 (normalized) acoustic parameters is given; then a table of Ihe top 7 prototypes for 

each 10 millisecond segment is given. Each row in each table represents one 10 millisecond 

segment The segment number is in the first column In the parameter table the remaining 

columns are the values of ZI. AI. Z2. A2. Z3. A3. Z4. A4. Z5. A5. ZU. and AU. respectively. 

In the table of labels, each label is followed by a number which is its index in the list of 

prototypes.   Frequently several prototypes for the same label occur among the top 7 prototypes 

The final two columns are the squares of the Euclidean distances from the current set of acoustic 

parameter values to the best and second best prototypes. 

From lime 95 to lime I OK. the parameters are almost all 0. and "-" is the best prototype. 

Then "Y" is the best label from 109 to 111. "UW" is best, or one of the best, from 113 to 134. 

Occasionally another label (IY. AX. L) is rated best, but none of these labels scores high through- 
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out the time fron. 113 to 134. Tim section ol time would reliably be marked as "UW." from the 

acoustic information alone The section from 136 to 13« is a transition between the "UW" and 

the "S." and no label scores well. From 139 to 144 is the "S." Notice that parameters A4 and Z4 

are 0 throughout this segment. This is a feature for distinguishing "S" from "SH." and the system 

reliably labels "S" and "SH" with these acoustic parameters. 

There is no real acousfc evidence for the word "a." and the vowels and nasals of the word 

"Hamming" are not very clear At this point the value of an integrated system with other sources 

of knowledge becomes clear Rather than doing segmentation and labeling from the acoustics 

alone, the system makes all decisions in terms of the integrated network representation. The 

system was able to select, using the labels shown here, the word "Hamming" over all alternatives, 

including the word "Hanninb." However, the system missed the word "twelve" later in the 

utterance. 

DRAGON 

The main recognition program. DRAGON, is just an implementation of equations (IK). (19). 

and (20) of Chapter II. The B matrix is proved in implicit form by the procedure GETPRB. The 

A matnx is represented by the network produced hy MAKNET and the default transition 

probabilities. In comparison with a general transition matrix, the matrix is very sparse (almost all 

of its entries are zero). The network corresponds to a compacted representation of the tr.msilion 

matrix. Each node in the network corresponds to a row of the matrix, and each non-zero entry in 

that row corresponds to an arc in the network leaving that node. Since there are usually only two 

non-zero entries per row. the representation is very compact. Thus the 2356x2356 element 

transition matrix for the formant tracking task is stored in a few thousand memory locations. 

Equation (20) »f Chapter II requires that a back pointer be saved telling the best way to get to 

each node at each point in lime. Again it is posuble to make use of the extreme sparseness of the 

A matrix. Since a list is kept of all arcs leading to a given node. | compact back pointer can be 

kept using only enough bits to select one of the short list of arcs. These back pointers are stored as 

variable length bytes, fitting as many pointers per memory location as possible. This packed 

representation of the back pointers makes it possible for the current version of DRAGON to kee,, 
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DRAGON 

i 
Do for t-l to (number of 10 millisecond seg- 
ments in uttere nee) 

2k. 
Call GETPRB J 

Do for j» I lo (number of nodes in inlcgraled 
network) 

Fcr each i, such that i is a predecessor of cur- 
rent node j. compute yft-l.jto, . Set g(t.j) 
to the maximum of these. Save pointer to the 
i for which the maximum occurs (save it in 
bit-packed form) 

I 
Last node? 

NO 

YES 

Do for j = I to (number of nodes) 

PHONE - the phone associated with this 
node 

y(l.j) -g(l.j)PRB(PHONE) 

1 
FIGURE II 

all the back pointers for a six second utterance in core memory.   In fact, the back pointers for a 

given 10 millisecond segment for the formant tracking task fit in 73 memory locations (36 bits 

each). 
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DRAGON (cont.) 

i 
Last node? 

NO 

YES 

End rf ulterance? 

NO 

YES 

Dofort-T-1 by (-1) to I 

F;ind   NODE(t)   from   back   pointer   from 
NODE(t+l) 

Beginning of utterance? 

NO 

YES 

Output the sequence NODE(t). i= I to T 

I 
Output the list of words 

i 

I'auc ?»I 

->   2 

* 3 

FIGURE 11 

A flowchart of the DRAGON program is shown in Eigurc 11. The program performs the 

computation of equation (IK) for t - I, T. Each node j is considered in turn. Since in this 

implementation the implicit bl|k is independent of i. the value of i for which the maximum occurs 

in equation (IK) depends only on y(t-l.i) and atJ. This value is found and saved as a back 

pointer. If p is the phone corresponding to node j. then the b^ k for the current acoustic parameter 

values is the number which GETPRB returns in position p of the probability vector. The computa- 

tion of yft.j) is completed by multiplying by this factor. 

- 
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Once Ihc compuialion of equation (IX) has been done for l = I through T, Che back pomiers 

are retrieved according to equations (19) and (20) The maximum in equation (|f| is taken only 

over those nodes which represent the end of a complete utterance For the grammars which have 

actually been used, this set has always consisted of a single node. As the back pointers are traced 

back, the optimal sequence of internal states for the Markov process is obtained. Since each node 

in the network corresponds to an acoustic segment within the acoustic realization of a particular 

phoneme, which is within a particular word, winch is in a particular place in the grammar, the 

sequence of states determines the word sequence, the phone sequence, the segmentation times, and 

the parse of the sentence   Whichever sequence is of interest can be printed out. 

PERKORMANCF RhSULTS 

The current implementation of the DRAGON system has been tested on a total of 102 

utterances, with about 20 utterances from each of five interactive computer tasks (described 

briclly on page 34). In lables 12-14, the performance of the DRAGON system is comp.-red with 

the performance of the Ml-ARSAY speech understanding system Uecause this implemer.tation of 

the DRAGON system has no semantic component, the semantic module of the HEARfAV system 

was disabled for this experiment These results were obtained by I owerre|IJ| in a study of the 

comparative strengths and weaknesses of the two systems. Both of the systems used the 12 

acoustic parameters described above, sampled once every 10 milliseconds. 

Flic percentage of utterances correctly recogm/eu in each task by each system is given in 

Table 12 All 102 of these utterances are by the same talker The percentage of words correctly 

identified is given in I able 13. The amount of computation lime required by the current system is 

given in I able 14 I Iwse times are the amount of central processor time on a PDP-10 computer as 

a multiple of the length of the utterance 

Overall th • DRAGON system recognized 49% of the 102 utterances and identified 0% J 

the 57H words An utterance is counted as being correctly recogm/ed il all of the words in the 

utterance are correctly analyzed. Because of factors such as varying sentence length, the percent- 

age of words correctly identified is more stable for different tasks than the percentage of utteranc- 

es recognized.  Notice that the DRAGON system maintained a level of 84% of the words correctly 



■ IW   " ■"■ " ■    "^ ' 

C hapicr IV — IMPLEMENTATIÜN Page 53 

ACCURACY OF UTTERANCES RECOGNIZED 

sizr of      no. of 
Task      lexicon      uiu 

Chess 2a 
Doctor 66 
DesCal 37 
News 28 
Formant 194 

22 
21 
23 
18 
18 

102 

Hearsay   Dragon    Hearsay   Dragon 
% % % 'X, 

correct    correct     missed     missed 

32 
2a 
22 
50 
33 

68 
76 
17 
50 
33 

9 
33 
13 
11 
aa 

o 

8 
0 
s 

31 49 21 

TNe V currcci r.fyrc •> Ihc pcrc.nl or the Inul MIcniKct thai »crc corrccil, recotnucd   Th. % 

ullcrancct thai »crc cnmptelcly miMcd. i c n,. word« »crc »Mrccll» .denuded 
figure » Ihc perceni ol ihc KMal 

TABLE 12 

ACCURACY OF WORDS IDENTIFIED 

Hearsay   Dragon 
si/e of     no. of % % 

Task       lexicon     words      correct     correct 

chess 24 
Doctor 66 
DesCal 37 
News 28 
Formant 194 

130 
92 
116 
98 
142 

69 
49 
53 
74 
33 

578 55 

94 
88 
63 
84 
84 

83" 

TABLE 13 

identified on the interactive formant tracking task. 

The FORMANT task is considerably more complex than the other tasks. It has a vocabulary 

of 194 words and an infinite language with approximately 16" sentences of length n words. Each 

of the other tasks has a finite language with the number of possible sentences ranging up to several 

hundred million. The HEARSAY system was able to recognize 33% of the utterances for this 

task, but it only identified 33% of the 142 words. It missed 44% of the utterances completely, 

and the standard deviation of its computation time is higher than for the other tasks. 

This implementation of ihc bRAGON system was developed using training sentences (by the 
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Hearsay 
ave. 
limes 
real Std. 

Task      time Dev 

Chess 13.7 
Doctor 9.tt 
HesCal 15.5 
News 10.8 
Formant 4«.4 

2.6 
3.8 
9.a 

6.a 

23.5 

TIME NEEDED KOR RECOGNITION 

Dragon 
ave 
times 
real Std. 

SD/ave   time        Dev 

. 19 

.40 

.61 
59 
53 

48.0 
67.4 
83.1 
54.7 

173.8 

.6 
1. 1 
1.0 
.6 

3.3 

For the DRAGON system; 

(recognition time) - (utt lcngth){20.9 * .067(net size)) 

This is accurate to within about 3%. 

Si/.c of 
Dragon 

SD/avc    network 

.013 

.016 

.012 

.011 
,019 

410 
702 
916 
498 

2356 

TABLE 14 

-me talker) from the tasks CHESS. DOCTOR, and FORMANT The HEARSAY system was 

developed for tasks CHESS. DOCTOR. DESCAL. and NEWS In no .nstancc were any of the 

utterances used in tra.ning the systems included in .he test results reported here One reason the 

performance of the DRAGON system on the DESCAL task was .nfer.or to .ts performance on the 

Cher tasks .s that the DESCAL task .ncludes several words wh.ch are sy.tact.cally c.u.valen. and 

wh.ch are phonetically sim.lar under the analys.s used by the current system No attempt has been 

made to provide extra phonetic prototypes for this task 

The small standard deviation in processmg time for d.fferent utterances w.thm a task .s a 

feature of the optimal search algorithm used in the DRAGON system A complete search i, done 

for the globally opt.mum path .-..-..ugh .„c network. The Markov model allows th.s global 

optimum to be- found in a t.me wh.ch i. proport.onal .o the length of the utterance If the words 

are clear and eas.ly recognized, the complete search takes .us. as long as when the words arc- 

unclear and difficult to recognize. On the other hand, the system never takes longer than th.s fixed 

nme. and i. always f.nds some path through the network In Table 15. results are g.ven for an 

carher vcrs.on of the DRAGON system lor each of the IK utterances in the FORMANT task   The 



II I'" mm -"■- 

C hapter IV — IMPLEMtNTATION Page 55 

properly which should be noliccd in these figures is (hat the processing lime docs not depend on 

how many errrors are made in analyzing an utterance. 

ACCURACY AND TIME FOR INDIVIDUAL UTTERANCES 

Task; Interactive Formant Tracking 

Phraw« •In »OIII •Cor •ScmCor Lengih Mam At« 

1 6 6 6 6 2170 126.9 18.7 
2 9 8 8 8 4270 1 19.4 18.7 
3 8 8 8 8 3730 119.4 18.3 
4 9 8 7 7 3690 1 18.5 18.6 
5 7 7 5 5 3490 123.7 18.6 
6 9 9 9 9 5670 115.9 18.5 
7 10 10 10 10 4510 121.2 18.4 
8 7 7 7 7 3200 124.5 18.3 
9 1 1 11 1 1 1 1 5120 1 18. 1 17.6 

10 7 6 6 6 3300 120.0 17.5 
11 a 4 4 4 307u 119.6 18.5 
12 10 9 8 8 4480 118.0 18.7 
13 a 4 4 4 2760 124.0 18.8 
ia 4 3 0 0 2300 131.2 18.5 
15 10 9 8 9 4260 126.3 19.2 
16 11 1 1 7 8 5160 119.7 18.7 
17 10 10 8 9 4060 121.9 17.9 
18 6 6 6 6 3110 123.4 •7.9 

l»iHd>   wHrccii/iwiKiK   mi    -     PC; 

(»••flit    cortccll/l arnf iM    null    ■      mu 

(»miit   KRtMiically    ■MMMMti    null    -     »19 

•In    -    Mumhcr    o(    »mdv    in    .miul    i.npuil    pluiuc 

•Oui    •    Numhci    <>(    rnmits   m    itulpui    ptiruc 

•Co»    .    Number    nl    warj»    inffvtlly    Hknnficd 

tScmCm    .    Number    at    armd«    «cnumically    uwrcci    (crnK    irrclcvwii    in    mkl 

Lcnglh    .    DuraiHin    nl    pm •«     m    milhvctnnds 

Main    •    UnmpulalHin    IHIK    n(    mjin    ritngnilMm    rnunncl/l cn(lh 

Acn    -    UiMnpuUiHin    time    nf    «.IHMICI    nuidulcl/Lcnilh 

TABLE     15 

The IK utterances arc shown in Table 16. In each pair the actual utterance is given, followed 

by the utterance which the DRAGON system found as the optimal path in its model. The system 

correctly recognized K of the IH utterances If we consider "compare" (in sentence 15) to have 

the same meaning as "look at", and if we consider "compare A and B" to be equivalent to 

"compare A with B" (in sentence 9). then 10 of the 18 sentences or 55% are semantically correct. 

A sophishicatcd semantic component might be able to correct some of the other errors. Appendix 

E also shows the correct and estimated utterances for the other two tasks for this implementation 
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Ulicranccs    for    Intereclive    Formant    Tracking    Task 

1 ) I want to do formant tracking. 
I want to do formant tracking. 

2) Use o  Hamming window of five hundred twelve points. 
Use a Hamming window of five hundred   points. 

3) Use utterance number six of file number five. 
Use utterance number six of file number five. 

4) Increment the window in steps of one hundred points. 
Increment the window in steps of  four     points. 

5) For each window, display the Fourier spectrum. 
For each window, display the formant tracks. 

6) Compute the l.PC smoothed spectrum using r.he autocorrelation method. 
Compute the LPC smoothed spectrum using the autocorrelation method. 

7) Compute the roots of the inverse filter using Rairstow's method. 
Compute the roqts of the inverse filter using Bairstow's method. 

8) Display the imaginary part of the roots. 
Display the imaginary part of the roots. 

9) I want to compare the autocorrelation method with the covanance method. 
I want to compare the autocorrelation method and  the covanance method. 

10) Increment the window by one hundred points. 
Increment the window by one   points. 

11) Display the FIT spectrum. 
Display the KKT spectrum. 

12) Use a Hanning window of two hundred fifty-six points. 
Use a Hanninq window of two hundred   six hertz. 

13) Display the NT spectrum. 
Display the KIT spectrum. 

1«) Compute the ililbort transform. 
Use two points. 

15) I want to look at image enhancement with diflercnt (jaramctcr i. 
1 want to com^irc image enhancement with dillcrent parameters. 

16) Display the s|.rctrogram with a pre-emphasis ol six decibels per octave. 
Display the spoctrogram to  a pre-emphasis ol six thousand five hertz. 

17) Use a ceiling of thirty with a floor of zero. 
Use a ceiling of ten   to  a floor of zero. 

18) For each utterance display the spectrogram. 
For each utterance display the spectrogram. 

TABLE 16 

of DRAGON, and 9 acntences in ihe AP News task and K sentences in ihe formant task for an 
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earlier version of DRAGON. 

By considering (he specific words which ihe syslem identified incorreclly. it is possible to gam 

some insight about the places at which the model is weakest and/or the task is most difficult. The 

errors for the FORM ANT task are given in Table 17 

tRRORS IN FORMANT TASK 

actual phrase substitution 

2) twelve 

one hundred 4) four 

5) Fourier spectrum formant tracks 

9) with and 

10) hundred 

fifty 

points 

12) 

hertz 

14) (entire sentence missed) 

15) look at compare 

ih) with to 

decibels per octave thousand five hertz 

17) thirty with ten to 

lAULt 17 

Six of the twelve places at which errors occur involve numbers It is not surprising that numbers 

are the greatest point of weakness In any context in which a number can occur, any number less 

than one billion is considered grammatical (sometimes including zero). The syslem has no source 

of knowledge other than acoustics to select which of the one billion possible numbers was actually 
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spoken. Rccognmng a number •mbedded in conlinuous speech from acoustic information alone is 

a difficult task, and (he onc-oul-of-a-billion selection is usually beyond the ability of this simple 

general system. 

The prepositions and conjunctions are the second greatest source of errors. These function 

words are usually short and unstressed, so the acoustic information is very unreliable. Previous 

speech recognition studies (|T3|) have shown that short words are missed more often than long 

words, and that unstressed function words are missed even more often than other short words. On 

the other hand, it is often possible to "understand" a sentence as a whole without correctly 

identifying all the prepositions and conjunctions. 

Of the remaining errors, two are caused entirely by a weakness in the model. The ori^nal 

BNF grammar specifies that a "window" length (sentence (12)) be given as a number of "poinu." 

and a "pre-emphasis" be specified in "decibels per octave" or "db per octave." In translating the 

BNF grammar lo a finite state grammar, these restrictions were removed. These restrictions could 

have been retained in the finite state grammar, but only by having a larger state space. Six copies 

of the number sub-grammar would suffice to distinguish the uses of number with different right 

contexts ("points", "hertz". <rcs.unil>. "cocffficienls". "per oclavc". and end-of-phrase). If 

these two errors were corrected with an expanded grammar, all of the remaining scmanlically 

important errors would be numbers, exeep» for sentences (5) and (14). 

The cfrrcnt simple implcmcnlalion of the DRAGON system has been designed merely lo 

demonstrate the practicality and power of fc general concepts Clearly .nany improvements are 

possible For example, ihe acoaslic data could be pre-processed anJ organized into phone-like 

segmcnis. Then Ihe calculations represented by equations (II.IX) and (11.20) would only need to 

he done for each scgmcnl rather than for each 10 millisecond acoustic parameter sample This 

reformulation would speed up the calculation in the main recognition program by a factor of about 

three or four. Especially for larger tasks, substantial savings in compulation time can be achieved 

by employing less than a complete optimal search. A careful study must be done lo determine the 

trade-offs between performance and amount of computation with sub-optimal techniques. More 

sophisticated models arc possible for ihe knowledge sources, which ought lo improve ihe perform- 

ni r ■■  ,1»---—--  --■-*-—■—i—u 
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ancc ali'iough they would generally increase ihe amount of eompualion    A (rue probabilistic 

gramn ar would allow a statistical representation of some semantics as well as a more accurate 

grammar. 

CONCLUSIONS 

Lefs review the major features of the DRACON speech recogn.t.on system and consider how 

these features influence the performance of th.s implementation Some of the features of Ihe 

DRAGON system contribute to it:, simplicity and ease of implementation, while others give it its 

power. 

(I) Generative form of the model 

The I act that the abstract model represents knowledge sources in a generative form made 

MAKGRM and MAKDIC much simpler to implement. The DRAGON network expl.cilly 

represents a finite state grammar. Although the underlying stochastic process is assumed to be 

Markovian. sufficient context is included in the formulation of the slate space so that the finite 

state grammar is represented exutly. It is not necessary to make any compromise to represent the 

inverse of grammatical productions based on local context. In this regard the DRAGON system 

shares some of the adsantages of the top-down recognition systems On the other hand, the 

present implementation h limited to a fimte state space, so MAKGRM translates any context-free 

grammar to a related finite state grammar 

(2) Hierarchical arrangement of knowledge sources 

The arrangement of the knowledge sources into a conceptual h.crarchy simplifies the imple- 

mentation of |kt DRAGON system by allow.ng a modularity that separates the details of the 

representation of the knowledge sources Iron, the recognition program In this simple implementa- 

tion this modularity is expressed in the fact that MAKGRM, MAKDIC. MAKNtT. GETPRB. ana 

DRAGON are independent programs with well-defined communication. In a more sophisticated 

implementation the modularity could progress even further and would '.K even more valuable 
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The hierarchical arrangcmcnl is also rcflcclcd in ihc sparscne^ «f ihc iransilion malrix for ihc 

mlegraied process. This sparseness has played an important role in this implementation of the 

DRAGON system. The explicit network representation allows us to directly access the non-zero 

entries of the transition matrix, thus avoiding unnecessary computations in the formal equation 

(II.IK). The bit-packed representation of the back pointers allows the entire recognition computa- 

tion to be performed using core memory. 

(3) Integrated network representation 

This implementation of the DRAGON system integrates the segmentation and labeling into 

the hierarchy, so the optimal search algorithm performs the segmentation and labeling along with 

the word identification and parsing A price is paid in terms of the amount of computation time 

because the underlying Markov process steps once for every 10 millisecond segment, rather than 

once for every phone-like segment However, even this simple implementation can show the 

advantage of an integrated system compared to a system attempting to make decisions based on 

any one knowledge source in isolation The help which the recognition procedure gets from other 

sources of knowledge allows the segmentation and labeling to be done reliably even with the crude 

acoustic pa'i.., tcrs and simple metric used in GETPRB. 

(4) General theoretical framework 

The presence of a general theoretical framework greatly simplified the implementation of the 

DRAGON system It .s this feature which has made it possibl • to construct a complete speech 

recognition system with limited manpower It has been necessary to compromise the theoretical 

framework in a few places (notably the GETPRB procedure and the lexical model), but in general 

there has b-en much less special purpose programming than there would have been without the 

abstract model I he abstract model has been sufficiently flexible that very few compromises have 

beep necessary in deciding what knowledge to represent (with the important exception of semantic 

knowledge, which has been omitted entirely). The only significant example is that the grammar 

represented in the network is a finite state grammar rather than a general context-free grammar 

This restriction has not been a significant handicap for the 5 tasks which have been implemented 

so far. 
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(5) Oplimal slochaslic search 

The optimal search strategy is probably the most unique feature of the DRAGON system It 

has a significant disadvantage in requiring extra computation. However, the special features of the 

Markov model allow an optimal search algorithm for which the amount of computation is not 

nearly as great as might naively be supposed. This implementation of the DRAGON system, 

despite many drawbacks and simplifications, has shown that an optimal search is possible and 

practical. 

The advantages of optimal stochastic search come from avoiding early decisions which might 

be wrong. By extending all partial paths in parallel we are. in effect, delaying all decisions until all 

context, past and future, has been considered. The amount of "context" is determined by the 

formulation of the Markov state space. In the highly stylized grammars used in these interactive 

computer tasks, the "context" often reaches all the way back to the beginning of the utterance. 

Thus the optimal search strategy may delay the decision ibout the first word of the utterance until 

the effect of this decision on the entire sentence has been considered. 

FUTURE WORK 

There arc many improvements which can be made even within the framework of the current 

system. The introduction of a sophisticated acoustic preprocessor, while departing from the 

philosophy of building an entire system from the same abstract model, would result in a significant 

increase in computational speed. The techniques for using such a preprocessor within the general 

DRAGON system are described in Chapter III (equations (9). (10), and (II)) 

I he lexical model could be improved either by introducing phonological rules or by using the 

general lexical model of Chapter III liiiher model could be trained using the procedure represent- 

ed by equations (21) and (22) of Chapter II. 

The syntactic-semantic model would be improved by introducing estimates of the conditional 

probability distributions into the grammar. Given a task with a known grammar, this estimation 

mainly involves the collection of statistics for a large corpus of utterances from a dialogue in the 

inter-active computer task.  Even for a task with an unspecified grammar, an attempt can be made 
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lo approximate (he grammar using the re-cslimalion procedure of equations (21) and (22) of 

Chapter II. 

The assumption of a finite state space (and hence a finite state grammar) is not essential. 

Markov processes may have infinite state spaces, and much of the theory used here carries 

through. There are serious problems which must be solved to obtain a practical implementation, 

but they are not insurmountable. For example, equation (18) of Chapter II can be generalized to 

apply to an arbitrary contcxi-free grammar, at the expense of making the number of computations 

proportional to T1 rather than to T. By segmenting the utterance into syllables. T would be the 

number of syllables and TJ might not be too large. 

What general implications can be drawn from the results of the DRAGON speech recognition 

system? The DRAGON system differs from most other speech recognition systems in three 

important ways: (1) the use of Markov models. (2) the use of the same abstract model to represent 

each of the knowledge sources, and (3) the optimal search strategy 

Since the state space can be formulated to include specific context information, the assump- 

tion of the Markov property in the models .s not so much an assumption as it is a prescription lo be 

followed in the formulation of the state space The results for this simple implementation 

demonstrate that this prescription can be followed well enough to get reasonable recognition while 

keeping the state space of manageable size. However, because the l-ORMANT task look I73.X 

times real lime and because ihc size of the DRAGON network grows with the size of the vocabu- 

lary, there is a significant area for future research Techniques need to be developed which can 

more efficiently rcprescnl more complex tasks. 

The use of a general abstract model has greally facilitated the development of the DRAGON 

system and has important implications. Lowerre (|L3|) has been able to analyze the main 

recognition program to produce an optimized program which produces identical results but is much 

faster than the original program Work is being done to adapt the DRAGON system to run on a 

minicomputer. Newell (|N3J) has suggested that the simplicity of the DRAGON system would 

allow it to be m* as a "benchmark" system. Any more sophisticated system must justify its 

greater complexity by recognizing speech either in less time or more accurately than the D" ' "ON 
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syslcin. 

A mujor molivalion for conslruciinv «he DRAGÜN system has been lo dcmonslrale lhal 

speech recognition based on complete optimal search is practical. Clearly, however, a complete 

search is not the most efficient procedure. The most important area for future research is to 

develop techniques such that the complete Markov search is an upper bound on the amount of 

computation, but such that much less computation time is used exploring parallel paths when the 

correct path is clear. 

1 
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eesee    nspiRpnon 
66700       nSTHHR 
06800 AT 
06900 nrm. 
07ooo niTncHEO 
•7100 nUTOCORKLnnOK 
•7200 nurui 
•7300 pngv 
07400 BUCK 
07soe BnckEO 
07600 BRO 
07700 BRIRSTOU 
e/8oo BRIER 

07900 BOLL 
08000 BPLLEO 
•8100 Baus 
•8200 BONOUID'H 
08380 BRRREO 
08400 BECOflES 
O8S00 BEEN 
08600 BEGINNING 
08700 BENT 
08800 BE in 
08900 BIRO 
09000 BISHOP 
09100 BISHOP'S 
09200 BLROUELL 
09300 BLEEDING 
09400 BOTTLE 
09500 BOUNOPRY 
09600 BOY 
09700 BURST 
09800 BY 
09900 COLCULRTE 
1000Q CRPTURES 
10100 CRSTLE 
10200 CASTLES 
10300 CnSTRRTEO 
10400 CRT 
I0S00 CHTECORY 
10600 CEILING 
10700 CENTER 
10800 CENTISECONOS 
10900 CENTRRLIZEO 
11000 CEPSIRRL 
11100 CEPSTRRLLY 
11200 CEPSTRUfl 
11300 CHANCE 
11400 CHECt 
11500 CHEST 
11600 CHICIEN-POX 
11700 CHINR 
11800 CHURCH 
11900 CIGRRETTES 
12000 CIRCUtlCISEO 
12100 CLOUDY 
12200 CLUSTERING 
12300 COEFFICIENTS 
12400 connn 
12500 COIIPRRE 
12600 COMPILE 
12700 COMPUTE 
12800 CONSIDER 
12900 CONSTRUCTION 
13000 CONTINUOUS 

A—PHONETIC DICTION AR Y 

AE S - P |H ER «fl IM S« W M 
RE S n RX 
RE - T 
RH - T nn L 

RB - T RE - S« - T 
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- 6 EH IH - B |Y 
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- B EH IH • K ER 
-•Ml 
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moo COVORIPNCE -  K   OU V RE ER  IY RE N - S 
13:00 CROMPS - K  tR AE n - P s 
13300 CRf nn - K ER IY n 
13400 CREr - t. ER EH F 
13S00 CORbUR - K ER S ER 
13600 CUTOFF - »   AH -  T RO F 
13708 CVCLES - s on IH - K L S 
13800 OB - D   IY - B   IY 
13900 OERO -  D  EH - 0 
14000 DEBUG -  0   IY - P RR - G 
14100 OEBUCCINC -  0   IV - B RX - C  IH NX 
14^00 DECIBELS - 0 EH S  IH - B EH L S 
14300 OECinflL - D EH s n L 
14400 DELETE - 0 AX L   IY - T 
14S0e DEL in - 0 EH L  -   r RH 
u&oe OCNiniliEQ - D EH N -  T L  RR  IH S • 0 
14700 DEPRESSED - 0   IY - P ER EH S - 0 
14600 DERIVRTION - 0 AE ER  IH V EH IH SH RX N 
14900 DESIGNING - 0 RX S RR   IH N   IH NX 
I'JOOO DESIRE - 0  IH S RR   IH ER 
isino DETRIL - D  IV -  T EH  IH L 
isioo 010 - D  IH - 0 
1S300 DIFFERENT -  D   IH F  ER N  -  T 
1S408 DICITRL -  0   IH - G   IH -  T L 
15SO0 OISPLRY - 0 RX S  - P L EH  IH 
iseoo DIVIDE -  0   IH V RR  |H - 0 
1^700 DIVIDES - 0   IH V RR   IH - D S 
1 ,',0.1 DIZZINESS - D   IH S   IY N RX S 
isnoo DO - D Uli 
16000 DOC - 0 RO -  G 
16180 DOING - 0 UU IH NX 
i6roo OOnRIN - 0 OU fl EH  IH N 
1G300 DONE - D RH N 
16-00 OOUBLE-U - 0 RH - 6 L  Y UU 
K/JOO OOIIN - 0 RR UH N 
1M.00 DRINt - D ER IH NX - r 
16700 D'Nnrtic - D RR IH N RE tl  IH - K 
16800 ERCri -  IY - T SH 
16000 ERSY -   IY  S IY 
17P00 EDITING - EH - D   IH - T   IH NX 
17108 EIGHT - EH  n -  T 
i7:eo EIGHTEEN - EH   IH -  T   IY N 
17'ae riGHTY -  EH   IF -  T   IY 
l/«00 Ei EVRIEO - EH L EH V EH IH - T EH - D 
17S80 ELEVEN -    IV   I EH V RX N 
17G0O fN PRSJENT - RR N - P PR S RR N 
17700 END - EH N - 0 
17800 ENHRNCEflENT - RX N HH RE N S - tl RX N - T 
17:100 EPSILON - EH   - P S  IH L RR N 
itoco ESTi;,«TION - EH S T  |H M EH  IH SH RX N 
lalCO EVER - Oil V ER 
18:00 EXECUTE - EH  - t   S  RX   -  K  RR UH  -  T 
18300 EXTRA - £H  - tc  S -  T ER RX 
i&4'>0 FACT - F  RE - *   - T 
18Sf)0 FACTOR - F  RR - ►:  -  T RO ER 
18600 FONT - F   M N -   T 
18700 FAST - ^ fit S  -  T 
16808 FATHER - F RR DH ER 
1^900 FATtlOd -   F   Af F nx n 
19000 FEATHER -  F  EH OH ER 
19100 FEATURE - F   IY -  T  SM ER 
19200 FE/ER - F   IY V ER 
19 3ÜO FEVERISH - F   IY V ER   IH SH 
19400 FFT -  EH F EH F  -  T   iY 
19b00 FIFTEEN - F   IM E  - T   IY N 
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19600 FIFTY - F   IN F  - T  IY 
19700 FILE - F Rfl  |H L 
19800 FILTER - F   IN L - T ER 
19900 FILTERED - F  IH L  - T ER - 0 
20000 FINRL - F RR  |H N L 
20100 FIND - F nn iH N - D 
20200 FINDING - F Rfl  IH N - 0  IH NX 
20300 FIRST - F ER S - T 
20400 FIVE - F RR nx V 
20500 FLBP - F L RE - P 
20600 FLOOR - F L RO ER 
20700 (00L - F Uli L 
20ft00 FOR - F RO ER 
20900 FORnONT - F RO ER n RE N - T 
21000 FOUR - F RO U ER 
21100 FOURIER - F RO ER  IY EH  IH 
21200 FOURTEEN - F RO ER - T  IY N 
21300 F0URTY - F RO ER - T  IY 
21400 FRANCE - F ER RE N - S 
21500 FREQUENCY - F ER  IY - K U EH N - S  IY 
21600 FREQUENTLY - F ER  IY - r U RX N - T L  IY 
21700 FRICTI0NPL - F ER   IH - K SH RX M L 
21800 FRONTED - F ER RH N - T EH - D 
21900 FUNCTION - F  RH N - K SH RX N 
22000 cnnnp - C RE H RH 
22100 GET - C EH - T 
27200 GETS - C EH - T S 
22300 GIVE - C  IH V 
22400 GLOTTRL - C L RR - T L 
22500 CO - G OU 
22C00 GOES - C OU S 
22700 G0E3-T0 - G Oil S -  T RX 
22800 GOING - G OU   IH NX 
22901; GONOKRMER - C RR N ER  IY RX 
23000 GRnmiflR - C ER RL rt ER 
23100 CRnnnnTicRL - G ER RX fl RE  - T  IH - K L 
2 3200 GRflPHICS - G ER RE f   IH - K S 
23300 GRRSS - C ER RE S 
23400 MI - HI) RE  - 0 
23500 HnnuiNG - HH RE fl  IH NX 
23600 HnNNING - HH RE N  IH NX 
23700 HPVE - HH RE  V 
23800 HEOO - HH EH - 0 
23900 HcnoncHES - HH EH - D  IH RX - IC S 
24000 HEflOLINES - HH EH - D L RR  IH H - S 
24100 HELIO - HH EH L OU 
24200 HERE - HH  IH ER 
24300 HERT2 - HH ER - T S 
24400 HIGH - HH RR  IH 
24500 Hl UUMNC - HH RR   IH - SH RE - K   IH NX 
24600 HILBERT - HH  IH L - B ER - T 
24700 HOSPITRLIZED - HH RR S - P RX L RX S - D 
24800 HOU - HH RR U 
2'900 HUNDRED - HH RH N - D ER EH - 0 
25000 HYPOTHESIS - HH RR  IH - P RR F   IH S   IH S 
25100 I - RR  IH 
25200 ICE - RR   IH S 
25300 ILL -  IH L 
25408 inncE -   IH 11  IH - SH 
25500 innciNnRY - IH 11 RE - C IH N RE ER IY 
25600 innuNizED -  IH H Y UU H RX S - D 
25700 IN -  Ill H 
25800 INCREdENT -  IH N - K ER RX H EH N - T 
25900 IN1TIPL -  IH N  IH SH L 
26000 INJURED -  IH N - SH ER - D 
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26100 INSERT -   IN N - S ER - T 
rcroo INSIONCE -  IH N - S - T RE « - S 
2oi09 INIEHnCTIVE -  IH N - T ER RE - K - T  IH V 
26400 INTO -  IH N - T UU 
26S00 INVERSE -  IN N V ER S 
26600 IS - RX S 
26708 ISRAEL -   IM S ER   IY L 
26800 IT -   IH  -  T 
26900 iniMiwo 

-  IH -   T RM - r ER RM 
27000 jmiES - SH EH IH n S 
27100 JUDGE -  SH RH - 0 - SM 
27200 • INC • •   IH NX 
27300 MNC'S -  ►.   IH NX   S 
27*00 »NiGMT -  N RR   |H  -  T 
27SOO ►NIGHT'S -  N Rfl   IH -  I  S 
27600 LOBEL - L EH  IH - B L 
27700 LRBFLING - L EH   IH - B L   IH NX 
27800 LnBELS - L  EH  IH - B L S 
27SO0 LRRrNCEftLIZEO - L  Rfl ER   IH ti - C L RR  IH S - 0 
28000 LEPRN - L  EH N 
28100 LEFT - L EH r - T 
28200 LENGTH - L  RX NX - F 
28300 LESION - L   IY S RX N 
28«0i1 LESIONS - L   IY S RX H - S 
28S00 LET - L   £H - T 
28600 LILY - L   IH L   IY 
2a.'.«c LINER« - L   IH N  IY ER 
MMI LION - L  Rfl  IH UH N 
28108 LIP - EH L fl,   IH - P  IY 
:JOOO LIST - 1   IH S - T 
23180 LITERm. - L   IH - T ER L 
:9.,oo Loon - L  Oil - D 
29300 LOCPiLIZEO - L Oil - K L Rfl  IH S - 0 
29100 LOG - L PO - C 
MMI LOCflRITHn - L 00 - C RE ER  IH F fl 
29600 LONG - L  RO NX 
29709 LOur. - L UH . r 
23800 LOii - L OH 
2 1900 LOHEREO - 1   CU ER - 0 
3ü(i00 LPC - EH L   - P  IY S  IY 
30100 MIWEL - n RR ER - r L 
30108 MnR^INC - fl Rfl ER   - r   IH NX 
30300 nniE -  1 IH   IH -  '' 
""O^PO nox - n RE - r 5 
3PS0O nn* - n EH in 
3 Of, 00 ni - n IY 
■JO-'C? iirnr.i ES - M   IY S L  S 
3080n »".P3URE - n EM SH ER 
Jö'JOO tiEiHon - H EH F RH  - 0 
31000 IEIHOOS - H EM F  OH - 0 S 
31100 I1ICR0SEC0N03 - M Rfl  IM - K ER DU S EH - K RX M 
3i;oo niLO - M Rfl  IH L  - 0 
213C0 tllLLION - n  IH L   IH RX N 
31400 niLLISECONOS - ti  !H L   IH S EH - K RX N - D S 
31SÖ0 niN - n IM N 
31600 fllNUS - M Rfl   III N RH | 
31700 noü - n RM - 0 
31800 fCOiriER - n nn - o IH F RR IH ER 
31900 non - n RR n 
32000 novE - n uii v 
32100 MOVES - n m v s 
32200 ^ovrs-To - n M v s - T Rx 
32300 nucH - fl OR  -  SH 
32400 nunps - n RX n - p s 
32S08 flUROER - fl ER  - Ü ER 
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3260f NftSRLIZEO - N EH IH S L RR IH S  0 
327(0 NOUSffl - N RO RH SH RX 
3280b NECflT - N RX - C EH IH - T 
32900 NETUORK - N EH - T U ER - K 
33000 NEU - N Uli 
33100 NEUTON - N UU - T RX N 
33200 NINE - N RR IH N 
33300 NINETEEN - N RR IH N - T IY N 
33400 NINETY - N RR IH N - T IY 
33S00 NIXON - N IH - K S RX N 
33600 NOBODY - N Oil - B RH - D IV 
33700 NON-SPEECH - N RR N - J - P IY - SH 
33800 NOU - N RR UU 
33900 NUtiPER - N Oil M - B ER 
34000 NUtlBNESS - N RH RX M N RX S 
34100 NUTS - N RX - T S 
34200 OBOE - OU - B OU 
34300 OCTRL - RO - K - T L 
34400 OCTRVE - RR - K - T EH V 
34S00 OF - RO V 
34600 OF - RX V 
34700 OFTEN - RO RH F RX N 
34800 ON - RO N 
34908 ONE - U RH N 
35000 OPERRTION - OH - P ER RE IY SH RX N 
35100 OR - RO ER 
3S200 ORCIER - RO ER - 0 ER 
35300 OVERERT - OU V ER IY - T 
J5400 PRiN - P RX IH N 
35500 PRINS - P RX IH N S 
35600 PflLOTnUZED - P RE L RE - T L RR IH S - D 
35700 PRRfUIETER - P RX ER RE M EH - T ER 
35800 PRRfUIETERS - P ER RE M RX - T ER S 
35900 PORT - P RR ER - T 
36000 POSS - P RE S 
36100 PRUN - P RO N 
36200 PERk - P IY - K 
36300 PERrs - P IY - 1 S 
36400 PER - P ER 
36500 PERIOD - P IH ER IY RX - D 
36680 PHONE - F OU N 
36700 PHONEME - F OU N IY n 
36800 PHONEHIC - F RX N IY M IH - K 
36900 PHONETIC - F RX N EH - T IH - K 
37000 PHRRSE - F ER EH IH S 
37100 PICMNG - P IH • 1 IH NX 
37200 PITCH - P IH - T SH 
37300 PLOT - F L OR - T 
37400 PLUS - P L RH S 
37500 POINTS - P RO IH N - T S 
37600 POP - P RR - P 
37700 POSITION - P RX S IH SH RX N 
37800 POSITIONS - P RX S IH SM RX N - S 
37900 POST-EflPHRSIS - P OU S - T EH n F RH S IH S 
38000 POT - P RR - T 
38100 POIILR - P RR U ER 
38200 PRE-EI1PHRSIS - P ER IY EH n F RH S IH S 
38300 PREDICTION - P ER IY - 0 III - r SH RX N 
38400 PREDICTIVE - P ER RX - D IH - K - T IH V 
38500 PRESENT - P ER EH S EH N - T 
38600 PRIMARY - P ER RR IH n  EH ER IY 
38700 PRONY - P ER OU N IY 
38800 PROTOCOL - P ER OU - T OU - K RO L 
38900 PUP - P RH - P 
39000 PUT - P UH - T 

Page 69 

MM J 



111 ■' '■ ■■   ' ^^ •w—i  ■ ■" 

1 
%Mk A—PHONETIC DICTIONARY Page 70 

39100 1 - t nn UH 
39200 QUEEN -  UH   1Y N 
39300 OUtlN'S - UH |y N . s 
39400 RMRINfR - ER ■  -   B   IM N ER 
39S00 «nisto - ER EH  IH S - 0 
39600 MPf - ER RE   IH - P 
39700 RRIINC - ER EH  IH - T  IH NX 
39800 RCflL - ER   IY L 
39900 RECTnNCULPR - ER HI - k  - T EH |H N - G Y UU L Rfl 
40000 REOUCED - ER   IH - 0 UU S - T 
40100 RELEP3E0 - E«   IH L   IY S  -  T 
40200 REQUEST - ER   IY - K U (H S - T 
40300 RE50LUTI0N - ER EH S OU L UU SH fix N 
40400 RElRflClEO - ER  IY -  T ER AE - t; - T EH - D 
40500 REIROFLEXED - ER EH T ER OU F L EH - K S - 0 
40600 RIGHT - ER nn IH - T 
4070J MM - ER DU ER 
40800 RORINSON - ER fiO - B  IH M - S RH N 
40900 ROOt. - ER UH - K 
41000 ROOt 'S - ER UH - (>  S 
41100 ROOT - ER Uli -  T 
41200 ROOTS - ER UU - T S 
41300 ROSES - ER OU S   IH S 
-1 .i'O ROUNÜEO - ER PR üH N - 0 EH - 0 
41500 RUSSIA - ER fix SH RX 
41600 SRY - S EH   IH 
41700 SCOLE - S  - *  EH  IH L 
*18.;i SCHOFfER - SH EH  IH F ER 
41900 SCMllt. -  SH U RR 
4200 SECOND - S EH - r RH N - D 
42100 SECONtlrtRY - S EH - »; RH H - 0 EH E« IY 
42200 SECTION -  S EH - r 3H RX N 
42303 SEE - S   IY 
42100 SEGHENT -SEH-GnRXH-T 
42500 SLGUE - S EM - G U EH  IH 
4J600 SENTENCE -  S Ell N -  T EH N - S 
i2700 SERICUS - S  M ER  I> RX S 
42800 SEVtN - S EH V fix N 
42900 SEVEN - S EH V EH N 
43000 r)EVlNTEEH - S EH V EH N - T IY N 
43100 r.f VFNTY - o EH V EH N - T  IY 
4>:on S.VfRE - S RX V  IH ER 
4JJ00 SEX -  S EM - r   s 
4 34 00 SHORP -  SH  flH [R  - p 
^:5oo SHURT - W RO ER - T 
43600 CHOlll D -  SH UH -   0 
4 3/00 SMM -  Sh OU 
43810 sicr - S   IH - It 
nooo SIDE - s nn in - o 
44000 SILENCE - S RR   IH L EH N - S 
♦ 4103 SIMUCRTION -  3   IH 11  Y UU L  EH  IH SH RX  N 
«4200 Si NO - 5   IH NX 
44300 SICTER - S  IH S - T ER 
«4400 SIT - S  IH - T 
44500 SIX -  S   IH - K S 
44(00 SMFEN - S   IH  - r  S -  T  IY N 
4 4 700 SUT< - S   IH - K S - T  IY 
44800 HPSH - S L RE SH 
44500 SMOt-E - s n OH - K 
45100 MMMM - s n uii ^ - o 
45; )0 SKMINIM - S fl UU F   IH NX 
452C0 S9CM 11 - S - P   li . K  m 

453C0 SPEC KiCm ION - S - P EH S  IH F   IH - K EH  IH SH RX N 
45'iPO SPEC; OL -   5   - P EH - k - T ER L 
45500 SPlCIUOCRHd - S - P EH • K - T FR nu . r. ra or H 
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A^ÜOO SI'LLIHUn -  S P EM - n - T EI nx n 
♦ S700 5PIICH - S _ P   IY  -  T  SH 
♦ S800 SinRT -  S - T nn ER - T 

♦ SHOO STORTING - s . T nn ER - T IM NX 
46000 STRTE - s m T EM  IM - T 
46100 STfooy - s • T EM - D  IY 
46:00 STIPS - s _ T  EH - P S 
4G300 STOP - s « T an - p 
46400 STORE - s . T  PO ER 
46^00 STDRITS - s . T HO ER  IY S 
41600 S'RESS - 5 . T ER EH S 
46'00 SIIB-PMQNITIC - s DM - B F nx M EH - T  IH 
4b8r0 SUB  SI GHENT - s H -   B  S EM -  C fl EH N  - 
'.Glftü IMM N - s m -  0 fix N 
47p?n surrriRY - s nx n CR IY 
47100 SO.'GERY - s ER - SH ER   IY 
47:00 SVLLOBIC - s IN L AC  -. B   IH - K 
47300 S»flBOL - s IK n - B no L 
47400 SYNTHESIS - S 111 N r nx s IM s 
47,,P0 Tfitf -   T EH IM  - 1 
47600 mn -   I n IM - t  s 
4/700 l«3k _  T M S - 1 
«7800 Till .   T f M L 
47000 TIN -   T CM N 
48000 TERTIHRV -  T n SH   IY EM ER  IY 
4810C TESTING -     4 EH S  - T   IM NX 
4ö. no THQT -  DM RE   -   T 
«SJOO TM[ - OH nx 
4-MOO THLTO -  f M IH - T nx 
48S00 THIN .   p M N 
4r6nn THIRD _   p i« -  0 
i .  It THIRTEEN _  E IR -   T   |v N 
4^.-00 THif   | _  f fR T   IT 
48000 T(WN .   f no El I 
4')0(,0 THOU .HNU in, S flE  N - 0 
♦ 9103 THf-EE \ tl 11 
«S2M TIHE r\ M n 
49300 rwn (in in n s 
«94M TITLE _   T nn IH   -   T  L 
ir.oo Tn _   T nx 
41,,00 TPMCt ING -   T (R PE   -  »    IH  NX 
»1700 IPiFIS _   T ER «E   -  »   S 
49800 TKOIN -   1 ER EH   IH N 
49 mo IWfiN .(PIC I ION -   T tl HE   N - S - r ER  IH - 
^nnon WMbFMM -   T FP nE N - s F no ER tl 
SPIOP MMStTMi -   | El HE   N  -  S   IH  SM OX  N 
■n. N TRIONCULdR _   x (p (■n   IH EH  IH N - C Y U 
SOJPP T»:iiED -   I tp IM L   - 0 
M4M TtKUt'CULOilS -   I llll -  B ER - K   Y UU L 0U 
'■.p,..'p TIIEl VE H  EH L   V 
■ .,■ .10 THINTV -   T U EH N  -  T   IY 
Si1'30 IM _   | Uli 

S08CO TIJÜ _   T U  llll 
it .nj UN.-,rRF"~>ED - m N - 3  -  T EP EM S - 0 
SlOI'O UHr'ni.'N0E0 - R( N * nn UM N - 0 EH - 0 
si;"p UNTIL -  r> N -   T   IM L 
suao 0(/iNt _  y ER nx N 
Sljnc US - n^ S 
5'400 USE .   Y Uli S 
sr.Po US INC -  v ■ 1   IH  NX 
SK.PO ■ iMfunNCt . ER EH N - S 
1 |7M v-1 M _ v P( L   i   Jj 
S1860 VEHL . v IY I 
51900 VELOKUEO -  v 1« i  nn ER nn IN s    D 
SCOOO VIElN«n - V IH EH - T N ns n 

p SH nx N 

L nn ER 

s nx 

j 
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r.:ioo 
5::oo 

srsoo 
srsoo 
52700 
5:600 
^rooo 
53000 
53100 
53:00 
53300 
53.O0 
53538 
53600 
53^00 
53800 
53ci00 
54000 
5u;00 

5» TOO 
c*300 

^.'.OP 

'..to, 
54^08 
i4M| 
54900 

voicto 
VOIClLtSS 
I 
union 

UHNT 

M 
URFERCPTE 

UOVtfORfl 

■ 
WEICH 

HERE 

ÜMfiT 

WHEN 

WHERE 

UHICH 

UiNOOU 

HIM 
i.'ORO 

X 

Y 

»ELLOU 

ET. 

VOUR 

ZERO 

ZQQ 

I 

i 

- V no   IH S - 0 

- V no  IH S L EM S 

- D ««  - B L RB UH 

-Mm-   t flX N 

- u nn N - T 

■ u no ER 

- U no - T ER - C OE  IH - T 

U  £H   IN  V F  PO ER tl 
I IV 
u no nx 

II ER 

U OH   - T 

'■Ml 
U HE   ER 

UM   |H   -   SH 

U   IH N - 0 OU 
I   IH  f 

U  IR   .   0 

EH - r s 

U  -i.l   IH 

V EH L   OU 

V EH  S 
> nx 

V IR 

S   IY 

S   IH ER OU 

5  UU 
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ooioe 
08266 
00100 

00486 

60S86 

86666 

00766 

60866 

00908 

01866 

81186 

ai.-ee 
81366 

81*86 
61588 

01666 

01766 

01866 

61968 
02668 

62188 

02380 
02306 

02466 

82see 

621^8 

82708 

•2808 

82900 

0*306 

63180 

8^266 
63368 

63466 

fc^ee 
03666 

63706 

63308 
83988 
84680 

04136 

84286 

6436Ü 
0'. ioe 

O'.'^ee 

e4«ce 

84966 

dsoe8 
8Sl6e 
e&286 
05388 
8^166 
85588 
05608 
85 788 
8533-) 
85988 
06888 

BNF FOR THE OOCTO« IMTEHVIEM. 

-HEnO>ii.   ( <SENTENCE> J 

<SENTENCE>it.  <INTEROCB> <HBBIT-VEm> 

<1NTER0CC> <SYnPTOn> 

7fi TERfllN«.  UOROS. 

<INTEROCO> 

<INTEROGE> 

<INTEROCG> 

<1NTER0CC> 

•1NTER0GH. 

<INTEROCH> 

<SYnPT0f1> <ROJ> 

<SVf1PT0HS> <«0J> 

<PHYS-COMO> 

<PERSOM«L-STflTE> 

<VERB«> <RILf1tNT> 

<VERBB> <PRRTICIP1«L> 
<U> <lNTEROCr> <PRRTICIP1RL> 

<INTEROGD> <P£RS0N«L-WÜK> <PER8«WL4»J> 

<U>i |a UKFRE 

UHEN 

-cQUPHTIFIER>!i. OFTEM 

LONG 

FREQUENTLY 

nucH 

<lNTEROCn>:i. HOU 

HOU <QUWNTIFIER> 

«lNTEROCB>:i« 00 YOU 

<lNTEROGn> 00 YOU 

<INTEROöC>!i. MHERE  IS THE 

<INTEROCO>i:-  IS THE 

IS YOUR 

<INTEROCE>!i. ARE  THE 

ARE  YOUR 

<INrEROGF>.:. MERE  YOU 

MERE  YOU EVER 

•IMTEROCC>:!.  PRE  YOU 

<INTEROGF> 

»INT£ROGH>!:.  HRVE   YOU 

<INTFROG«> H«VE YOU 

^VERBflx:. HRO 

EVER HPD 

*VERBB>i:. BEEN 

EVER BEEN 

<HfiBIT-VERB>::. SflOKE 

OR INK 

OVEREBT 

SHORE  <SftOt:EY-ROJ> 

<sno»:EY-noj>i,. 

POT 

GROSS 

CIGARETTES 
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Ml 
44 

(     2 

<r*qu«Bt> 

)      4 

-1 
1S1    1 
1 IBM 
3 -2 
2 1IM 
1*2    1 
11 UN 

ENOOF<ianianca> 5 -1 
4 IBM 

<r«qu«tl>ita   6 -2 
2    in« 
291    1 
6 188B 
• -3 
7 1B88 
222 1 
6 1BBB 
1« -• 
9      IB 88 

f NOOf .r.qu«!, >  U _2 

17 sat 
32 see 
12 -3 
7 1IH 
13 -4 
12 1888 
14 -4 
12 1888 
252 1 
22 1888 
16 -6 
15 1888 

ENO0F<lune-phr> 17 -3 
22 56« 
32 S8S 
18 -4 
12 sea 
12 soe 
1S6 1 
is laaa 
-5 i 
is laaa 
21 388 
26 laaa 

ENOOf • (uncnon> 22 -4 
2i iaaa 

«n^m» >: ;«       23 -5 

19 iaaa 
381 1 
23 iaaa 
299 1 
23 iaaa 
26 -5 
24 saa 
25 saa 

<p«raiii-phr>ii« 27 -6 
9 333 

COMPUTE 7 

<<unc-phr> 

USE    9 

<p»r»m-phr> 

< »unc -phr>: im 

« tunelion> 

»fund ion> 

USING  IS 

<p«r«M.phr> 

•«unc tion>::■ 

THE 19 

'nanny    29 

TRONr-FOPH 

NILIIKI  24 

FOURIER 25 

ENOOF.name> 
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IS 333 
3i 334 

<»*'-— M«C>        21 -7 
27 ill« 

27 IN« 
MITM it m I 

♦» 1IM 

3« ill! 
EWOOf <Mr— |^w> 32 

44 SM 
32 SN 

-^•■••-ip^c.   ..  33 -7 

27 SM 
27 SM 

0 34 1 i 
33 Ml 

LENGTH     3S S65 1 

34 .Ml 
■ 36 U7 1 

35 l.M 
nm    I?      ss i 

3S KM 
hUWOfffO   38 33« I 

37 UN 
TUELVt     39 149 i 

3« 1MI 
POINTS    4« 22S 1 

39 IN« 
" 41 1 1 

33 1««« 
HfinnifC 42 253 1 

41 1««« 
UINOCU    «3            232 1 

42 1««« 
CNOOf <p«rM-tp«c> 44 

4« S«« 
43 SM 
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2 
4 

135 
1 - e 8 "NULL" 8 988 e 
2 - • 

1 
181 I     1 

188 
e 988 

3 - 8 
2 

8 "NULL" 
1888 

1 988 e 

4 - 8 
23 

182 1     1 
188 

e 988 

5 - 8 
4 

8 "NULL" 
1888 

i 988 e 

6 - 8 
2 

8 •NULL" 
1888 

i 988 e 

7 - 8 
6 

291 COHPUTE 
188 

i 0 988 

8 K S 
7 

291 COHPUTE 
188 

i e 988 

9 AH 24 
8 

291 COMPUTE 
188 

i e see 

ia n 13 
9 

291 COflPUTE 
188 

• e 988 

11 - 8 
18 

291 COnPUTE 
188 

1 8 988 

12 P 1 
11 

291 COHPUTF 
188 

i 0 988 

13 Y 18 
12 

29i COnPUTE 
108 

i 0 988 

14 UU 19 
13 

291 CONPUTE 
188 

i e 988 

IS - 8 
14 

291 COHPUTE 
188 

i 0 988 

16 T 3 
15 

291 COMPUTE 
188 

i 0 980 

17 - 8 
16 

8 "NULL" 
1888 

1 988 0 

18 - B 
6 

222 USE 
188 

i 8   988 

19 Y 18 
18 

222 USE 
188 

1 8   988 

28 UU 19 222 USE i 8   988 
19 188 

21 S 18 
28 

222 USE 
188 

i 8   988 

22 - 8 
21 

8 "NULL" 
1888 

988 0 

23 - 8 
34 
78 

8 "NULL" 
588 
588 

988 8 

24 - 8 
16 

8 "NULL" 
1808 

988 0 

25 - 8 
24 

8 "NULL" 
1800 

988 e 

26 • 8 
24 

0 "NULL" 
1000 

988 8 

27 - 8 252 USING i 8   988 
51 108 

28 Y 18 252 USING 1 B   988 
27 188 

29 UU 19 252 USING l 6  S 08 

      - ..-..^---- „^M. . .., »-... --. -■  - 
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• 988 

• 911 

• IN 

988 • 

SHI • 

988 • 

• 988 

• 988 

• 988 

1   988 • 

28 188 
38 S     18 2S2 USING 

29 188 
31 IH 28        2S2 USING 

38 188 
32 NX    15 252 USING 

31 188 
33 -     9 8 "NULL" 

32 1888 
34 -     8 8 "NULL" 

51 588 
78 588 

35 -     8 8 "NULL" 
24 588 
2« see 

36 -     S 156 THE     1 
35 iee 

37 OH     9 156 THE     1 
36 iee 

38 flX    39 156 THE     1 
37 iee 

39 -     6 e "NULL" 
38 ieee 

46 -      8 308 TRPNSFORfl     1    8 
69 iee 

41 T             3 see TRfiNSFORH            1          8 
4e iee 

42 ER            25 388 TRflNSFORtl             1            8 
4i iee 

43 RE            26 388 TRANSFORtl             1            8 
42 iee 

44 N             14 386 TRfiNSFORH             1            8 
43 186 

45 -              8 388 TRRNSFORM             1            8 
44 iee 

46 S            18 386 TRflNSFORtl             1           8 
45 iee 

47 F              7 386 TRflNSFORtl             1           8 
46 168 

48 no        22 see TRRNSFORH         I        e 
47 iee 

49 ER             25 See TRflNSFORtl             1            8 
48 iee 

56 tl    13 see TRflNSFORtl     1    8 
49 iee 

51 -     8 6 "NULL" 
se ieee 

52 -     6 8 "NULL" 
38 ieee 

53 -   e sei HILBERT 
52 iee 

54 HH             12 361 HILBERT 
53 168 

55 IH            28 381 HILBERT 
54 iee 

56 L            17 361 HILBERT             1           8 
55 iee 

57 -              8 381 HILBERT             1           8 
56 188 

58 B             2 381 HILBERT            1          f 

1  908 

1  988 

1    8 

i   e 

1       I 

988 

988 

988 

888 

988 

988 

988 

988 

988 

988 

888 

8 

8 

988 

888 

988 

868 

988 

988 

....-■^-i:- .^..H.^,.! .^.-.^.: n*lülrT
,Bilr'-
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57 lee 
59 ER    25   381 HILBERT 

58 188 
6« -     8   381 HILBERT 

59 188 
81 T     3   381 HILBERT 

68   188 
62 -     8   299 FOURIER 

52   188 
63 ^     7   299 FOURIER 

62 188 
6* «0    22   299 FOURIER 

63 188 
65 ER    25   299 FOURIER 

64 188 
66 IY     29   299 FOURIER 

65 188 
67 EH     27   299 FOURIER 

66 188 
68 IH    28   299 FOURIER 

67 188 
69 -     8    8 "NULL"     2 

61   588 
68 588 

78 -     8    8 "NULL"     3 
21   333 
32   333 
76   334 

71 -     8    8 "NULL"     1 
78 leee 

72 -      e    8 "NULL"     1 
78 ieee 

73 -     8   251 MIfH     1 
135   188 

74 U     16   251 UITH     1 
73 188 

75 IH     28   251 UITH     1 
74 189 

76 F      7   251 UITH     1 
75 188 

77 -      8    8 "NULL"     1 
76 1088 

78 -      e    8 "NULL"     2 
135   588 
78   588 

79 -      8    8 "NULL"     2 
70   508 
78 588 

CO -     e     1 R     i    , 
79 188 

81 OX     38     IP     i 
88   188 

82 -     8   565 LENGTH     1 
81 188 

83 L     17   565 LENGTH     1 
82 188 

84 PX    38   565 LENGTH     1 
83 188 

85 NX    15   565 LENGTH     1 
84 188 

1 

1 

1 

1 

1 

1 

1 

1 

1 

t   988 

8   988 

8   988 

8 

988 

988 

8   988 

8   988 

8   988 

8 988 

6   988 

988 

988 

988 

988 

8   988 

8   988 

8   988 

8   988 

988    i 

988 

988 

8 

8 

988 

988 

8   988 

8   988 

8   988 

8   988 
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86 - 
85 

565 LENGTH 
188 

1 • 988 

«7 F 
86 

565 LENGTH 
188 

1 8 988 

88 - 117 OF i    6 98» 
87 188 

89 no 22 117 OF 1 1  988 
88 188 

98 V 117 OF 1    8 988 
89 188 

91 - 58 FIVE 1 8   988 
98 188 

92 F 58 FIVE 1 8  988 
91 188 

93 RR 
92 

23 58 FIVE 
188 

1 e 988 

94 RX 
93 

38 58 FIVE 
188 

1 8 988 

95 V 58 FIVE 1 8   988 
94 188 

96 - 
95 

338 HUNDRED 
188 

1 8 988 

97 HH 
96 

12 338 HUNDRED 
188 

1 8 988 

98 PH 
97 

24 338 HUNDRED 
188 

1 8 988 

99 N 1 
98 

14 338 HUNDRED 
188 

1 8 988 

186 - 
99 

338 HUNDRED 
188 

1 8 988 

181 D 
188 

338 HUNDRED 
188 

1 8 986 

182 ER 
181 

25 338 HUNOREC 
188 

1 8 988 

183 EH 
182 

27 338 HUNDRED 
188 

1 8 988 

184 - 
183 

338 HUNDRED 
188 

1 8 988 

185 D 
184 

338 HUNDRED 
188 

1 8 988 

186 - 
185 

349 TUELVE 
188 

1 8 988 

187 T 
186 

349 TUELVE 
188 

1 6 988 

188 U 16 349 TUELVE 1 8 988 
187 188 

189 EH 
188 

27 349 TUELVE 
188 

1 8 988 

118 L 17 349 TUELVE 1 8 988 
189 188 

111 V 
118 

8 349 TUELVE 
188 

1 6 988 

112 - 
HI 

8 225 POINTS 
188 

1 8 988 

113 P 
112 

1 225 POINTS 
188 

1 8 988 

114 RO 
113 

22 225 POINTS 
188 

1 8 988 

115 IH 
114 

?• 225 POINTS 
188 

1 8 988 

**''-—         ■    -- — —-■ —'  ■MMMMHMl ^^^tttämmmmmmm 
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116 N 14   225 POINTS 
us  iee 

1 8 988 

J17 - 8   225 POINTS 
116   188 

1 8 988 

J18 T 3   225 POINTS 
117   188 

1 e 988 

119 S 18   225 POINTS 
118   188 

1 e 988 

120 - 8     1 R     1 
79   108 

8 988 

121 nx 38    in    1 
128   188 

e 988 

J22 - 8   253 HPPIMING 
121   188 

i e 988 

123 HH 12   253 HflmilNC 
122   188 

i 8 988 

1<:4 RE 28   253 HfifiniNG 
123   188 

i 8 988 

125 n 13   253 HflnniNG 
124   188 

i 8 988 

126 IH 28   253 HflnfllNG 
125   188 

i 8 988 

127 NX 15   253 HflmilNG 
126   188 

i 8 988 

128 - 8   232 UINDOU 
127   188 

i 8 988 

129 U 16   232 UIN00U 
128   188 

i 8 988 

138 IH 28   232 UINDOU 
129   188 

i 8 988 

131 N 14   232 UINDOU 
138  ice 

i 8 988 

132 - 8   232 UINDOU 
131   188 

i 8 988 

133 D 4   232 UINDOU 
132   188 

i e 988 

134 0U 21   232 UINDOU 
133   188 

i 8 988 

135 - 8    8 "NULL" 
119   588 
134   588 

2 988 8 

>Uil"i"-"---"- --■ -——'—^'■■-^--—-^-^'^^■— ^..^„.-^w^^-^^^^ ^AW. ^^■..■■^■I.....i..^.^^.^^.^,^^J......^^._^.,....^^^^^^^Li»^ttJ^ 
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2i JICB2 : USE R HonniNc UINDOU OF FIVE HUNDRED THELVE POINTS 
95: 0 8 8 8 8 8 8 8 8 8 8 8 
961 e 8 8 8 e 8 8 0 8 8 8 8 
97i 8 8 8 8 8 8 8 8 8 8 8 8 
98i 8 8 8 8 8 8 0 8 8 8 1 8 
99: e 8 8 8 8 8 8 8 8 8 8 8 
ieei e 8 8 8 8 8 8 8 8 0 8 8 
181: 8 8 8 8 8 8 8 8 8 0 8 8 
192: e 0 8 8 8 0 8 0 0 0 8 8 
193: 0 8 8 8 8 8 8 8 8 0 1 8 
194: e 8 8 8 8 8 8 8 8 8 8 6 
105: 0 6 8 8 8 8 8 8 8 8 8 8 
106: e 8 8 8 8 8 8 8 8 8 8 8 
107; 8 8 8 8 8 8 8 8 8 8 8 8 
108: 8 8 8 8 8 8 0 58 8 8 5 4 
109: 0 16 8 5 8 8 219 21 384 90 52 12 
110: 8 34 8 4 8 8 257 34 253 85 63 12 
HI: 27 28 8 7 8 1 285 58 269 62 14? 46 
112: 28 25 8 9 8 4 172 62 282 78 178 52 
113: 32 33 12 14 8 5 152 S4 238 85 191 84 
JU: 25 46 33 21 7 18 i58 72 265 76 164 99 
115: 18 SO 33 37 16 14 15ö 188 251 76 117 115 
116: IB 61 31 46 22 22 144 188 241 66 159 119 
117: 15 GO 31 49 39 24 149 189 246 57 135 123 
118: 20 64 33 55 58 38 138 87 258 46 151 114 
110: 21 66 34 55 97 34 158 68 248 48 89 IBS 
120: 26 73 41 58 114 44 145 48 226 30 83 183 
121: 2B 98 48 66 125 54 159 41 175 20 68 95 
122: 32 1G1 48 65 143 57 161 34 196 28 38 91 
123: 32 116 42 78 141 56 167 32 146 21 43 99 
124: 32 122 54 74 154 58 145 23 141 25 38 187 
125: 38 132 36 86 157 53 96 19 191 25 38 185 
126: 36 168 40 117 157 52 64 25 149 26 35 92 
127: 43 169 47 135 166 58 52 24 116 23 35 86 
128: 42 164 46 166 168 60 69 25 91 19 35 81 
129: U 165 46 188 151 66 71 28 74 19 35 68 
130: 34 154 53 281 138 63 88 19 77 18 35 69 
131: 31 127 62 289 159 65 95 18 48 19 43 67 
132: 26 118 66 172 184 66 92 20 59 28 35 65 
133: 38 97 57 140 193 58 84 19 116 21 47 62 
134: 25 90 G5 123 166 54 119 38 147 22 39 51 
135: 30 181 78 121 232 54 107 28 68 24 35 41 
136: 42 184 90 184 287 56 58 22 38 24 43 32 
137: 37 90 98 60 233 42 8 18 192 37 52 38 
138: 45 82 15 33 27 21 8 3 337 79 94 23 
139: 29 37 1 5 8 8 8 8 371 58 243 11 
149: 31 25 8 4 8 8 8 8 255 46 292 18 
141: 8 18 C 8 8 8 8 8 377 38 318 18 
142: 8 1 8 8 8 8 8 8 262 39 358 18 
143: 8 8 1 8 8 8 8 8 389 25 483 12 
144: 8 8 1 8 0 8 8 8 387 33 283 18 
145: 0 8 8 8 8 8 8 8 8 8 5 5 
146: 263 87 8 105 8 78 8 17 8 8 22 4 
•\7: 0 93 0 93 8 62 8 15 8 8 43 4 
r.d: 8 188 8 388 8 58 8 8 8 8 9 2 
149: 8 0 8 58 8 8 8 0 8 8 1 1 
150: 8 8 8 8 8 8 8 0 8 8 1 8 
151« 8 0 8 8 8 8 8 0 8 8 1 8 
1521 0 0 8 8 8 8 8 8 8 8 1 8 
153. 0 0 8 8 8 8 8 8 8 8 1 8 

'-■■•■         .._■...-. J-».^--..-,-^_. —^-^—..—— MIMIM^Mt ■MhMMIWiaHMMH MBUMOMiMiMfMUItMtoMaMl •MlMHMMMiUflliH 
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Appendix D—ACOUSTIC PARAMETER VALUES AND LABELS Page 93 

15*i 8 8 8  8 8 •  • 8  • 8 1  8 
155: 8 • e 8 6 •  8 8  • 8 1  8 
1561 8 8 • 25 H 25  8 89  8 25 68  5 
157« 8 3 • 38 43 43 123 96 143 28 97 52 
158. 8 7 91 183 HI 47 143 75 67 25 68 63 
159i 41 27 93 174 63 54 118 59 77 39 56 83 
168* 36 27 75 177 97 41 134 52 94 41 48 98 
161i 33 49 85 220 47 42 188 69 44 49 51 89 
162. 52 68 67 198 62 31 89 62 123 54 43 86 
163; 51 68 64 151 81 27 122 51 14S 54 35 83 
1641 68 89 87 138 47 23 111 54 187 69 43 72 
165t 46 92 73 184 29 22 133 49 162 63 55 75 
1661 38 78 59 77 42 28 168 68 193 49 73 75 
167i 48 66 52 54 25 18 247 88 94 67 184 94 
168: 22 58 52 46 32 15 235 09 91 71 149 91 
169i 39 51 58 46 8 J 197 92 152 72 122 84 
179: 83 55 62 184 8 24 181 52 87 34 72 17 
171: 28 48 4 53 8 24 287 57 82 43 76 17 
172i 8 14 8 37 8 23 242 42 32 37 185 17 
173« 8 5 5 38 8 38 131 78 35 48 115 14 
174« 8 8 3 18 8 18 255 62 62 29 137 14 
175« 8 8 8 14 8 17 338 63  8 21 138 17 
176« 8 4 8 17 8 22 158 53  8 26 151 13 
177« 8 11 8 27 11 31 169 35 83 39 135 14 
178« 28 28 63 84 68 68 124 86 124 48 65 37 
179« 27 12 59 113 84 59 61 78 176 49 65 172 
188« 16 13 44 188 68 59 188 88 289 48 114 169 
181« 18 17 52 115 71 69 185 93 173 58 76 158 
182« 22 17 45 189 75 67 138 65 286 57 65 126 
183« 25 19 54 122 79 69 117 51 175 67 81 121 
184« 22 17 58 117 88 62 122 32 215 68 89 137 
185« 27 17 62 135 76 83 185 38 175 68 77 146 
186« 21 16 54 127 78 184 118 38 179 43 97 154 
187« 26 18 58 122 66 113 HI 51 183 43 85 151 
188« 24 21 58 187 78 111 137 52 192 32 77 145 
189« 31 29 63 128 137 128 164 68 77 11 64 118 
198« 46 37 59 155 186 168 158 42  5 6 56 32 
191« 28 63 14 189 215 148 175 51  8 8 35 32 
192« 38 71 35 38 178 73 234 43 17 28 68 38 
193« 29 67 69 38 137 64 264 68 48 15 67 38 
194« 25 78 37 34 138 56 265 53 74 17 88 58 
195« 14 52 48 184 88 38 1E6 53 242 33 92 88 
196« 14 59 52 184 59 28 145 46 266 45 77 186 
197« 14 51 54 99 56 28 167 36 256 44 188 96 
198: 16 53 61 98 58 28 161 48 253 48 88 89 
199; 17 56 64 92 71 19 149 39 261 49 72 88 
288« 22 78 51 98 57 22 215 39 198 33 81 52 
201« 48 114 85 126 55 21 277 34 19 24 43 36 
282: 181 238 198 178 8 35  8 17  8 8 18 22 
283: 115 238 287 115 8 23  8 7  8 8 18 28 
284: 135 279 126 126 8 18  8 8  8 8 18 17 
285: 234 375 8 93 8 15  8 8  8 8 13  5 
286: 283 264 8 94 8 37  8 8  8 8 13  4 
287« 8 U7 8 285 8 58  8 8  8 8 13  7 
288: 8 135 27 189 8 81  8 8  8 8 9 12 
289: 263 115 ] 185 157 8 73  8 8  8 8 13 14 
2)8: 128 76 J 125 96 149 76  8 4  8 8 35 38 
211: 83 88 132. 98 213 1 m    8 2  8 8 39 58 
212: 51 94 83 117 ] 161 1 158 31 8  8 18 63 96 
213: 25 61 39 96 111 164 82 66 76 24 92 149 

....   .    ^ .,..■„ .-.-.-...      ...,.    .      . ..   , ...■. .^■■„^-■--^^^^u^-,. ^^^. 
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2:   JKBZl USE R HRfHIING UIN00U OF FIVE HUNDRED TWELVE PÜ(NTS 
951 - 1 F 29 V 36 S 41 K 162 28 HH 49 8 4818 
96: - 1 F 29 V 36 S 41 K  162 28 HH 49 8 4818 
97i - 1 F 29 V 36 S 41 K 162 28 HH 49 8 4818 
98: - 1 F 29 V 36 S 41 K 162 28 HH 49 1 3925 
991 - 1 F 29 V 36 S 41 K 162 28 HH 49 • 4818 

ieei - 1 r 29 V 36 S 41 K 162 28 HH 49 8 4818 
ieii - 1 F 29 V 36 S 41 K 162 28 HH 49 8 4818 
182: - 1 F 29 V 36 s 41 K 162 28 HH 49 8 4818 
1831 - i F 29 V 36 s 41 K 162 28 HH 49 1 3925 
1841 - 1 F 29 V 36 s 41 K  162 28 HH 49 8 4818 
185i - 1 F 29 V 36 s 41 K 162 28 HH 49 8 4818 
1861 - 1 F 29 V 36 s 41 K 162 28 HH 49 8 4818 
187: - 1 F 29 V 36 s 41 K 162 28 HH 49 8 4818 
108: - 1 F 29 K 162 HH 49 V 36 4i F 28 2541 4173 
189: Y 84 G 27 D 19 IY 143 D 17 12 P 8 15497 19768 
118: Y 84 P 8 D 17 G 27 P 12 IY 143 IY 145 7952 16759 
HI: Y 84 0 19 0 17 SH 42 N 65 15 IY 143 5772 11438 
112: D 19 Y 84 UU 94 IY 143 SH 42 65 T 15 9944 12132 
113: UU 94 N 65 IY 143 D 17 Y 84 IH 141 T 15 7324 8448 
1U: IY 143 UU 94 N 65 Y 84 IH 141 19 0 17 5798 6852 
115: IY 143 UU 94 N 65 IH 141 UU 86 137 Y 84 4681 8643 
1»^: UU 94 IY 143 IH 141 N 65 IH 137 IY 142 UU 86 3845 7153 
117: uu 94 IY 143 UU 86 IH 141 IH 137 65 IY 142 5869 6683 
118: UU 94 UU 86 IY 143 N 65 IH 137 141 ER 123 3932 8888 
119: uu 86 ER 123 IY 143 UU 94 IH 137 158 N 65 2253 8575 
128: UH 86 ER 123 fiX 151 UU 94 IH 137 158 IY 143 3889 5253 
121: flX 151 UU 86 fiX 149 nx 147 ER 123 88 UU 91 5418 8832 
122: OX 151 RX 147 UU 88 uu 86 fiX 149 123 UU 91 4688 9942 
123: RX 151 UU 91 UU 88 nx 149 nx 147 165 ER 122 5697 7339 
124: UU 91 RX 151 UU 88 nx 149 fiX 147 93 ER 122 7379 8287 
125: UU 88 fiX 151 UU 93 ER 122 fiX 149 88 UU 86 13226 15364 
126: UU 88 UU 93 UU 91 nx 149 ER 122 151 L 88 12985 14218 
127: UU 88 UU 93 L 83 L 82 UU 91 33 L 81 15452 17811 
128: UU 88 L 82 UU 93 L 83 V 33 154 UU 91 13468 13786 
129: L 82 UU 88 V 33 L 83 UU 93 154 no 187 9821 15839 
130: L 82 UU 88 no 187 fiX 154 UU 93 33 L 83 6763 13411 
131: L 82 fiX 154 no 187 ER 128 V 33 88 L 83 6554 11283 
132: L 82 ER 128 nx 154 UU 88 V 33 91 NX 78 11697 12394 
133: UU 88 UU 91 nx isi fiX 155 nx 149 93 L 82 9854 17834 
134: UU 88 fiX 151 nx 149 UU 91 nx 147 93 Y 165 4751 7173 
135: nx 152 ER 126 UU 91 n 55 NX 78 53 UU 88 12474 14788 
136: n 55 ER 125 HH 45 n 53 HH 47 152 _ 4 13385 14771 
137: L 89 fiX 155 nx 151 uu 88 ER 125 45 HH 47 27523 36686 
138: F 30 Y 163 D 28 T 14 L 88 143 0 19 236S4 26352 
130: T 14 S 38 S 48 s 39 F 38 19 D 28 4633 17775 
140: S 49 T 14 S 38 F 30 0 28 13 0 19 2359 28885 
141: 3 38 T 14 S 39 S 48 0 19 38 0 28 3861 18319 
142: S 40 S 38 T 14 s 39 F 38 28 0 19 6336 18198 
143: S 38 S 39 T 14 s 48 D 19 43 T 15 2894 2125 
144: T 14 s 38 S 39 s 48 0 19 38 D 28 5596 7138 
145: - 1 F 29 V 36 s 4: IC 162 28 HH 49 58 3578 
146: N 62 - 3 N 59 u 75 N 66 52 N 58 18583 28927 
147: DH 37 K  162 HH 58 V 36 HH 49 _ 6 0 16 6219 8257 
148: U 78 U 73 no 187 L 82 U 77 no 189 L 79 7685 35888 
149; - 1 29 K 162 V 36 HH 49 s 41 F 28 2582 6422 
158: - 1 29 V 36 s 41 K 162 F 28 HH 49 1 3925 
151: - 1 29 V 36 s <1 K 162 F 28 HH 49 1 3925 
152: - 1 29 V 36 s 41 K  162 F 28 HH 49 1 3925 
153: - 1 29 V 36 s 41 K 162 F 28 HH 49 1 3925 
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154. - 1 F 29 V 36 S 41 K 162 F 28 HH 49 1 3925 
155: - 1 F 29 V 36 S 41 K 162 F 28 HH 49 1 3925 
1561 HH 49 K 162 F 29 F 28 S 41 -  1 V 36 3294 4596 
157i 0 17 D 18 C 27 N 65 ER 123 IH 137 T 13 18583 16399 
lb8: RX 154 PX 149 ER 161 EH 168 HH 48 UU 68 PE 167 19735 21255 
159: EH 168 PX 149 ER 161 UU 88 PE 167 L 82 PX 154 16F.68 16827 
168: PX 149 UU 88 ER 161 PX 154 EH 168 PE 167 UU 93 11725 13214 
161: EH 168 L 82 PO 187 PX 154 PE 167 L 83 ER 161 13564 17812 
162: UU 88 UU 93 PX 149 PX 146 L 82 PE 167 OU 99 15823 16482 
163; uu 88 PX 149 UU 93 PX 146 IH 138 PX 151 OU 184 8486 9933 
164: NX 71 UU 88 PX 149 UU 93 L 83 IH 138 L 82 13955 14978 
165: nx 158 PX 149 UU 88 N 65 IH 138 IY 144 UU 86 16371 16S22 
166: N 65 PX 158 UU 86 IY 143 IH 137 IY 144 UU 94 8937 9525 
167: IY 145 N 65 Y 164 0 17 IH 137 N 68 P  9 17482 28199 
168: N 65 D 17 P  9 IH 137 Y 164 UU 94 K 23 16857 2188t 
1691 N 65 0 17 IH 137 UU 94 Y 84 IH 141 IY 143 4588 12643 
178: fl 56 NX 71 IY 145 Y 85 N 65 D 17 IY 144 17914 18212 
171: D 17 IY 145 Y 164 HH 44 K    23 D 18 P  9 13998 14116 
172: HH 44 Y 164 K 23 G 26 r 24 N 68 D 18 3777 5781 
173: K 23 HH 44 D 18 T 13 F 28 HH 49 D 17 6377 11433 
174: Y 164 HH 44 K 24 K    23 P  9 0 18 D 17 5728 6684 
175: Y 164 G 26 N 68 HH 44 K 24 K 23 P  9 5668 8557 
176: K 23 HH 44 D 18 T 13 Y 164 F 28 P  9 3642 5194 
177» 0 18 HH 44 K 23 D 17 P  9 T 13 K 24 3786 9799 
178: P 18 PX 149 UU 88 ER 123 N 65 PX 151 IH 137 15215 17662 
179: PX 146 OU 184 RE 129 IH 139 EH 131 UU 98 PE 126 7513 7652 
188: IH 137 EH 131 PE 138 UU 86 UU 98 PE 129 OU 184 6898 8558 
181: OU 184 PE 129 RX 146 IH 137 UU 98 PE 138 EH 131 5756 6898 
182: UU 86 PX 146 IH 137 UU 98 OU 184 ER 123 PE 129 7652 7678 
183: PX 146 OU 184 RE 129 IH 137 RX 149 UU 98 UU 86 6166 8821 
184: nx 146 UU 98 UU 86 OU 184 IH 137 RE 129 ER 123 6955 9923 
185: PX 146 OU 164 flE 129 UU 98 OU 99 PH 113 PX 149 3821 5458 
186: uu 98 OU 184 fiX 146 PE 129 PH 113 OU 99 PH 118 4743 5858 
187: nx 146 OU 184 UU 98 PE 129 PH 113 OU 99 Ph 118 4273 4328 
188: uu 98 PX 146 OU 184 RE 129 PH 113 ER 122 PX 149 4224 5914 
189: ER 161 PE 128 PH 113 PX 149 nx 154 UU 91 OU 184 6313 6855 
198: ER 128 HH 48 V 31 nx 154 HH 46 RX 153 PX 152 7825 13314 
191: ER 128 RX 152 H 54 UU 91 V 31 PX 154 HH 48 12881 17683 
192: n 54 Y 165 N 63 UU 91 nx 152 NX 78 RX 147 3286 6964 
193: n 54 Y 165 PX 147 UU 91 N 63 11 56 NX 69 6987 8887 
194: Y 165 n 54 RX 147 UU 91 nX 151 N 63 NX 69 5986 9524 
195: UU 86 ER 123 PX 158 IH 137 UU 94 PX 151 IY 143 6422 18178 
196: fiX 158 UU 86 IY 143 IH 137 ER 123 UU 94 IH 138 8861 9177 
197: IY 143 RX 158 UU 86 UU 94 N 65 IH 137 ER 123 18383 18483 
198: fiX 158 UU 86 IY 143 N 65 IH 137 UU 94 ER 123 9717 18855 
199: UU 86 PX 158 IY 143 ER 123 N 65 UU 94 IH 137 11845 11239 
286: IY 144 N 65 RX 158 P 12 RX 151 RX 149 D 17 11888 13978 
281: NX 68 fl 56 N 68 NX 69 tl 54 NX 71 RX 154 5191 12991 
282: V 32 N 64 U 76 U 74 N 59 -  3 U 75 5832 7241 
283: N 64 V 32 U 74 U 76 -  3 N 61 N 59 2583 12988 
284: V 32 N 64 N 61 N 58 U 75 N 59 -  3 9646 14177 
285: - 2 N 61 N 58 U 75 tl 51 N 62 V 32 3266 34473 
286: - 2 N 62 N 58 U 75 H 51 N 66 V 32 12574 18834 
287: u 78 OH 37 V 35 P 11 N 59 L 82 L 83 388 19873 
288: u 78 OH 37 V 35 P 11 L 82 L 83 N 59 2535 14898 
289: - 3 U 75 N 59 U 74 N 62 V 32 U 76 7743 9985 
218: V 34 HH 47 ER 125 L 81 -  4 V 31 RX 148 4227 8393 
211: HH 47 ER 125 V 34 -  4 L 81 HH 45 HH 46 2835 2938 
212: HK 46 ER 124 ER 128 RX 153 V 31 HH 47 PX 155 9883 18147 
213: PE 128 ER 161 ER 122 OU 184 PH 113 UH 96 PH 118 6678 9896 
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OP New« Retrieval Talki 

Lot we have all the itoriei. 

L«l me have all the atorlai. 

Give me Franca. 

Give me Franca. 

Tall me all about Nixon. 

Tal I me all about Nixon. 

Tall Ma about Matarqata. 

Tall ma about Uatarqata. 

Tal I us all about China. 

Tal I us all about China. 

Giva ua Russia. 
Giva us Russia. 

Tall Ma all about Israal. 

Tall ma all about Israal. 

Lat ma have the headlines. 

Lat ma have tha headline». 

Giva ma tha suMMary. 

Giva Ma tha suMMary. 
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Interact I vt (orMnt trtclttnq taiki 

I want to do (orMnt tracking. 
I tiant to do fomant tracking. 

Use a HaMMing Mindou Ml.th tlv« hundrH, .tualvt.pointi^ 
UB« a Manning MlndOM to  flva hundrad, «our  points. 

Incranant tha window In stopa o« ona hundrad points. 
Incranant tha window In atopt o« ona hundrad points. 

For tach window, coaputa tha fast Fourlar tranafora. 
For aach window, compute tha fast Fourlar transform. 

Display tha Fourlar spectrum. 
Display tha Fourlar spectrum. 

Display tha LPC smoothed spectrum. 
Display tha LPC smoothed spectrum. 

Display tha capstrally smoothed spectrum. 
Display tha capstrally smoothed spectrum. 

Usa a pre-emohasis of six  db per octavo. 
Uso a pra-anphasls of sixty db par octave. 
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fledical questionalre laikl 

Do you smoke? 

Do you smoke' 

Do ycu drink? 

Do you drink? 

Do you have numbness? 

Is your    numbness? 

Where Is the pain? 

Uhere Is the pain? 

Have you had mumps? 

Is your numbness? 

Ore your headachus severe? 

Are your headaches severe? 

Are you In pain? 

fire you In pain? 

Uhere uere you hospitalized? 

Uhere Hare you hospitalized? 

Uhon uere you Immunized? 

when uere you immunized? 

Have you been circumcised? 

Have you bean circumcised?' 

Is the pain severe? 

Is the pain severe? 

Have you ever been anesthetized? 

Have you ever been anesthetized? 

Have you ever been Injured? 

Have you ever been Injured? 

Have you ever had an operation? 
Have you aver had an operation? 

How often do  you have   nausea? 
How often have you had an operation? 

How long have you had asthma? 

How long have you had asthma? 
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It your dizziness continuous? 
Is your dizziness continuous? 

fire you afraid ol surgery? 
flrs you «fraid of surgsry? 

HOM much do you weigh? 
Hou Much do you smoke? 

Is your urine cloudy? 
Is your urino cloudy? 

Here you ever hospitalized? 
Uere you ever hospitalized? 
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Vole« chtsi tackt 

Pawn goes to king four. 
Pawn goo« to king four. 

Knight Movai to king bishop thro«. 
Knight MOVOS to king bithop thraa. 

Bishop goas to bishop lour. 
Bishop goas to bishop lour. 

Knight on king bishop thraa goas to knight llva. 
Knight on king bishop thraa goas to king  llva. 

Pawn captures pann. 
Pawn captures pawn. 

Knight on king knight llva capturas oaun on king bishop.savan. 
Knight on king knight llva capturas pawn on king bishop savan. 

Quean goas to bishop thraa. 
Queer goes to bishop thraa. 

Knight     goes to bishop three. 
Knight pawn goes to bishop three. 

Wnlght captures knight on quean llva. 
Knight capturas knight on pawn lour. 

King to queen one. 
K ing to queen one. 

Knight takes pawn. 
Knight takes pawn. 

Knight captures rook on queen rook eight. 
Knight captures rook on queen rook «no. 

Queen goes to queen live. 
Queen goes to queen live. 

Pawn on queen tuo goes to queen lour. 
Pawn on queen tuo goes to queen lour. 

Bishop movis to knight live, check. 
Bishop moves to knight live, check. 

Bishop goes to knight live, eher*. 
Bishop goes to knight live, check. 
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Queen on queen fiv« capture» quean, check. 
Queen on queen one captures queen, check. 

Queen moves to queen five, check. 
King moves to queen five, check. 

Queon takes bishop on queen six. 
Queen takes bishop on queen six. 

Rook moves to king one. 
Rook moves to k ing one. 

Rook moves to king seven, check. 
Pawn moves to king seven, check. 

Queen moves to queen bishop seven. 
Queen moves to queen bishop seven. 

te_4taaa|--_tfB. 
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Intaractiv«   formant  tracking  tatlci 

I want  to do forMnt tracking. 
I want  to do fomant tracking. 

Uta a Hamming wlndoM of  livt hundred tHOlvo points. 
Us« a Hamming MlndoH of llv« hundrod points. 

Us« uttaranc« number six of  fll« number  five. 
Us« utterance number six of   fll« number  five. 

Increment   the ulndou   In slops of on« hundred points. 
Increment   th« Hlndou  In slops of      four points. 

For «ach Hlndou,  display the Fourier spectrum. 
For each uindou,  display the  forMnt  tracks. 

Compute   the LPC smoothed spectrum using th« autocorrelation method. 
Compute   th« LPC smoothed spectrum using  th« autocorrelation method. 

Compute  th« roots of  the  invors«  litter using Balrstou's method. 
Compute  th« roots of  th«  inverse  filter using Balrstou's method. 

Display  th«   imagiriry part of  th« roots. 
Display  th«  imaginary part of  th« roots. 

I  uant   to compare  th« autocorrelation method ulth the covarianc« method. 
I uant   to compare th« autocorrelation method and    th« cover lance method. 

Increment   th« uindou by on« hundrod points. 
Increment   th« uindou by on« points. 

Display  th« FFT spectrum. 
Display  th« FFT spectrum. 

Use a Manning uindou of  tuo hundred,   fifty-six points. 
Us« a Manning uindou of  tuo hundred, six her 17. 

Display  th« FFT spectrum. 
Display  th« FFT spectrum. 

Compute   th« Hilbert   transform. 
Usa  tuo points. 

I   uant   to   look  at   Image enhancement uith different parameters. 
1  uant   to  compare   image enhancement ulth different parameters. 

Ol-splay tfir Kpoctrograii trilh a pre-anyhasls of si* dacttwls per wtav«. 
Display th« spoctrogram to     a pre-emphasis of six thousand five hartz. 
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Us« • cwilinq of thirty uith a floor of z«ro. 
Uso a eel line; of tan   to  a floor of zaro. 

For aach uttaranca display tha apactrogra*. 
For aach uttaranca display tha spsctrograR. 

—-* ■ - 
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