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Stochastic Modeling Based Variability Analysis of

On-Chip Interconnects

Dries Vande Ginste1, Member, IEEE, Daniël De Zutter1, Fellow, IEEE, Dirk Deschrijver2, Member, IEEE, Tom

Dhaene2, Senior Member, IEEE, Paolo Manfredi3, Student Member, IEEE, Flavio Canavero3, Fellow, IEEE

Abstract— In this paper, a novel stochastic modeling strategy
is constructed that allows assessing parameter variability effects
induced by the manufacturing process of on-chip interconnects.
The strategy adopts a three-step approach. First, a very accurate
electromagnetic modeling technique yields the per unit length
(p.u.l.) transmission line parameters of the on-chip interconnect
structures. Second, parameterized macromodels of these p.u.l.
parameters are constructed. Third, a Stochastic Galerkin Method
is implemented to solve the pertinent stochastic telegrapher’s
equations. The new methodology is illustrated with meaningful
design examples, demonstrating its accuracy and efficiency. Im-
provements and advantages w.r.t. the state-of-the-art are clearly
highlighted.

Index Terms— On-chip interconnects, variability analysis, mul-
ticonductor transmission lines, Stochastic Galerkin Method

I. INTRODUCTION

To meet the stringent design specifications, expressed in

terms of speed, bandwidth, noise margin, crosstalk, etc, on-

chip interconnect designers have to be aware of high-frequency

phenomena. Wave effects (start to) appear on-chip, skin-effect

is present, and in contrast to on-board interconnects, the semi-

conductors induce the so-called slow-wave effect [1]. On top

of that, given the further miniaturization of the interconnects,

designers have to deal with the adverse effects caused by

the manufacturing process, which introduces more and more

randomness. For example, the position and width of the lines

are no longer deterministically known, and also, the shape

of the cross-section is no longer rectangular. Due to over-

or underetching or electrolytic growth, the cross-section has

a random, trapezoidal shape [2]. So, designers are facing a

difficult task, and to accomplish their goals they need to rely

on modeling tools that accurately capture all high-frequency

phenomena and allow to study variability effects.

In previous work, the influence of parameter variability ef-

fects on interconnects, and on-chip interconnects in particular,

has received some attention. In [3] and [4] the influence of

the cross-section was studied. Unfortunately, only a discrete

set of sampling points could be considered in acceptable

time. In [5] a Monte Carlo (MC) analysis of a single on-

chip line was performed, clearly illustrating the importance

of modeling tools that allow to study variability effects. A
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brute-force MC approach [6] is, however, not tractable when

dealing with multiconductor transmission lines (MTLs) in a

multidimensional parameter space, as will be shown here.

Compared to MC, a better stochastic modeling formalism

is described in [7] and [8] where the effect of parameter

uncertainty on MTLs, i.e. cables and on-board interconnects, is

studied. The adopted stochastic modeling method is based on

a polynomial chaos (PC) expansion with Galerkin projection,

also called the Stochastic Galerkin Method (SGM) [9]–[11].

On-chip interconnect design tools would also benefit a lot from

such a powerful stochastic modeling technique. It is however

not straightforward to immediately extend the techniques

described in [7] and [8] to on-chip interconnects, as [7] and [8]

rely on basic numerical or heuristic models for the per unit

length (p.u.l.) transmission line parameters of the interconnect

structures. In case of on-chip interconnects, and in particular

in the presence of semiconductors, accurate models are not

readily available.

In this paper, a stochastic modeling strategy for on-chip

interconnects is constructed, allowing to rapidly assess pa-

rameter variability effects. This is made possible by a three-

step approach. First, a two-dimensional (2-D) electromagnetic

modeling (EM) technique leads to a very accurate computation

of the p.u.l. parameters of the on-chip MTLs. Second, using a

combination of Vector Fitting (VF) [12]–[14] and barycen-

tric Lagrange interpolation [15] multivariate parameterized

macromodels of the p.u.l. parameters are constructed [16].

Third, thanks to this macromodeling step, an efficient SGM

can be implemented. At this point we want to underline

the benefits and novelty of this strategy w.r.t. the state-of-

the-art, and in particular w.r.t. [7] and [8]. The novelty is

twofold: (i) For the first time in literature, a variability analysis

of on-chip interconnects, described as MTLs, is presented.

It is clear that this application is of great importance to

the community, as these interconnects are greatly affected

by their manufacturing process. Using the method presented

in [7] and [8], as indicated above, only cable and on-board

interconnects can be dealt with; (ii) Also in contrast to what

is presented in [7] and [8], and again thanks to the construction

of the macromodels, the PC expansion of the p.u.l. parameters

does not introduce any additional error, leading to a stochastic

modeling technique with controllable accuracy, whilst being

very efficient in terms of CPU time. Additionally, and for the

first time, a compact formalism for the SGM for general MTLs

with an arbitrary number of random stochastic parameters

is presented in the appendix, allowing the readers to easily

implement the method and to tailor it to their own needs (on-
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board, on-chip, etc).

This paper is organized as follows. First, in Section II

some typical state-of-the-art on-chip interconnect examples

are presented, for which a variability analysis is becoming

imperative. Next, the stochastic modeling strategy is described

in Section III for the case of a single line with one stochastic

parameter. An extension to general MTLs with more than

one stochastic parameter is provided in Appendix A-I. In

Section IV, a variability analysis is performed for the examples

presented in Section II, demonstrating excellent accuracy com-

pared to a brute-force MC approach, and largely outperforming

it in terms of CPU time. Conclusions are summarized in

Section V.

II. APPLICATION EXAMPLES
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(b) Coupled IEM lines

Aluminum : σ = 3.77 · 107 S/m

SiO2 : ǫr = 3.9, tan δ = 0.001

Silicon : ǫr = 11.7, σ = 10S/m

Fig. 1: Cross-section of the IEM lines (not on scale).

There exist a large number of on-chip interconnect topolo-

gies, e.g., microstrip, co-planar waveguide, stripline. Here, we

consider Inverted Embedded Microstrip (IEM) lines, such as

the ones presented in Fig. 1. The IEM gains importance in

high-frequency IC-design [17], because it combines the ad-

vantages of classic microstrips (well-known modeling, smaller

on-chip area needed than co-planar waveguide topology, etc)

with the availability of a nearly ideal (non-broken) ground

plate. Of course, the stochastic modeling strategy presented in

Section III is applicable to any on-chip interconnect topology.

The particular IEM topology of Fig. 1 comprises a doped

Silicon substrate with a thickness of 30 µm, a relative per-

mittivity ǫr = 11.7, and a conductivity σ = 10 S/m on

which an insulator is placed. This insulator is 11.4 µm thick

SiO2 with a relative permittivity ǫr = 3.9 and a loss tangent

tan δ = 0.001. On top of the SiO2 the top-plate ground

is found. This ground plate has a thickness of 3 µm and

is Aluminum with a conductivity σ = 3.77 · 107 S/m. The

Aluminum interconnect is embedded in the SiO2 at a height

of 6.4 µm above the semiconductor. Due to the etching or

electrolytic growth process, the cross-sections of the lines

have a trapezoidal shape. This is indicated by the stochastic

parameter β, i.e. the length of the bottom base of the trapezoid.

Here, the height and the length of the top side of the trapezoids

are fixed to 2 µm. For the pair of coupled lines of Fig. 1(b),

there is a second stochastic parameter, i.e. ζ, the gap between

the lines. Due to nonperfect alignment this gap is random and

is considered to be independent from the parameter β.

III. STOCHASTIC MODELING STRATEGY

A three-step approach is developed to accurately and effi-

ciently predict the effects of parameter variability. For clarity

and ease of annotation, this modeling strategy is described

below for the case of a single line (with a reference conductor)

and with one stochastic parameter, such as the application

example shown in Fig. 1(a). A general framework for MTLs

with an arbitrary number of stochastic parameters is given in

Appendix A-I.

A. Two-dimensional (2-D) electromagnetic (EM) modeling

Consider a uniform transmission line where the axis of

invariance is the z-axis. The transmission line is composed

of one signal conductor and a reference conductor and one

geometrical parameter β is random. In the Laplace domain —

using the complex variable s = j2πf , where f denotes the

frequency — the governing telegrapher’s equations, describing

this transmission line’s behavior, are:

d

dz
V (z, s, β) = −Z(s, β) I(z, s, β), (1)

d

dz
I(z, s, β) = −Y (s, β)V (z, s, β), (2)

where V (z, s, β) and I(z, s, β), i.e. the voltage and current

along the line, are functions of the frequency and of the

distance z along the lines. They also depend on the stochastic

parameter β. The p.u.l. impedance and admittance parameters

are denoted Z(s, β) and Y (s, β) respectively, and they both

depend on the frequency and on the stochastic parameter. To

very accurately compute these p.u.l. parameters a 2-D EM

modeling technique is adopted. As this technique has already

been abundantly detailed and validated in literature [18], [19],

here we only repeat the gist of it.

The 2-D EM technique assumes a quasi-TM behavior of the

fields. Given the small cross-section of on-chip interconnects,

this is a valid assumption. A careful definition of the circuit

currents, taking semiconductors into account, leads to a con-

cise complex capacitance and a complex inductance problem

formulation. By introducing a differential surface admittance

operator, these two problems are cast as boundary integral

equations (BIEs), which can be solved efficiently (no volume
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discretized is needed) and with high precision (skin effect and

slow-wave effect are accurately taken into account). Following

this procedure, accurate p.u.l. parameter data for a set of

frequency samples within in a very broad band, ranging from

DC till 100 GHz, and for a set of samples of the parameter β
is obtained. Numerical results for the p.u.l. parameters of the

structures presented in Section II can be found in [4].

B. Parameterized macromodeling

Starting from this data, first, for V samples of the stochas-

tic parameter β, denoted βv, v = 1, . . . , V , macromod-

els Zumm(s, βv) and Y umm(s, βv) are constructed using Vec-

tor Fitting [12]. These are univariate macromodels, i.e. they

only depend on frequency. Second, as in [16], the univariate

macromodels are strung together by means of barycentric

Lagrange interpolation [15]. A proper choice of the barycentric

weights wv , v = 1, . . . , V , yields the following bivariate

macromodels:

Zmm(s, β) =

V
∑

v=1

wvZ
umm(s, βv)

V
∏

k = 1
k 6= v

(β − βk), (3)

Y mm(s, β) =
V
∑

v=1

wvY
umm(s, βv)

V
∏

k = 1
k 6= v

(β − βk). (4)

These parameterized macromodels Zmm(s, β) and Y mm(s, β)
are rational w.r.t. to frequency and polynomial w.r.t. the

stochastic parameter β.

By making use of adaptive sampling schemes [20] in the

construction of the macromodels, the number of calls to the

2-D EM solver described in Section III-A is limited, reducing

the CPU time. The accuracy of the macromodels (3) and (4)

w.r.t. the original p.u.l. parameters Z(s, β) and Y (s, β) can

be controlled by means of the number of poles in the Vector

Fitting step and by the number of samples V . (Note that,

here, the same samples βv , v = 1, . . . , V , are used for the

construction of both Zmm and Y mm, but this is not strictly

necessary.) Further computational details will be provided in

Section IV.

It is important to already underline here that thanks to

this macromodeling step, and in contrast to [7] and [8], an

accurate and efficient stochastic modeling technique can be

implemented now for on-chip interconnects, for which no

empirical models of the p.u.l. parameters exist. This is the-

oretically described in the next sections and also numerically

validated in Section IV.

C. Stochastic Galerkin Method (SGM)

In this paper, to solve the stochastic telegrapher’s equa-

tions (1) and (2), an SGM is adopted, applying Galerkin

projection to a Polynomial Chaos (PC) expansion of these

differential equations [9], [10]. Let us assume that the stochas-

tic parameter β is a Gaussian random variable with a mean

value µβ and a normalized standard deviation σβ . Introducing

another Gaussian random variable ξ with zero mean and unit

variance, β can be then written as

β = µβ(1 + σβξ). (5)

This assumption is not a restriction, it merely leads to a

Hermite Polynomial Chaos (hPC) expansion (see further).

Obviously, other PC expansions, for non-Gaussian distribu-

tions of β, can be constructed as well. An overview of the

generalized PC is found in [11].

As a first step, an hPC expansion of the (macromodels of

the) p.u.l. parameters is performed:

Zmm(s, β) =

K
∑

k=0

Zk(s)φk(ξ), (6)

Y mm(s, β) =

K
∑

k=0

Yk(s)φk(ξ), (7)

where φk(ξ) indicates the stochastic Hermite polynomial of

degree k [21]. These polynomials are orthogonal w.r.t. the

weighting function

W (ξ) =
1√
2π

e−
1
2 ξ

2

, (8)

as follows:

< φk(ξ), φm(ξ) >= k! δkm, (9)

where δkm is the Kronecker delta and where the inner product

< f(ξ), g(ξ) > is defined as

< f(ξ), g(ξ) >=

∫ +∞

−∞

f(ξ) g(ξ)W (ξ) dξ. (10)

Hence, the expansion coefficients Zk(s) and Yk(s), k =
0, . . . ,K , in (6) and (7) are given by:

Zk(s) =< Zmm(s, β), φk(ξ) > / k!, (11)

Yk(s) =< Y mm(s, β), φk(ξ) > / k!. (12)

Second, the unknown voltage and current along the line are

expanded in a similar way:

V (z, s, β) =

K
∑

k=0

Vk(z, s)φk(ξ), (13)

I(z, s, β) =

K
∑

k=0

Ik(z, s)φk(ξ). (14)

Third, the expansions (6), (7), (13), and (14) are substituted

into the telegrapher’s equations (1) and (2):

d

dz

K
∑

k=0

Vk(z, s)φk(ξ) = −
K
∑

k=0

K
∑

l=0

Zk(s)Il(z, s)φk(ξ)φl(ξ),

(15)

d

dz

K
∑

k=0

Ik(z, s)φk(ξ) = −
K
∑

k=0

K
∑

l=0

Yk(s)Vl(z, s)φk(ξ)φl(ξ).

(16)
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Fourth, a Galerkin projection is applied, meaning that (15)

and (16) are weighted with the same set of K + 1 polyno-

mials φm(ξ), m = 0, . . . , K , using the inner product (10).

Taking the orthogonality (9) into account, this leads to:

∀m = 0, . . . , K,

d

dz
Vm(z, s) = −

K
∑

k=0

K
∑

l=0

αklmZk(s)Il(z, s), (17)

d

dz
Im(z, s) = −

K
∑

k=0

K
∑

l=0

αklmYk(s)Vl(z, s), (18)

with

αklm =< φk(ξ)φl(ξ), φm(ξ) > /m!. (19)

Together, (17) and (18) form a matrix ordinary differential

equation (ODE) in the 2(K + 1) unknown expansion coef-

ficients Vk(z, s) and Ik(z, s), k = 0, . . . , K . Thanks to the

SGM, the equation does no longer depend on the stochastic

parameter β.

Fifth, this ODE is solved. Thereto, pertinent boundary

conditions (BCs) must be constructed. These BCs evolve from

the terminations at the ends of the lines. In Appendix A-I, a

framework for general BCs, also allowing stochastic variation

of the terminations, is outlined in detail, together with the

solution technique of general ODEs for MTLs. Here, we

merely sketch the solution technique for the single line with

a finite length L, the presence of a deterministic Thévenin

generator — composed of a voltage source EN (s) and an

impedance ZN (s) — at the near end of the line (z = 0), and

a deterministic load impedance ZF (s) at the far end of the

line (z = L), which leads to the following BCs:

V (0, s) = EN (s)− ZN(s) I(0, s), (20)

V (L, s) = ZF (s) I(L, s). (21)

Application of the hPC expansion with Galerkin weighting

to (20) and (21) yields a new set of 2(K + 1) boundary

conditions, allowing to solve (17) and (18) for the 2(K + 1)
unknown expansion coefficients Vk(z, s) and Ik(z, s), k =
0, . . . , K . Substitution of these coefficients into (13) and (14)

again, finally yields the desired voltage V (z, s, β) and cur-

rent I(z, s, β) along the line, as a function of the stochastic

parameter β. As demonstrated in Section IV, this allows to

efficiently compute any desired stochastic quantity or function,

such as the stochastic moments or the probability density

function (PDF) of the voltage at the load, using standard

analytical or numerical techniques [22].

D. Observations

Before numerically validating the proposed modeling strat-

egy, outlined in Sections III-A, III-B, and III-C, the following

three interesting observations are put forward, which can be

considered as clear improvements w.r.t. the state-of-the-art:

1) An accurate variability analysis for uniform transmis-

sion lines, leveraging the SGM or any other stochastic

modeling technique, can only be carried out if the p.u.l.

parameters as a function of the frequency and as a

function of the stochastic parameters are very accurately

known (see also remark 3) below). Whereas the tech-

niques in [7] and [8] are based on simplified models

for the p.u.l. parameters of cables and on-board traces,

here, the 2-D EM modeling technique of Section III-

A is employed, allowing such a variability analysis of

on-chip interconnects.

2) For the single line, the computation of the inner prod-

ucts (11) and (12) is necessary to expand the scalar

p.u.l. parameters (6) and (7). In general, the computation

of the expansion coefficients of the p.u.l. parameters

require the weighting of these p.u.l. parameters with

the proper polynomials, necessitating the evaluation of

multidimensional integrals (A-8). Traditionally, numer-

ical integration schemes, employing Gauss-Hermite cu-

batures [21], are required. Here, however, thanks to the

macromodeling step, p.u.l. parameters are obtained that

are analytically known as a function of frequency and

as a function of the stochastic parameters (see (3), (4),

and (A-3)). This allows efficient, closed-form integra-

tions, drastically reducing the setup time of the SGM.

This is also numerically illustrated in Section IV.

3) In standard PC techniques, expansions such as (6)

and (7), can be considered as a projection of the

p.u.l. parameters onto a vector space of polynomials.

In Section III-C, this vector space PK is spanned by

the set of chosen polynomials φk , k = 0, . . . , K , of

degree at most K . Usually, such a projection introduces

a loss of accuracy that is determined by the number

of terms K + 1 used in the truncated series. Here,

however, the macromodels also exhibit a polynomial

behavior as a function of the stochastic parameter(s). By

choosing the maximum degree V −1 in (3) and (4) equal

to K , the macromodels already reside in PK , making (6)

and (7) exact! Thus, the expansion can be considered as

a change of basis, rather than a projection.

The above advantages come, of course, at a cost, namely

the construction of the macromodels. It is important to state

that rapid multivariate parameterized macromodeling tech-

niques [23], [24] are being developed, also allowing a control-

lable accuracy. Furthermore, these macromodels are computed

offline and stored (CPU times are provided in Section IV).

Once available, they can also be employed for any other

type of PC expansion (other then Hermite PC), for sensitivity

analysis, and for optimization purposes.

IV. VARIABILITY ANALYSIS OF IEM LINES

In this section the stochastic modeling strategy of Section III

is validated and its efficiency is demonstrated, using the

application examples of Section II. All computations have

been performed on a Dell Precision M4500 laptop with an

Intel(R) Core(TM) i7 X940 CPU running at 2.13 GHz and

8 GB of RAM.

A. Single IEM line

We consider the single IEM line shown in Fig. 1(a). The

macromodels for the p.u.l. parameters are computed offline. To
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obtain a relative error of 0.1%, thanks to the adaptive sampling

technique, only 29 frequency samples are needed to construct

the univariate macromodels Zumm(s, βv) and Y umm(s, βv),
v = 1, . . . , V , and this for V = 4 values of the stochastic

parameter β. Hence, 29 × 4 = 116 calls to the 2-D EM

solver are required, each sample taking 1.16 s. The macro-

model building time itself takes about 6 s. So, in total, to

construct Zmm(s, β) and Y umm(s, β), 140 s are needed. The

results of this macromodeling step were already shown in [5],

where they were used to implement a tractable MC analysis.

A variability analysis is now performed. The IEM line

of Fig. 1(a) is given a finite length L = 1 mm. It is

driven by a Thévenin voltage source producing a sine wave

with frequency f , amplitude EN (s ≡ j2πf), and with an

internal impedance ZN = 1Ω. It is terminated by a load

impedance ZF = (j 2πf CL + 1/RL)
−1, with CL = 1 pF

and RL = 1 kΩ. To analyze the possible adverse effects of

the manufacturing process, the parameter β is assumed to be

a Gaussian random variable with a mean value µβ = 2 µm

and a normalized standard deviation σβ = 10%, and the SGM

computation is performed. Also, as a reference, a brute-force

MC analysis is carried out, using 50000 β-samples. As a

result, amongst others, the output voltage V (L, s, β) at the

load is computed as a function of the stochastic parameter β.

In Fig. 2(a), a bode plot of the magnitude of the transfer

function H(s, β) = V (L, s, β)/E(s) is shown, for a broad

frequency band up to 100 GHz. Fig. 2(b) zooms in on

the resonance around 7 GHz. The full black line indicates

the mean µ|H| of this output characteristic and the dashed

lines show the ±3σ|H| deviations from this mean µ|H|, both

computed using the novel technique. The gray lines on Fig. 2

correspond to 100 samples of the MC run; the circles (◦) and

squares (�) indicate the mean µ|H| and the ±3σ|H| deviations,

resp., computed using the 50000 samples of the MC run. (For

clarity, the circles and squares are not shown on Fig. 2(a).)

It can be observed that the novel technique and the MC run

are in perfect agreement, validating the presented stochastic

modeling strategy. The computation times are indicated in

Table I. The setup time refers to the time that is needed in

the SGM to construct the matrix ODE (17) and (18) and

the corresponding boundary conditions. The solution time

denotes the time needed to solve this equation for 250 fre-

quency samples. For the technique proposed in this work, a

significant speed-up factor of 32 w.r.t. the MC approach is

observed. By means of a simple computation concerning the

setup time, the importance of the macromodeling step can

be clearly illustrated. Without the macromodels, the MC run

would require 250× 50000 calls to the 2-D EM solver, each

one requiring 1.16 s. Hence, computing all samples would

take approximately 168 days. Also the setup time for the

SGM, now being only 0.02 s, would become unacceptably

long. Indeed, we need to compute the coefficients Zk(s) (11)

and Yk(s) (12), k = 0, . . . ,K . For 250 frequency samples and

with K = 3, this requires the computation of 2 × 250× 4 =
2000 integrals of the type (10). Without the macromodels,

no analytical expressions are available and these integrals

need to be computed numerically, e.g., using a Gauss-Hermite

cubature. When leveraging merely a five-points quadrature

rule, this already requires 10000 evaluations of the integrands,

and hence, 10000 calls to the 2-D EM solver, each call taking

1.16 s. So, the setup time would become larger than three

hours.

In Fig. 3 the probability density function (PDF) and the

cumulative distribution function (CDF) of |H(s, β)| for f =
7 GHz are shown. The full and the dashed line indicate the

PDF and the CDF computed using the novel technique, the

circles (◦) and squares (�) are computed using the 50000 sam-

ples from the MC run. Apart from the excellent agreement,

it is also observed that such results can clearly quantify the

influence of the stochastic parameter β, and hence the effect of

the manufacturing process on the behavior of the interconnect.
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(b) Detail of Fig. 2(a) around 7 GHz, clearly illustrating
the effect of the stochastic parameter β

Fig. 2: Bode plot of the magnitude of the transfer func-

tion H(s, β) for the single IEM line. Full black line:

mean µ|H| computed using the novel technique; Dashed

black line: ±3σ|H|-variations computed using the novel tech-

nique; Gray lines: 100 samples from the MC run; Circles

(◦): mean µ|H| computed using MC technique; Squares (�):

±3σ|H|-variations computed using MC technique.

B. Coupled IEM lines

Let us now shift our attention to the pair of coupled

IEM lines of Fig. 1(b). In a similar way, macromodels for

the p.u.l. parameters are constructed. These are now 2 × 2
matrices Z(s, β, ζ) and Y(s, β, ζ), depending on the frequency
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Technique CPU time [s] Speed-up factor
setup solve total

Novel approach 0.02 0.11 0.13 32
Monte Carlo 4.13

TABLE I: Comparison between the efficiency of the proposed

approach and an MC analysis for the single IEM line.
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Fig. 3: PDF and CDF of the magnitude of the transfer

function H(s, β) at 7 GHz for the single IEM line. Full black

line: PDF computed using the novel technique; Dashed black

line: CDF computed using the novel technique; Circles (◦):

PDF computed using the MC technique; Squares (�): CDF

computed using the MC technique.

and on the two stochastic parameters β and ζ. First, univariate

rational models are created using VF for a set of sampling

values of the two stochastic parameters. Second, the uni-

variate models are strung together via barycentric Lagrange

interpolation. The general expressions for the multivariate

macromodels can be found in Section A-I-B of the appendix.

To obtain a relative error of 0.1%, the total time to construct

the macromodels is about 30 minutes. This comprises 684 calls

to the EM solver (19 frequency samples, 6 samples for the

parameter β and 6 samples for the parameter ζ), each sample

taking 2.64 s, and about 15 s for the construction of the

macromodels themselves.

Consider a source-line-load configuration where the length

of the two IEM lines is L = 1 mm. The far end z = L of

each line is terminated by a capacitive load ZF,1 = ZF,2 =
(j 2πf CL + 1/RL)

−1, with CL = 1 pF and RL = 1 kΩ.

The first line is an active line. It is driven at the near

end z = 0 by a Thévenin voltage source producing a sine

wave with frequency f , amplitude EN,1(s ≡ j2πf), and

with an internal impedance ZN,1 = 1Ω. The second line

is the victim line. At its near end, it is terminated by a

low impedance ZN,2 = 1Ω. Again, a variability analysis is

performed, using the novel modeling strategy and an MC run.

The stochastic parameters are considered to be independent

Gaussian random variables. The base β has a mean value µβ =
2 µm and a normalized standard deviation σβ = 10%. The

gap ζ has a mean value µζ = 3 µm and a normalized

standard deviation σζ = 8%. 250 frequency samples are

calculated and for the MC run 50000 (β, ζ)-samples are used.

The two output parameters that we observe here are the

output voltages V1(L, s, β, ζ) and V2(L, s, β, ζ) at the loads
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(b) Detail of Fig. 4(a) around 7 GHz, clearly illustrating
the effect of the stochastic parameters β and ζ

Fig. 4: Bode plot of the magnitude of the transfer func-

tion H(s, β, ζ) for the coupled IEM lines. The same legend

as in Fig. 2 is used.

of the active and the victim line, respectively. We construct a

transfer function H(s, β, ζ) = V1(L, s, β, ζ)/E(s) and a for-

ward crosstalk function FX(s, β, ζ) = V2(L, s, β, ζ)/E(s).
Bode plots of the magnitude of both functions are shown in

Figs. 4(a) and 5(a) up to 100 GHz and magnifications of the

resonance around 7 GHz are shown in Figs. 4(b) and 5(b). As

before, the full black lines indicate the means µ|H| and µ|FX|,

and the dashed lines show the ±3σ|H| and ±3σ|FX| deviations

from these means, all computed using the novel approach. The

gray lines on the figures correspond to 100 samples of the MC

run; the circles (◦) and squares (�) indicate the means and

the ±3σ-deviations, resp., computed using the 50000 samples

of the MC run. From Figs. 4 and 5 an excellent agreement

between the MC analysis and the novel technique is observed.

Comparison of CPU times between the two techniques are

shown in Table II. A substantial speed-up factor of 228 is

obtained. A similar reasoning as given in Section IV-A would

lead again to the conclusion that the setup time without

leveraging the macromodels becomes unacceptably long. The

PDF and the CDF of the transfer function and of the forward

crosstalk at 7 GHz are presented in Figs. 6 and 7. Apart from

the excellent agreement, it is again noticed that such graphs

present valuable information for designers, allowing them to

rapidly assess the behavior of the interconnect.

Note that, in this paper, to make the hPC expansions of the
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(b) Blow-up of Fig. 4(a) around 7 GHz, clearly illustrating
the effect of the stochastic parameters β and ζ

Fig. 5: Bode plot of the magnitude of the forward

crosstalk FX(s, β, ζ) for the coupled IEM lines. The same

legend as in Fig. 2 is used.

Technique CPU time [s] Speed-up factor
setup solve total

Novel approach 0.23 8.09 8.31 228
Monte Carlo 1895.72

TABLE II: Comparison between the efficiency of the proposed

approach and a Monte Carlo analysis for the coupled IEM

lines.

p.u.l. parameters exact, as explained in Sections III and A-

I, the so-called tensor product approach is adopted, making

sure that the macromodels are elements of the pertinent vector

space spanned by the Hermite polynomials. Other approaches,

such as total degree, hyperbolic cross, and Smolyak, have

also been proposed [25], limiting the number of terms in

the expansions, and hence reducing both the accuracy and

the computational cost. The trade-off between precision and

efficiency following such schemes in the case of on-chip

interconnect modeling, is a topic for further investigation.

V. CONCLUSIONS

Designers of on-chip interconnects are facing a challenging

task. Due to the randomness introduced by the manufacturing

process, position and widths of these lines are no longer

deterministically known and their cross-sections have random

trapezoidal shapes. Therefore, in this paper a novel stochastic
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Fig. 6: PDF and CDF of the magnitude of the transfer

function H(s, β, ζ) at 7 GHz for the pair of coupled IEM

lines. The same legend as in Fig. 3 is used.
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Fig. 7: PDF and CDF of the magnitude of the forward

crosstalk FX(s, β, ζ) at 7 GHz for the pair of coupled IEM

lines. The same legend as in Fig. 3 is used.

modeling strategy for the variability analysis of on-chip inter-

connects was presented. The strategy consists of a three-step

approach. First, an accurate computation of the pertinent p.u.l.

parameters using a powerful 2-D EM solver is performed.

Second, parameterized macromodels of these p.u.l. parameters

are constructed. These macromodels are rational as a function

of frequency and polynomial as a function of the stochastic

parameters. Third, a Stochastic Galerkin Method is adopted

to solve the stochastic telegrapher’s equations. The strategy

has been applied to the variability analysis of single and

coupled IEM lines. Compared to Monte Carlo runs, the novel

method shows excellent agreement and superior efficiency.

The improvements and advantages w.r.t. the state-of-the-art

in stochastic modeling of multiconductor transmission lines

were clearly outlined, the most important being that, for the

first time in literature, such modeling of on-chip interconnects

is now made possible.

In the present paper, no random variations along the z-axis

were taken into account. It would however be possible to in-

clude surface roughness effects, adding to the losses along this

z-direction, by incorporating a pertinent correction factor —

such as the one proposed by Hammerstad and Bekkadal [26]

— in the p.u.l. resistance. Extension to sensitivity and param-

eter variability studies of full 3-D structures, such as coupled

vias in package and board plane structures [27], is currently
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under investigation.

A-I. APPENDIX

In this appendix, we generalize the formulation of Sec-

tion III to multiconductor transmission lines (MTL) with an

arbitrary number of stochastic parameters. A technique to

solve the resulting matrix ODE is also described.

A. Description of the interconnect

Consider an MTL consisting of N coupled uniform signal

lines and a reference conductor. The axis of invariance is the z-

axis. There are B stochastic parameters β(b), b = 1, . . . , B,

that influence the MTL’s behavior as follows:

β(b) = µβ(b)(1 + σβ(b)ξb) , b = 1, . . . , B, (A-1)

where ξb, b = 1, . . . , B, are independent Gaussian random

variables with zero mean and unit variance. The B-vector

containing all these variable is denoted ξ = [ξ1 · · · ξB ]
T . The

mean and normalized standard deviation of the parameters β(b)

are denoted µβ(b) and σβ(b) respectively. In the Laplace

domain, using the complex variable s = j2πf , where f
denotes the frequency, the telegrapher’s equations, describing

the MTL’s behavior, are:

d

dz

[

V(z, s,β)
I(z, s,β)

]

= −
[

0 Z(s,β)
Y(s,β) 0

]

·
[

V(z, s,β)
I(z, s,β)

]

, (A-2)

where the N -vectors V = [V1 · · · VN ]T and I = [I1 · · · IN ]T

contain the voltages and currents along the N uniform coupled

lines. These voltages and currents are functions of the fre-

quency and of the distance z along the lines. They also depend

on all stochastic parameters, as indicated by the set β =
{β(b)}Bb=1. The N × N -matrices Z(s,β) and Y(s,β) are

the p.u.l. impedance and admittance matrix, which can be

computed using the 2-D EM solver described in Section III-A.

B. Parameterized macromodeling of the p.u.l. parameters

Multivariate macromodels for Z(s,β) and Y(s,β) are

constructed. These models are rational along the dimension

describing frequency and polynomial in the B other dimen-

sions that correspond to the B stochastic parameters. So, each

element of the p.u.l. impedance matrix or admittance matrix,

is modeled as follows:

Xij(s,β) ≈ Xmm
ij (s,β)

=

V (1)
∑

v(1)=1

· · ·
V (B)
∑

v(B)=1

w
(1)

v(1) · · ·w(B)

v(B) Xumm
ij (s, β

(1)

v(1) , . . . , β
(B)

v(B))

×
V (1)
∏

k(1) = 1

k(1) 6= v(1)

(

β(1) − β
(1)

k(1)

)

· · ·
V (B)
∏

k(B) = 1

k(B) 6= v(B)

(

β(B) − β
(B)

k(B)

)

, (A-3)

with i = 1, . . . , N , j = 1, . . . , N , and where Xij stands

for Zij and Yij . The univariate models Xumm
ij are rational

functions of s, and are obtained through VF in a set of

sampling values {β(1)

v(1) , . . . , β
(B)

v(B)}, v(b) = 1, . . . , V (b), b =

1, . . . , B. Hence, for each stochastic parameter β(b), V (b)

such sampling values are used and, thus,
∏B

b=1 V
(b) univariate

models are required to construct the macromodels (A-3).

Although it is not strictly required for the remainder of the

formalism described below, here, there is opted to use the

same set of sampling values for all elements of the p.u.l.

matrix X (X stands for Y and Z). The univariate macromodels

are strung together by means of barycentric Lagrange inter-

polation, yielding pertinent weight coefficients w
(b)

v(b) , v(b) =

1, . . . , V (b), b = 1, . . . , B.

C. Stochastic Galerkin Method (SGM)

As we have considered a Gaussian distribution of the

stochastic parameters, all elements of the macromodeled p.u.l.

matrices are now expanded as follows:

Xmm
ij (s,β) =

K
∑

k=0

Xij,k(s)ϕk(ξ), (A-4)

i = 1, . . . , N, j = 1, . . . , N,

where ϕk(ξ) is the k-th element of a set of multivariate

Hermite polynomials. This set is constructed by the ten-

sor product of the B sets of univariate Hermite polyno-

mials {φl(ξb)}V
(b)−1

l=0 , b = 1, . . . , B. Hence, K = −1 +
∏B

b=1 V
(b), and this set of K + 1 multivariate polynomials

spans the B-dimensional vector space PV of polynomials of

degree at most V = max{V (b) − 1}Bb=1, in which all macro-

models (A-3) reside. The elements in this set are orthogonal

w.r.t. the inner product

< f(ξ), g(ξ) >=

∫

RB

f(ξ) g(ξ)W (ξ) dξ, (A-5)

with weighting function

W (ξ) =
1

B
√
2π

e−
1
2 ξ

T

·ξ, (A-6)

as follows:

< ϕk(ξ), ϕm(ξ) >= δkm < ϕm(ξ), ϕm(ξ) >, (A-7)

where δkm is the Kronecker delta. Therefore, the expansion

coefficients in (A-4) are given by

Xij,k(s) =
< Xij(s,β), ϕk(ξ) >

< ϕk(ξ), ϕk(ξ) >
. (A-8)

Note that the expansion (A-4) is not an approximation for

the macromodeled elements of the p.u.l. matrices, it is exact.

Indeed, as stated above, given the polynomial interpolation (A-

3), for a fixed frequency, the macromodel already resides

in PV , making the expansion procedure merely a change of

basis. So, the barycentric Lagrange interpolation is a conve-

nient choice that yields certain advantages, as previously dis-

cussed in Section III-D. However, this choice is not necessary.

Other interpolation or approximation schemes could have been

adopted during the construction of the macromodels, making

the expansion (A-4) a projection onto PV .
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Similar as for the elements of the p.u.l. matrices, the

unknown voltages and currents are now also projected onto

the space PV :

Vi(z, s,β) =

K
∑

k=0

Vi,k(z, s)ϕk(ξ), (A-9)

Ii(z, s,β) =

K
∑

k=0

Ii,k(z, s)ϕk(ξ), (A-10)

i = 1, . . . , N.

Inserting (A-4), (A-9), and (A-10) into (A-2), yields the

following expressions for the 2N(K+1) unknown expansion

coefficients Vi,k and Ii,k , i = 1, . . . , N , k = 0, . . . ,K , for the

voltages and the currents along the MTL:

d

dz

K
∑

k=0

Vi,k(z, s)ϕk(ξ)

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Zij,k(s)Ij,l(z, s)ϕk(ξ)ϕl(ξ), (A-11)

d

dz

K
∑

k=0

Ii,k(z, s)ϕk(ξ)

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Yij,k(s)Vj,l(z, s)ϕk(ξ)ϕl(ξ), (A-12)

i = 1, . . . , N.

A Galerkin projection is now adopted by weighting (A-11)

and (A-12) with the same set of Hermite polynomials, using

the inner product (A-5):

d

dz

K
∑

k=0

Vi,k(z, s) < ϕk(ξ), ϕm(ξ) >

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Zij,k(s)Ij,l(z, s) < ϕk(ξ)ϕl(ξ), ϕm(ξ) >,

(A-13)

d

dz

K
∑

k=0

Ii,k(z, s) < ϕk(ξ), ϕm(ξ) >

= −
N
∑

j=1

K
∑

k=0

K
∑

l=0

Yij,k(s)Vj,l(z, s) < ϕk(ξ)ϕl(ξ), ϕm(ξ) >,

(A-14)

i = 1, . . . , N, m = 0, . . . ,K.

With (A-7) and introducing the notation

Z̃ij,ml(s) =
K
∑

k=0

Zij,k(s)
< ϕk(ξ)ϕl(ξ), ϕm(ξ) >

< ϕm(ξ), ϕm(ξ) >
,

(A-15)

Ỹij,ml(s) =

K
∑

k=0

Yij,k(s)
< ϕk(ξ)ϕl(ξ), ϕm(ξ)

< ϕm(ξ), ϕm(ξ) >
,

(A-16)

i = 1, . . . , N, j = 1, . . . , N, k = 0, . . . ,K, m = 0, . . . ,K,

(A-13) and (A-14) are recast as

d

dz
Vi,m(z, s) = −

N
∑

j=1

K
∑

l=0

Z̃ij,ml(s)Ij,l(z, s), (A-17)

d

dz
Ii,m(z, s) = −

N
∑

j=1

K
∑

l=0

Ỹij,ml(s)Vj,l(z, s), (A-18)

i = 1, . . . , N, m = 0, . . . ,K.

The elements (A-15) and (A-16) are now organized into

new (N(K + 1) × N(K + 1))-matrices Z̃ and Ỹ, which

can be considered as augmented p.u.l. matrices. By also

properly organizing the unknown expansion coefficients in

N(K + 1)-vectors Ṽ and Ĩ, an augmented version of the

original telegrapher’s equations (A-2) is obtained, as follows:

d

dz

[

Ṽ(z, s)

Ĩ(z, s)

]

= −
[

0 Z̃(s)

Ỹ(s) 0

]

·
[

Ṽ(z, s)

Ĩ(z, s)

]

.

(A-19)

Note that, thanks to the SGM, these new equations do no

longer depend on the stochastic parameters β. As such, (A-

19) can be considered as the pertinent telegrapher’s equations

for a deterministic MTL consisting of N(K + 1) signal lines,

allowing to solve them with classical methods as described

next.

D. Boundary conditions (BCs)

Consider now a uniform MTL, as described in Section A-

I-A, with a finite length L. The telegrapher’s equations

can only be solved when proper boundary conditions (BCs)

are imposed. These BCs are determined by the 2N ter-

minations of the N lines, which are here, for simplicity,

Thévenin voltages sources. At the near end of the lines, i.e. at

z = 0, these Thévenin voltage sources comprise a voltage

source EN,i(s,β) in series with an impedance ZN,i(s,β),
i = 1, . . . , N . At the far end z = L, they comprise a voltage

source EF,i(s,β) in series with an impedance ZF,i(s,β),
i = 1, . . . , N . So, these terminations can also be of stochastic

nature, which is again indicated by their dependency on β.

Denoting the voltages and currents at the near end of the

lines with the N -vectors VN (s,β) = V(z = 0, s,β) and

IN (s,β) = I(z = 0, s,β) respectively and similarly at the

far end, VF (s,β) = V(z = L, s,β) and IF (s,β) = I(z =
L, s,β), it is readily seen that the boundary conditions are

VN (s,β) = EN(s,β)− ZN (s,β) · IN (s,β), (A-20)

VF (s,β) = EF (s,β) + ZF (s,β) · IF (s,β), (A-21)

where the N -vectors EN and EF contain the voltage sources

and where the matrices ZN and ZF are diagonal matrices,

containing the impedances. Obviously, other terminations,

yielding full matrices ZN and ZF , are equally possible.

The hPC expansion is now also applied to the BCs (A-

20) and (A-21). The voltages and impedances are projected
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onto PV :

EX,i(s,β) =
K
∑

k=0

EX,i,k(s)ϕk(ξ), (A-22)

ZX,i(s,β) =
K
∑

k=0

ZX,i,k(s)ϕk(ξ), (A-23)

i = 1, . . . , N,

where X now stands for N and F . Introducing (A-22) and (A-

23) into (A-20) and (A-21) and applying Galerkin weighting

again, yields the following augmented BCs:

ṼN (s) = ẼN (s)− Z̃N (s)ĨN (s), (A-24)

ṼF (s) = ẼF (s) + Z̃F (s)ĨF (s), (A-25)

where the N(K + 1)-vectors ṼX , ĨX , and ẼX (X is N
and F ) contain the expansion coefficients of the voltages and

currents along the lines and the voltages sources, respectively.

The N(K+1)×N(K+1)-matrices Z̃X contain the expansion

coefficients of the impedances. Similar as for the augmented

telegrapher’s equations (A-19), the augmented BCs (A-24)

and (A-25) can be considered as the pertinent BCs of a

deterministic MTL consisting of N(K + 1) signal lines.

E. Solution of the augmented telegrapher’s equations and BCs

Given the above interpretations in terms of augmented equa-

tions and BCs, the set of equations (A-19), (A-24), and (A-25),

can now be solved as any other set of telegrapher’s equations

with BCs, pertaining to a deterministic system [28]. From (A-

19), it is readily seen that
[

ṼF

ĨF

]

= T̃ ·
[

ṼN

ĨN

]

(A-26)

where the transfer matrix T̃ is given by

T̃ =

[

T̃V V T̃V I

T̃IV T̃II

]

= e

−







0 Z̃

Ỹ 0






L
. (A-27)

The BCs (A-24) and (A-25) are combined with (A-26) into

one matrix equation:












T̃V V T̃V I −1 0

T̃IV T̃II 0 −1

1 Z̃N 0 0

0 0 1 −Z̃F













·









ṼN

ĨN

ṼF

ĨF









=









0
0

ẼN

ẼF









,

(A-28)

where 1 is the N(K + 1)×N(K + 1) identity matrix.

From the matrix system (A-28) the unknown expansion

coefficients ṼN , ĨN , ṼF , and ĨF can be determined us-

ing direct or iterative schemes [29]. Substitution of these

coefficients into (A-9) and (A-10) for z = 0 and z = L
finally yields the voltages and currents at the 2N terminals

of the MTL as a function of frequency and as a function

of the stochastic parameters β. Using standard analytical or

numerical techniques [22], any desired stochastic quantity or

function, such as moments or PDFs, can now be computed.
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