Advanced Series on

Statistical Science &

Applied Probability

Vol. I

STOCHASTIC MODELLING OF ELECTRICITY AND RELATED MARKETS

Fred Espen Benth Jūratė Šaltytė Benth

University of Oslo, Norway

Steen Koekebakker

University of Agder, Norway

Contents

Preface

.

vii

.

4	• •		1
1.	AS	urvey of Electricity and Related Markets	1
	1.1	The electricity markets	3
		1.1.1 Electricity contracts with physical delivery	3
		1.1.2 Financial electricity contracts	5
	1.2	The gas market	8
		1.2.1 Futures and options on gas	10
	1.3	The temperature market	11
	1.4	Other related energy markets	14
	1.5	Stochastic modelling of energy markets	18
		1.5.1 Spot price modelling	19
		1.5.2 Forward and swap pricing in electricity and related	
		markets	24
	1.6	$Outline of the book \ldots $	32
2.	Sto	chastic Analysis for Independent Increment Processes	37
	2.1	Definitions	37
	2.2	Stochastic integration with respect to martingales	41
	2.3	Random jump measures and stochastic integration	43
	2.4	The Lévy-Kintchine decomposition and semimartingales	45
	2.5	The Itô Formula for semimartingales	48
	2.6	Examples of independent increment processes	49
		2.6.1 Time-inhomogeneous compound Poisson process	49
		2.6.2 Models based on the generalized hyperbolic distribu-	
		tions	51

		2.6.3 Models based on the Variance-Gamma and CGMY distributions	55
3.	Sto	chastic Models for the Energy Spot Price Dynamics	59
	3.1	Introduction	59
		Spot price modelling with Ornstein-Uhlenbeck processes	60
		3.2.1 Geometric models	66
		3.2.2 Arithmetic models	74
	3.3	The autocorrelation function of multi-factor Ornstein-	
		Uhlenbeck processes	78
	3.4	Simulation of stationary Ornstein-Uhlenbeck processes: a case study with the arithmetic spot model	82
4.	Pric	ing of Forwards and Swaps Based on the Spot Price	89
	4.1	Risk-neutral forward and swap price modelling	89
		4.1.1 Risk-neutral probabilities and the Esscher transform	95
		4.1.2 The Esscher transform for some specific models	99
	4.2	Currency conversion for forward and swap prices	100
	4.3	Pricing of forwards	104
		4.3.1 The geometric case	104
		4.3.2 The arithmetic case	114
	4.4	Pricing of swaps	118
		4.4.1 The geometric case	119
		4.4.2 The arithmetic case	122
5.	App	olications to the Gas Markets	129
	5.1	Modelling the gas spot price	129
		5.1.1 Empirical analysis of UK gas spot prices	130
		5.1.2 Residuals modelled as a mixed jump-diffusion process	136
		5.1.3 NIG distributed residuals	139
		Pricing of gas futures	142
	5.3	Inference for multi-factor processes	146
		5.3.1 Kalman filtering	147
		5.3.2 Inference using forward and swap data	150
6.		delling Forwards and Swaps Using the Heath-Jarrow-	
	Mor	ton Approach	155
	6.1	The HJM modelling idea for forward contracts	156

Contents

	6.2	HJM modelling of forwards	160
	6.3	HJM modelling of swaps	164
		6.3.1 Swap models based on forwards	168
	6.4	The market models	172
		6.4.1 Modelling with jump processes	176
7.	Cor	structing Smooth Forward Curves in Electricity Markets	181
	7.1	Swap and forward prices	183
		7.1.1 Basic relationships	183
		7.1.2 A continuous seasonal forward curve	184
	7.2	Maximum smooth forward curve	187
		7.2.1 A smooth forward curve constrained by closing prices	187
		7.2.2 A smooth forward curve constrained by bid and ask	
		$\operatorname{spreads}$	`190
	7.3	Putting the algorithm to work	191
		7.3.1 Nord Pool example I: A smooth curve	191
		7.3.2 Nord Pool example II: Preparing a data set and	
		analysing volatility	195
8.	Moo	delling of the Electricity Futures Market	203
	8.1	The Nord Pool market and financial contracts	205
	8.2	Preparing data sets	206
	8.3	Descriptive statistics	208
	8.4	A market model for electricity futures	214
	8.5	Principal component analysis	215
		8.5.1 Principal component analysis of the total data set	217
		8.5.2 Principal component analysis for individual market	
		segments	220
	8.6	Estimating a parametric multi-factor market model	224
		8.6.1 Seasonal volatility	226
		8.6.2 Maturity volatilities	227
	8.7	Normalised logreturns and heavy tails	231
	8.8	Final remarks	235
9.	Pric	ing and Hedging of Energy Options	237
	9.1	Pricing and hedging options on forwards and swaps	238
		9.1.1 The case of no jumps – the Black-76 Formula	238
		9.1.2 The case of jumps	247

xiii

-

9.2 Exotic Options	254
9.2.1 Spread options	254
9.2.2 Asian options	260
9.3 Case Study: Valuation of spark spread options – a direct	
approach	262
9.3.1 Modelling and analysis of spark spread options	264
9.3.2 $$ Empirical analysis of UK gas and electricity spread $$.	268
10. Analysis of Temperature Derivatives	277
10.1 Some preliminaries on temperature futures	277
10.2 Modelling the dynamics of temperature	280
10.2.1 The $CAR(p)$ model with seasonality $\ldots \ldots \ldots$	281
10.2.2 A link to time series	283
$10.3\mathrm{Empirical}$ analysis of Stockholm temperature dynamics	285
10.3.1 Description of the data \ldots \ldots \ldots \ldots \ldots \ldots	285
10.3.2 Estimating the $CAR(p)$ models	287
10.3.2.1 Fitting an $AR(1)$ model	289
10.3.2.2 Fitting an AR(3) model \ldots	296
10.3.2.3 Identification of the parameters in the	
$CAR(p) \mod 1 \ldots \ldots \ldots \ldots \ldots \ldots$	300
10.4 Temperature derivatives pricing	301
10.4.1 CAT futures	302
10.4.2 HDD/CDD futures	305
10.4.3 Frost Day index futures	312
10.4.4 Application to futures on temperatures in Stockholm	314
Appendix A List of abbreviations	319
Bibliography	321
Index	333

/