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Abstract During probabilistic analysis of flow and
transport in porous media, the uncertainty due to spatial
heterogeneity of governing parameters are often taken
into account. The randomness in the source conditions
also play a major role on the stochastic behavior in
distribution of the dependent variable. The present pa-
per is focused on studying the effect of both uncertainty
in the governing system parameters as well as the input
source conditions. Under such circumstances, a method
is proposed which combines with stochastic finite ele-
ment method (SFEM) and is illustrated for probabilistic
analysis of concentration distribution in a 3-D hetero-
geneous porous media under the influence of random
source condition. In the first step SFEM used for
probabilistic solution due to spatial heterogeneity of
governing parameters for a unit source pulse. Further,
the results from the unit source pulse case have been
used for the analysis of multiple pulse case using the
numerical convolution when the source condition is a
random process. The source condition is modeled as a
discrete release of random amount of masses at fixed
intervals of time. The mean and standard deviation of
concentration is compared for the deterministic and the
stochastic system scenarios as well as for different values
of system parameters. The effect of uncertainty of source
condition is also demonstrated in terms of mean and
standard deviation of concentration at various locations
in the domain.

Keywords Solute transport Æ Porous media Æ
Heterogeneity Æ Random source Æ Stochastic FEM

1 Introduction

The uncertainty in the output or response arises either
due to the uncertainty associated with the governing
system properties or due to the uncertainty in the input/
source conditions. The input/source conditions are often
spatially and/or temporally varying random processes in
a natural hydrologic system. In the groundwater litera-
ture, the flow in the porous media was analyzed con-
sidering recharge as a spatial/temporal random input
(Hantush and Marino 1994; Li and Graham 1999).
Similarly in water quality modeling, a random bio-
chemical oxygen demand (BOD) input to a stream,
temperature, discharge, dissolved oxygen, decay etc.
were analyzed in literature (Melching and Yoon 1996;
Subbarao et al. 2004). Recently Wang and Zheng (2005)
analyzed the contaminant transport under random
sources in a groundwater system while assuming that the
system parameters such as velocity of flow, porosity are
deterministic. In their model, the random source was
considered either as a continuous source with random
fluctuations in time or as a discrete instantaneous
source.

Stochastic modeling of flow and transport in a
hydrologic system is necessitated when the parameters
governing the system are treated as random fields. In the
last three decades, several studies have been made for
analyzing probabilistic behavior of flow and transport in
the groundwater system considering parameters such as
hydraulic conductivity, porosity, sorption coefficient etc
as random fields. The results of such probabilistic anal-
ysis in solute transport studies were mainly presented
either in terms of effective properties which were derived
from spatial or temporal plume moments (Dagan 1989;
Gelhar 1993; Hu et al. 1997; Huang and Hu 2000; Has-
san 2001; Chaudhuri and Sekhar 2005a) or mean and
standard deviation of concentration (Tang and Pinder
1979; Dagan 1989; Kapoor and Gelhar 1994).

The governing stochastic partial differential equa-
tions (SPDE) arising due to the presence of random
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system parameters or random input conditions are often
solved using either analytical or numerical approaches
(de Marsily 1986). When analytical methods (Cushman
1997) are not applicable due to the complicated initial
and source conditions, then non-uniform flow fields and
non-stationary properties, numerical methods are often
used. The popular and simple Monte Carlo simulation
method (MCSM) is based on generating a large number
of equally likely random realizations for obtaining sta-
tistical moments of the dependent variable while using a
numerical method (e.g. finite difference, finite element,
finite volume) for solution of the deterministic system
for each realization (Bellin et al. 1992; Bosma et al.
1995; Hassan et al. 1999). This method is computa-
tionally exhaustive when a few thousands of realizations
are required especially for a higher degree of medium
heterogeneities along with higher space-time grid reso-
lution. To avoid this difficulty associated with simula-
tions involving multiple realizations, alternate methods
such as perturbation based stochastic finite element
method (SFEM) (Spanos and Ghanem 1989) were pro-
posed. The SFEM was found to be a computationally
attractive method for solving SPDEs. Recently, SFEM
was applied in the groundwater literature for studying
flow and transport of solutes in 3-D heterogeneous
porous medium considering system parameters as ran-
dom fields (Osnes and Langtangen 1998; Chaudhuri and
Sekhar 2005b) and it was demonstrated that the method
was computationally efficient in comparison with
MCSM and was also accurate.

Studies dealing with SPDE’s combining random
description for source/boundary conditions along with
system parameters are scarce. Li and Graham (1999)
analyzed the effect of spatio-temporal random recharge
on the contaminant transport problem in heterogeneous
groundwater system. Using analytical methods, they
found that the spreading of the mean concentration is
enhanced when the random spatio-temporal variation of
recharge is considered. In the engineering mechanics
area the uncertainty in the input or loading is the main
concern when the structure is subjected to random
ground excitation due to earthquake or lateral wind
loads. The system uncertainty arises from the random
spatial distribution of Young’s modulus and/or mass
density. In such systems the probabilistic analysis of the
response was performed using the SFEM coupled with
theory of random vibration (Gao et al. 2004; Chaudhuri
and Chakraborty 2006).

In the present study, a SFEM is proposed for solving
flow and transport in a 3-D heterogeneous porous
medium when both source conditions and system
parameters are random. The source condition is as-
sumed as a random discrete process while the system
parameters viz. hydraulic conductivity, dispersivity,
porosity, molecular diffusion coefficient, sorption coef-
ficient and decay coefficient are treated as random fields.
The probabilistic solution of concentration (i.e., mean
and variance of concentration) for a deterministic unit
pulse in such a stochastic system is obtained using

SFEM. This solution is further used as a response
function treating the source as a random process.

2 Problem definition

The governing equation for the transport of a linearly
sorbing and decaying solute in a 3-D porous media is

nðxÞ þ qbkdðxÞð Þ @cðx; tÞ
@t

þ @

@xi
nðxÞviðxÞcðx; tÞ � nðxÞDijðxÞ

@cðx; tÞ
@xj

� �

þ nðxÞ þ qbkdðxÞð ÞcdðxÞcðx; tÞ ¼ 0;

ð1Þ

where c(x,t) is the concentration at location x and time t.
Here n(x), kd (x) and cd (x) are respectively spatially
varying porosity, sorption and decay coefficient. In
Eq. 1, v (x) is the pore water velocity vector which is
defined as v (x)=q(x)/n(x). The seepage flux vector q (x)
is obtained using the hydraulic conductivity tensor
(K(x)) and hydraulic head (h(x)), based on the Darcy
equation,

qiðxÞ ¼ �KijðxÞ
@hðxÞ
@xj

: ð2Þ

It is to be noted that for the Eqs. 1 and 2, the Einstein
convention of summation over double indices is implied
unless otherwise specified. D(x) is the hydrodynamic
dispersion coefficient tensor, which is combined with
molecular diffusion coefficient (Dm (x)). The expression
for it is given as

Dijx ¼ aðxÞ ð1� �Þ viðxÞvjðxÞ
vðxÞ þ �vðxÞdij

� �
þ DmðxÞdij;

ð3Þ

where a(x) is the longitudinal local dispersivity and e is
the ratio of transverse to longitudinal local dispersivity.
The Eq. 1 is solved for a set of initial and boundary
conditions, which in general, are written as

cðx; 0Þ ¼ c0ðxÞ; for x 2 X;

cðx; tÞ ¼ cbðx; tÞ; for x 2 C1;

and

nðxÞviðxÞcðx; tÞ � nðxÞDijðxÞ
@cðx; tÞ
@xj

� �
nxi ¼ fbðx; tÞ;

for x 2 C2: ð4Þ

Here c0(x) is initial distribution of concentration in the
domain X while cb(x,t) and fb (x,t) are respectively the
time-dependent specified concentration at the boundary
C1 and flux at the at the boundary C2. Further nxi is the
direction cosine of the normal to the boundary surface
along xi axis.

The equation for a steady state flow in the domain
with spatially varying hydraulic conductivity field is
given by
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@

@xi
KijðxÞ

@hðxÞ
@xj

� �
¼ 0; ð5Þ

with specified boundary conditions governing the flow in
the domain represented as

hðxÞ ¼ hbðxÞ; for x 2 Ch
1;

and

KijðxÞ
@hðxÞ
@xj

nxi ¼ qbðxÞ; for x 2 Ch
2: ð6Þ

3 Deterministic FEM formulation

In FEM the concentration inside an element is expressed
as c(x, t)=

P
k=1
n Nk (x) ck (t), where n is the number of

nodes per element. Nk(x) and ck(t) are, respectively, kth
shape function and concentration at kth node. For pth
element the equation is obtained asZ
Xe

np þ qbkdp

� �
NkðxÞNlðxÞdx

dclðtÞ
dt

þ
Z
Xe

@NkðxÞ
@xi

�npvip NlðxÞ þ npDijp

@NlðxÞ
@xj

� ��

þðnp þ qbkdpÞcdp
NkðxÞNlðxÞ

�
dxclðtÞ

þ
I
Ce

NkðxÞ npvip NlðxÞ � npDijp

@NlðxÞ
@xj

� �

� nxidSclðtÞ ¼ 0; ð7Þ
) ½R�pf _cðtÞgp þ ½D�pfcðtÞgp ¼ fcbðtÞgp: ð8Þ

Here the suffix ‘p’ corresponds to the property as well as
the local matrix of pth element. The domain is discret-
ized with N elements. The global equation for transport
is obtained as

½R�f _cðtÞg þ ½D�fcðtÞg ¼ fcbðtÞg: ð9Þ

Using the Crank–Nicholson formulation for the first-
order time derivative, the global FE Eq. 9 can be further
simplified as

1

Dt
½R�fctþ1 � ctg þ ½D�fhctþ1 þ ð1� hÞctg
¼ fhctþ1

b þ ð1� hÞct
bg: ð10Þ

In the present study h is taken as 0.5 to get a second-
order accurate solution in time. Rearranging the terms,
the equation for unknown concentration at the next time
step in terms of the known concentration at previous
time step and the boundary conditions, is written as

½D1�fctþ1g ¼ ½D2�fctg þ hfctþ1
b g þ ð1� hÞfct

bg; ð11Þ

where ½D1� ¼ 1
Dt ½R� þ h½D� and ½D2� ¼ 1

Dt ½R� � ð1� hÞ½D�:
These global transport matrices [D1] and [D2] as well as
the source vectors {cb

t} and {cb
t+1} are formed by the

given boundary conditions. Similar to the transport, the
global equation for the flow for a given head and flux
boundary conditions is obtained as

½K�fhg ¼ fh0g: ð12Þ

Here [K] is the global hydraulic conductivity matrix in
the flow equation. The ith component of seepage flux for
pth element is obtained by taking average of that at all
the Gauss points (xk, for k=1,..., NG, where NG is the
number of Gauss points) and is given as

qip ¼ �
1

NG
Kijp

XNG

k¼1

@NlðxÞ
@xj

����
xk

hl ¼ �
1

NG
Kp

XNG

k¼1

@NlðxÞ
@xi

����
xk

hl:

ð13Þ

For isotropic cases the hydraulic conductivity tensor
becomes a scalar quantity (Kp).

4 SFEM formulation

In a perturbation based SFEM, for each element, the
properties which are treated as random variables are
decomposed as Kp ¼ �Kp þ K 0p; ap ¼ �ap þ a0p; np ¼ �np þ n0p;
kdp ¼ �kdp þ k0dp

; cdp
¼ �cdp

þ c0dp
and Dmp ¼ �Dmp þ D0mp

: The
pore water velocity and dispersion coefficient can also be
written as vip ¼ �vip þ v0ip

and Dijp ¼ �Dijp þ D0ijp
respec-

tively. For statistically homogeneous random field, the
mean of the properties for each element remains the
same. Hence the matrices ([D1], [D2], and [K]) are also
decomposed into mean ð½�D1�; ½�D2�; and ½�K�Þ and zero
mean random perturbed components ([D1]¢, [D2]¢ and
[K]¢). The mean of the matrices are calculated at the ex-
pected value of the individual random parameters as well
as their product given in Eq. 7. Under the approximation
that the difference of the product of any two random
variables and its ensemble average is negligible, the zero
mean random perturbed part of transport matrices ([D1]¢
and [D2]¢) become linear functions of random variables
rp¢. Here the random components (rp¢, p=1,2,..., Nr)
correspond to the velocity, local dispersivity, molecular
diffusion, porosity, sorption coefficient and decay coef-
ficient of each element. Nr is the total number of random
variables. The matrices [D1] and [D2] are expanded using
the Taylor series about the mean value of the random
properties (rp¢, p=1,2,..., Nr). Since the second and
higher order derivatives of these matrices vanish being a
linear case, the equations for the matrices can be given as

½D1� ¼ ½�D1� þ ½D1�0 ¼ ½�D1� þ
XNr

p¼1
½D1�ðIÞrp

r0p

and

½D2� ¼ ½�D2� þ ½D2�0 ¼ ½�D2� þ
XNr

p¼1
½D2�ðIÞrp

r0p; ð14Þ
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where ½D1�ðIÞrp
¼ @½D1�

@rp
and ½D2�ðIÞrp

¼ @½D2�
@rp

: Similarly the

concentration can be expanded in Taylor series about
the value at mean of the random parameters and can be
expanded as follows:

fctþ1g ¼ fctþ1gð0Þ þ
XNr

p¼1
fctþ1gðIÞrp

r0p

þ 1

2

XNr

p¼1

XNr

q¼1
fctþ1gðIIÞrprq

r0pr0q � � � :
ð15Þ

After substituting Eqs. 15 and 14 into Eq. 11, the
various order of derivatives of concentration are ob-
tained as

fctþ1gð0Þ ¼ ½�D1��1 ½�D2�fctgð0Þ þ hfctþ1
b g þ ð1� hÞfct

bg
� �

;

ð16Þ
fctþ1gðIÞrp

¼ ½�D1��1 �½D1�ðIÞrp
fctþ1g0

�

þ ½D2�ðIÞrp
fctg0 þ ½�D2�fctgðIÞrp

Þ; ð17Þ

fctþ1gðIIÞrprq
¼ ½�D1��1 �½D1�ðIÞrp

fctþ1gðIÞrq
� ½D1�ðIÞrq

fctþ1gðIÞrp

�

þ½D2�ðIÞrp
fctgðIÞrq

þ ½D2�ðIÞrq
fctgðIÞrp

þ ½�D2�fctgðIIÞrprq

�
:

ð18Þ

It is noted that ½D1�ðIÞq;rp
and ½D2�ðIÞq;rp

do not vanish when rp
corresponds to any property of qth element. Hence, the
derivative of global matrices ½D1�ðIÞrp

and ½D2�ðIÞrp
have

nonzero entry in the position corresponding to qth ele-
ment and the collection of all nonzero entries in ½D1�ðIÞrp

and ½D2�ðIÞrp
forms a matrix of size same as [D1]q and [D2]q

respectively. This procedure helps to reduce the com-
putational time by several orders (Chaudhuri and
Sekhar 2005b). It may be noted here that the perturba-
tion based SFEM is intrinsically limited to moderately
fluctuating random fields or better, to random fields with
small variances as the perturbation expansion in the
fluctuations of the random fields and subsequent aver-
aging leads to expansion of quantities of interest in the
variance of the random fields.

The covariance matrix of the random properties
(which are piece-wise linear inside an element), are de-
rived from the given variances and spatial correlation
functions for the random fields. In the later section, a
brief description of the random properties and the pro-
cedure to obtain the covariance matrix are provided. For
solving the transport problem, the mean and covariance
of velocity vectors and dispersion coefficient tensors are
required to be derived, which are obtained from the
mean and covariance of hydraulic conductivity and local
scale dispersivity. The equations and the procedure for
obtaining these stochastic quantities of velocity and
dispersion coefficient are separately given in the Sect. 11.

5 Random source condition

The concentration of the source is assumed as a ran-
dom process. A random source may be in the form of
random timing, random location and random amount
of mass loading (Wang and Zheng 2005). The random
sources can be categorized into two types: those
occurring continuously with a deterministic component
and random variations and those occurring randomly
at instantaneous, discrete-time instances. In this work,
discrete type of source with random amount of mass
injection is considered. The location and the timing of
the source is assumed to be known. When the mass is
released instantaneously at discrete-time points, the
total amount of cumulative mass in the system is the

sum of random number of incidents:
PMðtÞ

k¼1 cAk ; where

M(t) is the number of mass releases that occurred
during the interval [0, t]. In the present study, the mass
releases are assumed to be at constant known time
intervals. Here cAk is the amount of random mass re-
leased at time sk. It is also assumed in this study that
the magnitude of the mass released at each time follows
a normal distribution, however the formulation can
consider any distribution.

Figure 1 illustrates a typical realization of random,
discrete-time mass events. In the present work, for the
solute transport problem under the general assumptions,
the concentration at any location (x) and time (t) can be
obtained as a random sum of the impulse/response
function, which is expressed as

cðx; tÞ ¼
XMðtÞ
k¼1

cAk Gcðx; t; skÞ: ð19Þ

In the above expression, Gc (x,t,sk) is a response
function of the concentration in a 3-D porous medium,
due to a unit magnitude of mass of solute, which is
applied at the top of the domain at time t = 0 fol-
lowing a given set of boundary conditions. Since the
response function must satisfy the condition: Gc

(x,t,s)=0 for t<s, in the Eq. 19, M(t) can be replaced
by M(T ) where T is the total time of simulation. Since
the output concentration here is a nonlinear function of
system parameters, hence a truncated Taylor series

0 5 10 15
0

0.5

1

1.5

2

t

c A

Fig. 1 A typical realization of random mass release at constant
time interval
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expansion is used for the stochastic analysis of output
concentration while incorporating the uncertainty in
the system parameters. When numerical methods are
used for the solution with discretization in space and
time, the response function is obtained as a vector of
concentration at all nodes {Gc(t,sk)}. The concentration
at ith node due to the multiple sources can be ex-
pressed as,

ciðtÞ ¼
XMðT Þ
k¼1

cAk Gciðt; skÞ: ð20Þ

When the governing transport parameters are also ran-
dom fields, the Eq. 20 can be further expressed as,21

ciðtÞ ¼
XMðT Þ
k¼1

cAk Gciðt; skÞð Þð0Þþ
XNr

p¼1
Gciðt; skÞð ÞðIÞrp

r0p

 

þ 1

2

XNr

p¼1

XNr

q¼1
Gciðt; skÞð ÞðIIÞrprq

r0pr0q

!
: ð21Þ

The random transport parameters are usually uncorre-
lated with the source conditions i.e. cAk and r¢p are un-
correlated. Taking the expectation of the Eq. 21 the
mean concentration is obtained as,22

�ciðtÞ¼
XMðT Þ
k¼1

�cAk Gciðt;skÞð Þð0Þþ1
2

XNr

p¼1

XNr

q¼1
Gciðt;skÞð ÞðIIÞrprq

r0pr0q

 !

¼
XMðtÞ
k¼1

�cAk
�Gciðt;skÞ: ð22Þ

To obtain the cross covariance of concentration the
expression of the expectation of the product of concen-
tration at two different times and nodes is written as,

ciðt1Þcjðt2Þ ¼
XMðT Þ
k¼1

XMðT Þ
l¼1

cAk cAl Gciðt1; skÞð Þð0Þ
�

� Gcjðt2; slÞ
� �ð0ÞþXNr

p¼1

XNr

q¼1
Gciðt1; skÞð ÞðIÞrp

�

� Gcjðt2; slÞ
� �ðIÞ

rq
þ 1

2
Gciðt1; skÞð Þð0Þ

�

� Gcjðt2; slÞ
� �ðIIÞ

rprq
þ Gciðt1; skÞð ÞðIIÞrprq

� Gcjðt2; slÞ
� �ð0Þ��

r0pr0q
�
: ð23Þ

Here the expectation of the product of more than two
random varibles are neglected. Since the random pulse
input of concetration at two different times are inde-
pandent, one can note that

cAk cAl ¼ ð�cAÞ2 þ r2
cA

dkl: ð24Þ

The cross-covariance of concentration is obtained as

Ccicjðt1; t2Þ ¼ c0iðt1Þc0jðt2Þ ¼ ciðt1Þcjðt2Þ � �ciðt1Þ�cjðt2Þ

¼
XMðT Þ
k¼1

r2
cA

Gciðt1; skÞð Þð0Þ Gcjðt2; skÞ
� �ð0Þ�

þ
XNr

p¼1

XNr

q¼1
Gciðt1; skÞð ÞðIÞrp

Gcjðt2; skÞ
� �ðIÞ

rq

�

þ 1

2
Gciðt1; skÞð Þð0Þ Gcjðt2; skÞ

� �ðIIÞ
rprq

�

þ Gciðt1; skÞð ÞðIIÞrprq
Gcjðt2; skÞ
� �ð0Þ��

r0pr0q
�

þ
XMðT Þ
k¼1

XMðT Þ
l¼1
ð�cAÞ2

XNr

p¼1

XNr

q¼1
Gciðt1; skÞð ÞðIÞrp

� Gcjðt2; slÞ
� �ðIÞ

rq
r0pr0q: ð25Þ

In deriving the random component of the concentration,
the term r0pr0q � r0pr0q has been ignored, which results in
the first-order accurate covariance matrix of concentra-
tion. The standard deviation of concentration, rciðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0iðtÞc0iðtÞ
q

increases due to additive effect of source

uncertainty. If the unit response function at any location
in the domain is obtained using SFEM for the specified
unit pulse source condition, the mean and covariance of
concentration for a random source condition at that
location can be obtained using the Eqs. 22 and 25,
respectively. These expressions of mean and covariance
of concentration can also be applicable when the source
is a random continuous process after discretizing the
continuous source into a series of random multiple
pulses. The covariance of source concentration at dif-
ferent times cAk cAl is obtained from the known mean and
autocorrelation function of the random source condi-
tion.

6 Descriptions of the random fields

In this study all the flow and transport properties, which
are considered as random fields, are assumed to follow a
log normal distribution since they take positive values
and also vary considerably. However this assumption is
not a limitation for the proposed SFEM. For any spa-
tially varying random field, the correlation coefficient
between any two locations is described by a correlation
function. In this study, the random fields are assumed as
statistically homogeneous and described by a Gaussian
(squared exponential) type correlation function, which is

defined as, qðxÞ ¼ exp � x1
k1

� �2
� x2

k2

� �2
� x3

k3

� �2� �
: Here

(x1, x2, x3) are the separation distance between two
points in the Cartesian coordinate system, while k1, k2
and k3 are the correlation lengths, which describe the
scale of variability in space. However, it may be noted
that for specific applications experimentally derived
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correlations functions, if available can also be used in
the SFEM. The covariance matrix for the discretized
field of the random parameters is determined from the
above correlation function and the variances of the
parameters using the local averaging method (Van-
marcke 1983). Using this method the correlation coeffi-
cient of logarithmic of parameters, fp and fq of pth and
qth elements respectively, is obtained as,

qfpfq
¼ 1

VpVq

Z
Vp

Z
Vq

qðxp � xqÞdxpdxq: ð26Þ

Further the correlation coefficient between any two
random parameters can be determined from the corre-
lation coefficient of the corresponding logarithmic
parameters. For example the correlation coefficient be-
tween Kp and kdq can be obtained from the standard
deviation of log parameters ðrfK and rfkd

Þ and correla-
tion coefficient qfKp fkd q

: This is given as,

qKpkd q
¼ KGkdG

rKrkd

exp
1

2
r2

fK
þ r2

fkd

� �� �

� exp qfKp fkd q
rfK rfkd

� �
� 1

� �
: ð27Þ

7 Results and discussions

The methodology developed in the Sects. 4 and 5 com-
bining SFEM with random source conditions is applied
to the problem of solute transport in a 3-D heteroge-
neous medium with random contaminant source located
at the top domain of the soil system as illustrated in the
Fig. 2. The solute from this source at the top of the
domain is assumed to get transported through the under
lying soil layers by both vertical recharge and horizontal
subsurface flow. The governing parameters for flow and
transport are assumed to vary randomly in space.

A typical mixed flux boundary condition is used here,
which is based on the 1-D vertical transport of leachate
from a source (Rowe and Booker 1986). It is assumed
that the source has an initial specified mass of contam-
inant with a known concentration (c0). The total mass of
pollutant in the source decreases with time as it leaches
down. Hence a time varying concentration boundary
condition has to be applied at the source location. The
top boundary condition for this problem may be given
as,

cðx; tÞ ¼ c0 �
1

Hf

Z t

0

f ðx; sÞds

for� lx1

2
� x1 �

lx1

2
;� lx2

2
� x2 �

lx2

2
and x3 ¼ 0:

ð28Þ

This boundary condition can be rewritten as,

f ðx; tÞ ¼ �Hf
@cðx; tÞ
@t

and cðx; 0Þ ¼ c0

for � lx1

2
� x1 �

lx1

2
;� lx2

2
� x2 �

lx2

2
and x3 ¼ 0;

ð29Þ

where the solute flux is expressed as, f ðx; sÞ ¼
nðxÞviðxÞcðx; tÞ � nðxÞDijðxÞ @cðx;tÞ

@xj

� �
nxi : At the top sur-

face nx1 ¼ 0 and nx2 ¼ 0: In the Eq. 29 Hf is the height of
the leachate source. It is considered that soil is stratified
below the source with upper layer close to the source
having a lower permeability while the bottom layer
having a higher permeability. In this study the correla-
tion scales along the horizontal plane is assumed to be
same (i.e. k1=k2=kh). The horizontal correlation scale
(kh) is considered much larger in comparison to the
vertical correlation scale (kv). The flow-field in this
problem becomes non-uniform due to the constant
continuous recharge from the pollutant source com-
bined with lateral groundwater flow in the permeable
layer.

The mean and covariance of the random flow field is
derived from the random hydraulic conductivity field.
Along with covariance matrices of the other random
fields, the covariance of velocity is also used for the
probabilistic analysis of contaminant transport. A
square contaminant source of dimension lx1 ¼ lx2 ¼ l is
assumed to be located in an aquifer. The governing
Eq. 1, the boundary conditions in Sect. 2 and the
parameters are made dimensionless with respect to the
size of the source and the horizontal velocity of flow.
Here cðx; tÞ ¼ ~cð~x;~tÞ=c0 is the dimensionless concentra-
tion of the pollutant at a dimensionless distance x ¼ ~x=l;
a dimensionless time ðt ¼ vd~t=lÞ and c0 is the concen-
tration at the top of the soil. Further, vðxÞ ¼ ~vð~xÞ=vd ;
aðxÞ ¼ ~að~xÞ=l; DmðxÞ ¼ ~Dmð~xÞ=ðvdlÞ; cdðxÞ ¼ ~cdð~xÞl=vd
and q ¼ ~q=vd are respectively the dimensionless velocity
of flow, dispersivity, molecular diffusion, decay coeffi-
cient and recharge at the top. Here vd is the horizontal
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Fig. 2 Schematic diagram of 3-D domain with a source at the top
surface of the soil layer
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velocity of flow, for a deterministic case without any
recharge. The following numerical values of parameters
are chosen for solving the 3-D problem: �n ¼ 0:4;
qb

�kd ¼ 0:5; �cd ¼ 0:4; �a ¼ 0:2; �Dm ¼ 0:2; q=0.5, e=0.1.
The dimensionless correlation lengths with respect to the
size of the source are: kh =2.0 and kv =0.5. The
dimensionless thickness of low permeable upper layer,
lx3 ¼ 0:5 and high permeable low layer, Hb =0.01. The
coefficient of variation (COV) of the random parameters
are provided in the Table 1.

7.1 Analysis for a unit pulse

The mean and standard deviation of the concentration
at various locations in the domain for a unit determin-
istic concentration pulse condition at the source is
computed using SFEM. It may be noted that these mean
and standard deviations are a function of the random
hydraulic conductivity, porosity, dispersivity, molecular
diffusion coefficient, sorption coefficient and decay

coefficient. Figures 3, 4, 5, 6, 7 show the temporal var-
iation of the mean and standard deviations for various
cases (listed in Table 1) at locations: P1 (0, 0, 0), P2 (0, 0,
�0.5), P3 (2.5, 0, �0.5), P4 (�1.0, 0, �0.5), and P5 (0,
�1.0, �0.5). These locations P1–P5 are shown in Fig. 2.
At the bottom of the source (location, P1), the mean
concentration is found to have a maximum value ini-
tially, which decreases exponentially with time while the
standard deviation of concentration is initially zero and
attains a peak value after a time lag. This behavior is
expected for a deterministic initial source condition. At
P2–P5, which are located at the bottom of the permeable
layer (away from the source), both the mean and the
standard deviation of concentration are initially zero.
The mean concentration exhibits a peak after some time
lag and the peak is delayed and its magnitude decreases
with an increase in the distance of the location from the
source. Interestingly, it is observed that the standard
deviation of concentration shows two peaks when mean
concentration changes rapidly, since it is calculated from
the derivative of the concentration.

The results of mean and standard deviation in the
above locations are compared for various cases (Cases
A–F). Cases B–F correspond to the cases with system
parameters being random while Case A deals with a
deterministic system. The Cases B–F differ from each
other depending on the magnitudes of coefficient of
variation of system parameters, height of the source
condition (Hf) and the ratio of permeabilities of strati-
fied layers below the source (RK). The diffusion coeffi-
cient of bottom layer is assumed to be (RK/5) times of
that of upper layer. The mean concentration at P2 and

Table 1 The parameters used for various Cases A–F

Case Hf RK COVK COVg COVkd COVcd
COVa COVDm

A 0.2 100 0.0 0.0 0.0 0.0 0.0 0.0
B 0.2 100 0.4 0.4 0.4 0.4 0.4 0.4
C 0.2 100 1.0 0.4 0.4 0.4 0.4 0.4
D 0.1 100 1.0 0.4 0.4 0.4 0.4 0.4
E 0.2 50 1.0 0.4 0.4 0.4 0.4 0.4
F 0.1 50 1.0 0.4 0.4 0.4 0.4 0.4
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Fig. 3 The temporal variation
of concentration at location P1

for various cases due to a unit
concentration pulse as a source
condition
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P3 (along the flow direction), is observed to decrease
with increasing coefficient of variation (Cases A, B and
C). In contrary, the mean concentration for Case A
(deterministic system) is always lesser than stochastic
system at locations P4 (upstream of the source) and P5

(transverse to the flow path). This contrasting behavior
of mean concentration around the source is due to the

fact that the uncertainty in the hydraulic conductivity
field reduces the effective velocity while enhancing the
spreading of solutes. In most of the locations the mean
concentration for Case B is lying in between Cases A
and C. In general as the uncertainty in the hydraulic
conductivity is increased, the mean concentration
downstream of the source in the longitudinal direction

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

t

G
c

Case A
Case B
Case C
Case D
Case E
Case F

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

t

σ G
c

(b) 

(a) 

Fig. 4 The temporal variation
of concentration at location P2

for various cases due to a unit
concentration pulse as a source
condition
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Fig. 5 The temporal variation
of concentration at location P3

for various cases due to a unit
concentration pulse as a source
condition
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decreases. However, a contrasting behavior is observed
at the upstream of source. As the solute is moving slower
for Case C and in the presence of decay parameter,
results in a lower mean concentration along the down-
stream direction. The standard deviation of concentra-
tion has a similar behavior as the mean concentration at

P1–P5 when comparing between Cases B and C. It is
interesting to note that the standard deviation of con-
centration is lower at downstream locations P2 and P3

for Case C (a case with higher uncertainty in hydraulic
conductivity) essentially due to a lower mean concen-
tration at these locations.
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Fig. 6 The temporal variation
of concentration at location P4

for various cases due to a unit
concentration pulse as a source
condition

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

t

G
c

Case A
Case B
Case C
Case D
Case E
Case F

0 2 4 6 8 10 12
0

0.005

0.01

0.015

t

σ G
c

(b) 

(a) 

Fig. 7 The temporal variation
of concentration at location P5

for various cases due to a unit
concentration pulse as a source
condition
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Further, the mean and standard deviation of con-
centration are compared for Cases C–F. Since the
amount of solute mass input is twice in Case C in
comparison to Case D, the mean and standard deviation
of concentration at all locations are higher when the
height of the source (Hf) is larger. However, it is ob-
served that the effect of Hf is not linear and not same at
all locations. This effect is found to be marginally higher
at locations close to the source. The amount of solute
mass input is twice in Case C in comparison to Case D.

When the hydraulic conductivity and diffusion coef-
ficient of the lower layer are higher (comparison of Cases
C and E or D and F), the mean and standard deviation
of concentration at locations P2–P5 (at the bottom of
low conductive layer) are found to be higher. Since the
spreading of concentration is quicker and higher due to
higher hydraulic conductivity and/or diffusion coeffi-
cient, the mean concentration in such a case close to the
source exhibits a lower concentration. Accordingly the
standard deviation of concentration is also lower.
However, at the tail ends of the plume, the mean con-

centration can be higher, which may result in contrasting
signature to the one observed above. Further, the results
at location P1 are not much influenced by RK as this is at
the source location and dispersion effects are minimal.

The auto-covariance of concentration at locations
(P2–P5) as presented in Fig. 8 are not always positive.
This behavior of auto-covariance function corresponds
to the bimodal temporal behavior of standard devia-
tion of concentration. In contrast as standard deviation
behavior is unimodal in time at P1, correspondingly the
auto-covariance exhibits a positive surface. The auto-
covariance of concentration is used to compute the last
term in the Eq. 25 during calculation of the auto-
covariance of concentration for multiple random pul-
ses.

7.2 Analysis for multiple random pulses

In this section, analysis is extended for assessing the
probabilistic behavior of concentration distribution in

Fig. 8 The covariance of
concentration with time at
various locations: a P1, b P2,
c P3, d P4 and e P5

168



the domain (Fig. 2) due to a multiple random source
pulses. Here it is assumed that the randomness in the
pulses correspond to their magnitude while keeping a
specified constant time interval among them. The re-
sponse function obtained in the previous section for a
single unit deterministic pulse is used with the procedure
described in the Sect. 5 for multiple random pulses to
obtain the mean and standard deviation of concentra-
tion at various locations. Figures 9, 10, 11, 12, 13 pres-
ent a typical realization of the concentration
breakthrough curve due to the random source condition
as shown in Fig. 1 in addition to the temporal behavior
of the mean and standard deviation of concentration at
locations P1–P5 respectively. Comparison between the
Cases A and B is made in Figs. 9, 10, 11, 12, 13 which
correspond to either a deterministic or stochastic system
in the presence of random multiple source condition.
The mean and standard deviation of concentration
behavior shows a pattern of reaching a steady-state
condition, which is expected due to multiple pulses. Due
to the assumption of constant interval between the
pulses, the mean and standard deviation shows a fluc-
tuating response with the same frequency. If the fre-
quency of the pulses is very high (interval between the
pulses is very low) then the fluctuating pattern in them
may not be distinguishable. Since the response function
of concentration at far away location is wider and rel-
atively more flat, it is observed in Figs. 9, 10, 11, 12, 13
that the concentration break through curve becomes

smoother at large time as the distance from the source
increases.

As expected it is observed that mean and standard
deviation of concentration are affected by the uncer-
tainty in the system parameters. However, the uncer-
tainty in the source condition is not affecting the mean
concentration (as shown in Figs. 9b, 10b, 11b, 12b,
13b). This may be expected from the nature of the
equation for the mean (Eq. 22). The behavior of mean
concentration for single deterministic pulse as well as
multiple random pulses is very similar when compared
between deterministic and stochastic system (Cases A
and B). The standard deviation of concentration is
affected by both the uncertainty in the system
parameters and the source condition. The standard
deviation of concentration (as shown in Figs. 9c, 10c,
11c, 12c, 13c) is found to be higher when the source
condition is treated as random process than the case of
deterministic source condition. The time averaged
mean and coefficient of variation at large time are
compared between the uncertainty in source condition
and system parameters for various Cases A–F and are
listed in the Table 2. From the results of various cases
at different locations it is observed that the coefficient
of variation increases approximately by 25% due to
the uncertainty in the source condition when both the
system parameters and source condition have same
level of uncertainty. At location P1, the effect of
uncertainty in the source condition is marginally
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Fig. 9 The temporal behavior
of concentration at location P1

due to multiple random source
pulses. a Break through curve
of a single realization. b
Comparison of mean
concentration between Cases A
and B. c Comparison of
standard deviation of
concentration between Cases A
and B with deterministic source
(COVinp=0.0) and random
source (COVinp=0.4)
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Fig. 10 The temporal behavior
of concentration at location P2

due to multiple random source
pulses. a Break through curve
of a single realization. b
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standard deviation of
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Fig. 11 The temporal behavior
of concentration at location P3

due to multiple random source
pulses. a Break through curve
of a single realization.
b Comparison of mean
concentration between Cases A
and B. c Comparison of
standard deviation of
concentration between Cases A
and B with deterministic source
(COVinp=0.0) and random
source (COVinp=0.4)
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higher than the other locations away from the source
(P2, P3, P4 and P5). The variation of temporal
behavior of the standard deviation of concentration at

differenent location for homogeneous and heteroge-
neous is mainly caused by the negative auto-covariance
of concentration.
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Fig. 12 The temporal behavior
of concentration at location P4

due to multiple random source
pulses. a Break through curve
of a single realization.
b Comparison of mean
concentration between Cases A
and B. c Comparison of
standard deviation of
concentration between Cases A
and B with deterministic source
(COVinp=0.0) and random
source (COVinp=0.4)

0 5 10 15
0

0.05

0.1

t

c

Case A
Case B

0 5 10 15
0

0.005

0.01

0.015

0.02

t

σ c

Case A                  
Case B with COV

inp
=0.0

Case B COV
inp

=0.4    

0 5 10 15
0

0.02

0.04

0.06

t

c

(a) 

(b) 

(c) 

Fig. 13 The temporal behavior
of concentration at location P5

due to multiple random source
pulses. a Break through curve
of a single realization.
b Comparison of mean
concentration between Cases A
and B. c Comparison of
standard deviation of
concentration between Cases A
and B with deterministic source
(COVinp=0.0) and random
source (COVinp=0.4)
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8 Conclusions

This paper illustrates a method for the probabilistic
analysis of the concentration distribution in a 3-D het-
erogeneous porous media when the source condition is
assumed to be a random process. The randomness in the
source condition is limited to the amount of mass re-
leased at a fixed location with constant interval. The
system uncertainty is due to the heterogeneity in the
governing flow and transport parameters which are
treated as random fields.

For a unit single source pulse the presence of
uncertainty in the governing parameters cause the
resulting response/impulse function to be stochastic in
nature. This uncertainty in the concentration behavior
(response function) is modeled using an efficient sto-
chastic finite element method. A procedure developed
here, which uses the numerically obtained response
(Green) function to the case of multiple random
source condition. The behavior of the stochastic re-
sponse function has been studied for various para-
meters and coefficient of variation of random
governing parameters.

The study indicates that the mean concentration is
affected only by the uncertainty of the system parame-
ters since the spatial random variation in the parameters
cause the effective parameters (e.g. effective hydraulic
conductivity, macrodispersivity) to differ from their
mean values. The uncertainty associated with the tem-
poral variation in the random source condition has no
effect on the mean concentration. However, the standard
deviation is affected by both randomness in source
condition and system parameters and increases with
increase in uncertainty of source condition. It is also
noted that the comparative effects of randomness in the
system parameters vis-a-vis the randomness in source
condition are not similar at various locations in the
domain.

The study can be extended in future considering im-
proved approximation for random source conditions

involving randomness in the source location and interval
in the temporal occurrence of the event.

9 Appendix: mean and covariance of velocity
and dispersion coefficient

Using the similar methodology presented for the trans-
port problem (Sect. 4), the perturbation approach can
also be applied on the flow Eq. 12, to obtain the mean
and random perturbed components of the hydraulic
head. In the case of the flow problem the random
properties are only the hydraulic conductivities of the
elements Kp, (p=1,2,..., Nk) and hence the mean and the
random component of the hydraulic head are expressed
as,

�h
	 

¼ ½I� þ

XNk

p¼1

XNk

q¼1
½�K��1½K�ðIÞKp

½�K��1½K�ðIÞKq
K 0pK 0q

 !

� ½�K��1fh0g; ð30Þ

fhg0 ¼
XNk

p¼1
fhgðIÞKp

K 0p

where fhgIKp
¼ �½�K��1½K�ðIÞKp

½�K��1fh0g:
ð31Þ

Using Eqs. 30 and 31 the mean and random component
of seepage flux ðqipÞ are written as,

�qip ¼ �
1

NG

XNG

k¼1

@NlðxÞ
@xi

����
xk

�Kp
�hl þ

XNk

q¼1
hðIÞl;Kq

K 0pK 0q

 !
; ð32Þ

q0ip
¼ �

XNk

q¼1

1

NG

XNG

k¼1

@NlðxÞ
@xi

����
xk

�hldpq þ �KphðIÞl;Kq

� �
K 0q

¼
XNk

q¼1
qðIÞip ;Kq

K 0q: ð33Þ

Table 2 The comparison of time averaged of mean concentration ð�cÞ and coefficient of variation of concentration (COVc) at large time for
various test Cases A–F with deterministic source (COVinp=0.0) and random source (COVinp=0.4)

Location A B C D E F

P1 �c 2.099 2.558 2.703 1.587 2.773 1.632
COVc for COVinp=0.0 0.0 0.429 0.451 0.455 0.448 0.452
COVc for COVinp=0.4 0.177 0.455 0.474 0.490 0.470 0.485

P2 �c 0.230 0.181 0.141 0.092 0.272 0.176
COVc for COVinp=0.0 0.0 0.156 0.227 0.231 0.283 0.285
COVc for COVinp=0.4 0.176 0.209 0.261 0.270 0.308 0.314

P3 �c 0.233 0.133 0.073 0.048 0.107 0.071
COVc for COVinp=0.0 0.0 0.208 0.106 0.111 0.140 0.144
COVc for COVinp=0.4 0.140 0.239 0.158 0.167 0.175 0.181

P4 �c 0.021 0.052 0.068 0.045 0.117 0.077
COVc for COVinp=0.0 0.0 0.165 0.289 0.289 0.372 0.370
COVc for COVinp=0.4 0.177 0.216 0.315 0.319 0.391 0.391

P5 �c 0.055 0.089 0.089 0.059 0.152 0.101
COVc for COVinp=0.0 0.0 0.172 0.255 0.254 0.345 0.342
COVc for COVinp=0.4 0.166 0.218 0.283 0.287 0.364 0.364
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From the above expression one can obtain the auto
covariance of velocity and cross covariance with any
other random properties (r¢j) using the auto covariance
of hydraulic conductivity and cross covariance of
hydraulic conductivity with r¢j, which may be given as34

q0ip1
q0jp2
¼
XNk

q1¼1

XNk

q2¼1
qI

ip1 ;Kq1
qIjp2 ;Kq2

K 0q1K
0
q2 and

q0ip r0j ¼
XNk

q¼1
qIip ;Kq

K 0qr0j: ð34Þ

�qip and q0ip are respectively the mean and the random
component of the product npvip in the Eq. 7. The prod-
uct npDijp can be written in terms of water flux,

npDijp ¼ ap ð1� �Þ
qip qjp

qp
þ �qpdij

� �
þ npDmpdij: ð35Þ

The mean of the resultant seepage flux

qp ¼
P3

i¼1 q2ip

� �1=2� �
and its random component are

expressed as,

�qp ¼ qpþ
1

qp

X3
i¼1

Cqip qjp
� 1

q3p

X3
i¼1

X3
j¼1

�qip �qjp Cqip qjp
; and

q0p ¼
1

qp

X3
i¼1

�qip q0ip : ð36Þ

The effective mean dispersion coefficient and its random
component are obtained by using Eq. 3, along with the
expression Eq. (36), which may be expressed as,

npDijp ¼ �ap
�qip �qjp þ Cqip qjp

�qp

��

�
�qip Cqjp qp þ �qjp Cqip qp

�q2p
þ

�qip �qjp Cqpqp
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þ
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