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ABSTRACT The performance of a GPS/INS integration system is greatly determined by the ability 

of stand-alone INS system to determine position and attitude within GPS outage. The positional and 

attitude precision degrades rapidly during GPS outage due to INS sensor errors. With advantages of 

low price and volume, the Micro Electrical Mechanical Sensors (MEMS) have been wildly used in 

GPS/INS integration. Moreover, standalone MEMS can keep a reasonable positional precision only  

a few seconds due to systematic and random sensor errors. General stochastic error sources existing in 

inertial sensors can be modelled as (IEEE STD 647, 2006) Quantization Noise, Random Walk, Bias 

Instability, Rate Random Walk and Rate Ramp. Here we apply different methods to analyze the 

stochastic sensor errors, i.e. autoregressive modelling, Gauss-Markov process, Power Spectral 

Density and Allan Variance. Then the tests on a MEMS based inertial measurement unit were carried 

out with these methods. The results show that different methods give similar estimates of stochastic 

error model parameters. These values can be used further in the Kalman filter for better navigation 

accuracy and in the Doppler frequency estimate for faster acquisition after GPS signal outage. 

 

1. INTRODUCTION 

For a long time the Inertial Measurement Units (IMU) used in navigation systems were 

heavy and expensive. Then gradually the Micro Electrical Mechanical Sensor (MEMS) 

with great advantages of price and volume is widely used in GPS/INS integrated systems. 

Although the accuracy of MEMS is improved rapidly during latest years, the MEMS stand-

alone navigation during GPS signal blockage could still only maintain a reasonable error 

within a very short time due to the integration of sensor errors. 

  

The systemic errors (i.e. bias and scale errors) of MEMS must be estimated before 

navigation sessions. According to IEEE STD 647, 2006, we verify different stochastic 

analysis methods to estimate the noise model parameters, i.e. Quantization Noise, Random 

Walk, Bias Instability, Rate Random Walk and Rate Ramp. 

 

In this paper several stochastic analysis methods are introduced, including autoregressive 

(AR) modelling, Gauss-Markov (GM) process, Power Spectral Density (PSD) and Allan 

Variance (AV). Tests on a MEMS based IMU are carried out with these methods.  
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2. METHODOLOGY OF MEMS ERROR MODELING 

2.1 Autoregressive model 

An m-variate p-order autogressive (AR(p)) model for a stationary time series of state 

vectors 
vυ , observed at equally spaced instants v , is defined by (Neumaier and Schneider, 

2001) 

                             1

p

v l v l v

l

−
=

= + +∑υ w A υ ε                                                     (1) 

or                                                                
v v v= +υ Bu ε                                                       (2) 

 

where 
vε are uncorrelated random vectors with zero mean and covariance matrix C , 

lA are 

the coefficient matrices of the AR model, w is a vector of intercept terms to allow for a 

nonzero mean of the time series and 1( ... )p=B w A A , 1(1 ... )T T T

v v v p− −=u υ υ . From 

Eq. (1) we can see that the current sample �� can be estimated by the previous p samples. 

The one-variate AR(1)  and AR(2) models in discrete time are  

 

                                      
1 1k k kx x wφ −= +                                                        (3a) 

                                 1 1 2 2k k k kx x x wφ φ− −= + +                                                  (3b) 

  

where x  is the random variable, subscript k is the discrete time index, 1,2φ are the 

coefficients to be estimated and 
kw  is zero-mean Gaussian white noise with variance 2

kwσ
.
 

 

To use the AR model we should first fix its order and then the value of each coefficient. 

There are several methods to determine the order of the AR model. Here we use Schwarz’s 

Bayesian Criterion (SBC; Schwarz, 1978; Neumaier and Schneider, 2001), which states 

that the AR order p  should minimize the criterion 

 

               
( ) (1 )log min.

p p

p

l n
SBC p N

m N
= − − =                                          (4) 

 

where log(det )p pl = ∆ , p∆ is the residual cross-product matrix and N  is the number of 

samples, m  is the dimension of the state vector, and 1pn mp= +  is the dimension of 
vυ . For 

Eq. (3), m=1. 

 

The AR model parameters can be estimated using least-squares fitting, Yule-Walker 

equations (Eshel, 2010) or Burg’s method (Bos et al., 2002). A stepwise least-squares 

algorithm is used in this paper after the order has been fixed (Neumaier and Schneider, 

2001; Zhao, 2011). By means of the moment matrices 

 

           
∑ ∑ ∑

N N N
T T T

v v v v v v

v=1 v=1 v=1

U = u u ,V = υ υ ,W = υ u                                        (5) 
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the least-squares estimates of the parameter matrix and the residual covariance matrix in 

Eq. (2) can be written as  

 

                                 ˆ -1
B = WU                                                              (6)        

1ˆ
- pN n

-1 TC = (V - WU W )

                                                  (7) 

 

The variance of estimation noise can be given as 

 

          2 2
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where n  is the size of the sample of the stationary process, d

i
x  is the known value of the 

process (desired output), and ˆ
ix  is the corresponding estimated output.  

 

2.2 Gauss-Markov process 

The Gauss-Markov (GM) processes are stationary processes that have exponential Auto 

Correlation Functions (ACF). The first-order GM process is frequently used to describe a 

correlated signal, which is defined by the exponential ACF: 

 

      
2( )xR e

β τ
τ σ

−
=                                                           (9) 

 

where 2σ  is the noise variance, 1β −  is the correlation time and τ is the time interval. The 

ACF of Eq. (9) is shown in Figure 1. From this figure we can see that there is a peak at 

zero, and there are two symmetrical descendent slopes at both sides, and the gradient at 

zero is discontinuous. For the second- and third-order GM process models, we refer to 

Gelb, 1974. 

 

The first-order GM process in discrete time and the variance are given as 

 

1

t

k k k
x e x wβ− ∆

−= +                                                       (10) 

22 2
(1 )k

k k

t

x w e
βσ σ − ∆= −                                                    (11) 

 

where t∆  is the discrete time sampling interval. 

From equations (3) and (9), we obtain 

 

1

te β φ− ∆ =                                                             (12) 
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Fig. 1. ACF of GM process 

 

Therefore, the relation between the two models can be shown as 

 

       1ln tβ φ= − ∆                                                              (13) 

 

However, the principle difference between the AR model and the GM process should be 

declared. The AR model does not consider the sampling interval, which may be considered 

as a sub-optimal estimation of the noise process. The GM-only model needs a long data set, 

for example 200 times of the expected correlation time for 10% uncertainty of the estimated 

noise model parameters (Nassar, 2005). 

 

2.3 Power Spectral Density 

The Power Spectral Density (PSD) is a commonly used and powerful tool for analyzing  

a signal or time series. In statistical signal processing, the PSD describes the distribution of 

energy in frequency domain. For a finite-energy signal ( )f t , the definition of PSD is  

 

              

2 *
1 ( ) ( )

( ) ( )
22

i t F F
S f t e dt

ω ω ω
ω

ππ

+∞
−
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= =∫                              

 

(14) 

 

where ω  is the frequency, ( )F ω and * ( )F ω  are the Fourier transform of ( )f t  and its 

complex conjugate respectively. A key point is that the two-sided PSD ( )S ω  and 

autocorrelation function ( )K τ are Fourier transform pairs, if the signal can be treated as a 

wide-sense stationary random process (IEEE Std. 952, 1997): 

 

                     ( ) ( )jS e K dωτω τ τ
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This relation also provides an approach to compute the PSD. 

 

The typical characteristic slopes of the PSD for sensor errors can be found in (IEEE Std. 

952, 1997; Hou, 2004). With real data, gradual transitions would exist between the different 

PSD slopes (IEEE Std. 1293, 1998), rather than the sharp transitions, and the slopes might 

be different from the typical values. 

 

2.4 Allan Variance 

The Allan Variance (AV) is a method of representing root mean square (RMS) random drift 

error as a function of averaging time (Allan, 1966). As a time domain analysis technique, it 

is an accepted IEEE standard for gyro specifications (IEEE Std. 647, 2006). If there are  

N samples of data points with sampling interval t∆  , then a group of n data points with  

n < (N-1)/2 can be created. Each group is called a cluster n tτ = ∆ . Assume that the 

instantaneous sample of the sensor is the angular velocity ( )tΩ , and its integration is the 

angle:  

 

                            ' '( ) ( )

t

t t dtθ = Ω∫                                                      (17) 

 

The average angular velocity in the k-th cluster, i.e. between time interval 
kt  and 

kt τ+ , is 
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and the AV is defined as  
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where the symbol < > is the infinite time average. In practice, the AV can be estimated with 

a finite number of samples by the so-called overlapped AV, which has been accepted as the 

preferred AV estimator in many standards: 
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There is a unique relation between the AV and the PSD of a stationary process (IEEE 

Std.952, 1997) 

 

             

4
2
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Table 1 shows the relation between curve slope and coefficient values on the log-log figure 

of the AV (For the detailed derivation, we refer to Hou, 2004). The AV of the total 

stochastic process can be assumed as the sum of all different error terms, since they are 

independent on different time regions. The total AV of the system can then be expressed as: 

 

    
2 2 2 2 2 ...tot quant RW Bias BRWσ σ σ σ σ= + + + +                                     (22) 

 

Standard Allan Variance is also named Allan Deviation (AD). From the AD plot, it is 

straightforward to identify various random processes that exist in the raw data and get the 

noise coefficients from Table 1. 

  
Tab. 1. Summary of characteristic curve slope and coefficient value (Zhang et al., 2008) 

 

Error Type 
Curve 

slope 

Coefficient 

value 

Quantisation 

Noise 
-1 ( 3)Q σ=  

Random 

Walk 
-1/2 (1)N σ=  

Bias 

Instability 
0 0( )

0.664

f
B

σ
=  

Rate 

random 

walk 

+1/2 (3)K σ=  

Rate ramp +1 ( 2)K σ=  

Correlated 

Noise 
±1/2 

(1)

(3)

c c

c

q T

q

σ

σ

=

=
 

 

 

A typical AV plot is shown in Figure 2. For example, it is well known that the random walk 

is a significant noise component in low cost inertial sensors. The angular random walk 

coefficient with unit deg/h
½
 can be identified at T=1 h with a straight line of slope -1/2 as 

shown in Figure 2. 

 

Yueming Zhao, Milan Horemuz , Lars E. Sjöberg  

 

 



443 

 
Fig. 2. Allan variance analysis noise terms results ( IEEE Std. 952-1995, 1998) 

 

In practice, the AV is based on a finite number of independent clusters that can be formed 

from any finite length of data. The AV of any noise term is estimated using the total 

number of clusters of a given length that can be created. The confidence of the estimation 

improves as the number of independent clusters is increased. For n points in each cluster,  

a straightforward percentage error calculation for the estimated coefficients as listed in 

Table 1 is given as (Barnes et al.,1971; El-Sheimy et al., 2008) 

 

             

1
2[2( 1)] 100%

N

n
σ

−

= − ×                                               (23) 

 

3. TEST RESULTS 

The testing platform is based on ISIS-IMU from Inertial Science Inc., a six-degree of 

freedom inertial measurement unit designed for commercial use as shown in Figure 3. The 

following test results are all based on 2 hour static data from the ISIS-IMU. 

 

 
Fig. 3. ISIS-IMU 
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Since there are 3 gyros and 3 accelerometers in the IMU, there would be 6p ×  parameters 

and 6 noise variances if the model is fixed to p-th order for all 6 sensors. In the real test, we 

found that the order of AR model that minimize the SBC would vary with different length 

of data samples as well as different sensors, while the residual variance matrix would just 

change a little. Therefore, we can determine that a second-order AR (2) model can be 

applied for all gyros and accelerometers. The ARMFIT
TM

 package (Schneider and Neumaier, 

2001) is used to estimate the AR model parameters. One way to check whether the 

estimated order is valid is to verify the whiteness of the model residuals. From Figure 4 we 

can see that the residuals of AR (2) for the accelerometer along y-axis are nearly white 

noise (within 95% confidence interval between two horizontal lines).  

 
Fig. 4. ACF of AR(2) residual for Y-Accelerometer 

 

From the collected static data, we can get the PSD plot of the gyro along x-axis as shown in 

Figure 5. A certain amount of noise would exist in the plotted curve due to the uncertainty. 

 
Fig. 5. X-Gyro PSD 
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The bunching and flickers in high frequency of the PSD plot prevent us from further 

analysis. The frequency averaging technique (IEEE Std.1293, 1998) is used to average the 

points among the high frequencies of the PSD result in Figure 6. 

 

 
Fig. 6. X-Gyro PSD after frequency averaging 

 

The slopes of the PSD curve include –2, 0, and +2, which indicate that the X-axis gyro data 

contains rate random walk, random walk, and quantization noise, respectively. The 

acquisition of parameters for noise terms from the PSD result plot is complex. Applying the 

random walk parameter equation (IEEE Std. 952, 1997) 

 

           

0 0 21 1
( / ) [( / ) / ]

60 2
Q h PSD h Hz=                                          (24) 

 

we obtain a random walk parameter of about 0.024 deg/h
½
. According to the specification, 

the random walk parameter is less than 0.5 deg/h
½
. The reason why the experiment result is 

much smaller may be that these experiments are carried out during static situations, while in 

dynamic situations it may go up.  

 

The AD plot for gyros and accelerometers are shown in Figure 7 and Figure 9, respectively. 

The standard error of each AD can be evaluated with Eq. (23) as shown in Figure 8. With 

these two figures, we can identify different error coefficients by means of Table 1 as listed 

in Table 2 and Table 3 for gyros and accelerometers, respectively. For instance, the 

quantization noise coefficient can be obtained by the value of the straight fitting line from 

the beginning with slope -1 at the time T= 3 h. The reason for the big quantization noise 

for accelerometer Z may be that the specific force sensed by the accelerometer along the 

vertical direction is overwhelmingly influenced by the gravity. 
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Fig. 7. AD plot for 3 gyros with fitting lines 

 
Fig. 8. AD plot for Y-Gyro with percentage errors (I bar) 

 
Tab. 2. Error coefficients for gyros 

 

 Gyros X Gyros Y Gyros Z 

Quantisation noise (deg) 2.5�10
-3

 7.2�10
-3

 9.1�10
-4

 

Random walk (deg/h
½
) 4.8�10

-2
 N/A 2.6�10

-2
 

Bias instability (deg/h) 1.4 N/A 1.2 

Rate random walk (deg/h
3/2

) 5.2 N/A 8.1 

Rate ramp (deg/h
2
) N/A 72 N/A 
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Please note that the quantization error defined in IEEE standards, which are referred in this 

paper, is actually a kind of bit quantization error caused by the transformation from 

analogue value to digital value for the MEMS sensor measurements. However, there is 

another kind of time quantization error caused by synchronization error of the sampling 

pulse. For more detailed information on time quantization errors, we refer to Savage, 2002. 

 
Tab. 3. Error coefficients for accelerometers (Acc.) 

 

 Acc. X Acc. Y Acc. Z 

Quantisation noise 

(m/s) 
4.5�10

-3
 2.1�10

-3
 4.8�10

-1
 

Bias instability (m/s
2
) 1.4 0.9 N/A 

Rate ramp (m/s/h
2
) N/A 3.2 N/A 

 

 
Fig. 9. AD plot for 3 accelerometers with fitting lines 

 

4. DISCUSSION AND CONCLUSION 

Using different models, we analyzed the sensor errors and got the parameters. We can use 

the AR model to estimate next consecutive errors, if we do not care much about different 

error components themselves and treat them totally together as stochastic errors. Although 

the optimal AR model would change its order with different sensors, a second-order AR 

model can be accepted as the unique model for all sensors of the IMU. Since the first-order 

GM process can be treated as a first-order AR model, if the sample interval is fixed, we do 

not specifically analyse this most commonly used model. 
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The PSD is also a common tool to analyze both periodic and non-periodic signals. 

Frequency averaging is needed to get the exact slopes of the curve, but the parameters are 

difficult to compute directly. Also it may be somewhat difficult for the non-system analyst 

to understand, since it is in the frequency domain. 

 

AV analysis has been widely used for MEMS stochastic modelling, due to its simplicity 

and effectiveness. It is a great advantage that the noise terms differ from region to region. 

And there is a relation between the AV and the PSD. Therefore, different noise coefficients 

can be easily obtained with the AV plot. However, a long static data record may be 

required, even dozens of hours, as we can see that the long-time slope is sometimes not 

fully determined within several hours of data. 

 

Although different methods may give different values of the noise coefficients, similar 

noise sources can be verified with a specific sensor. It is expected that with longer data sets 

and many iterations a set of more accurate coefficients can be estimated. After getting the 

coefficients for the main stochastic errors, a better error model can be applied in the 

GPS/INS integrated system, which is of much help for the Doppler frequency estimate and 

for bounding the error drift during GPS outage.  
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