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Modern animal movement modelling derives from two traditions. Lagrangian models, based
on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous
Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully
applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-
range formation describe the process of an animal ‘settling down’, accomplished by including one
or more focal points that attract the animal’s movements. (ii) Memory-based models are used to
predict how accumulated experience translates into biased movement choices, employing reinforced
random walk behaviour, with previous visitation increasing or decreasing the probability of
repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to
standard probability distributions, and adaptive in exploring new environments or searching for
rare targets. Each of these modelling arenas implies more detail in the movement pattern than general
models of movement can accommodate, but realistic empiric evaluation of their predictions requires
dense locational data, both in time and space, only available with modern GPS telemetry.
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1. INTRODUCTION
Currently in the period of dynamic indeterminism in

science, there is hardly a serious piece of research

which, if treated realistically, does not involve oper-

ations on stochastic processes. The time has arrived

for the theory of stochastic processes to become an

item of usual equipment of every applied statistician.

(Neyman 1960, p. 639)
Half a century after Neyman’s comment, the study of
organism movement is largely focused on explaining
predictable patterns that typify movement in determi-
nistic and (sometimes) even in mechanistic fashion
(cf. Nathan et al. 2008, and accompanying articles).
Theory provides us with predictions, but our under-
standing remains incomplete, and we inevitably
find ourselves testing observable movements against
theoretical predictions. The fit is never perfect, and,
regardless of whether the failure of the movement
data to fit our theory is a statement about our still-
imperfect understanding or our lack of the necessary
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information about the processes in question, or
whether they have an intrinsic stochastic component,
we find ourselves comparing predictive theory
(typically cast in stochastic process form) with field
data, using modern statistical techniques. Stochastic
modelling remains a necessary translational tool in
our armamentarium.

This theme issue is devoted to the use of GPS tele-
metry to collect temporally and spatially dense
positional datasets on animal locations, and the trans-
lation of those datasets into movement trajectories that
are sufficiently detailed to permit statistical evaluation
of previously untestable models of animal movement
(Cagnacci et al. 2010). To be useful for comparison of
field data with predictive theory, our movement
models must be predictive of positional field data and
amenable to modern statistical analysis. The object of
this paper is to provide some indication of the stochastic
process models that provide that connection.

The modelling of animal movement has taken two
classic approaches: Lagrangian and Eulerian. The
Lagrangian approach involves discrete steps and time
segments, and is particularly useful for tracking the
detailed movements of single individuals across a
landscape; the Eulerian approach describes the
expected pattern of space use by an individual or
This journal is # 2010 The Royal Society
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population (Okubo 1980). There is also a long tra-
dition of deriving Eulerian models from Lagrangian
descriptions, and the theoretical interface between
the two approaches continues to yield advances in
our ability to model. We have two objectives for this
paper: (i) to recap the essentials of both Lagrangian
and Eulerian approaches, establishing a base from
which to launch the models that will follow; and
(ii) to review three modelling arenas that represent
emerging growth points for the theory of movement
(namely (a) home-range formation, (b) memory-
based movement and (c) Lévy movement), which is
intended to extend the sorts of questions that we can
address and improve our comprehension of how and
why animals move as they do. All three of these mod-
elling arenas require dense positional data for empiric
evaluation, now becoming increasingly obtainable with
GPS telemetry methods, and their evaluation can be
expected to profit from it.
2. STOCHASTIC STARTING POINTS
(a) The Lagrangian approach

The classic approach to using stochastic differential
equations (SDEs) to model animal movements is
to assume no a priori knowledge about resource
distributions or animal preferences. This classic
Lagrangian approach is described conveniently in the
work of Brillinger et al. (2004) and Preisler et al.
(2004), who used SDEs to describe the incremental
step of an animal at time (t), located at coordinates
r(t) ¼ (x, y, t). These models are formulated as com-
binations of drift (directional) and diffusion (random,
in the simplest case) terms in two-dimensional
(x, y) space. Preisler et al. (2004) defined

dxðtÞ
dyðtÞ

� �
¼ mxfrðtÞ;tg

myfrðtÞ;tg

� �
dtþDfrðtÞ;tg� dCxðtÞ

dCyðtÞ

� �
; ð2:1Þ

where dx(t) and dy(t) are the incremental step sizes
along the x- and y-axes; the vector m ¼ (mx, my)

0 contains
the drift parameters; D—the diffusion matrix—is a func-
tion of both time and position at that time; and Cx and
Cy are random processes for which expected values ¼ 0.
If the drivers of the diffusion terms in (x, y) space are
independent Brownian processes and the drift terms
are continuous in time, we obtain a Markovian diffusion
process with continuous sample paths. The drift and
diffusion parameter set and the random processes con-
trol the direction and speed of the motion.

A number of special cases of interest arise from the
general model. If the drift term is zero and the diffu-
sion terms along x- and y-axes are completely
independent, then the model becomes an uncorrelated
random walk, where individuals travel at random,
with no drift in any particular direction. If drift
terms are not independent, then the model yields a
correlated random walk, where consecutive moves are
correlated (Preisler et al. 2004). If the drift terms are
non-zero and diffusion terms are independent, then
the model becomes a biased random walk, where individ-
uals drift in a particular direction. Finally, in the special
case where the individual is attracted to a particular
point, such as a den, a nest site or the centre of its
home range, the model becomes a mean-reverting
Phil. Trans. R. Soc. B (2010)
Ornstein–Uhlenbeck (O–U) process, with individuals
drifting randomly, but attracted to an average point.
Note that in a biased random walk process, the individ-
ual’s consecutive moves persist in a given direction,
whereas in the mean-reverting O–U case, movement
is biased towards a focal point, such as a food patch
or the centre of the home range (Preisler et al. 2004).

Other models may be obtained by making the
process non-Markovian, by introducing time lags
into the drift term. One advantage to such a general
formulation is that it incorporates uncorrelated,
correlated and biased random walk (including mean-
reverting O–U process) models into a single
framework. The approach yields rich modelling possi-
bilities, but requires no a priori knowledge of habitat
features or organism responses to those features. One
may use empirically derived movement segments as
difference equations to approximate differential
equations in a straightforward fashion, resulting in
temporally and spatially explicit gradient vector
fields. These alone are useful for examining animal
movements in response to habitat and landscape
features (Kie et al. 2005). One can extend the model
by treating the drift term as a potential function,
highlighting areas of strong attraction at a given time
(Brillinger et al. 2004; Preisler et al. 2004);
calculating that function is mathematically complex.

Lagrangian approaches are particularly well suited
to field studies, where individual positional data are
typically collected at discrete time intervals, projected
onto landscape maps. The movements may often be
continuous, but the data are not. State–space
models seem to be the most powerful and promising
way to handle such data, because they can handle
both measurement error and process stochasticity
(Patterson et al. 2008; Schick et al. 2008), though
they are computationally demanding. Most treatments
require the use of sophisticated model fitting
techniques such as Markov Chain Monte Carlo
(MCMC) or sequential importance sampling.

Recent application of MCMC methods, coupled
with Bayesian analysis, have used Lagrangian move-
ment models, with steps and turning angles
modelled via flexible probability distributions (e.g.
Jonsen et al. 2003, 2005; Morales et al. 2004). It is
possible and useful to partition movement paths into
different movement phases (or behaviours), such as
exploratory or resident, each characterized by a par-
ticular combination of parameters describing the
probability distributions of step sizes and turning
angles. Switches between sequential behaviour
modes can be modelled as transition probabilities or
as functions of current habitat type or distance to a
particular habitat type (Morales et al. 2004).

Lagrangian approaches are also the usual choice for
spatially explicit individual-based models (DeAngelis &
Mooij 2005; Grimm & Railsback 2005). In fact, the
movement modes fitted to GPS telemetry data can
easily form the building blocks for stochastic simulation
models. Haydon et al. (2008) have elaborated move-
ment models for Canadian elk (Cervus canadensis)
reintroduced to Ontario, emphasizing social factors
affecting the switch between exploratory and encamped
behaviour. These movement models were then
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combined with mortality and fecundity analysis to build
a spatially explicit, individual-based model for the
dynamics of this reintroduced population. Their analy-
sis showed that elk moved further when they were
solitary than when they were grouped, and that their
mortality rate increased as they moved progressively
away from the release area. The simulation model
showed how the spatial distribution and growth rate
of the population depended on the balance of fission
and fusion processes governing group structure.
(b) The Eulerian approach

Studying movement from the Lagrangian perspective
is appealing because a movement path is a direct signa-
ture of an animal’s behavioural process. However, this
process is necessarily stochastic, and individual-based
approaches are therefore difficult to apply directly to
research questions focused on expected patterns of
space use. Eulerian approaches, on the other hand,
can be used to predict these patterns, because they
focus on how the probability of an individual’s occur-
rence (or, if studying a population, the density of
animals) can be expected to change through time at
any given point in space. The models thus become
‘place-based’.

Eulerian approaches typically involve the math-
ematical analysis of diffusion models, and Skellam
(1951) showed that diffusion is a useful approxi-
mation of classic random walk models. In this
influential paper, Skellam (1951) examined how dif-
fusion and population growth would affect the
dispersal of two species of organisms competing in
heterogeneous space. This led to many studies of
organism movement (e.g. Keller & Segel 1971;
Kareiva & Shigesada 1983; Turchin 1998), although
the focus tended to be on taxa that were expected
to have relatively simple behaviours, such as invert-
ebrates and micro-organisms. Diffusion approaches
have been applied to vertebrates, but usually in the
context of dispersing individuals or spreading popu-
lations (e.g. Skalski & Gilliam 2000). When the
focus of study was on the stable rather than disper-
sing portion of the population, more traditional
statistical methods have been applied (e.g. kernel
density estimators; Worton 1989).

Seton (1909, p. 23) observed that ‘No wild animal
roams at random over the country; each has a home-
region, even if it has not an actual home.’ This
home-region, typically called a home range, is defined
as the area that an animal uses while taking care of
young and searching for food and mates (Burt
1943). Home-range analysis has evolved from early
attempts to determine the home-range area via mini-
mum convex polygons (Blair 1940; Odum &
Kuenzler 1955) to methods that describe the animal’s
home range as a utilization distribution (UD)—that is,
a two-dimensional relative frequency distribution
of animal locations (Jennrich & Turner 1969;
Van Winkle 1975; Worton 1989; Getz & Wilmers
2004) that may change through time (Keating &
Cherry 2009).

The key link between individual-based and place-
based analysis is translating the random and directed
Phil. Trans. R. Soc. B (2010)
components of movement into diffusion and advec-
tion processes, respectively. By assuming that
movement can be described by distributions of move-
ment rates and directions, variations of random walk
models can be expressed as diffusion approximations
via the Fokker–Plank equation for space use. This
approach was developed by Patlak (1953) to describe
the movement of particles (specifically long-chain
polymers) but has subsequently been applied to
animal movement (Okubo 1980; Doucet & Wilschut
1987; Turchin 1991). These models provide an intui-
tive way to link patterns of space use with the process
of individual movement, thus allowing for the devel-
opment of a mechanistic basis for home-range
models.
3. MOVEMENT IN HOME-RANGE CONTEXT
The home range is often represented by a UD, and,
while there are subtle differences in the definitions of
home range and UD, we will use the terms inter-
changeably here. For an alternative approach, see
Kie et al. (2010). We treat the UD as the probability
of observing an animal at any given location and
time, given a known starting location at time t ¼ 0—
basically the equilibrium density at all locations,
given the underlying movement process—which may
include a temporal component, in which case the
resulting UDs will also depend on time (Keating &
Cherry 2009).

This process can be thought of as a redistribution
kernel that describes, for a time interval t, the prob-
ability of moving from a starting point a to an
ending point b, where a and b are vectors representing
the x and y map coordinates at the respective locations.
This redistribution kernel may be arbitrarily complex,
but in its simplest form is a joint probability distri-
bution of movement distance (step length) and
direction (bearing):

fðb;a; uÞ ¼ nðb;a; unÞ � dðb;a; udÞ; ð3:1Þ

where u is a vector of parameters, partitioned as a sub-
vector of step-length parameters (uv) and a subvector
of compass-bearing parameters (ud). The distribution
f(.) is the product of independent probability density
functions of step lengths, v(.), and compass directions,
d(.), each with its own parameter subvector (uv and ud,
respectively).

When there is no bias in the distribution of move-
ment directions (i.e. d(.) is a two-dimensional
uniform distribution) and the parameters of v(.) are
fixed with respect to position, f(.) represents a
simple uncorrelated random walk. Animals moving
in such a fashion will diffuse over the whole plane,
rather than develop home ranges. Many models have
been proposed to account for animal home ranges
(see Börger et al. 2008 for a recent review). Animals
that exhibit this behaviour are altering the rate and
bias of their movement in response to some feature
of the landscape, either within their immediate percep-
tual range or within their memory. The spatial and
temporal grain and scale of landscape features affect
animal movement, and are the key factors underlying
the specification of mechanistic home-range models.
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Viewing movement models as hypotheses, we build
various landscape features into the models in such a
way as to yield the ‘localization’ actually observed as
‘home-range’ behaviour. There are various ways to
do this, and comparison of predictions with real data
elucidates the phenomenon, suggesting which factors
and assumptions are likely to be informative and
which are not. The most basic model that will lead
to home-range formation is a random walk with a con-
stant bias towards some focal point such as a nest, den
or roost. Originally proposed by Holgate (1971) and
updated by Okubo (1980), this localizing model
alters the probability distribution of movement direc-
tion in response to an animal’s location, relative to
its home-range centre. The random and directed com-
ponents of this movement process can be described as
an advection diffusion model, a partial differential
equation (PDE) describing how the probability density
function of an animal’s location changes through time.
The steady-state solution of the PDE represents the
expected pattern of space use by an individual (i.e.
the UD). Because this model describes how an
animal will return to a known focal point in its home
range, it is essentially describing a simple memory pro-
cess, where the location and strength of the memory
landscape are constant through time. A limitation of
this model is that it leads to unimodal, circular UDs,
whereas most animal UDs are multimodal and
non-circular.

One modelling approach that will allow for hetero-
geneous UDs is to incorporate multiple areas of
attraction within the home range. Blackwell (1997,
2003) generalized a model originally proposed by
Dunn & Gipson (1977), in which an animal’s redistri-
bution kernel is a multivariate Gaussian (specifically,
Ornstein–Uhlenbeck) process, with the characteristics
of that process determined by the animal’s ‘state’.
Each state (corresponding to a behavioural mode,
such as resting, moving or feeding) has its own set
of parameters governing movement rate and the
strength of attraction to an arbitrary number of
home-range ‘nuclei’ (sensu Don & Rennolls 1983).
This approach may be promising if mechanisms
governing the location and number of nuclei are
developed along with those of the state-switching
probabilities.

Moorcroft et al. (1999) applied an extension of the
Holgate–Okubo model proposed by Lewis & Murray
(1993) to show that accounting for some of the mech-
anisms known to affect the movement of carnivores
can provide additional insight into the home-range
patterns of coyotes (Canis latrans). The model con-
sisted of a series of PDEs and ordinary differential
equations (ODEs) that described how adjacent packs
used scent marks to demarcate their territories and
how individuals responded to conspecific scent
marks. Inter-pack interaction was based on animals
increasing their rate of scent marking in the presence
of foreign scent marks and simultaneously biasing
their movement towards their own home-range
centre. The resulting UDs were unimodal, but their
contours (and effective boundaries of the home
ranges) were dependent on the locations of the
neighbouring packs.
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Moorcroft & Lewis (2006) showed that conspecific
avoidance was not sufficient to explain the home-range
patterns of coyotes in Yellowstone National Park. They
extended the underlying movement model to include
an additional response to prey availability. As in the
previous model, conspecific avoidance governed the
rate of scent marking and bias in movement direction
(advection), but the movement rate decreased in
areas of high prey densities. Including both com-
ponents in the model resulted in multimodal UDs
and also allowed successful prediction of how adjacent
coyote packs would adjust their home-range locations
after the break-up of one of the packs in the study area.

Including resource or habitat selection in the model
is important, because animals have energetic and ana-
tomical limitations on their movement rates that
interact with the distribution of resources to affect
movement patterns and, subsequently, the UD.
Arthur et al. (1996) suggested that habitat selection
occurred within an ‘availability radius’, and this idea
was extended by Hjermann (2000) to allow for
availability to decline as a continuous function of
distance. Rhodes et al. (2005) built upon these
approaches to account for home-range behaviour
by describing a resource selection model that was a
function of distance from current location, distance
from home-range centre and resource preference:

Pða! bÞ ¼ kða;b; tÞ

¼ fða;b; uÞ � wðb;Z;bÞÐ
c[Dt

fða; c; uÞ � wðc;Z;bÞdc
; ð3:2Þ

where Dt is the domain available to the individual
during the time interval t, f(.) is a probability distri-
bution describing two-dimensional movement in the
absence of selection and w(.) is the selection function
calculated at a given location. Landscape resources
(including distance to home-range centre) are
described by the matrix Z, and the strength of the ani-
mal’s selection for these resources is described by the
vector b. Overall, this selection function serves to
bias the animal towards preferred areas (i.e. preferred
habitat close to the home-range centre).

Moorcroft & Barnett (2008) showed that equation
(3.2) constitutes a mechanistic movement model
(sensu Moorcroft et al. 1999) and results in the relative
intensity of space use at any location being equal to the
square of the preference function w(.) at that location
(Barnett & Moorcroft 2008). However, in order for
this parameterization to result in a characteristic
home range, an advection term representing bias
towards the home-range centre is required. Without
such a term, the expected pattern of space use for an
individual is spread across the entire domain, albeit
varying in the level of preference for different habitat
types.

All of the examples presented thus far require the
presupposition of some home-range centre or other
attractive nuclei. While this formulation works well
for animals that have fixed centres of attraction,
other approaches are required for animals without
such concrete home-range features. Briscoe et al.
(2002) showed that if animals are attracted to their
own scent marks and if proximity to those scent
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marks causes their marking rate to increase, stable
home ranges will develop in the absence of any focal
point attraction. This occurs because of an ortho-
kinetic process in which the animals reduce their
movement rate in areas with high densities of their
own scent marks. However, while this model appears
to work well mathematically, it is not clear that it
arises from realistic fine-scale movement behaviour.
A more plausible rule is that animals bias movement
towards areas with high densities of scent marks
within their olfactory range (i.e. including a b term
for scent mark density in equation (3.2)), or towards
familiar areas beyond that radius of perception (Wolf
et al. 2009; see §4 for additional discussion).

The models discussed above are extremely simplis-
tic relative to the actual interactions between an
animal’s internal state, memory and external environ-
ment. The result from these models is often thought
of as a predictive surface (i.e. the researchers’ best
guess at where an animal is likely to be at any given
time). An important question to ask is what these
models are able to predict. For example, the home-
range model developed by Moorcroft & Lewis
(2006) was able to predict the shape of the UD and
how the UDs of adjacent packs of coyotes would
respond when one of the packs dissolved, but that
model relied upon a prior designation of the home-
range centres of each pack. It does not predict where
home ranges will be found elsewhere on the landscape;
only what UD will be expected, given a prescribed
home-range centre. The location and sizes of
home ranges are likely to depend on the needs of the
individual animal and the distribution of resources
across the landscape (e.g. Mitchell & Powell 2004;
Anderson et al. 2005). If an animal leaves its estab-
lished home range, what combination of landscape
features and conspecific territories determines where
it will choose to ‘settle down’? That clearly leads to
an entirely different class of modelling problems.

One of the challenges facing wildlife ecologists is to
understand how animals will adapt to changing land-
scapes. Thus, it is increasingly important for us to
collect data on animals that are in some way pushed
outside of their current equilibrium setting and then
use these data to challenge predictive models of
animal movement. The PDE approaches do allow for
temporal variability in selection, although this adds
complexity to the equations. The power of these
approaches is that once the mechanisms underlying
the genesis of a UD are understood, they can be
used to predict how the UD will change in response
to a changing landscape (Moorcroft et al. 2006).

Empiric evaluation of any of these models against
densely packed, GPS-derived field data involves the
assumption of independence of sequential animal
locations, and, though they clearly elucidate the pro-
cesses of deeper interest, such sequences are
obviously not independent. Recent work, however,
has shown that most testing procedures are robust
with respect to this assumption, and thinning
datasets to ensure independence by throwing out
large quantities of valuable data is generally counter-
productive (deSolla et al. 1999; Fieberg 2007; Fieberg
et al. 2010).
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4. MEMORY-BASED MOVEMENT
Most animals are capable of acquiring, storing and
using information about the landscapes they inhabit.
Knowledge of the environment can potentially
reduce uncertainty about the location and availability
of resources, and even allow for the anticipation of
danger. Although little is known about how animals
actually store and use spatial information (e.g. land-
mark-based versus geometric cognitive maps;
Etienne et al. 1996; Menzel et al. 2000; Vlasak
2006; Janson & Byrne 2007), there is evidence that
wild animals are capable of navigating adaptively
through familiar landscapes (e.g. Gallistel 1990;
Shettleworth 1998).

Detailed navigation models can be built using arti-
ficial neural networks. These are quite useful for
integrating several sources of information and in simu-
lating sensible decision-making (e.g. Folse et al. 1989;
Voicu & Schmajuk 2002; Morales et al. 2005; Dalziel
et al. 2008), but random walk formulations are better
suited to analytical treatment and for translating
behavioural rules into UDs. Using the behavioural
minimalist approach (Lima & Zollner 1996), we will
deal here with a simple random walk that includes
some form of memory, as opposed to the traditional
first-order Markov treatment of correlated random
walks (Morales et al. 2010).

Random walk models and their diffusion approxi-
mations have been used to model animal reactions to
landscape heterogeneity by changing movement
speed (distance moved) and/or the distribution of
turning angles (Kareiva & Odell 1987; Turchin 1991;
Grünbaum 1999; Morales et al. 2004), as well as to
include movement biases at habitat boundaries
(Ovaskainen 2004; Ovaskainen et al. 2008). Even
though some features of animal movements can be
captured by such models, and might be all that
is needed for certain species at certain temporal
scales, they will fail to retain individuals realistically
within a particular sector of the landscape and/or to
mimic revisitation rates to certain areas. Given
enough time, individuals moving according to these
models will spread over the entire area being con-
sidered. Whether this is acceptable will, of course,
depend on the species under consideration and
the time scale of interest. In cases where home
ranges form, animals probably deviate from pure
random walks by altering their movement biases
in response to a combination of the landscape
composition in their immediate vicinity and their
long-term memory.

More generally, random walks where the movement
of a particle is affected by its history are called
reinforced walks (Davis 1990; Pemantle 2007).
These are walks on a lattice or a graph that preferen-
tially revisit neighbouring locations that have been
visited before. In the majority of these theoretical
studies, the probability of using a particular edge
(link) or vertex (node) in a graph depends on its
‘weight’, which increases as a function of the number
of previous visits. Important mathematical differences
have been found, depending on whether the reinforce-
ment occurs at edges or nodes of a graph. For
example, edge-reinforced walks are recurrent on
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finite graphs, meaning that every edge is traversed
many times at large time scales. In contrast, node
reinforcement results in random walkers becoming
trapped between just a few vertices (Volkov 2006).
Sometimes a clear phase transition between these
two possible behaviours has been identified through
extensive simulation (Foster et al. 2009).

In reinforced random walks, memory effects that
modify habitat choice probabilities are inserted into
the model; as certain links or nodes in a graph are
used, they become more likely to be used in the
future. These habitat-based memory effects can be
used to model the effect of previous use, not only
on the individual performing the changes, but also
on other individuals. For example, Othmer & Stevens
(1997) studied movement and aggregation in slime-
producing myxobacteria. These organisms leave a
slime track that facilitates subsequent movement by
the same or other bacteria, conforming to a
reinforced random walk. The authors used PDEs
to approximate the behaviour of many individuals
performing such walks and show that the local
reinforcement owing to slime produced stable
aggregations of bacteria (without the need for long-
distance signalling between cells). Such path
reinforcement may also play a role in movement of
vertebrates, as many animals readily follow a network
of footpaths engraved in the landscape by previous
use, in some cases by other species and previous
generations. We suspect that these models could be
suitably modified to deal with landscape use
reinforcement.

Even though these models can be useful in develop-
ing our intuition about the effects of past history on
movement decisions, it is important to note that they
use local conditions to model movement. This con-
trasts with how animals’ long-term memory may
affect movement decisions (e.g. Janson & Byrne
2007; Healy et al. 2009), because it introduces a
form of perceptual distance that precludes purposeful
returns to distant places. Perhaps a more realistic
form or reinforced model for animal movement
would allow the possibility of returning to any pre-
viously visited place even if such locales are outside
the current perception area. Recently, Gautestad &
Mysterud (2006) proposed what they called a ‘Lévy
flight with strategic returns’ (or multi-scaled random
walk), where movement steps follow a truncated
Lévy flight (long steps, but not beyond a certain dis-
tance), though the walker is allowed to return to
previous locations every so often. This model is
aimed at describing the result of animals mixing local
(tactical) movements with less frequent (strategic)
far-ranging commutes. The authors showed that var-
ious patterns of space use can arise, depending on
model parameterization. In particular, a simple
random walk with strategic returns leads to a unimodal
distribution of space use, while the truncated Lévy
flight version produces multi-modality.

Van Moorter et al. (2009) simulated a forager’s
movement as biased correlated random walk in an
area with randomly placed foraging patches, where
bias was a function of past patch use. They assumed
that long-term (reference) memory motivated animals
Phil. Trans. R. Soc. B (2010)
to return to previously visited patches, while short-
term memory encouraged them to move away from
recently visited patches. Their simulations showed
that by using both types of memory, foragers made
more efficient use of resources. Also, the rate of
increase in the area covered by animals slowed with
time, but more extensive simulations or theoretical
analyses are needed to determine whether these
processes can lead to stable home ranges.

While there is little doubt that memory can affect
movement processes in many ways, there remains
much to do in model development and data analysis.
We anticipate that future work will contrast observed
animal trajectories with alternative random walk
models that include memory. Reinforced random
walks (RRWs) seem to be a good starting point,
especially where individual movement modifies the
habitat by leaving chemical signals or physically facili-
tating further displacements. However, classical RRWs
should be extended to allow for movement biases
towards distant remembered locations. Because we
do not know a priori which of the possible cognitive
processes are involved in the movement decisions of
a given species, some observed spatial trajectories
could be consistent with a large number of processes,
ranging from simple undirected search processes to
strategic goal-oriented travel. Given what we do
know about animal cognition in general, we expect
animals to be motivated to explore and update their
knowledge of the environment they inhabit. Realistic
movement models that include memory should con-
sider both exploratory behaviour and the use of past
experience in movement decisions. Blackwell (1997,
2003) and Morales et al. (2004) modelled changes in
behavioural states that resulted in different movement
patterns, including what they called ‘exploration’, but
they did not use these explorations to update future
movement biases. Future work might include the
possibility of exploratory movement, leading to new
home-range nuclei.

How well our models predict movement choices
in the field can only be evaluated with dense GPS
telemetry. Memory reinforcement may well require
repetition, of course, so if we are to evaluate changes
in either point-specific or track-specific probability
array in response to accumulating experience, we
will almost surely require GPS records over an
extended time track to allow for repeated visits to a
substantial number of locations. Moreover, to eluci-
date deeper (probably neuronal) causation, we will
also have to monitor the animal’s internal state,
using evolving biosensor technology, now rapidly
developing (Tomkiewicz et al. 2010).
5. LÉVY MOVEMENT
The traditional statistical treatment of single-step
movement distances involves a pdf, p(z), that is
Poisson, normal or some exponential function of dis-
tance z with finite mean and variance and decaying
gradually with increasing distance. Recently, attention
has been shifting towards distributions that drop off
quickly but that have a long, fat tail (Metzler & Klafter
2004). In some cases, organism movement is so
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generally heavy-tailed that the moments of the pdf may
not be finite (Mandelbrot 1983).

Lévy flights and walks (see Metzler et al. 2007 for
the distinction) have received particular attention in
this regard. Our interest here is in the size distribution
of single steps, and we will concentrate on Lévy walks.
Lévy walks exhibit tail probabilities that are pro-
portional to inverse power functions of the distance,
z, described as z2m (1 , m � 3). Beyond some mini-
mal step size zmin, one can model such distributions
as a pdf (cf. Edwards 2008),

pðz;mÞ ¼ ðm� 1Þzm�1
min ðz�mÞ ¼ cz�m; ð5:1Þ

where z is the straight-line distance traversed, zmin is
the minimal distance moved, and c is the normaliza-
tion constant required of a proper pdf. The
parameter m has the remarkable property of being
independent of measurement units, so direct compari-
son can be made across studies. Note that for 1 , m �
3, the distribution is Lévy, and the sum of moves is
also Lévy; for m . 3, the sum of moves converges to
a Gaussian distribution and is Brownian. For m � 3,
the distribution is characterized by unbounded
moments, while for values of m . 3, the moments
are finite.

Theoretical work shows that a Lévy movement
strategy can maximize a consumer’s encounter rate
with sparse and unknown food resources. Bartumeus
et al. (2008) evaluated the impact of Lévy searching
on the efficiency h (the number of target sites encoun-
tered per total distance traversed), incorporating the
dimension of the system for still or mobile targets,
and for both destructive and non-destructive resource
utilization. Conforming to previous results (Raposo
et al. 2003), efficiency is maximum at m ¼ 2 for the
non-destructive case, an emergent compromise
between revisiting nearby targets (i.e. resampling
paths already traversed) and leaving a visited area to
find new targets. For destructive scenarios, encounter
rates were highest as 1 m, because path resampling
is penalized under this scenario. Theoretical consider-
ations suggest that we should encounter widespread
Lévy search strategies for targets (food, potential
mates or preferred shelter). Lomholt et al. (2008)
showed that Lévy searching significantly outperforms
Brownian searching, because it reduces oversampling.
By optimizing an intermittent search strategy for criti-
cal and rare targets, a Lévy searcher is much less
sensitive to target density. These results were obtained
in the one-dimensional case, but Bartumeus et al.
(2008) have shown that the advantage of Lévy search
becomes smaller with increasing dimensionality,
though it persists.

Lévy movement might either (i) be an emergent
property of the interaction between the searcher and
its landscape, or (ii) represent an adaptive behaviour.
Benhamou (2007) showed that Brownian walk by
a predator searching for random prey items in a
patchy environment generates composite search pat-
terns that mimic those generated by Lévy movement.
Boyer et al. (2006), studying spider monkeys searching
among trees of different sizes, have shown that a
particular tree-size frequency distribution induces
Phil. Trans. R. Soc. B (2010)
Lévy movement patterns, while Sims et al. (2008)
showed that both pelagic predator movements and
prey distribution exhibited a Lévy-like pattern, and
that the predator movements were an optimal search
strategy for prey items that were distributed in Lévy-
like fashion. Bartumeus & Levin (2008) postulate the
presence of a ‘fractal re-orientation clock’, a neuronal
mechanism that produces a Lévy distribution at
times of predator turning, enabling maximal search
success.

It is noteworthy that for Brownian movement the
mean squared displacement from the initial point of
departure is proportional to the first power of time,
while for Lévy movement the dependence on time is
super-linear, characteristic of super-diffusion. One
might be tempted to use dispersion patterns over
longer time scales, measured via discrete sampling
and conventional VHF telemetry, to detect Lévy pat-
terns, as done by Ramos-Fernández et al. (2004) for
spider monkeys, but other mechanisms (e.g. fractional
Brownian motion) can also yield that outcome. More-
over, Petrovsky et al. (2008) and Petrovsky & Morozov
(2009) have shown that aggregating mixtures of
Brownian moves, where there is parametric variation
among either different animals or different situations,
can yield a composite distribution that is collectively
super-diffusive in its tail behaviour. Thus, hard
evidence of super-diffusion does not automatically
translate into hard evidence for Lévy movement
(Viswanathan et al. 2008).

It is thus necessary to rely on high-resolution trajec-
tories to document the presence of Lévy movements.
Considerable work has been invested in analysing
whether movements do or do not conform to a Lévy
pattern. In an oft-cited paper, Viswanathan et al.
(1999; see also Weimerskirch et al. 2005) claimed
that wandering albatrosses performed Lévy walks
while foraging. Further claims have been published
for side-striped jackals (Atkinson et al. 2002), reindeer
(Mårell et al. 2002), zooplankton (Bartumeus et al.
2003), grey seals (Austin et al. 2004), goats (de
Knegt et al. 2007), elephants (Dai et al. 2007), honey-
bees (Reynolds et al. 2007) and solitary fallow deer
(Focardi et al. 2009). Lévy movement has also been
claimed for fungal spores (Wingen et al. 2007) and at
least for the tail of the distribution for dispersing
plant propagules (e.g. Harper 1977; Okubo & Levin
1989; Portnoy & Willson 1993; Levin et al. 2003).
One can then use step-length ‘survival distributions’
to discriminate between Lévy and composite Brownian
movement (Benhamou 2007). If movement is Lévy,
the relationship should be log-linear, but a log-
curvilinear relationship would be indicative of
composite Brownian movement. This is the same
method described by Newman (2005) and Edwards
(2008), though they refer to it as a ‘rank–frequency
plot’.

The presence of Lévy movements under natural
conditions has been severely challenged by a number
of independent studies (Benhamou 2007; Edwards
et al. 2007; James & Plank 2007; Sims et al. 2007;
Edwards 2008). The debate has consequences
(Trevis 2007), because a failure to optimize search
behaviour would challenge standard theory, which is
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normally based on the idea that active searching is
adaptive for organisms that are capable of doing it.
Edwards et al. (2007) used unbiased likelihood esti-
mates of m to re-analyse Viswanathan et al.’s (1999)
albatross study and questioned the strength of
the empirical evidence for Lévy movement. Other
methods yielded under-estimates of m, possibly
indicating Lévy movement (m � 3) in cases where
motion was actually Brownian (m . 3; Edwards 2008).

In summary, the evidence for Lévy movements in
nature is equivocal, and the ecological conditions
under which we should expect it are still not entirely
clear. Examples are scattered from unicellular organ-
isms to plant propagules to marine organisms to
terrestrial mammals, and the ecological commonalities
that tie those cases together are not entirely obvious. It
is evident that high-resolution GPS tracking of animal
movements will be necessary to obtain the required
step-size distribution (see review in Fieberg et al.
2010), and we still need to move from testing step-
size distributions to a more mechanistic analysis of
animal movements. It thus seems appropriate to
close with the caution (Bartumeus & Levin 2008)
that even a high-resolution trajectory will not be
enough for causal analysis, since locations where
reorientation occurs during Lévy movements should
be defined with other sorts of information, such as
changes in the animal’s physiological or behavioural
state. Dense positional information will be necessary
but not sufficient. New developments in biosensor
technology show some promise of providing that
needed information (see reviews in Cooke et al.
2004; Rutz & Hays 2009).
6. CONCLUDING REMARK
In spite of our growing concentration on deterministic
and mechanistic explanation, we are still, half a cen-
tury after Neyman’s ‘paean’ to stochastic processes,
engaged in modelling organism movement in stochas-
tic process terms. Our biological understanding of
‘why they do it’ and our physical understanding of
‘how they do it’ has improved over that period, but
whether we ascribe the (still considerable) unpredict-
able element of movement to our residual process
ignorance or inadequate information on the critical
factors influencing the animal’s movement choices,
or to intrinsically probabilistic processes, our reliance
on stochastic modelling will continue unabated.
Coupled with continuing improvements in GPS and
biosensor technology, along with more sophisticated
statistical analysis of densely packed data on the
landscape across which the animals move, stochastic
modelling will continue to contribute to our
understanding.
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