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Abstract. Several stochastic simulation algorithms (SSAs) have been recently
proposed for modelling reaction-diffusion processes in cellular and molecular biology. In
this paper, two commonly used SSAs are studied. The first SSA is an on-lattice model
described by the reaction-diffusion master equation. The second SSA is an off-lattice
model based on the simulation of Brownian motion of individual molecules and their
reactive collisions. In both cases, it is shown that the commonly used implementation
of bimolecular reactions (i.e. the reactions of the form A+B — C, or A+ A — C) might
lead to incorrect results. Improvements of both SSAs are suggested which overcome the
difficulties highlighted. In particular, a formula is presented for the smallest possible
compartment size (lattice spacing) which can be correctly implemented in the first
model. This implementation uses a new formula for the rate of bimolecular reactions
per compartment (lattice site).
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1. Introduction

Many cellular and subcellular biological processes can be described in terms of diffusing
and chemically reacting species (e.g. enzymes) [1, 13]. A traditional approach to
the mathematical modelling of such reaction-diffusion processes is to describe each
(bio)chemical species by its (spatially-dependent) concentration. The time evolution
of concentrations is then modelled by a system of partial differential equations (PDEs)
[29]. Many mathematical and computational methods have been developed over the
last century for solving and analyzing PDEs [35, 40], which makes PDE-based modelling
attractive. However, it has serious limitations when applied to biological systems. There
may be relatively few numbers of some chemical species; for example, often only one
or two mRNA molecules of a particular gene are present in the cell [1]. In such cases
we cannot even properly define spatially-dependent concentration profiles® and PDE-

* The macroscopic concentration of molecules at a given point in the space is defined as the number of
molecules in a neighbourhood of this point divided by the volume of the neighbourhood. In particular,
the neighbourhood must be chosen large enough to contain a lot of molecules. This is clearly not
possible if there are only few molecules present in the system.
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based models cannot be used. The appropriate quantities to describe the system are not
concentrations, but numbers and positions of molecules of the chemical species involved.

In recent years, several stochastic simulation algorithms (SSAs) have been proposed
to model the time evolution of molecular numbers [24, 3, 13]. They provide a more
detailed and precise picture than deterministic PDE-based models. They typically
give the same results for simple systems involving zero-order and first-order chemical
reactions (for example, linear degradation or conversion). However, the situation is
more delicate whenever some chemical species are subject to bimolecular (second-order)
reactions, or the system under study includes reactive boundaries (for example, a cellular
membrane with receptors). Reactive boundaries were studied in our previous paper [13],
where we systematically investigated four different SSAs for reaction-diffusion processes
which had been proposed in the literature. We showed that one would obtain incorrect
results if the computer implementation of reactive boundaries is not handled with care.
In particular, different results can be obtained by different SSAs when using what seems
to be, on the face of it, the same boundary condition. To fix this problem, we derived
formulae giving the correct relation between experimentally measurable characteristics
and parameters of the computer implementation of boundary conditions for all four
SSAs [13]. A generalization of one of these formulae to anisotropic diffusion tensors was
recently given in [32].

In this paper, we focus on modelling bimolecular reactions, i.e. chemical reactions of
the form A+B — C or A+ A — C. We investigate two commonly used reaction-diffusion
SSAs which have been previously implemented in reaction-diffusion software packages
MesoRD [24] and Smoldyn [3]. The first reaction-diffusion SSA is based on dividing the
computational domain into artificially well-mixed compartments and postulating that
only molecules which are within the same compartment can react. Diffusion is then
modelled as jumps between the neighbouring compartments. This approach can be
mathematically described by the reaction-diffusion master equation [27, 12, 16] and was
recently implemented in the mesoscopic reaction-diffusion simulator MesoRD [24]. In
order to use this method, we have to choose an appropriate compartment size. On one
hand, the compartment size must be chosen small enough so that the spatial variation
in the concentration profiles can be captured with a desired resolution. The situation
is analogous to solving PDEs numerically by a finite difference method. In order to
solve PDEs with the desired accuracy, we need to choose a sufficiently fine mesh for
discretization. On the other hand, we will see in Section 3.1 that the compartment size
cannot be chosen arbitrarily small. The analogy with PDEs fails here. Unlike in the
case of PDEs (for which we get a more accurate solution by using a finer discretization),
there is a limit on the compartment size from below. In Section 3.1, we will show that
the error of the computation increases as the compartment size decreases. In Section
4.1, we present the formula for the smallest compartment size (which can be simulated
by this approach) and propose an improved SSA which minimizes the simulation error,
by modifying the reaction rate per compartment.

The second SSA studied in this paper is based on Brownian motion of individual
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molecules. In its classical formulation [33], it is postulated that two molecules (which are
subject to a bimolecular reaction) react whenever they are within a specified distance
(reaction radius) from each other. One disadvantage of this approach is that the reaction
radius is, for typical values of the bimolecular rate constant and diffusion coefficient,
unrealistically small compared to the size of individual molecules. In Section 4.2, we
propose an improved SSA to overcome this difficulty. It is based on the assumption
that two molecules react with the rate A whenever they are within the distance g. The
formula relating A, 0 and the simulation time step with the experimentally measurable
reaction rate constant is derived. This formula is used for developing a more realistic
SSA for reaction-diffusion processes. In particular, we generalize the approach recently
implemented in the software package Smoldyn [3].

The paper is organized as follows. In Section 2, we present illustrative examples
which will be used to demonstrate the results of the paper. In Section 3, we present
both reaction-diffusion SSAs and summarize their major disadvantages. In Section 4,
we present modified algorithms which are able to overcome the problems highlighted
in Section 3. To make this paper accessible to non-mathematicians, Section 4 only
contains the description of improved algorithms and formulae, together with the results
of illustrative computations. The mathematical derivation of the formulae presented
and the justification of the modified algorithms are given in Appendices. We finish with
a discussion and conclusions in Section 5.

2. Bimolecular reactions - two model problems

A bimolecular reaction is a chemical reaction involving two reacting molecules.
Examples include

A+B % ¢+ D, A+rA 0 oo A+B L B,

where the capital letters A, B, C stand for chemical species and k is the reaction
rate constant, expressed in units of volume over time. From the modelling point
of view, it is useful to divide bimolecular reactions into two classes, heteroreactions
and homoreactions. The term heteroreaction will be used for the bimolecular reaction
between molecules of two different chemical species (for example, heterodimerization
A+ B — C or catalytic degradation A + B — B). The bimolecular reaction between
two molecules of the same chemical species (for example, homodimerization A+ A — C)
will be called the homoreaction in what follows. In this section, we introduce two simple
chemical systems which will be used to illustrate the results in the paper. The first
model will include a heteroreaction (catalytic degradation) and the second model a
homoreaction (homodimerization). More complicated examples are discussed later in
Section 5.
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2.1. A heteroreaction example

Let us consider chemical species A and B in a container of volume v which are subject
to the following two chemical reactions

A+B 5 B, 022 A (1)

The first reaction is the degradation of A catalyzed by B. We couple it with the second
reaction which represents the production of molecules of A with the rate™ kyv. Since
the number of B molecules is preserved in the chemical reactions (1), the dynamics of
the model (1) is simple: some molecules of A are produced by the second reaction and
some are destroyed by the first reaction. Thus, after an initial transient behaviour, the
number of A molecules fluctuates around its equilibrium value.

Let us consider first the case when the chemical system (1) is well-stirred. Then
the probability of an ocurrence of the bimolecular reaction is proportial to the number
of available pairs of reactants [21]. Let us define the propensity functions of chemical
reactions (1) by

ail(t) = AOBMk Jv,  as(t) = kov 2)

where A(t) is the number of molecules of A at time ¢, B(t) is the number of molecules
of B at time t, and v is the system volume. Then the probability that the i-th reaction
occurs in the infinitesimally small time interval [¢,t + dt) is equal to «;(t)dt, i = 1,2.
Note that any heteroreaction A + B — --- has a propensity function equal to a4 (t),
while the propensity function of homoreactions differs; this is the reason why we discuss
them separately.

The chance of occurrence of each reaction is given by the corresponding propensity
function (2). If the first chemical reaction occurs, then one molecule of A is removed
from the system; if the second chemical reaction takes places, then one molecule of A
is added to the system. Given the values of the rate constants and the initial numbers
of molecules of A and B, the stochastic model of (1) is uniquely specified and can be
simulated by the Gillespie SSA [21, 22|. In Figure 1(a), we plot A(t), computed by the
Gillespie SSA, as the solid line, using parameter values ki /v = 0.2sec™!, kov = 1sec™,
A(0) =5 and B(0) = 1. As expected the number of molecules of A fluctuates around
the average value which is 5 for our parameters. The nature of these fluctuations can
be summarized in terms of the stationary distribution. To compute it, we record the
values of A(t) at equal time intervals and create a histogram of the recorded values.
Dividing the histogram by the total number of recordings, we obtain distribution ¢(n)
which is plotted in Figure 1(b) as the grey histogram. Thus, ¢(n) is the probability
that there are n molecules of A in the system, provided that the system is observed
for a sufficiently long time. Note that since the Gillespie SSA makes use of random
numbers to compute the time evolution of the system, the computed A(t) depends on
a particular realization of the algorithm. Repeating the computation (with a different

* Let us note that ko (the rate constant of the zero-order reaction) has physical dimension of units per
volume per time. Consequently, kov is expressed in units per time.
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Figure 1. Stochastic simulation of the system of chemical reactions (1) for ki/v =
0.2sec™ !, kov = 1sec™! and one molecule of B in the system. (a) A(t) given by one
realization of the Gillespie SSA (solid line) for the initial value A(0) = 5. The average
value of A is plotted as the dashed line. (b) Stationary distribution ¢(n) obtained by
long time simulation of the Gillespie SSA (grey histogram) and by formula (3) (circles).

set of random numbers), we will obtain a different time evolution than the one plotted
in Figure 1(a). However, the stationary distribution ¢(n) is uniquely determined by the
values of the rate constants kq, k9 and the number of molecules of B in the container.
It can be shown (see Appendix A) that ¢(n) is the Poisson distribution

1 [ kyr?\" ko 1/?
_ — =0,1,2.3,...
¢(n) n' (kl Bo) oXp |: kfl BQ ’ " 07 T 3’ ’ (3)

where By is the (constant) number of molecules of B in the container. The results

given by the formula (3) are plotted in Figure 1(b) as the circles. We confirm that
the stationary distribution ¢(n) is indeed given by (3). In what follows, we will use the
stationary distributions of model problems to study the limitations of different stochastic
reaction-diffusion methods. The average number of molecules of A in the container is
given by (see Appendix A)
ko 1/?
=B (4)

Using the parameter values of Figure 1, we obtain My = 5. This number is plotted in

M

Figure 1(a) as the dashed line. The variance of the Poisson distribution (3) is equal to
its mean M.

2.2. A homoreaction example

Let us consider chemical species A and B in a container of volume v which are subject
to the following two chemical reactions

A+A - B, p L2 A (5)
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The first reaction describes the dimerization of the chemical A with the rate constant k.
We couple it with the second reaction which represents the production of the chemical
A with the rate constant ko. This reaction has been already studied in the example
(1). In what follows, we will only be interested in the time evolution and stationary
distribution of A. The dynamics of the model (5) is similar to (1): some molecules
of A are produced by the second reaction and some are removed by the first reaction.
Thus, A(t) fluctuates around its equilibrium value in a similar way as the trajectory in
Figure 1(a) which has been computed for the heteroreaction example (1). If the reactor
is well-stirred, the propensity functions of chemical reactions (5) are given by

ai(t) = A AW — Dkt Jv, as(t) = kov, (6)

i.e. the probability that the i-th reaction in (5) occurs in the infinitesimally small
time interval [t,t+dt) is a;(t) dt, i = 1,2. If the first chemical reaction occurs, then two
molecules of A are removed from the system; if the second chemical reaction takes place,
then one molecule of A is added to the system. This uniquely specifies the stochastic
model as a Markov chain which can be simulated by the Gillespie SSA. The stationary
distribution of (5) is given by (see Appendix A)

o C k?27/2 " k?gl/z o
¢<”>—m( " ) In_1<2 k1 ) n=0,1,2.3,..., (7)

where [, is the modified Bessel function of the first kind (see Glossary) and C' is a

positive constant given by the normalization ) ¢(n) = 1. The average number of
molecules of A in the container is given by (see Appendix A)

-1
1 k'Ql/2 2]{72V2 2k'21/2
My = — — I 24— | || 2 . 8
17\ 2m, 1( /ﬁ ) 1( ky ®

In Appendix A, we show that the stationary number of molecules of A obtained

by the standard ordinary differential equation (ODE) model of the chemical system
(5) is A, = v+/ka/(2k1). Note that this is not in general equal to M, given by
formula (8). For example, in the following section, we use the parameter values
k1/v = 02sec! and kyv = 10sec™'. Then A, = 5 and M, = 5.13, i.e. the deterministic
ODE does not provide the exact description of the stochastic mean. On the other
hand, the difference between M, and A, is only 2.5% so that the ODE model gives
a reasonable approximation of M. However, the comparison of deterministic and
stochastic modelling is not the focus of this paper. Our main goal is to highlight some
limitations of current reaction-diffusion SSAs and present improvements of these models.
Examples of chemical systems where the differences between the results of stochastic
simulation and the corresponding deterministic approximation (ODEs) are significant
can be found in [31, 16, 7, 15].
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Figure 2. Domain [0, L] x [0, L] x [0, L] is divided into K3 compartments of the volume
h3 = (L/K)3. The division of the domain for K = 8 is shown on the picture.

3. Disadvantages of current SSAs for reaction-diffusion modelling

In Section 2, we considered the illustrative examples (1) and (5) as well-stirred chemical
systems. In particular, their mathematical models did not explicitly involve a description
of molecular diffusion. In this section, we couple chemical systems (1) and (5) with
models of molecular diffusion and show key limitations of reaction-diffusion SSAs in
the literature. In what follows, we assume that chemical species A and B diffuse with
diffusion constants D4 and Dg, respectively, in the cubic container [0, L] x [0, L] x [0, L].
We consider zero-flux (reflective) boundary conditions, i.e. whenever a molecule hits
the boundary, it is reflected back. The implementation of more complicated (reactive)
boundary conditions was studied in our previous paper [13].

3.1. Compartment-based model

In the compartment-based model, we divide the computational domain into small
compartments which are assumed to be well-mixed. We postulate that only molecules
in the same compartment can react according to bimolecular reactions. Diffusion is
modelled as jumps of molecules between neighbouring compartments [24, 27].

Let us consider the heteroreaction example (1). We divide the cubic domain
[0, L] x [0,L] x [0,L] into K? cubic compartments of volume h® where K > 1 and
h = L/K (see Figure 2). In general, the compartment-based model can be formulated for
compartments which are not cubic and which are not of the same size [27, 12]. However,
for the purposes of this paper, it is sufficient to work with cubic compartments of the
same size. They are the most natural choice, and are easy to implement computationally.
Moreover, if the modeller does not use the uniform cubic mesh, it might be sometimes
difficult to distinguish which results show a genuine property of the system and which are
a consequence of the non-uniform mesh. Note that the uniform cubic mesh introduces
an artificial anisotropy in the domain (e.g. compartments have different lengths along
the side and along the diagonal). However, we will not explore potential consequences
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of this anisotropy in this paper. We will focus on the more fundamental problem: the
appropriate choice of compartment size h.

To precisely formulate the compartment-based SSA for the illustrative chemical
system (1) in the reactor [0, L] x [0, L] x [0, L], we denote the compartments by indices
from the set

Ly ={(i,7,k)| 1,7,k are integers such that 1 <i,j, k < K}.

Let A;jx(t) (resp. Bi;r(t)) be the number of molecules of the chemical species A (resp.
B) in the (i, j, k)-th compartment at time ¢ where (i, j, k) € I,;. Diffusion is modelled
as a jump process between neighbouring compartments. Let us define the set of possible
directions of jumps

E= {[17070]7 [_17070]7 [07 170]7 [Ov _1a0]7 [0707 1]7 [0’07 _1]}'
For every (i, j, k) € Iy, we also define
Eijk = {e € E | ((Z7j7 k) + e) € [all}7

i.e E;j; is the set of possible directions of jumps from the (i, j, k)-th compartment. The
compartment-based reaction-diffusion model can be written using the chemical reactions
formalism as follows. We study a system of 2K3 “chemical species” A;jr and B,jy, for
(1,7, k) € I, which are subject to the chemical reactions:

Aijk + Bijk L Bijka 0 & ijk> for (iaja k) € L, (9)
Dy /h? L.

Aijk — Aijk+e> for (27]5 k) €y, ec Eiﬂm (10)
Dp/h? ..

Bijk = DBijk+e, for (¢,7,k) € L, e € Ejjy. (11)

The chemical reactions (9) correspond to the chemical system (1) considered in each
compartment. It is assumed that each compartment is effectively well-stirred. A
molecules of A and a molecule of B which are in the same compartment can react
according to the bimolecular reaction A + B — B. On the other hand, two molecules
in different compartments cannot react with each other. The propensity functions of
reactions (9) are

g (t) = Ayre(t) By (8) ki /B%, aiia(t) = kol (12)
where h? is the volume of the compartment. The propensity functions (12) can be
derived using the same argument as (2), replacing the volume v = L3 of the whole reactor
by the compartment volume h3. The reactions (10)—(11) correspond to diffusive jumps
between neighbouring compartments. The propensity functions of these “reactions” are
equal to A;(t) Da/h? and Byji(t) Dp/h*. There are 2K? reactions in (9), 6K® — 6K
diffusion “reactions” in (10) and 6 K3 — 6 K2 diffusion “reactions” in (11) because there
are 6 possible directions to jump from each inner compartment and some directions are
missing for boundary compartments. Thus we are able to formulate the compartment-

based reaction-diffusion model as the chemical system of 2K chemical species Ay,
and Bj;;; which are subject to 14K® — 12K? reactions (9)—(11). The time evolution
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Figure 3. (a) Heteroreaction example (1). Stationary distribution ¢ (n), defined by

(13) and computed for K = 1,2,20, and 100 by long time simulations of the Gillespie

SSA. We use ky = 0.2 ym? sec™, ko = 1 um™3 sec™!, Dy = Dp = 1 um? sec™ !,

L =1 pum and By = 1. (b) Homoreaction example (5). Stationary distribution ¢ (n)
for K =1,2,20, and 200 computed by long time simulations of the Gillespie SSA. We
use ky = 0.2 um3 sec™!, ky = 10 um =3 sec™!, Dy =1 pm? sec™! and L =1 pm.

of the chemical system (9)—(11) can be simulated by the Gillespie SSA. It can be also
equivalently described in terms of the reaction-diffusion master equation, which is given
in Appendix B as equation (B.2). The number of molecules of A in the whole container
[0, L] x [0, L] x [0, L] is given by

Ay = > Ayt
(6:5,k)Ela
Let p,(t) be the probability that A(t) = n. Let ¢x(n) be the stationary distribution
defined by (compare with (A.2))

Ox(n) = lim py(t). (13)

Thus, ¢k (n) is the probability that there are n molecules of A in the system, provided
that the system is observed for long time. In particular, ¢;(n) is equal to the stationary
distribution ¢(n) given by (3). Since production of A is homogeneous throughout the
container, we would expect the distribution of A to be uniform in space, so that we
should find that ¢k is independent of K. In Figure 3(a), we present the stationary
distributions ¢g(n) for K = 1,2,20 and 100 for the parameter values L = 1 pm,
Dy = Dg = 1 pm?sec™, k; = 0.2 pm3sec™®, ko = 1 pm3sec! and By = 1.
In particular, we have the same rates for K = 1 as were used in Figure 1, namely
ky/L? = 0.2 sec™! and koL® = 1 sec™!. Thus the stationary distribution ¢;(n), plotted
in Figure 3(a), is equal to the distribution ¢(n) plotted in Figure 1(b).

Increasing K (i.e. decreasing h), the stationary distribution ¢x(n) moves to the
right. The shift to the right is in agreement with the result of Isaacson [26] who showed
that, in the theoretical limit A — 0, the bimolecular reaction A + B — () is lost and
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the compartment-based modelling of this reaction only recovers the diffusion process.
In our case, we coupled the bimolecular reaction with the production of A molecules.
The production rate per the whole domain is equal to

Yo apat) = Y kbt =Kkh = kL,
(i.,k)€lan (4,4,k)Elan

i.e. it is independent of h. Thus, for small A, the slower removal of A by the bimolecular
reaction and unchanged production rate of A result in the shift of the stationary
distribution ¢k (n) to the right in Figure 3(a), as K is increased (i.e. as h = L/K
is decreased). In Figure 3(b), we present the results of a similar computation for the
homoreaction example (5). In this case, the homodimerization A + A — B is replaced
by K3 reactions A, + Aijr. — Biji for (4,7, k) € I, The propensity functions of these
reactions are given by

ijiea (t) = Aue(t)(Aije(t) — 1) k1 /1. (14)

The production reaction and diffusion are treated as in (9)—(10). In Figure 3(b), we
present the stationary distributions ¢x(n) for four values of K. Notice that ¢;(n) is
equal to the stationary distribution ¢(n) given by (7). We observe the same phenomenon
(shift of the histogram to the right) as in the case of the heteroreaction example.

Although it is generally agreed in the literature that there is a bound on h from
below [27, 26], this bound is usually stated in the form h > ky/(D4 + Dg) or h > o
where ¢ is the binding radius for the molecular based Smoluchowski model — see equation
(21) and the discussion in Section 3.2. To satisfy these conditions in our particular
example, we could simply choose h = L. However, the real importance of stochastic
reaction-diffusion modelling is not in modelling of spatially homogeneous systems. If
the system has some spatial variations (i.e. some parts of the computational domain are
more preferred by molecules than the others), then we obviously want to choose h small
enough to capture the desired spatial resolution. This leads to the restriction on A from
above, namely L > h. Thus it is suggested to choose h small (to satisfy L > h) but
not too small (to satisfy h > ki /(Da+ Dg)) [27] which leads to the important question
what the optimal choice of h should be to get the most accurate results. In this paper,
we propose a different route to this problem. In Section 4.1, we show that there exists
a critical value h..;; such that the propensity function of the compartment-based model
can be adjusted for h > h..;; to recover correctly the stationary distribution ¢(n). Thus
we effectively replace the condition h > ki /(D4 + Dg), which requires that A is much
larger than k1 /(D4 + Dg) by a sharp inequality A > he.i, where he.; is approximately
a quarter of ki/(Da + Dp). We will show that the compartment-based model can
be appropriately modified to correctly simulate chemical systems for any h > hepi.
In particular, we also get a measure of correctness of the original compartment-based
model.
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3.2. Molecular-based models

In this section, we study molecular-based models of reaction-diffusion processes, i.e.
we simulate trajectories of individual molecules. The position [X(¢),Y(t), Z(t)] of a
diffusing molecule (Brownian motion) can be described by a system of three (uncoupled)
stochastic differential equations (SDEs) [6]

X(t+dt) = X(t) + V2D dW,, (15)
Y(t+dt) = Y(t) + V2D AW, (16)
Z(t+dt) = Z(t) + V2D dW,, (17)

where dW,, dW,, dW, are (uncorrelated) white noises (i.e. differentials of the Wiener
process) and D is the diffusion constant. To simulate trajectories of the system of SDEs
(15)—(17), we choose a small time step At and use the Euler-Maruyama method [25] to
solve SDEs (15)—(17); that is, we compute the position [X (¢t + At), Y (t+ At), Z(t+ At)]
at time ¢t + At from its position [X (), Y (t), Z(t)] at time ¢ by

X(t+ At) = X(t) + V2DAt &, (18)
Y(t+ At) =Y (t)+ V2DAt &, (19)
Z(t+ At) = Z(t) + V2DAL &, (20)

where D is the diffusion constant and &, §,, . are random numbers which are sampled
from the normal distribution with zero mean and unit variance. To model a bimolecular
reaction, it is often postulated that two molecules (which are subject to the bimolecular
reaction) always react whenever their distance is less than a given reaction radius o
(33, 3]. If trajectories of molecules exactly follow the system of SDEs (15)—(17), one
can find explicit formulae linking the reaction rate constant, the diffusion constant(s) of
reactants and the reaction radius [33, 5, 4]. The reaction radius of heteroreaction (1) is
— kl

~ 4n(Ds+ Dp)
and the reaction radius of homoreaction (5) is ky /(47D 4). Thus, the illustrative example

0 (21)

(1) can be simulated as follows. We choose a small time step At. We update the
position of every molecule by (18)—(20) where D = D4 for molecules of A and D = Dpg
for molecules of B. Reflecting boundary conditions are implemented on the boundary
of the cubic computational domain [0, L] x [0, L] x [0, L]. For example, if X (¢ + At)
computed by (18) is less than 0, then X (¢t + At) = —X(¢) — V2D At &,. If X(t + At)
computed by (18) is greater than L, then X (t+At) = 2L — X (t) — V2D At ,. Similarly
for y and z-coordinates. Whenever the distance of a molecule of A from a molecule of
B is less than the reaction radius ¢ given by (21), we remove the molecule of A from
the system. We also generate a random number 7 uniformly distributed in (0, 1) during
every time step. If r < ko L*At, then we generate another three random numbers 7, r,
and r, uniformly distributed in (0, 1) and introduce a new molecule of A at the position
(ryL,ryL,7,L).

Having explained the most straightforward implementation of a molecular-based
model, we now highlight some of its problems. First of all, the diffusing molecule was
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described by the vector [X(t),Y(t), Z(t)] of its position. This means that we effectively
modelled the diffusing molecule as a point-like particle, ignoring its three-dimensional
structure. To get some insights into the validity of this assumption, let us consider that
the diffusing molecule is a protein. Then the typical values of its molecular radius are
between 1 and 5 nanometres [1]. It is illustrative to compare the molecular radius with
the reaction radius ¢ given by (21). Using the typical parameter values for interactions
between proteins [30] (i.e. k; = 105M 'sec™ and Dy, = D = 107% cm? sec™!),
we obtain ¢ = 0.02 nm. Thus the reaction radius ¢ given by (21) is unrealistically
smaller than the molecular radius. Obviously, if we interpret the position vector
[X(t),Y(t),Z(t)] as the center of the hard sphere of the molecular radius g,,, then
two spheres will never get closer than p,,. Consequently, the relation o < p,, makes
the molecular-based model unrealistic at the level of individual molecules. It is worth
noting that this undesirable property of the model does not depend on the value of the
diffusion constant D. This can be seen as follows. Approximating the diffusing molecule
as a sphere, we can estimate its radius by the Stokes-Einstein relation [10, 4]
- k}BT

= W’

where kg = 1.38 x 107 gmm? sec™? K~! is the Boltzmann constant, 7" is the absolute

Om (22)

temporature, 7 is the coefficient of viscosity and D is the diffusion constant. Let us
investigate the conditions under which the reaction radius g is smaller than the molecular
radius ¢,,. Using (22), (21) and D = D4 = Dgp, the inequality ¢ < g,, is equivalent to
4kgT
kl < B .
3N

Considering a solution in water or in the fluid-phase of cytoplasm (n =

1073 g mm~' sec™! [20]) at room temperature (T =~ 300K), we see that the inequality
0 < 0 is satisfied for values of k; up to the order 108 M~ sec!. Typical values of k;
for interactions between proteins are of the order 10° M~'sec™! [30]. Thus, unless the
reaction rate constant ky is very large, the model requires the reaction radius o to be
chosen unrealistically small.

Perhaps more importantly, a small reaction radius also provides restrictions on
the simulation time step At. We have to make sure that the average change in the
distance between molecules during one time step is much less than the reaction radius
o. Following [3], we formulate this condition as s < g, where s is the root mean square
step length (in each coordinate) given by

s =1+/2(Da + Dg)At. (23)

Using Dy = Dp = 10 pm? sec™! and k; = 10° M™tsec™!, we obtain that At has to
be significantly less than a nanosecond. This limitation is even more severe for faster

diffusing molecules.™ The bimolecular reaction can, in principle, be simulated with
a very large time step At but the formula for ¢ has to be modified accordingly. If

* As the illustrative model is formulated, we also have to make sure that the production probability per
one time step, ko L3At, is significantly less than 1. This is indeed the case for all simulations presented.
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s > o, then the probability that a given pair of molecules interacts during the time step
(t,t + At) is proportional to the volume fraction 4w g2, /(3L%) where g, is the modified
reaction radius. Comparing with k; At/L3, we obtain [3]

3k A\ ?
o= (M2 (21)

This formula gives a larger (At-dependent) reaction radius, but it does not have the

potential to provide a spatial resolution close to the size of individual molecules.
Andrews and Bray [3] designed a computational algorithm for intermediate values of At
that satisfies s &~ p. In this case, it is not possible to derive an explicit formula relating
o and ky (as was done in (21) for s < ¢ and in (24) for s > p). Instead Andrews and
Bray [3] provide a look-up table relating (scaled) reaction rate constant k; and reaction
radius p. However, the reaction radius is still often smaller than molecular radius o,,
in their algorithm. In Section 4.2, we will modify molecular-based algorithms so that
the reaction radius can be chosen as large as the molecular radius. Let us note that the
algorithms above consider all “collisions” of reactants as reactive while in reality many
non-reactive collisions happen before the reaction takes place. The modified algorithms
in Section 4.2 take this point into account.

4. Improved SSAs for reaction-diffusion modelling

In this section, we present modified SSAs which are able to overcome the problems
mentioned in Section 3. To make this section accessible to non-mathematicians, we
focus only on the results. The mathematical derivation of the formulae presented and
the justification of the modified algorithms are given in Appendices.

4.1. Improved compartment-based model

Let us consider the heteroreaction example (1) modelled by the compartment-based
reaction-diffusion model (9)—(11). We will show that a suitable modification of
propensity functions «;j;1(t), which were defined by (12), leads to an algorithm that
gives the correct ¢(n) for any h larger than or equal to the critical value hg..
Moreover, this is not possible for values of h smaller than h..;. The critical value of
the compartment size h can be estimated as

ki
hcrit - ﬁoo m (25)
where k; is the rate constant of the bimolecular reaction, D4 (resp. Dp) is the diffusion
constant of A (resp. B) and [y =~ 0.25272. If h..; computed by (25) is significantly
smaller than the domain size L, then the critical value of h is indeed given by (25). If

the domain size L is comparable to (25), then (25) provides only a good approximation

However, it is worth noting that the production (which is the zero-order reaction) does not limit the
time step. If ko L3At is large, one can add more molecules per time step using a Poisson-distributed
random number [3].
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g K g K G K 6
0.30208 9 10.31406 25 | 0.28514 150 | 0.26103
0.33233 10 | 0.31067 30 | 0.28123 200 | 0.25930
0.33461 12 | 0.30493 40 | 0.27587 300 | 0.25743
0.33119 14 | 0.30027 50 | 0.27232 400 | 0.25643
0.32660 16 | 0.29643 60 | 0.26979 600 | 0.25536
0.32205 18 | 0.29322 80 | 0.26640 800 | 0.25479
0.31784 20 | 0.29048 100 | 0.26420 1000 | 0.25443

OO\]@O‘(»&OON)W

Table 1. The values of B for the selected values of K computed by (27) for the
heteroreaction example (1) for By = 1.

of heit, with the real value being slightly higher as discussed below. If h > he.i, we
propose to modify the first formula in (12) by

(Da+ Dp)ky
(Da + Dp)h3 — Bki1h?

where the parameter 3 has no physical dimension and needs to be specified. If a

(26)

ik (t) = Ak (t) Bij (1)

modeller does not have any information about the system, we propose to choose
0 = P =~ 0.25272. We will show later that (. is indeed the correct choice of 3 if
K = L/h is large. Formula (26) can be applied to any heteroreaction A+ B — () where
() stands for an arbitrary right hand side, provided that the propensity function (26) is
positive. Consequently, the critical value h..;; is the one which makes the denominator
of (26) equal to zero. In such a case, the propensity function is infinity and the reaction
happens immediately after the reacting molecules enter the same compartment. Thus,
herie satisfies (Da + Dp)h3 ,, — Bh2 .., k1 = 0. If we substitute 3, for 3, we obtain the
approximation (25).

Let us consider the illustrative heteroreaction example plotted in Figure 3(a). The
values of the constant 3 for this model are given for different values of K in Table 1, and
lie between (3, ~ 0.25272 and 0.34. Increasing K to infinity, the values of 3 converge to
Bs- In Figure 4(a), we compare the results computed using the original formula (12) and
by the new formula (26) for the heteroreaction example (1). We use the same parameter
values as in Figure 3(a) and K = 16. As in Figure 3(a), we observe a difference between
¢1(n) and ¢16(n) if the original model is used. On the other hand, ¢14(n) computed by
the modified algorithm (solid line) is the same as ¢1(n) (grey histogram).

In Table 1, we observe that 3 weakly depends on K = L/h, so that the real value
of hee (that makes the propensity function (26) equal to infinity) is slightly larger
than (25). The dependence of 5 on K is caused by the boundary of the computational
domain [0, L] x [0, L] x [0, L]. Every inner compartment can be entered from six possible
directions, but some incoming directions are missing in the boundary compartments.
Whenever a molecule of B is in a boundary compartment, it is less likely found
by molecules of A. One could address this problem either by introducing different
propensity functions for different compartments, or by using 3 in (26) which is slightly
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larger than (... We used the latter option. In Appendix C, we show that the modified
[ is given by

1 1
52% , Z 3 —cos (in/K) — cos (jm/K) — cos (kr/K) (27)

The results in Table 1 have been computed by (27). In Appendix D, we show that [,
is given by

1 [ 1
> = —— dz dy. 28
g 2772/0 /o V(3 —cosz —cosy)? —1 Y (28)

Evaluating this integral numerically by the Monte Carlo method, we obtain [, =~
0.25272. If we model a complicated reaction-diffusion system, modelling of each
heteroreaction will be improved by using (26), provided that all rates obtained by (26)
are positive. In other words, the smallest possible h which can be simulated is given
as the maximal h..;; for each bimolecular reaction. If h is significantly larger then h..;
(i.e. if h > hept), then we have (Da + Dp)h® > Bkih? and we can approximate

(Da+Dp)ki ki
(Da + Dp)h® — Bkih? ~ b3

In particular, the propensity function j;1(t) defined by (26) is approximately equal

(29)

to the original propensity function (12) for large values of h. On the other hand, if h
is close to hei, then the propensity function aj;i1(t) given by (26) is larger than the
original propensity function (12).

Finally, let us consider the homoreaction example (5) modelled by the compartment-
based model. In this case, we propose to modify the propensity functions (14) for
h > hepie, by vijiq(t)

D 4kq
Dh3 — Bkih?’

where (3 is a constant. In Figure 4(b), we compare the results computed using the

gkl (t) = Az]k<t) (Al]k(t) - 1)

(30)

original formula (14) and by the new formula (30) for the value of 3 given by Table 1.
We use the same parameter values as in Figure 3(b) and K = 16. We again observe
that the modified formula (30) gives better results than the original SSA. One can
still observe a small error which is caused by the fact that we used the value of 3
computed for heteroreactions. Using (27), we have § ~ 0.29643 for K = 16 (see Table
1). Experimenting with the model (5), we can find that § = 0.28 yields slightly better
fit between ¢;(n) and ¢16(n). Notice that 5 = 0.28 is still larger than (., ~ 0.25272.
However, for the purposes of applications, it is sufficient to use either § = (., or the
values of 3 from Table 1 for both heteroreactions and homoreactions. Using 3 = (3, we
discovered that the biggest contribution of the error stems from the boundary effects and
derived Table 1 which adds a correction to (3., to compensate for boundary behaviour. In
a similar way, one could look for further corrections to the value of 3 for homoreactions,
or for domains which are cuboids rather than cubes. Although such corrections are of
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Figure 4. (a) Heteroreaction example (1). Stationary distribution ¢16(n) defined by
(13) computed by the original SSA (dashed line) and by the modified SSA that uses
(26) instead of (12) (solid line). Correct stationary distribution ¢(n) = ¢1(n) is plotted
as the grey histogram. (b) Homoreaction example (5). Stationary distribution ¢16(n)
computed by the original SSA (dashed line) and by the modified SSA that uses (30)
instead of (14) (solid line). Correct stationary distribution ¢(n) = ¢1(n) is plotted as
the grey histogram.

interest from the mathematical point of view, they provide only a negligible improvement
of the algorithm. Thus we will not include them in this paper.

4.2. Improved molecular-based models

The major assumption of molecular-based models is that molecules always react
whenever their distance is less than the reaction radius p. The reaction radius p is related
to the rate constant of the bimolecular reaction by a simple formula (for example, (21)
for the Smoluchowski model) or by a look up table for the Andrews and Bray model [3].
In this section, we present models that implement bimolecular reactions with the help
of two parameters: the reaction radius ¢ and the reaction rate A. We postulate that the
bimolecular reaction can take place only when the distance of molecules is less than .
If this is the case, then the bimolecular reaction events happen with the rate A\. We will
call this model A — 9 model in what follows.

To implement this idea on the computer, we need to relate the parameters \ and
0 to the rate constant of the bimolecular reaction. The advantage of the A — 7 model is
that many different pairs of A and 9 correspond to the same bimolecular rate constant.
In mathematical terms, the condition on A and p is one equation for two unknowns A
and g. In particular, we can choose the value of g as desired (e.g. to be comparable to
the molecular radius g,,) and compute the appropriate value of A\. Thus A —g model has
the potential to solve the problems of molecular-based modelling discussed in Section
3.2.

We explain the A — ¢ model on the heteroreaction example (1). The diffusion of
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molecules A and B is simulated as in Section 3.2. We choose a small time step At. The
trajectory of every molecule is computed by (18)—(20) where D = D, for molecules of
A and D = Dp for molecules of B. Let s be given by (23). We will distinguish two
cases of the value of the time step: (i) the time step At is chosen so small that s < g;
and (ii) the time step At is larger so that s ~ p.

(i) Small time step At. To model heteroreaction A + B — ---, we introduce two
parameters: reaction radius ¢ and rate A. The reaction radius is expressed in units of
length and rate A in units per time. Whenever the distance of a molecule of A from
a molecule of B is less than the reaction radius o, then the heteroreaction takes place
with the rate \. In Appendix E, we derive the following relation between g, A and the
rate constant k; of the heteroreaction:

kim0 (2P P (3 ) )

This is one condition for two unknowns p and A. In particular, we can choose 0o
comparable to the radii of reacting molecules and use (31) to compute the corresponding
A. Notice that (31) is a simple non-linear equation which can be solved by any numerical
method for finding roots of a real-valued function (for example, Newton’s method or
the bisection method).

If A = oo (that is, if molecules react immediately whenever they are within the
reaction radius), then (31) simplifies to (21) as desired. On the other hand, if A is small
that A < (D4 + Dp) /0%, then we can use Taylor expansion in (31) to approximate

tanh (31/3/(Da + Dp)) ~ 2 /\/(DA+DB)—é<@ A/(DA+DB)>3.

Consequently, (31) simplifies to k; ~ 4mp)\/3 which can be equivalently rewritten as
" 4Ang® /3’

i.e. the reaction rate \ is given as the reaction rate constant k; divided by the volume,

(32)

479%/3, of the ball in which the reaction takes place. Formula (32) is analogous to the
formula for the reaction rate per compartment in the compartment-based approach for
large compartment size h. If h is large satisfying A > h..;;, then the reaction rate per
compartment is given as k;/h®, which is the reaction rate constant k; divided by the
volume, h3, of the compartment — see (29).

(ii) SSA for larger time steps. We introduce two parameters: reaction radius g and
probability Py. The heteroreaction A + B — --- is modelled as follows: whenever the
distance between a molecule of A and a molecule of B (at the end of a time step) is less
than the reaction radius p, then the heteroreaction takes place with probability P,; that
is, we generate a random number r uniformly distributed in (0, 1) and the heteroreaction
(removal/addition of molecules) is performed whenever r < Py. Notice that the previous
algorithm (for small time step At) can be also formulated in terms of parameters g and
P, rather than ¢ and \. Indeed, if A At < 1, we have Py, ~ X\ At. If At is larger, then
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Figure 5. (a) Dependence of Py on & for three different values of . Dimensionless
parameters k and v are given by (33). (b) Dependence of k on ~ for three different
values of Py.

the relation between P, and A is more complicated. However, from the practical point
of view, there is no need to know the rate A: it is sufficient to formulate the algorithms
in terms of ¢ and P,. Next, we present the condition relating o and P, with the rate

constant k; of heteroreaction A + B — ---. We define dimensionless parameters v and
K by
S 2(DA+DB)At k’l At
y=2= Y204t Da) o= B2t (33

In applications, we first specify the time step At. We also want to specify ¢ in a realistic
parameter range. Consequently, v and x can be considered as given numbers in what
follows. For example, we can choose the root mean square step length s equal to the
reaction radius p. Then (33) gives v = 1. The key modelling question is: what is the
appropriate value of the probability P\? In Figure 5(a), we present the dependence of
Py on k for three different values of . The derivation of the equation for P, and the
numerical method which was used to compute this plot are given in Appendix F. Below,
we summarize only the equations that were solved and present illustrative computational
results.

To formulate the equation for Py, it is useful to define an (auxiliary) function
g(r) : [0,00) — [0, 1] as the solution of the integral equation

g(r)=(1 _P)\)/O K(r,1":7) g(r') d?“/+/100 K(r,ry)g(r')dr', (34)

satisfying g(r) — 1 as r — oo, where

i) = (o 52 e [FE2]).
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The function g(r) depends on dimensionless parameters Py and ; we make this explicit
by writing
g(r; Py, ) = g(r).

Then, the model parameters 9, P\, At are related to rate constant k; and diffusion
constants D4, Dpg by

1
K= P,\/ 47rr29(7“;P,\,’y) dr. (36)
0

Since ki, D4 and Dp are known and parameters At and g can be specified first,
parameters v and k are in applications given numbers. Thus (36) is one equation
for one unknown P,. In Appendix F, we present a numerical approach for solving this
equation, as well as the derivation of (34)—(36).

In Figure 5(b), we present the dependence of x on v for three different values of
P,. Note that the case Py = 1 corresponds to the Andrews and Bray model [3]. Thus
the solid line in Figure 5(b) has been already computed in reference [3]. However, we
propose to use a much smaller value of P\, which enables us to choose a larger (more
physically meaningful) reaction radius. We see in Figure 5 that reducing Py at v fixed
corresponds to reducing k, thereby increasing the reaction radius.

The heteroreaction example (1) is simulated by the A — @ model as follows. We
update the position of every molecule by (18)—(20) where D = D4 for molecules of A
and D = Dpg for molecules of B. Reflecting boundary conditions are implemented on
the boundary of the cubic computational domain [0, L] x [0, L] x [0, L] as in Section
3.2. The production of molecules of A (i.e. the second reaction in (1)) is simulated as
before. We generate a random number r uniformly distributed on [0, 1] during every
time step. If r < kyL3At (< 1), then we generate another three random numbers
Tz, Ty and r, uniformly distributed on [0, 1] and introduce a new molecule of A at the
position (r,L,r,L,r.L). If the separation between a molecule of A and a molecule of
B (at the end of a time step) is less than the reaction radius g, then we generate a
random number r uniformly distributed on [0, 1] and we remove the molecule of A from
the system if » < Py. In Figure 6(a), we present the stationary distribution computed
by this algorithm (grey histogram). The value of Py, i.e Py = 0.77 %, was computed
by solving (34)—(36) using the numerical method given in Appendix F. The values of
parameters are given in the caption of Figure 6(a). Notice that the reaction radius is 40
nm and the time step At was chosen so that v = 0.5. The comparison of computational
results with formula (3) (solid line) is excellent.

Next, we consider the homoreaction example (5). Since two molecules of A are
removed from the system whenever the homoreaction takes place, we have to replace
ki by 2k; in the above formulae. In particular, we replace x by 2k in (36). Moreover,
D4 + Dg has to be replaced by 2D4 in all formulae. Otherwise, method (34)—(36) for
computing P, stays the same. In Figure 6(b), we present the stationary distribution
computed by the A\-g model (grey histogram). The comparison with exact formula (7)
(solid line) is again excellent.
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Figure 6. (a) Heteroreaction example (1). Stationary distribution computed by the A-g
model (grey histogram) and by formula (3) (solid line). We use ky = 0.2 um3 sec™!,
ko =0.02 um™3 sec™!, Dy = Dp =10 um? sec™', L =2 pm, By = 1, At = 107° sec,
0 =40 nm and Py = 7.7x1073. (b) Homoreaction example (5). Stationary distribution
computed by the \-g model (grey histogram) and by formula (7) (solid line). We use
ki = 0.1 um® sec™!, ko = 0.08 pm™2 sec™!, Dy = 10 um? sec™', L = 2 um,
0 =40 nm and Py = 7.7 x 1073,

In this section, we focussed on the A-p model, which has been formulated in
terms of two parameters — the reaction radius 9 and the reaction probability Py.
We showed that one parameter (Py) can be used to fit the macroscopic reaction rate
constant, while the other parameter (@) can be used to get a more realistic fit with the
microscopic molecular-level behaviour. Such a description is necesssary, for example,
when one needs to take into account the excluded volume effects or steric shielding [14].
Cellular cytoplasm and cell membranes are crowded with proteins and lipids, and the
molecular crowding is difficult to model if macromolecules are approximated as points
[8]. Although we did not include the excluded volume interactions in this paper, the two-
parameter A\-o model is more suitable to address these problems than the one-parameter
models studied in Section 3.2, simply because we can separate the length of interaction
(0) from its probability (Py). Obviously, there is a possibility to design molecular-
based models with more than two parameters. For example, one could simulate the
bimolecular reaction A+ B — C by specifying the probability P(r, At) that a molecule
of A and a molecule of B, which are the distance r apart, react in the next time step. In
this case, P(r, At) is a function which can have as many degrees of freedom as we want
and could further depend on the rotation of molecules. The A-p model is a special case
of this framework provided that we choose P(r, At) = Py for r < p and otherwise zero.
Considering P(r, At) with more degrees of freedom, there is the potential to include more
molecular-level biophysics which can be precomputed by detailed Brownian dynamics
simulations [30]. However, this would go beyond the scope of this manuscript. Another
advantage of the A-p model is that it can be used to understand connections between
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the molecular-based and the compartment-based approaches. In both the A\-p and the
compartment-based models, a molecule of A reacts with the given rate whenever it is
in the neighborhood of a molecule of B. Here, the neighborhood is either a ball or a
cube, depending on the model. The A-p model can be thought as a generalization of the
particle-based models from Section 3.2 which makes them directly comparable to the
compartment-based models from Section 3.1 - see also discussion in Section 5 for more
details. This sheds more light on the problem of equivalence of on-lattice and off-lattice
stochastic modelling of reaction-diffusion processes [26].

5. Discussion

In this paper, we used the illustrative examples (1) and (5) to compare the results of
different stochastic reaction-diffusion methods. The advantage of illustrative chemical
models (1) and (5) is that they have non-trivial stationary distributions given by (3)
and (7), respectively. In principle, one could study A+ B — B (or A+ A — B) on its
own to make the illustrative examples even simpler. However, the number of molecules
of A would then decrease to zero as time progresses and the stationary distribution
would be trivial (i.e. there would be 0 molecules with probability 1 in the system
after long time). The trivial stationary distribution is obtained for A + B — B (or
A+ A — B) by any reaction-diffusion SSA, so we would not learn anything useful
from the stationary behaviour. We would observe differences in modelling the transient
behaviour of bimolecular reactions. However, the transient behaviour depends on
the initial condition. For these reasons, we coupled bimolecular reactions with the
production of the chemical species A to obtain the model chemical systems (1) and (5)
which have the non-trivial stationary distributions. It is worth noting that the model
systems in this paper do not have any spatial variation of the probability distribution.
No part of the computational domain is preferred by molecules of A or B and the
resulting probability distribution is homogeneous in space. It is easy to generalize (1)
and (5) to the spatially non-homogeneous case (for example, by considering production
reaction ) — A only in part of the computational domain [16]). Such a generalization
is necessary for studying some other aspects of reaction-diffusion SSAs which we will
address in a future publication. However, our examples (1) and (5) were complex enough
to illustrate all results of this paper.

We studied both on-lattice and off-lattice SSAs for reaction-diffusion processes. In
particular, we were able to see connections between both types of models. For on-lattice
models we found that there was a limitation on the compartment size h from below,
ie. h > hey. In Section 4.1, we showed that the rate of bimolecular reaction per
compartment must be chosen to be infinity for A = h... In a similar way for the
off-lattice model, a decrease of p in the A\-p model, presented in Section 3.2, must be
compensated by an increase in the rate A (probability Py). Again, there is a limitation
on p from below, i.e. ¢ must be larger than or equal to the g of the Smoluchowski model
which is given by (21). If 7 is sufficiently larger than this limiting value, then A is given
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by (32), that is, the reaction rate constant k; divided by the volume, 475°/3, of the ball
in which the reaction takes place. This is analogous to the situation h > h.; where
the reaction rate per compartment is given by k;/h® (reaction rate constant k; divided
by the volume, h3, of the compartment). Thus both models give, in the limit of large o
and large h, the same expression for local reaction rates: the rate constant divided by
the volume in which the reaction takes place.

The examples studied in this paper contained only irreversible bimolecular
reactions. However, it is worth noting that the idea of the A\-g model can also resolve
the problem of the “geminate recombination” associated with some molecular-based
approaches to modelling reversible reactions [3, 2]. This problem can be described as
follows. Consider the reversible bimolecular reaction A + B ZZ C. It consists of two
reactions: the bimolecular reaction A + B — C' and the reverse reaction C' — A 4+ B
which is of first-order. When the complex C' dissociates according to the reverse reaction
C — A+ B, one has to specify the initial positions of new molecules of A and B which
are created. The most natural choice is to put new molecules of A and B at the
position of the complex C before the reaction occurred. However, the new molecules
might immediately react again according to the forward reaction. Andrews and Bray
[3] solve this problem by introducing the so called unbinding radius (i.e. a finite initial
separation of the molecules A and B). This artificial concept is not needed in the A\-p
model provided that Py is small (i.e. Py < 1) which is often the case. If the new
molecules are placed close to each other (at the position of C), they have only a small
probability of reacting and can diffuse away of each other. We have to be more careful
for larger values of the probability Py because the algorithm is, in the limit Py, — 1,
equivalent to the Andrews and Bray algorithm [3]. If P, is close to one, then their
concept of the unbinding radius offers a possible solution to the problem of “geminate
recombination”. We are currently investigating the behaviour of stochastic reaction-
diffusion algorithms for systems with reversible reactions and will report our findings in
a future publication.

The results of this paper have been summarized in Section 4. They were explained
on illustrative computational examples, but the general formulae can be applied to
modelling bimolecular reactions which are part of complex reaction-diffusion processes.
We presented our results as improvements of two commonly used reaction-diffusion
SSAs which have been previously implemented in reaction-diffusion software packages
MesoRD [24] and Smoldyn [3]. Other molecular-based models, such as MCell [34],
Green’s-function reaction dynamics [39, 36] and velocity jump processes [13, 17], were
not directly studied in this paper but some of the ideas presented in Section 4.2 can
be applied to improve them too. From the application point of view, we focussed
on modelling bimolecular reactions of biomolecules, e.g. proteins, but the concepts
presented can be also applied to stochastic reaction-diffusion modelling in population
ecology [28] or to modelling cellular dispersal [18, 19]. In these cases, the diffusing
objects are not macromolecules but cells or animals, and the bimolecular “reaction” is
not a chemical reaction but local interaction between two cells or animals, for example,
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competition or predation [28].

Glossary

Gillespie SSA. Stochastic simulation algorithm for simulating the time-evolution of well-
stirred chemical systems. The results are consistent with the solution of the chemical
master equation [21, 22].

Markov Chain. Stochastic process for which the future states of the system only depend
on the present state and are independent of the past states.

Modified Bessel function of the first kind. The evaluation of modified Bessel functions
is part of any standard mathematical software (e.g. the function besseli in Matlab).
In general, the modified Bessel function I, (for n € N) is a solution of the ordinary
differential equation

2I(2) + 21 (2) — (2> +n?) I,(2) = 0.
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Appendix A. Stationary distributions, means and variances for the
illustrative heteroreaction and homoreaction examples

Let us consider chemical system (1) to be well-stirred. Let p,(t) be the probability that
there are n molecules of A at time ¢ in the reactor, i.e. A(t) = n. Then p,(t) evolves
according to the chemical master equation [16, 23]

dp, kB n:
% = 1V 0 (n + 1)pn+1 - %npn + kQVpn—l - ]{}QVpn (Al)

where the third term on the right hand side is missing in (A.1) for n = 0; i.e. we use

the convention that p_; = 0. The stationary distribution ¢(n) is defined by

$(n) = lim p (¢). (A2)
Consequently, (A.1) implies that ¢(n) satisfies the equation
leQ leO

(n+1)p(n+1)—

no(n) + kv dp(n — 1) — kev ¢(n) =0

v
where ¢(—1) = 0, which can be equivalently written as

kQVQ
= O

kor? 1 kav?
#ln) = <k12g(m 1= ﬁ) ¢(n—1) - k‘fgon ¢(n—2), forn>2. (A.3)

¢(1)




Stochastic reaction-diffusion processes 24

Thus ¢(n) is uniquely determined by the value of ¢(0). We can easily verify that (3)
satisfies (A.3). Moreover, it is the only solution of (A.3) that satisfies the normalization
condition )~ ¢(n) = 1. The stationary value of the stochastic mean M, (i.e. the
value around which the number of molecules fluctuates) and the stationary value of the
variance V (i.e. the size of the stochastic fluctuations) are given by

M, =Y n¢(n), Vo= (n— M) ¢(n). (A.4)
n=0 n=0
Using (3), we obtain (4) and V, = M;.
Let us consider the homoreaction example (5). Then the chemical master equation
reads as follows

B 90+ 1) s — o — 1) g+ s — b

Starting with the stationary version of this equation, one can use the method of moment
generating function [38] to show that the stationary distribution ¢(n) is given by (7)
[11, 37]. The stationary values of stochastic mean My and variance Vi, which are defined
by (A.4), can be also evaluated in terms of the Bessel functions; Mj is given by (8) and
Ve = My — M? + kov®/(2k;). The classical deterministic description of the chemical
system (5) is given, for concentration a(t) = A(t)/v, as the ODE da/dt = —2kya? + ks.
Multiplying by v, we obtain the ODE

dZ Zkl —2
=2 A.
dt v T kav (A.5)

where A(t) = a(t)v is the deterministic approximation of the average number of
molecules in the volume v with concentration a(t). Notice that equation (A.5) does
not give us the time evolution of the stochastic mean. To see that, let us consider
the stationary value of A(t). It is given as the solution of the stationary equation
corresponding to (A.5), namely 0 = —2]{:1/1/252 + kov. Hence, A, = v+/ky/(2k1) which
is not equal to My given by formula (8). See also the discussion at the end of Section
2.2.

Appendix B. Reaction-diffusion master equation

Let N={0,1,2,3,...} be the set of non-negative integers. Let n € N/ and m € Nlau,
We denote their coordinates by three indices, namely
n= {nijk | (7:7.].7 k) € Iall} and m = {mijk | (i7j7 k) € Iall}' (Bl)

Let p(n,m,t) be the joint probability that A;;x(t) = nix and Bir(t) = my;, for all
(1,7,k) € L. The reaction-diffusion master equation describes the time evolution of
p(n,m,t). To formulate it, we define the operators J, : Nlat — Nlau for (4,4, k) € Iy
and e € E;;;, by

iejk(n) - {Qva | (u,v,w) € ]all}



Stochastic reaction-diffusion processes 25

where

nU'U'LU + 17 for (’U/, v? w) = (i7j7 k);
Guow = Noyyw — 17 for (u, v, U)) = <i7j7 k) + €;
Nuvw, otherwise.

We also define

_ _ 17 for ('LL,’U,UJ) = (iaja k)v
5z]k — {5uvw | <u7 v, U)) S ]all} where 5uvw - { O, otherwise.

Then the reaction-diffusion master equation, i.e. the chemical master equation which

corresponds to the system of “chemical reactions” (9)—(11), can be written as follows
22, 23]

Op(n, m k1
p( ) Z

ot k3
(6,3,k)Ela
+ kol >0 {p(n = 8, m) — pln,m) | (B.2)
(4,4,k)€lau
Dy .
T e Z Z { nijk + 1) p(Ji5(n), m) — ngj p(n, m)}

(Z 7y k)e[a” eEEz]k

+ % Z Z {mz]k+1 p(n, Zk(m))—mijkp(n,m)}-

l j k)e[a” eEEzjk

{(nijk + 1)myj p(n + 645, m) — ngjpmy, p(n, m)}

The first two terms on the right hand side correspond to chemical reactions (9), the
third term to diffusion jumps (10) and the last term to diffusion jumps (11).

Appendix C. Derivation of formulae (26) and (27)

We will first study the case D = 0 and By = 1. This means that there is only one
molecule of B in the system and it does not diffuse. In particular, reactions (11) are not
included in the model. Let the molecule of B be in the compartment b = (b1, ba,b3) € L.
Let n € Nt with the coordinates defined by (B.1). Let p(n,t) be the joint probability
that A;;(t) = ny, for all (4, j, k) € L. Since the position of the molecule of B does not
evolve, the reaction-diffusion master equation (B.2) simplifies to the following equation
for p(n,t)

8%(75) z:la{( s+ (n+55)—n5p(n)}+k2h3 > {p(n_‘sijk)_p(n)}

(i7j7k)elall

+% Z Z {nmkz+1 p(Jik(n ))_nijk:p(n)}- (C.1)

(i,5,k)E€lau e€Eqj ik

We want to change the reaction rate ki/h® (of the bimolecular reaction per one
compartment) to a reaction rate A in order to decrease the error between stationary
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distributions ¢x and ¢;. The stationary version of (C.1) with k;/h® replaced by A is

A{(ng + 1) ps(n + 55) - ngps(n)} + koh? Z {ps(n - 5z‘jk) — ps(n)}

(izjzk)elall

+ % Z Z { Mg + 1) ps( z‘ejk(n>)_nijkps(n)} =0 (C2

(7, ] k)elall eGE’L]k

where
ps(mn) = tlim p(n,t). (C.3)
Let us denote the average number of molecules at the lattice site (7, j, k) as
Majn(t) = 3 i po(n =D ID SRS SN
n111=0 n112=0 nix k=0

Multiplying (C.2) by n;jx and summing over n, we obtain

D .. 7
koh® + h_; Z (Mijrre — Miji) = 0, for (i,,k) # b, (C.4)
ecE; i
5 Da
Rl Y (Mo — M) =AM (C5)
ecE;

Let us define tensors 177'% € REXKXK for i/ =0,1,2,...,. K -1, =0,1,2,..., K —1
and ¥ =0,1,2,...,K — 1, by

L o con (ST o (LU Y o (KR 1/20)

V8, if ', j', k' are nonzero;
" VA4, if exactly one of i/, j', k" is zero;
V2, if exactly two of i, j/, k' are zero;

1, fori =75 =k=0.

K o
—1/2)r "1 —1/2 K
E cos (Z—/)> cos (W) = 51"1‘”37 for i > 0,

i=1

We have

where 8;;» is the Kronecker delta. Consequently, 7% for ¢, 5/ k' = 0,1,..., K — 1,
satisfy the orthonormality condition:

ll '//kll
E wl‘]k 'L]kl — 5,L'/,L'// 5j’j“5k/k‘”' (C?)

i,5,k=1

. . VW]
Let us express M;j; in the basis ¢7'%":

/lk_/
l]k_ Z Mljlk’/ igk (C8)

/ /k/
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Then (C.4)—(C.5) read as follows

]{5 h3 —|— I Z Mi/j/k’ Z <wz;]k/_|k_/e - wz;ﬂklkl> = Oa fOI' (i7j7 k) 7& Ea

il k= eeEijk
it + 2 S S (4 - ) =
/ /k/ eeEg
Using (C.6), we get
kol + Z Myjue 7% g% =0, for (i.j.k) #5. (€.9)
/ /kl
koh® + Z M”,k, I TN =AM, (C.10)
/ /kl

where

2l (5) e (1) n () -3). e

Multiplying (C.9)—(C.10) by wwk”k", summing the resulting equations and using the
orthonormality condition (C.7), we obtain
kv = AM;, (C.12)
DA 7, J//k//
e
where v = L3 = h3K? is the volume of the reactor. We drop the double primes on

Mo = AMg s 7™ for (i, §", k") # (0,0,0),

indices 7, 7 and k to simplify the notation and obtain

—  ARMyt for (4.4
ijk = W; or (i, 5,k) # (0,0,0).
Using (C.12), we get
—  kwwh?g e
ijk — W) or (laja k) 7é (07070) (C]'S)

Using (C.8) and (C.13), we have

]{32 14 h2
Dy

My = Z ]\A/[/ijkw%jk:ngﬂj\?ooo—

1:7j7k:0

B (C.14)

where

K-1 ngk 2
F=— > (Cbijk) . (C.15)

i,j, k=0
(i,4,k) # (0,0,0)

Substituting (C.12) into (C.14), we have
k’gl/ h2

k?gl/

= K% Mooy — 3 (C.16)
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The average number of molecules of A in the reactor is given by

K
ASE Z M'ij

i k=1
Using (C.8), we get
K K-1 B K-1 K o -
Ag= D > Mowig = Y Mg Y ™ = Moo K2, (C.17)
i k=14 ' k'=0 i ' k' =0 i k=1
We would like to choose A so that Ay = M, where M; is given by (4), i.e.
kov? ~
22— Mogo K.
ki
Substituting for Mg into (C.16) and using v = h3K3, we get
kv :h3@_ﬁgk2yh2
A k1 Dy
which implies
D ky

A

T Dah? — B kh?
This choice of A gives the average number of molecules of A equal to M, provided that
Dp =0, By = 1 and the molecule of B is in the compartment b = (by, by, b3) € Iy
Now let Dp # 0 and By = 1. If we want to model the bimolecular reaction (1), it is
important to know the distances of molecules of A from the molecule of B. The distances
diffuse with the diffusion constant D4+ Dpg. Thus we can equivalently model their time
evolution by considering that the molecule of B does not diffuse and molecules of A
diffuse with the diffusion constant D4 + Dp. Then the previous calculation (equation
(C.16)) implies that

kQV ]{ZQV h2

K32 My = = + fy oo
S W s yarys

where notation ]TJOZOO = Mog highlights the fact that Moo depends on the position b of
the molecule of B. Let p; be the probability that the molecule of B is in the compartment

(C.18)

b= (b1, b9,bs) € Ioy. We have p; = K=3. The average number of molecules of A in the
reactor is given by (compare with (C.17))
A = ZPEMEOO K2 = K72 Z ]/_\ZEOO‘
b b
Multyplying (C.18) by p; = K3 and summing over b, we obtain
As kv kov h?

= "D, 4Dy (6.19)

where

ﬁzzpﬁﬂgZ%Zﬁa (C.20)
5

b
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We would like to choose A so that Ay = M where M, is given by (4). Substituting (4)
into (C.19), we get
kot ko kov h?

K x O Da i by
Using v = h3K3, we obtain

(Da+ Dp)k
(D4 + Dp)h3 — Bkih?
Thus we have derived (26). Using (C.20), (C.15) and orthonormality condition (C.7),
we obtain

\ =

1 1 k)2 " 1
(i,4.%) # (0,0,0) (i,4, k) # (0,0,0)

Substituting (C.11) for ¢¥* we obtain (27).

Appendix D. Derivation of formula (28)

Formula (27) is the Riemann sum of the definite integral

dz dydz, (D.1)

—COSZL’—COSy—COSZ

i.e., passing K — oo in (27 we obtaln (D.1). Integrating over z, we get (28).

Formula (28) can be also derived directly without the help of (27). Such a derivation
uses a similar reasoning as the derivation of (31) in Appendix E, i.e. it establishes a link
between molecular-based models and the compartment-based modelling. We consider
the infinite three-dimensional lattice

(1,7, k)h forie€eZ, jeZ, kel (D.2)

where h € R. To model bimolecular reactions by the compartment-based approach, we
need to know whether the molecules are in the same compartment or not. In particular,
it is sufficient to track the relative distance of molecules rather than their absolute
positions. Postulating that the molecule of B is always at the origin (compartment
(0,0,0)) and letting the molecule of A diffuse with the diffusion constant (D4 + Dp),
we obtain the stochastic model which gives the same distribution of relative distances
of molecules as the original stochastic model. Thus we will study the following auxiliary
stochastic process. We consider that the particles jump to neighbouring lattice sites
with the rate (D4 + Dp)/h* and are removed at the origin with the rate A. The
reaction-diffusion master equation can be written for this model as follows (using the
same notation as in (B.2))

dp(n Ds+ D
) _ Dt De 5 S {4 )05 ) — i)}
(i,5,k)€Z3 ecE

+ )\{(’nooo + 1)p(1’l + (5000) — n000p<1’l)}. (D3)
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We are interested in the stationary behaviour of a system of (infinitely) many molecules
of A, subject to the condition that the average number of molecules per compartment is
kept constant (equal to M) far from the origin, i.e. in the limit /i? + j2 + k? — co.
The stationary version of (D.3) reads as follows

Dat Do S St 1) ) — i)

(i,5,k)€Z3 eCE

= —)\{(nooo + 1) ps(n + do00) — 1000 ps(n)} (D.4)

where py(n) is defined as in (C.3). Let us denote the average number of molecules at
the lattice site (i, j, k) as

Mij(t) = Z nijips(n).

Multiplying (D.4) by n;;, and summing over n, we obtain

Djs+ D -

A= 12 £ Z(Mz’ijre — M) =0 for (i,4,k) # (0,0,0),
ecE

Ds+ D

% Z(Me — Mooo) = AMooo-
ecE

Let us define p;55, = M;ji, — M. Then we have
Z:U’ijk—i-e = 6/’Lijk7 for (iaja k) 7é (07 07 0)7

ecE

A\ h?
E e =06 + = + M) .
eEE,u 000 Da+ Dpg (Hooo )

Multiplying by e'*'e'*/e!**, where i = /=1, z € R, y € R, z € R, and summing over i,
7 and k, we obtain
6//’ZCCyZ = ﬁxyz (eix + e_ix + eiy + e_iy + eiZ + e—iz)
— Ah% (pto00 + Moo) /(D4 + Dp) (0.5)

where [i,,. is the Fourier transform
(0.@) o o
i=—00 j=—00 k=—00
Simplifying (D.5), we obtain

~ o )\ h2 (,u()o() —f- Moo) 1
Hays = 2(Da+ Dg) cosxz+ cosy+cosz — 3

Thus

Ah? (UOOO + MOO)
Dy+ Dp

where (3, is the constant given by

1 2m 2m 2m 1
= ——— dz dyd-z. D.7
b 2(27r)3/0 /0 /0 3 —Ccosx —Ccosy — Cos 2 v (D-7)

Hooo = — B (D.6)
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Using ppoo = Moo — M, equation (D.6) can be rewritten as
A(D4+ Dg)

(Da+ Dg) + ABh?

The term AMyyy gives the rate of removal of molecules of A at the origin. The rate

>\M000 - (DS)

of change of the concentration a of molecules of A, which is subject to heteroreaction
(1), can be also described by the deterministic ODE da/dt = —kjab where b is the
concentration of molecules of B. This ODE can be equivalently rewritten in terms of
the average numbers of molecules of A and B per lattice site, i.e. in terms of A = ah?®
and B = bh®, as dA/dt = —k,/h*AB. Using B = 1 and A = M., the rate of removal
of molecules of A is given by ky /h3M,,. Comparing with (D.8), we obtain

ky B A(D4+ Dg)

13 T (Da+ Dp) + ABouh2
Solving for A\, we obtain

(Da+ Dp)k:
(Da+ Dp)h3 — Bookih?
Thus we have derived (26) with § = .. The constant (3, is given by (D.7). Using
periodicity of the cosine function, we obtain (D.1). Integrating over z, we derive (28).

A:

Appendix E. Derivation of formula (31)

In order to derive (31), we consider the diffusion to the ball of radius @ which removes
molecules of A with the rate X\. Let the centre of the ball be at the origin. Let ¢(r) be
the equilibrium concentration of molecules of A at distance r from the origin, which is
a continuous function with continuous derivative satisfying the equations

& g% =0 forr >0
dr?2  rdr ’ -’
&—Fg%—L—O forr <p
dr2  rdr D4+ Dp ’ -

The general solution of these second-order ODEs can be written in the following form

c(r) :al—i-%, for r > 0,

as A ay A
c(r):7exp " Dy+ Dp +76Xp - Dy+ Dp

where aq, as, az and a4 are real constants. We impose the boundary condition at infinity

, for r <7,

lim ¢(r) = cx.

r—00
This implies a; = c. Since ¢ is continuous at the origin, we deduce ay = —as. Thus
we have
as —
c(r) = o + —, for r > o,
r

2 [ A
c(r) = % sinh (r m) , for r <.
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To determine the constants as and as, we use the continuity of ¢ and its derivative at
r = p. We obtain

@ = e { /(D + D)/ tanh (2/3/(Da + D)) ~ 2}

a3 = coo \/(Da + Dg)/\ (2 cosh (@ N (Da+ DB))>_ .
The flux through the unit area of the boundary can be computed as

9, Ds+ D
(DA+DB)6_C M‘
rl— 0

The area of the sphere is 47p%. Thus the total flux through the sphere boundary is
—4m (D4 + Dp)ay. Substituting for as, we get

An(Dy + Dp) (@ — /(DA + Dg)/X tanh (@ N (Da+ DB)>) Coo-

This quantity is equal to the rate constant of bimolecular reaction k; multiplied by
the concentration of the chemical far from the reacting molecule c,,. Dividing by c.,
we derive (31). Let us note that we used diffusion to the ball to derive (31). This
approximation can be justified using the more general evolution equation for the many
particle distribution function [9].

Appendix F. Derivation of (34)—(36) and a numerical method for solving it

Let ¢;(r) be the concentration of molecules of A at distance r from the origin. Assuming
that molecules of A only diffuse, their concentration at point r after the time interval
At is given as

/000 K(r,r';y) ¢;(r') dr’ (F.1)

where K (r,r';7) is given by (35). Let us assume that the particles are removed, in the
circle of radius p and centered at origin, with probability P\, and then diffuse for time
At. Then (F.1) is modified to

civ1(r)=(1- P)\)/O K(r,r';y) ¢i(r') dr’ + /100 K(r,r';y) ¢ (r') dr'.

Equation (34) is an equation for the fixed point of this iterative scheme. The function
g(r) is the generalization of the radial distribution function (RDF) for bimolecular
reaction at steady state [3] for arbitrary Py € [0,1]. Note that the RDF in [3] was
only computed for P, = 1. The rate of removal of particles (at steady state) during one
time step is given by the right hand side of (36). Comparing with , we obtain (36).
As discussed in Section 4.2, equations (34)—(36) are conditions relating the
measurable parameters k;, D and Dpg with the parameters of the A-g model. Equations
(34)—(36) have to be solved numerically before the stochastic simulation is executed.
To solve (34), we will use the condition g(r) — 1 as r — oo. Choosing S large,
we can approximate g(r) = 1 for r > S. Let N; and Ny be positive integers. We
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consider the mesh r; = j/Ny, for j =1,2,..., Ny and r; = 1+ (S — 1)(j — N1)/Na, for
j=N;+1,...,N; + Ny,. We discretize (34) as

1— PA g —1 Nl o
g(ri) = Z K(ri;rji7)g(rj) + —— K (ri;rj; v)g(m)Jr/ K (ry v’y ) dr’
Ny s
Jj=Ni1+1
This is a linear system for g(r;), i = 1,2,..., Ny + No, which can be solved, for example,

by Gaussian elimination. Let us note that the right hand side of this system can be
evaluated using the error function erf as

QK(T’Z,S v) 1 {S r} 1 [S%—n}
K(ry,r's ) dr’ —|—1——erf —erf | ——] .
/ ) S w2 ] 2 W2

Substituting g¢(r;), ¢ = 1,2,...,N;, into (36), we compute k. Repeating this
computation for different values of v and Py, we obtain the results presented in Figure 5.
This graph or the corresponding look-up table can be used to implement the A0 model
in a particle based simulator, as it has been done in [3] for the special case Py = 1.
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