
 Open access Proceedings Article DOI:10.1109/INFCOM.2012.6195815

Stochastic models of load balancing and scheduling in cloud computing clusters
— Source link

Siva Theja Maguluri, R. Srikant, Lei Ying

Institutions: University of Illinois at Urbana–Champaign, Iowa State University

Published on: 25 Mar 2012 - International Conference on Computer Communications

Topics: Cloud computing, Utility computing, Cloud testing, Load balancing (computing) and Resource allocation

Related papers:

Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio
networks

CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms

 Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement

 Scheduling jobs with unknown duration in clouds

 Joint VM placement and routing for data center traffic engineering

Share this paper:

View more about this paper here: https://typeset.io/papers/stochastic-models-of-load-balancing-and-scheduling-in-cloud-
2skmuqplr2

https://typeset.io/
https://www.doi.org/10.1109/INFCOM.2012.6195815
https://typeset.io/papers/stochastic-models-of-load-balancing-and-scheduling-in-cloud-2skmuqplr2
https://typeset.io/authors/siva-theja-maguluri-1w97ha31kv
https://typeset.io/authors/r-srikant-7zlhady0v2
https://typeset.io/authors/lei-ying-1necrdacqq
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/institutions/iowa-state-university-a6g8atpr
https://typeset.io/conferences/international-conference-on-computer-communications-145lolxb
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/utility-computing-2tblztur
https://typeset.io/topics/cloud-testing-he5cumx2
https://typeset.io/topics/load-balancing-computing-36l2q21o
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/papers/stability-properties-of-constrained-queueing-systems-and-1ejlpmfzvp
https://typeset.io/papers/cloudsim-a-toolkit-for-modeling-and-simulation-of-cloud-4258xtk0uj
https://typeset.io/papers/improving-the-scalability-of-data-center-networks-with-2orx1c99p1
https://typeset.io/papers/scheduling-jobs-with-unknown-duration-in-clouds-3ge9rq68y5
https://typeset.io/papers/joint-vm-placement-and-routing-for-data-center-traffic-198nlctk3j
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/stochastic-models-of-load-balancing-and-scheduling-in-cloud-2skmuqplr2
https://twitter.com/intent/tweet?text=Stochastic%20models%20of%20load%20balancing%20and%20scheduling%20in%20cloud%20computing%20clusters&url=https://typeset.io/papers/stochastic-models-of-load-balancing-and-scheduling-in-cloud-2skmuqplr2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/stochastic-models-of-load-balancing-and-scheduling-in-cloud-2skmuqplr2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/stochastic-models-of-load-balancing-and-scheduling-in-cloud-2skmuqplr2
https://typeset.io/papers/stochastic-models-of-load-balancing-and-scheduling-in-cloud-2skmuqplr2

Stochastic Models of Load Balancing and

Scheduling in Cloud Computing Clusters

Siva Theja Maguluri and R. Srikant

Department of ECE and CSL

University of Illinois at Urbana-Champaign

siva.theja@gmail.com; rsrikant@illinois.edu

Lei Ying

Department of ECE

Iowa State University

leiying@iastate.edu

Abstract—Cloud computing services are becoming ubiquitous,
and are starting to serve as the primary source of computing
power for both enterprises and personal computing applications.
We consider a stochastic model of a cloud computing cluster,
where jobs arrive according to a stochastic process and request
virtual machines (VMs), which are specified in terms of resources
such as CPU, memory and storage space. While there are many
design issues associated with such systems, here we focus only on
resource allocation problems, such as the design of algorithms
for load balancing among servers, and algorithms for scheduling
VM configurations. Given our model of a cloud, we first define its
capacity, i.e., the maximum rates at which jobs can be processed
in such a system. Then, we show that the widely-used Best-
Fit scheduling algorithm is not throughput-optimal, and present
alternatives which achieve any arbitrary fraction of the capacity
region of the cloud. We then study the delay performance of
these alternative algorithms through simulations.

I. INTRODUCTION

Cloud computing services are becoming the primary source

of computing power for both enterprises and personal com-

puting applications. A cloud computing platform can provide

a variety of resources, including infrastructure, software, and

services, to users in an on-demand fashion. To access these

resources, a cloud user submits a request for resources. The

cloud provider then provides the requested resources from

a common resource pool (e.g., a cluster of servers), and

allows the user to use these resources for a required time

period. Compared to traditional “own-and-use” approaches,

cloud computing services eliminate the costs of purchasing and

maintaining the infrastructures for cloud users, and allow the

users to dynamically scale up and down computing resources

in real time based on their needs. Several cloud computing

systems are now commercially available, including Amazon

EC2 system [1], Google’s AppEngine [2], and Microsoft’s

Azure [3]. We refer to [4], [5], [6] for comprehensive surveys

on cloud computing.

While cloud computing services in practice provide many

different services, in this paper, we consider cloud computing

platforms that provide infrastructure as service, in the form

of Virtual Machines (VMs), to users. We assume cloud users

request virtual machines (VMs), which are specified in terms

of resources such as CPU, memory and storage space. Each

request is called a “job.” The type of a job specifies the type

of VM the user wants and the size of the job specifies the

amount of time required. After receiving these requests, the

cloud provider will schedule the VMs on physical machines,

called “servers”.

There are many design issues associated with such systems

[7], [8], [9], [10], [11], [12]. In this paper, we focus only on

resource allocation problems, such as the design of algorithms

for load balancing among servers, and algorithms for schedul-

ing VM configurations. We consider a stochastic model of

a cloud computing cluster. We assume that jobs with variable

sizes arrive according to a stochastic process, and are assigned

to the servers according to a resource allocation algorithm.

A job departs from the system after the VM is hosted for

the required amount of time. We assume jobs are queued in

the system when all servers are busy. We are interested in

the maximum rates at which jobs can be processed in such

a system, and resource allocation algorithms that can support

the maximum rates. The main contributions of this paper are

summarized below.

(1) We characterize the capacity region of a cloud system

by establishing its connection to the capacity region of

a wireless network. The capacity of a cloud system is

defined to be the set of traffic loads under which the

queues in the system can be stabilized.

(2) We then consider the widely-used Best-Fit scheduling

algorithm and provide a simple example to show that it

is not throughput-optimal. Next, we point out that the

well-known MaxWeight algorithm is throughput-optimal

in an ideal scenario, where jobs can be preempted

and can migrate among servers, and servers can be

reconfigured at each time instant. In practice, preemption

and VM migration are costly. Therefore, motivated by

the MaxWeight algorithm, we present a non-preemptive

algorithm which myopically allocates a new job to a

server using current queue length information whenever

a departure occurs. We characterize the throughput of

this myopic algorithm, and show that it can achieve any

arbitrary fraction of the capacity region if the algorithm

parameters are chosen appropriately.

(3) The algorithms mentioned above require central queues.

In practice, a more scalable approach is to route jobs to

servers right after their arrivals. We consider the Join-

the-Shortest-Queue (JSQ) algorithm which routes a job

to the server with the shortest queue. We prove that this

entails no loss in throughput compared to maintaining a

2

single central queue.

(4) JSQ needs to keep track of queue lengths at all servers,

which may become prohibitive when we have a large

number of servers and the arrival rates of jobs are large.

To address this issue, we propose the power-of-two-

choices routing for the case of identical servers, and

pick-and-compare routing for the case of non-identical

servers.

II. MODEL DESCRIPTION

A cloud system consists of a number of networked servers.

Each of the servers may host multiple Virtual Machines

(VMs). Each VM requires a set of resources, including CPU,

memory, and storage space. VMs are classified according to

the resources they request. As an example, Table I lists three

types of VMs (called instances) available in Amazon EC2.

Instance Type Memory CPU Storage

Standard Extra Large 15 GB 8 EC2 units 1,690 GB

High-Memory Extra Large 17.1 GB 6.5 EC2 units 420 GB

High-CPU Extra Large 7 GB 20 EC2 units 1,690 GB

TABLE I
THREE REPRESENTATIVE INSTANCES IN AMAZON EC2

We assume there are M distinct VM configurations and that

each VM configuration is specified in terms of its requirements

for K different resources. Let Rmk be the amount of type-k
resource (e.g., memory) required by a type-m VM (e.g., a

standard extra large VM). Further, we assume that the cloud

system consists of L different servers. Let Cik denote the

amount of type-k resource at server i. Given a server, an M -

dimensional vector N is said to be a feasible VM-configuration

if the given server can simultaneously host N1 type-1 VMs,

N2 type-2 VMs, . . . , and NM type-M VMs. In other words,

N is feasible at server i if and only if

M
∑

m=1

NmRmk ≤ Cik

for all k. We let Nmax denote the maximum number of VMs

of any type that can be served on any server.

Example 1: Consider a server with 30 GB memory, 30
EC2 computing units and 4, 000 GB storage space. Then

N = (2, 0, 0) and N = (0, 1, 1) are two feasible VM-

configurations on the server, where N1 is the number of

standard extra large VMs, N2 is the number of high-memory

extra large VMs, and N3 is the number of high-CPU extra

large VMs. N = (0, 2, 1) is not a feasible VM configuration

on this server because it does not have enough memory and

computing units.

In this paper, we consider a cloud system which hosts VMs

for clients. A VM request from a client specifies the type of

VM the client needs, and the amount of time requested. We

call a VM request a “job.” A job is said to be a type-m job if

a type-m VM is requested. We consider a time-slotted system

in this paper, and we say that the size of the job is S if the

VM needs to be hosted for S time slots. Given our model of

a cloud system, we next define the concept of capacity for a

cloud.

III. CAPACITY OF A CLOUD

What is the capacity of a cloud? First, as an example,

consider the three servers defined in Example 1. Clearly this

system has an aggregate capacity of 90 GB of memory, 90
EC2 compute units and 12, 000 GB of storage space. However,

such a crude definition of capacity fails to reflect the system’s

ability to host VMs. For example, while

4× 17.1 + 3× 7 = 89.4 ≤ 90,

4× 6.5 + 3× 20 = 86 ≤ 90,

4× 420 + 3× 1690 = 6750 ≤ 12000,

it is easy to verify that the system cannot host 4 high-memory

extra large VMs and 3 high-CPU extra large VMs at the same

time. Therefore, we have to introduce a VM-centric definition

of capacity.

Let Am(t) denote the set of type-m jobs that arrive at

the beginning of time slot t, and let Am(t) = |Am(t)|,
i.e., the number of type-m jobs that arrive at the beginning

of time slot t. We let Wm(t) =
∑

j∈Am(t) Sj be the total

number of time slots requested by the jobs. We assume that

Wm(t) is a stochastic process which is i.i.d. across time slots,

E[Wm(t)] = λm and Pr(Wm(t) = 0) > ǫW for some ǫW > 0
for all m and t. Many of these assumptions can be relaxed,

but we consider the simplest model for ease of exposition.

Let Dm(t) denote the number of type-m jobs that are served

by the cloud at time slot t. Note that the job size of each of

these Dm(t) jobs reduces by one at the end of time slot t. The

workload due to type-m jobs is defined to be the sum of the

remaining job sizes of all jobs of type-m in the system. We

let Qm(t) denote the workload of type-m jobs in the network

at the beginning of time slot t, before any other job arrivals.

Then the dynamics of Qm(t) can be described as

Qm(t+ 1) = (Qm(t) +Wm(t)−Dm(t)) . (1)

We say that the cloud system is stable if

lim supt→∞ E[
∑

m Qm(t)] < ∞, i.e., the expected total

workload in steady-state is bounded. A vector of arriving

loads λ is said to be supportable if there exists a resource

allocation mechanism under which the cloud is stable. In the

following, we first identify the set of supportable λs. Let Ni

be the set of feasible VM-configurations on a server i. We

define a set C such that

C =

{

λ : λ =

L
∑

i=1

λ(i) and λ(i) ∈ Conv(Ni).

}

, (2)

where Conv denotes the convex hull. We next use a simple

example to illustrate the definition of C.
Example 2: Consider a simple cloud system consisting of

three servers. Servers 1 and 2 are of the same type (i.e., they

have the same amount of resources), and server 3 is of a

different type. Assume there are two types of VMs. The set of

feasible VM configurations on servers 1 and 2 is assumed to be

3

1

10

2

10

Fig. 1. Regions Conv(N1) and Conv(N3)

4

30

(2, 2)

Fig. 2. The capacity region C

N1 = N2 = {(0, 0), (1, 0), (0, 1)}, i.e., each of these servers

can at most host either one type-1 VM or one type-2 VM.

The set of feasible configurations on server 3 is assumed to be

N3 = {(0, 0), (1, 0), (2, 0), (0, 1)}, i.e., the server can at most

host either two type-1 VMs or one type-2 VM. The regions

Conv(N1) and Conv(N3) are plotted in Figure 1. Note that

vector (0.75, 0.25) is in the region Conv(N1). While a type-1
server cannot host “0.75” type-1 VMs and “0.25” type-2 VM,

we can host a type-1 VM on server 1 for 3/4 of the time,

and a type-2 VM on the server for 1/4 of the time to support

load (0.75, 0.25). The capacity region C for this simple cloud

system is plotted in Figure 2.

We call C the capacity region of the cloud. This definition

of the capacity of a cloud is motivated by similar definitions

in [13]. We introduce the following notation: the servers are

indexed by i. Let N (i)(t) denote the VM-configuration on

server i at time slot t. Further define D(t) =
∑

i N
(i)(t), so

Dm(t) is the total number of type-m VMs hosted in the cloud

at time t. As in [13], it is easy to show the following results.

Lemma 1: D(t) ∈ C for any t.
Theorem 1: For any λ 6∈ C,

lim
t→∞

E

[

∑

m

Qm(t)

]

= ∞.

IV. THROUGHPUT OPTIMAL SCHEDULING: CENTRALIZED

APPROACHES

In this section, we study centralized approaches for job

scheduling. We assume that jobs arrive at a central job sched-

uler, and are queued at the job scheduler. The scheduler dis-

patches a job to a server when the server has enough resources

to host the VM requested by the job. In this setting, servers

do not have queues, and do not make scheduling decisions.

We call a job scheduling algorithm throughput optimal if the

algorithm can support any λ such that (1 + ǫ)λ ∈ C for some

ǫ > 0.

A. Best Fit is not Throughput Optimal: A Simple Example

A scheduling policy that is used in practice is so called

“best-fit” policy [14], [15], i.e., the job which uses the most

amount of resources, among all jobs that can be served, is

selected for service whenever resources become available.

Such a definition has to be made more precise when a VM

requests multiple types of multiple resources. In the case of

multiple types of resources, we can select one type of resource

as “reference resource,” and define best fit with respect to

this resource. If there is a tie, then best fit with respect to

another resource is considered, and so on. Alternatively, one

can consider a particular linear or nonlinear combination of the

resources as a meta-resource and define best fit with respect

to the meta-resource.

We now show that best fit is not throughput optimal.

Consider a simple example where we have two servers, one

type of resource and two types of jobs. A type-1 job requests

half of the resource and four time slots of service, and a type-2

job requests the whole resource and one time slot of service.

Now assume that initially, the server 1 hosts one type-1 job

and server 2 is empty; two type-1 jobs arrive once every three

time slots starting from time slot 3, and type-2 jobs arrive

according to some arrival process with arrival rate ǫ starting at

time slot 5. Under the best-fit policy, type-1 jobs are scheduled

forever since type-2 jobs cannot be scheduled when a type-1

job is in a server. So the workload due to type-2 jobs will

blow up to infinity for any ǫ > 0. The system, however, is

clearly stabilizable for ǫ < 2/3. Suppose we schedule type-1

jobs only in time slots 1, 7, 13, 19, . . . , i.e., once every six

time slots. Then time slots 5, 6, 11, 12, 17, 18, ... are available

for type-2 jobs. So if ǫ < 2/3, both queues can be stabilized

under this periodic scheduler.

The specific arrival process we constructed is not key to the

instability of best-fit. Assume type-1 and type-2 jobs arrive

according to independent Poisson processes with rates λ1 and

λ2, respectively. Figure 3 is a simulation result which shows

that the number of backlogged jobs blows up under best-fit

with λ1 = 0.7 and λ2 = 0.1, but is stable under a MaxWeight-

based policy with λ1 = 0.7 and λ2 = 0.5.

This example raises the question as to whether there are

throughput-optimal policies which stabilize the queues for all

arrival rates which lie within the capacity region, without

requiring knowledge of the actual arrival rates. In the next

subsection, we answer this question affirmatively by relating

the problem to a well-known scheduling problem in wireless

networks. However, such a scheduling algorithm requires job

preemption. In the later sections, we discuss non-preemptive

policies and the loss of capacity (which can be made arbitrarily

small) due to non-preemption.

B. Preemptive Algorithms

In this subsection, we assume that all servers can be

reconfigured at the beginning of each time slot, and a job

4

Fig. 3. The number of backlogged jobs under the best-fit policy and a
MaxWeight policy

can be interrupted at the beginning of each time and put back

in the queue. We will study the schemes that do not interrupt

job service in the next subsection. We further assume the job

scheduler maintains a separate queue for each type of job, and

sizes of all jobs are bounded by Smax. Recall that Qm(t) is the

workload of type-m jobs at the beginning of time slot t. We

consider the following server-by-server MaxWeight allocation

scheme.

Server-by-server MaxWeight allocation: At the beginning

of time slot t, consider the ith server. If the set of jobs on the

server are not finished, move them back to the central queue.

Find a VM-configuration N∗(t) such that

N (i)∗(t) ∈ arg max
N∈Ni

∑

m

Qm(t)Nm.

At server i, we create upto N
(i)∗
m (t) type-m VMs depending

on the number of jobs that are backlogged. Let N
(i)
m (t) be the

actual number of VMs that were created. Then, we set

Qm(t+ 1) =

(

Qm(t) +Wm(t)−
∑

i

N (i)
m

)

.

�

The fact that the proposed algorithm is throughput optimal

follows from [13] and is stated as a theorem below.

Theorem 2: Assume that a server can serve at most Nmax

jobs at the same time, and E[W 2
m(t)] ≤ σ2 for any m. The

server-by-server MaxWeight allocation is throughput optimal,

i.e.,

lim
t→∞

E

[

∑

m

Qm(t)

]

< ∞

if there exists ǫ > 0 such that (1 + ǫ)λ ∈ C.

C. Non-preemptive Algorithms

The algorithm presented in the previous subsection requires

us to reconfigure the servers and re-allocate jobs at the

beginning of each time slot. In practice, a job may not be

interruptable or interrupting a job can be very costly (the

system needs to store a snapshot of the VM to be able to

restart the VM later). In this subsection, we introduce a non-

preemptive algorithm, which is nearly throughput optimal.

Before we present the algorithm, we outline the basic ideas

first. We group T time slots into a super time slot, where T >
Smax. At the beginning of a super time slot, a configuration

is chosen according to the MaxWeight algorithm. When jobs

depart a server, the remaining resources in the server are filled

again using the MaxWeight algorithm; however, we impose

the constraint that only jobs that can be completed within the

super slot can be served. So the algorithm myopically (without

consideration of the future) uses resources, but is queue-length

aware since it uses the MaxWeight algorithm. We now describe

the algorithm more precisely.

Myopic MaxWeight allocation: We group T time slots into

a super time slot. At time slot t, consider the ith server. Let

N (i)(t−) be the set of VMs that are hosted on server i at the

beginning of time slot t, i.e., these correspond to the jobs that

were scheduled in the previous time slot but are still in the

system. These VMs cannot be reconfigured due to our non-

preemption requirement. The central controller finds a new

vector of configurations Ñ (i)(t) to fill up the resources not

used by N (i)(t−), i.e.,

Ñ (i)(t) ∈ arg max
N :N+N(i)(t−)∈Ni

∑

m

Qm(t)Nm,

The central controller selects as many jobs as available in the

queue, up to a maximum of Ñ
(i)
m (t) type-m jobs at server

i, and subject to the constraint that a type-m job can only be

served if its size Sj ≤ T−(t mod T). Let N̄
(i)
m (t) denote the

actual number of type-m jobs selected. Server i then serves the

N̄m(t)(i) new jobs of type m, and the set of jobs N (i)(t−) left

over from the previous time slot. The queue length is updated

as follows:

Qm(t+ 1) = Qm(t) +Wm(t)−
∑

i

(

N (i)
m (t−) + N̄ (i)

m (t)
)

.

Note that this myopic MaxWeight allocation algorithm

differs from the server-by-server MaxWeight allocation in two

aspects: (i) jobs are not interrupted when served and (ii)

when a job departs from a server, new jobs are accepted

without reconfiguring the server. We next characterize the

throughput achieved by the myopic MaxWeight allocation

under the following assumptions: (i) job sizes are uniformly

bounded by Smax, and (ii) Wm(t) ≤ Wmax for all m and t.

Theorem 3: Any job load that satisfies (1+ǫ) T
T−Smax

λ ∈ C
for some ǫ > 0 is supportable under the myopic MaxWeight

allocation.

We skip the proof of this theorem because the proof is very

similar to the proof of Theorem 4 in the next section. It is

important to note that, unlike best fit, the myopic MaxWeight

algorithm can be made to achieve any arbitrary fraction of the

capacity region by choosing T sufficiently large.

5

V. RESOURCE ALLOCATION WITH LOAD BALANCING

In the previous section, we considered the case when there

was a single queue for jobs of same type, being served at

different servers. This requires a central authority to maintain

a single queue for all servers in the system. A more distributed

solution is to maintain queues at each server and route jobs

as soon as they arrive. To the best of our knowledge, this

problem does not fit into the scheduling/routing model in [13].

However, we show that one can still show use MaxWeight-type

scheduling if the servers are load-balanced using a join-the-

shortest-queue (JSQ) routing rule.

In our model, we assume that each server maintains M
different queues for different types of jobs. It then uses this

queue length information in making scheduling decisions. Let

Q denote the vector of these queue lengths where Qmi is

the queue length of type m jobs at server i. Routing and

scheduling are performed as described in Algorithm 1.

Algorithm 1 JSQ Routing and Myopic Maxweight Scheduling

1) Routing Algorithm (JSQ Routing): All the type m jobs

that arrive in time slot t are routed to the server with the

shortest queue for type m jobs i.e., the server i∗m(t) =
argmin
i∈{1,2,,,L}

Qmi(t). Therefore, the arrivals to Qmi in time

slot t are given by

Wmi(t) =

{

Wm(t) if i = i∗m(t)

0 otherwise
(3)

2) Scheduling Algorithm (Myopic MaxWeight Scheduling)

for each server i: T time slots are grouped into a

super time slot. A MaxWeight configuration is chosen

at the beginning of a super time slot. So, for t = nT ,

configuration Ñ (i)(t) is chosen according to

Ñ (i)(t) ∈ argmax
N∈Ni

∑

m

Qmi(t)Nm

For all other t, at the beginning of the time slot, a new

configuration is chosen as follows:

Ñ (i)(t) ∈ argmax
N :N+N(i)(t−)∈Ni

∑

m

Qmi(t)Nm

where N (i)(t−) is the configuration of jobs at server i
that are still in service at the end of the previous time

slot. As many jobs as available are selected for service

from the queue, up to a maximum of Ñ
(i)
m (t) jobs of

type m, and subject to the constraint that a new type m
job is served only if it can finish its service by the end of

the super time slot, i.e., only if Sj ≤ T−(t mod T). Let

N
(i)

m (t) denote the actual number of type m jobs selected

at server i and define N (i)(t) = N (i)(t−)+N
(i)
(t). The

queue lengths are updated as follows:

Qmi(t+ 1) = Qmi(t) +Wmi(t)−N (i)
m (t). (4)

The following theorem characterizes the throughput perfor-

mance of the algorithm.

Theorem 4: Any job load vector that satisfies
(1+ǫ)T
T−Smax

λ ∈
C for some ǫ > 0 is supportable under the JSQ routing and

myopic MaxWeight allocation as described in Algorithm 1

Proof: Let Ymi(t) denote the state of the queue for type-

m jobs, where Y
j
mi(t) is the remaining job size of the jth

type-m job at server i. First, it is easy to see that Y(t) =
{Ymi(t)}m,i is a Markov chain under the myopic MaxWeight

scheduling. Further define S = {y : Pr(Y(t) = y|Y(0) =
0) for some t}, then Y(t) is an irreducible Markov chain on

state space S assuming Y(0) = 0. This claim holds because (i)

any state in S is reachable from 0 and (ii) since Pr(Wm(t) =
0) ≥ ǫW for all m and t, the Markov chain can move from

Y(t) to 0 in finite time with a positive probability. Further

Qmi(t) =
∑

j Y
j
m,i(t), i.e., Qmi(t) is a function of Ymi(t).

We will first show that the increase of
∑

m

Qmi(t)N
(i)
m (t) is

bounded within a super time slot. For any t such that 1 ≤
(t mod T) ≤ T − Smax, for each server i,

∑

m

Qmi(t)N
(i)
m (t− 1)

=
∑

m

Qmi(t)N
(i)
m (t−)

+
∑

m

Qmi(t)
(

N (i)
m (t− 1)−N (i)

m (t−)
)

≤a

∑

m

Qmi(t)N
(i)
m (t−) +

∑

m

Qmi(t)Ñ
(i)
m (t)

=
∑

m

(

Qmi(t)N
(i)
m (t−) +Qmi(t)Ñ

(i)
m (t)

)

IQmi(t)≥SmaxNmax

+
∑

m

(

Qmi(t)N
(i)
m (t−) +Qmi(t)Ñ

(i)
m (t)

)

IQmi(t)<SmaxNmax

≤(b)

∑

m

Qmi(t)N
(i)
m (t) +MSmaxN

2
max

where the inequality (a) follows from the definition Ñ
(i)
m (t);

and inequality (b) holds because when Qmi(t) ≥ SmaxNmax,
there are enough number of type-m jobs to be allocated to

the servers, and when 1 ≤ (t mod T) ≤ T − Smax, all

backlogged jobs are eligible to be served in terms of job sizes.

Now since |Qmi(t)−Qmi(t− 1)| =
∣

∣

∣
Wmi(t)−N

(i)
m (t)

∣

∣

∣
≤

Wmax +Nmax, we have

∑

m

Qmi(t− 1)N (i)
m (t− 1) ≤ β′ +

∑

m

Qmi(t)N
(i)
m (t) (5)

where β′ = MNmax(Wmax +Nmax) +MSmaxN
2
max.

Let V (t) = |Q(t)|2 be the Lyapunov function. Let t =
nT + τ for 0 ≤ τ < T . Then,

E[V (nT + τ + 1)− V (nT + τ)|Q(nT) = q]

=E

[

∑

i

∑

m

(

Qmi(t) +Wmi(t)−N (i)
m (t)

)2

−Q2
mi(t)

∣

∣

∣

∣

Q(nT) = q

]

(6)

6

=E

[

2
∑

i

∑

m

Qmi(t)
(

Wmi(t)−N (i)
m (t)

)

+
∑

i

∑

m

(

Wmi(t)−N (i)
m (t)

)2
∣

∣

∣

∣

∣

Q(nT) = q

]

(7)

≤K + 2E

[

∑

m

∑

i

Qmi(t)Wmi(t)

−
∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q

]

(8)

=K + 2
∑

m

E[Qmi∗
m
(t)(t)Wm(t)|Q(nT) = q]

− 2E

[

∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q

]

(9)

=K + 2
∑

m

λmE[Qmi∗
m
(t)(t)|Q(nT) = q]

− 2E

[

∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q

]

(10)

≤K + 2
∑

m

λmWmaxτ

+ 2
∑

m

λmE[Qmi∗
m
(nT)(nT)|Q(nT) = q]

− 2E

[

∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q

]

(11)

=K + 2
∑

m

λmWmaxτ + 2
∑

m

λmqmi∗
m

− 2E

[

∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q

]

(12)

where K = ML(Smax + Nmax)
2 and i∗m = i∗m(nT) =

argmin
i∈{1,2,,,L}

qmi. Equation (9) follows from the definition of

Wmi in the routing algorithm in (3). Equation (10) follows

from the independence of the arrival process from the queue

length process. Inequality (11) comes from the fact that

Qmi∗
m
(t)(t) ≤ Qmi∗

m
(nT)(t) ≤ Qmi∗

m
(nT) +Wmaxτ .

Now, applying (5) repeatedly for t ∈ [nT, (n+1)T−Smax],
and summing over i, we get

−
∑

i

∑

m

Qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
∑

i

∑

m

Qmi(nT)N
(i)
m (nT). (13)

Since,
(1+ǫ)T
T−Smax

λ ∈ C, there exists
{

λi
}

i
such that

(1+ǫ)T
T−Smax

λi ∈ Conv(Ni) for all i and λ =
∑

i

λi. According

to the scheduling algorthm, for each i, we have that

(1 + ǫ)
T

T − Smax

∑

m

Qmi(nT)λ
i
m

≤
∑

m

Qmi(nT)N
(i)
m (nT). (14)

Thus, we get,

−
∑

i

∑

m

Qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
∑

i

∑

m

Qmi(nT)N
(i)
m (nT) (15)

≤ L(t− nT)β′ −
(1 + ǫ)T

T − Smax

∑

i

∑

m

Qmi(nT)λ
i
m. (16)

Substituting this in (12), we get, for t ∈ [nT, (n+1)T−Smax],

E[V (nT + τ + 1)− V (nT + τ)|Q(nT) = q]

≤K + 2
∑

m

λmWmaxτ + 2L(t− nT)β′

+ 2
∑

m

λmqmi∗
m
− 2(1 + ǫ)

T

T − Smax

∑

i

∑

m

qmiλ
i
m.

(17)

Note that λmqmi∗
m

=
∑

i λ
i
mqmi∗

m
≤
∑

i λ
i
mqmi. Using this

and summing the drift for τ from 0 to T − 1 using (17) for

τ ∈ [0, T − Smax], and (12) for the remaining τ , we get

E[V ((n+ 1)T)− V (nT)|Q(nT) = q]

≤TK + 2
∑

m

λmWmax

T−1
∑

τ=0

τ + 2Lβ′
T−Smax−1
∑

τ=0

τ

+ 2T
∑

i,m

qmiλ
i
m − 2

(1 + ǫ)T

T − Smax

∑

i,m

qmiλ
i
m(T − Smax)

≤K1 − 2ǫT
∑

i

∑

m

qmiλ
i
m.

where K1 = TK + 2
∑

m λmWmax

∑T−1
τ=0 τ +

2Lβ′
∑T−Smax−1

τ=0 τ . Let B = {q :
∑

i

∑

m qmiλ
i
m ≤

K1/ǫT}. Then, the drift E[V ((n+1)T)−V (nT)|Q(nT) = q]
is negative outside the finite set B. The theorem then follows

from the Foster-Lyapunov theorem [16], [17].

VI. SIMPLER LOAD BALANCING ALGORITHMS

Though JSQ routing algorithm is throughput optimal, the

job scheduler needs the queue length information from all the

servers. This imposes a considerable communication overhead

as the arrival rates of jobs and number of servers increase.

In this section, we present two alternatives which have much

lower routing complexity.

A. Power-of-two-choices Routing and Myopic MaxWeight

Scheduling

An alternate to JSQ routing is the power-of-two-choices al-

gorithm [18], [19], [20], which is much simpler to implement.

When a job arrives, two servers are sampled at random, and

the job is routed to the server with the smaller queue for that

job type. In our algorithm, in each time slot t, for each type

of job m, two servers im1 (t) and im2 (t) are chosen uniformly

at random. The job scheduler then routes all the type m job

arrivals in this time slot to the server with shorter queue length

7

among these two, i.e., i∗m(t) = argmin
i∈{im1 (t),im2 (t)}

Qmi(t) and so

Wmi(t) =

{

Wm(t) if i = i∗m(t)

0 otherwise.

Otherwise, the algorithm is identical to the JSQ-Myopic

MaxWeight algorithm considered earlier. In this section, we

will provide a lower bound on the throughput of this power-

of-two-choices algorithm in the non-preemptive case when all

the servers have identical resource constraints.

Theorem 5: When all the severs are identical, any job

load that satisfies (1 + ǫ) T
T−Smax

λ ∈ C for some ǫ > 0
is supportable under the power-of-two-choices routing and

myopic MaxWeight allocation algorithm.

Proof: Again, we use V (t) = |Q(t)|2 as the Lyapunov

function. Then, from (8), we have

E[V (t+ 1)− V (t)|Q(nT) = q]

≤K + 2E

[

∑

m

∑

i

Qmi(t)Wmi(t)

∣

∣

∣

∣

∣

Q(nT) = q

]

− 2E

[

∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q

]

(18)

For fixed m, let Xm(t) be the random variable which

denotes the two servers that were chosen by the routing

algorithm at time t for jobs of type m. Xm(t) is then uniformly

distributed over all sets of two servers. Now, using the tower

property of conditional expectation, we have,

E

[

∑

i

Qmi(t)Wmi(t)

∣

∣

∣

∣

∣

Q(nT) = q

]

=EX

[

E

[

∑

i

Qmi(t)Wmi(t)

∣

∣

∣

∣

∣

Q(nT) = q, Xm(t) = {i′, j′}

]]

=EX [E [Qmi′(t)Wmi′(t) +Qmj′(t)Wmj′(t)|

Q(nT) = q, X(t) = {i′, j′}]]

=EX [E [min (Qmi′(t),Qmj′(t))Wm(t)|

Q(nT) = q, X(t) = {i′, j′}]] (19)

≤EX

[

E

[

Qmi′(t) +Qmj′(t)

2
Wm(t)

∣

∣

∣

∣

Q(nT) = q, X(t) = {i′, j′}

]]

=EX

[

qmi′ + qmj′

2
λm

]

=λm

L− 1
(

L
2

)

1

2

∑

i

qmi (20)

=λm

∑

i

qmi

L
. (21)

Equation (19) follows from the routing algorithm and (20)

follows from the fact that Xm(t) is uniformly distributed.

Since the scheduling algorithm is identical to Algorithm 1,

(13) still holds for any t such that 1 ≤ (t mod T) ≤ T−Smax.

Thus, we have,

−
∑

i

∑

m

Qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
∑

i

∑

m

Qmi(nT)N
(i)
m (nT). (22)

We assume that all the servers are identical. So, C is obtained

by summing L copies of Conv(N). Thus, since
(1+ǫ)T
T−Smax

λ ∈ C,

we have that
(1+ǫ)T
T−Smax

λ
L

∈ Conv(N) = Conv(Ni) for all i.
According to the scheduling algorthm, for each i, we have

that

(1 + ǫ)
T

T − Smax

∑

m

Qmi(nT)
λm

L

≤
∑

m

Qmi(nT)N
(i)
m (nT). (23)

Thus, we get,

−
∑

i

∑

m

Qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
(1 + ǫ)T

T − Smax

∑

i

∑

m

Qmi(nT)
λm

L
(24)

≤ L(t− nT)β′ −
(1 + ǫ)T

T − Smax

∑

m

λm

∑

i Qmi(nT)

L
. (25)

Now, substituting (21) and (16) in (18) and summing over

t ∈ [nT, (n+ 1)T − 1], we get

E[V ((n+ 1)T)− V (nT)|Q(nT) = q]

≤TK + 2T
∑

m

λm

∑

i

qmi

L
+ 2Lβ′

T−Smax−1
∑

τ=0

τ

− 2(1 + ǫ)
T

T − Smax

∑

m

λm

∑

i

qmi

L
(T − Smax)

≤TK + 2Lβ′
T−Smax−1
∑

τ=0

τ − 2Tǫ
∑

m

λm

∑

i

qmi

L
.

This proof can be completed by applying the Foster-Lyapunov

theorem [16], [17].

B. Pick-and-Compare Routing and Myopic MaxWeight

Scheduling

One drawback of the power-of-two-choices scheduling is

that it is throughput optimal only when all servers are identical.

In the case of nonidentical servers, one can use pick-and-

compare routing algorithm instead of power-of-two-choices.

The algorithm is motivated by the pick-and-compare algorithm

for wireless scheduling and switch scheduling [21], and is

as simple to implement as power-of-two-choices, and can be

shown to be optimal even if the servers are not identical. We

describe this next. The scheduling algorithm is identical to the

previous case.

8

Pick-and-compare routing works as follows. In each time

slot t, for each type of job m, a server im(t) is chosen

uniformly at random and compared with the server to which

jobs were routed in the previous time slot. The server with the

shorter queue length among the two is chosen and all the type

m job arrivals in this time slot are routed to that server. Let

i∗m(t) be the server to which jobs will be routed in time slot

t. Then, i∗m(t) = argmin
i∈{im(t),i∗

m
(t−1)}

Qmi(t) and so

Wmi(t) =

{

Wm(t) if i = i∗m(t)

0 otherwise.

Theorem 6: Any job load vector that satisfies
(1+ǫ)T
T−Smax

λ ∈
C for some ǫ > 0 is supportable under the pick-and-compare

routing and myopic MaxWeight allocation algorithm.

Proof: Consider the irreducible Markov chain Y(t) =
(Y(t), {i∗m(t)}m) and the Lyapunov function V (t) = |Q(t)|2 .
Then, as in the proof of theorem 5, similar to (18) for t ≥ nT,
we have

E[V (t+ 1)− V (t)|Q(nT) = q, i∗m(nT) = i′]

≤K + 2E

[

∑

m

∑

i

Qmi(t)Wmi(t)

∣

∣

∣

∣

∣

Q(nT) = q, i∗m(nT) = i′

]

− 2E

[

∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q, i∗m(nT) = i′

]

.

(26)

Since, (1 + ǫ) T
T−Smax

λ ∈ C, there exists
{

λi
}

i
such that

(1 + ǫ) T
T−Smax

λi ∈ Conv(Ni) for all i and λ =
∑

i

λi. This
{

λi
}

i
can be chosen so that there is a κ so that λm ≤ κλi

m.

This is possible because if λm > 0 and λm is not on the

boundary of C, one can always find
{

λi
}

i
so that λi

m > 0.

Since the scheduling part of the algorithm is identical to

Algorithm 1, (16) still holds for t ∈ [nT, (n + 1)T − Smax].
Thus, we have

−
∑

i

∑

m

Qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
(1 + ǫ)T

T − Smax

∑

i

∑

m

Qmi(nT)λ
i
m. (27)

We also need a bound on the increase in

−
∑

i

∑

m Qmi(t)N
(i)
m (t) over multiple super time slots. So,

for any n′, we have

∑

i

∑

m

Qmi(nT)N
(i)
m (nT)

≤
∑

i

∑

m

Qmi((n+ n′)T)N (i)
m (nT)

+ n′TLMNmax(Wmax +Nmax)

≤
∑

i

∑

m

Qmi((n+ n′)T)N (i)
m ((n+ n′)T) + n′TLβ′

where the second inequality follows from the fact that we use

maxweight scheduling every T slots and from the definition

of β′. Now, again, using (14), and (27), for any t such that

1 ≤ (t mod T) ≤ T − Smax, we have

−
∑

i

∑

m

Qmi(t)N
(i)
m (t) (28)

≤ L(t− nT)β′ −
(1 + ǫ)T

T − Smax

∑

i

∑

m

Qmi(nT)λ
i
m. (29)

Fix m. Let immin = argmin
i∈{1,2,,,L}

Qmi(nT). Note that

|Qmi(t)−Qmi(t− 1)| =
∣

∣

∣
Wmi(t)−N

(i)
m (t)

∣

∣

∣
≤ Wmax +

Nmax. Therefore, once there is a t0 ≥ nT such that i∗m(t0)
satisfies

Qmi∗
m
(t0)(t0) ≤ Qmim

min
(t0), (30)

then, for all t ≥ t0, we have Qmi∗
m
(t)(t) ≤ Qmim

min
(nT)+(t−

nT) (Wmax +Nmax). Probability that (30) does not happen

is at most
(

1− 1
L

)(t0−nT)
. Choose t0 so that this probability

is less than p = ǫ/4κ. Then, (1 + κp) = 1 + ǫ/4. Choose k
so that kT > (t0 −nT) and ((n+ k)T − t0)+κ(t0 −nT) ≤
kT (1 + ǫ/4).

Then

(n+k)T−1
∑

t=nT

E

[

∑

i

Qmi(t)Wmi(t)

∣

∣

∣

∣

∣

Q(nT) = q, i∗m(nT) = i′

]

=

t0
∑

t=nT

E

[

∑

i

Qmi(t)Wmi(t)

∣

∣

∣

∣

∣

Q(nT) = q, i∗m(nT) = i′

]

+

(n+k)T−1
∑

t=t0

E

[

∑

i

Qmi(t)Wmi(t)

∣

∣

∣

∣

∣

Q(nT) = q, i∗m(nT) = i′

]

(31)

≤λm(t0 − nT)
∑

i

qmi

+

t0
∑

t=nT

(t− nT) (Wmax +Nmax)LWmax

+

(n+k)T−1
∑

t=t0

(1− p)λm

(

qmim
min

+(t− nT) (Wmax +Nmax))

+ pλm ((n+ k)T − t0)
∑

i

qmi

+ p

(n+k)T−1
∑

t=t0

(t− nT) (Wmax +Nmax)LWmax (32)

≤(1− p) ((n+ k)T − t0)
∑

i

qmim
min

λi
m

+

kT
∑

τ=0

τ (Wmax +Nmax)LWmax

+ (1− p)λm(t0 − nT)
∑

i

qmi + pλmkT
∑

i

qmi (33)

≤K1 + (1− p) ((n+ k)T − t0)
∑

i

qmiλ
i
m

9

+ (1− p)κ(t0 − nT)
∑

i

qmiλ
i
m + κpkT

∑

i

qmiλ
i
m

(34)

≤K1 + (1− p)kT (1 + ǫ/4)
∑

i

qmiλ
i
m

+ (1 + ǫ/4)κpkT
∑

i

qmiλ
i
m (35)

≤K1 + kT (1 + ǫ/4)2
∑

i

qmiλ
i
m (36)

≤K1 + kT (1 + 3ǫ/4)
∑

i

qmiλ
i
m (37)

whereK1 =
kT
∑

τ=0
τ (Wmax +Nmax)LWmax. Equations (35)

and (36) follow from our choice of k and p respectively.

Now, substituting (37) and (28) in (26) and summing over

t ∈ [nT, (n+ 1)T − 1], we get

E[V ((n+ k)T)− V (nT)|Q(nT) = q, i∗m(nT) = i′]

≤K ′ + 2kT (1 + 3ǫ/4)
∑

m

∑

i

qmiλ
i
m

−

(n+k)T−1
∑

t=nT

2E

[

∑

i

∑

m

Qmi(t)N
(i)
m (t)

∣

∣

∣

∣

∣

Q(nT) = q, i∗m(t) = i′

]

≤K ′ + 2kT (1 + 3ǫ/4)
∑

m

∑

i

qmiλ
i
m

− 2(1 + ǫ)
T

T − Smax

∑

m

∑

i

qmiλ
i
mk(T − Smax)

≤K ′ +−
1

2
kTǫ

∑

m

∑

i

qmiλ
i
m

where K ′ = kTK+MK1+2Lβ′
∑kT−Smax−1

τ=0 τ . The result

follows from the Foster-Lyapunov theorem [16], [17].

VII. SIMULATIONS

In this section, we use simulations to compare the perfor-

mance of the centralized myopic MaxWeight scheduling algo-

rithm, and the joint routing and scheduling algorithm based

on the power-of-two-choices and MaxWeight scheduling. We

consider a cloud computing cluster with 100 identical servers,

and each server has the hardware configuration specified

in Example 1. We assume jobs being served in this cloud

belong to one of the three types specified in Table I. So VM

configurations (2, 0, 0), (1, 0, 1), and (0, 1, 1) are the three

maximal VM configurations for each server. It is easy to verify

that the load vector λ = (1, 1
3 ,

2
3) is on the boundary of the

capacity region of a server.

To model the large variability in jobs sizes, we assume job

sizes are distributed as follows: when a new job is generated,

with probability 0.7, the size is an integer that is uniformly

distributed in the interval [1, 50], with probability 0.15, it is

an integer that is uniformly distributed between 251 and 300,
and with probability 0.15, it is uniformly distributed between

Fig. 4. Comparison of the mean delays in the cloud computing cluster in
the case with a common queue and in the case with power-of-two-choices
routing when frame size is 4000

451 and 500. Therefore, the average job size is 130.5 and the

maximum job size is 500.

We further assume the number of type-i jobs arriving at

each time slot follows a Binomial distribution with parameter

(α λi

130.5 , 100). We varied the parameter α from 0.5 to 1 in

our simulations, which varied the traffic intensity of the cloud

system from 0.5 to 1, where traffic intensity is the factor by

which the load vector has to be divided so that it lies on

the boundary of the capacity region. Each simulation was

run for 500, 000 time slots. First we study the difference

between power-of-two-choice routing and JSQ routing by

comparing the mean delays of the two algorithms at various

traffic intensities for different choices of frame sizes. Our

simulation results indicate that the delay performance of the

two algorithms was not very different. Due to page limitations,

we only provide a representative sample of our simulations

here for the case where the frame size is 4000 in Figure 4.

Next, we show the performance of our algorithms for

various values of the frame size T in Figure 5. Again, we

have only shown a representative sample for the power-of-two-

choices routing (with myopic MaxWeight scheduling). From

Theorems 3 and 5, we know that any load less than T−Smax

T
is

supportable. The simulations indicate that the system is stable

even for the loads greater than this value. This is to be expected

since our proofs of Theorems 3 and 5 essentially ignore the

jobs that are scheduled in the last Smax time slots of a frame.

However, the fact that the stability region is larger for larger

values of T is confirmed by the simulations.

It is even more interesting to observe the delay performance

of our algorithms as T increases. Figure 5 indicates that

the delay performance does not degrade as T increases and

the throughput increases with T. So the use of queue-length

information seems to be the key ingredient of the algorithm

while the optimal implementation of the MaxWeight algorithm

seems to be secondary.

10

Fig. 5. Comparison of power-of-two-choices routing algorithm for various
frame lengths T

VIII. CONCLUSIONS

We considered a stochastic model for load balancing and

scheduling in cloud computing clusters. A primary contribu-

tion is the development of frame-based non-preemptive VM

configuration policies. These policies can be made nearly

throughput-optimal by choosing sufficiently long frame dura-

tions, whereas the widely used best fit policy was shown to be

not throughput optimal. Simulations indicate that long frame

durations are not only good from a throughput perspective but

also seem to provide good delay performance.

IX. ACKNOWLEDGEMENTS

Research supported in part by AFOSR MURI FA 9550-

10-1-0573, ARO MURI W911NF-08-1-0233, and NSF Grants

CNS-0964081 and CNS-0963807.

REFERENCES

[1] EC2, http://aws.amazon.com/ec2/.

[2] AppEngine, http://code.google.com/appengine/.

[3] Azure, http://www.microsoft.com/windowsazure/.

[4] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments

Workshop, 2008. GCE’08, 2008, pp. 1–10.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A
berkeley view of cloud computing,” 2009, tech. Rep. UCb/eeCs-2009-
28, EECS department, U.C. berkeley.

[6] D. A. Menasce and P. Ngo, “Understanding cloud computing: Experi-
mentation and capacity planning,” in Proc. 2009 Computer Measurement

Group Conf., 2009.

[7] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.

IEEE Infocom., 2010, pp. 1–9.

[8] Y. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady, “Dynamic resource allocation in computing clouds
using distributed multiple criteria decision analysis,” in 2010 IEEE 3rd

International Conference on Cloud Computing, 2010, pp. 91–98.

[9] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and
A. Delis, “Flexible use of cloud resources through profit maximization
and price discrimination,” in Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, 2011, pp. 75–86.

[10] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in Proc. IEEE Infocom.,
2011, pp. 1098–1106.

[11] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in Proc. IEEE Infocom.,
2011, pp. 71–75.

[12] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “Kingfisher: Cost-aware
elasticity in the cloud,” in Proc. IEEE Infocom., 2011, pp. 206–210.

[13] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automat. Contr., vol. 4, pp.
1936–1948, December 1992.

[14] B. Speitkamp and M. Bichler, “A mathematical programming approach
for server consolidation problems in virtualized data centers,” IEEE

Transactions on Services Computing, pp. 266–278, 2010.
[15] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual

machines in cloud data centers,” in 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, 2010, pp. 577–578.
[16] S. Asmussen, Applied Probability and Queues. New York: Springer-

Verlag, 2003.
[17] S. Meyn and R. L. Tweedie, Markov chains and stochastic stability.

Cambridge University Press, 2009.
[18] M. Mitzenmacher, “The power of two choices in randomized load

balancing,” Ph.D. dissertation, University of California at Berkeley,
1996.

[19] Y. T. He and D. G. Down, “Limited choice and locality considerations
for load balancing,” Performance Evaluation, vol. 65, no. 9, 2008.

[20] H. Chen and H. Q. Ye, “Asymptotic optimality of balanced routing,”
2010, http://myweb.polyu.edu.hk/ lgtyehq/papers/ChenYe11OR.pdf.

[21] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radionetworks and input queued switches,” in Proc. IEEE Infocom.,
1998.

