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Abstract

Stochastic models are established and studied for several endemic infections with demography. Ap-
proximations of quasi-stationary distributions and of times to extinction are derived for stochastic versions
of SI, SIS, SIR, and SIRS models. The approximations are valid for sufficiently large population sizes.
Conditions for validity of the approximations are given for each of the models. These are also conditions
for validity of the corresponding deterministic model. It is noted that some deterministic models are un-
acceptable approximations of the stochastic models for a large range of realistic parameter values. © 2002
Published by Elsevier Science Inc.
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1. Introduction

Both deterministic and stochastic models are used for epidemiological modelling. It is therefore
of importance to understand the relations between these two kinds of models, and between the
results that they predict. Both model types are needed, and both have their advantages and
weaknesses. The deterministic models often lead to powerful qualitative results with important
threshold behaviour. They also lead to simpler mathematical problems than the stochastic ones.
Work on deterministic models has therefore dominated strongly over work on stochastic models.

The models considered here are among the simplest possible, where the deterministic model
takes the form of a system of ordinary differential equations, and the corresponding stochastic
model is a Markov population process with continuous time and discrete state space. It is im-
portant to realize that every such deterministic model is an approximation of a corresponding
stochastic model. It can be derived from the stochastic model by dividing the original state
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variables by a constant measure N of the population size and taking the limit as N approaches
infinity. An important difference between the two models is that the stochastic model deals with a
finite population size, while the deterministic model only deals with proportions; the population
size measure N is an essential parameter in the stochastic model, but a so-called innocent pa-
rameter in the deterministic one. This means that if the population size measure N appears at all in
the deterministic model, then it can be eliminated completely by a rescaling of the state variables.
The stochastic models account for what is called demographic stochasticity.

The deterministic model is clearly an approximation of the stochastic one, since real population
sizes are always finite. It is well known that the deterministic model is an acceptable approxi-
mation of the stochastic one if the population size is sufficiently large. But this fact is in itself not a
guarantee that all deterministic models are acceptable. A mathematical study of the stochastic
model is required in order to quantify what is meant by a ‘sufficiently large’ population size.

In this paper I study both deterministic and stochastic models for some endemic infections in
closed populations, accounting for both epidemic and demographic forces. Qualitative results are
of major importance in mathematical epidemiology. It is therefore important to observe that a
qualitative difference exists between the deterministic and stochastic models that we are concerned
with. Above a threshold determined by the parameters of the model, the deterministic model
predicts that the proportion of infected individuals will approach a positive endemic level as time
approaches infinity, while the stochastic model predicts that the infection will become extinct. The
time to extinction is a random variable whose distribution clearly depends on the distribution of
initial states. If the process has been going on for a long time and has not gone extinct, then the so-
called quasi-stationary distribution can be used as an approximation of the distribution of states.
The time to extinction from the quasi-stationary distribution is therefore a measure of the per-
sistence of the infection, see [1]. The quasi-stationary distribution is of additional importance,
since the expected time to extinction from quasi-stationarity can be expressed in terms of this
distribution. An explicit expression for the quasi-stationary distribution cannot be determined. A
major goal of the analysis of the stochastic model is therefore to derive an approximation of
the quasi-stationary distribution. This derivation is based on a diffusion approximation of the
stochas-tic discrete-state model. The methods used for this are similar to the methods introduced in
[2].

The analysis in this paper is concerned with SI, SIS, SIR, and SIRS models. Here, the letters S,
I, and R refer to susceptible, infective, and recovered individuals, respectively. The SI model deals
with infection without recovery. The SIS model is a model for an infection without immunity,
where recovery is possible, and where recovered individuals are immediately susceptible. The SIR
model deals with an infection where recovered individuals are completely immune. The SI and
SIR models without demography were referred to as ‘the simple epidemic’ and ‘the general epi-
demic’, respectively, by Bailey in [3]. His discussion deals with both deterministic and stochastic
model versions. The SIR model without demography has transients, corresponding to epidemic
outbreaks. In sharp contrast, the SIR model with demography admits an almost stationary be-
haviour, corresponding to endemic infections. (To be precise, the deterministic model has sta-
tionary solutions, while the stochastic model has quasi-stationarity.) Accordingly, the recent
review paper [4] by Hethcote refers to the SIR model without demography as ‘the classic epidemic
model’, while the SIR model with demography is described as ‘the classic endemic model’. The
analysis in [4] is limited to deterministic models. The SIRS model deals with a situation where the
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immunity is temporary. Our results allow an estimate of the time to extinction and of the condi-
tions for the deterministic model to be an acceptable approximation of the fully stochastic model.

The number of susceptible, infected, and recovered individuals are denoted by S, I, and R,
respectively, in all the models studied, where R = 0 for the SI and SIS models. All infected hosts
are assumed to be infective. We adopt the barbaric idea of using the same notation in both de-
terministic and stochastic models. Thus, S, 7, and R are random variables with discrete state space
in the stochastic models and continuous variables in the corresponding deterministic models. The
state variables are generally functions of time, although the main interest is focussed on steady-
state or quasi-stationary behaviour.

I assume that the population size is determined by an immigration-death process with differ-
ential death rate. The immigration rate is put equal to u/N and the death rate per individual is u for
susceptible and recovered hosts and u + y, for infected hosts, where y; > 0. Thus, N is equal
to the (steady-state) expected population size if no infection is present in the community. The
methods used here do not allow any conclusions to be drawn about the epidemiologically in-
teresting case of an exponentially growing population.

All the models studied are based on the ‘standard incidence’ considered by [5], and homoge-
neous exposure. To model this I assume a constant contact rate . The infection rate at time ¢ will
in each of the models be expressed as fisi/(s + i + r) (with » = 0 for the SI and the SIS models),
where s, i, and r are the values taken be the state variables S, I and R, respectively, at time ¢. This
expression for the infection rate is equal to the product of the contact rate f5, the proportion
i/(s + i+ r) of the population that is infected and the number of susceptible individuals s. Note
that this expression for the infection rate deviates from the ‘conventional’ expression fisi/N by
having a denominator that depends on the state variables. This deviation affects the deterministic
model time-dependent behaviour if initially the populations of susceptible and infected individuals
are not in steady state. It also affects the important steady state behaviour of the deterministic
model if there are disease related deaths, i.e. if 4, > 0. Note also that if there are no disease related
deaths, i.e. if y; = 0, then the steady-state behaviour of the deterministic model is the same for the
two infection rate expressions. The difference between hypothesized and conventional infection
rates will, however, always have an effect on the predictions of the stochastic model. The deter-
ministic versions of the SIS, SIR, and SIRS models, without differential mortality, and with
conventional infection rate, were studied by Hethcote in 1976 [6]. These models are the starting
point for our study.

The three models SI, SIS, and SIR can be derived as special cases of the SIRS model. The
deterministic SIRS model has been treated in [5]. The treatment of the stochastic version of each
of the models is preceded by the formulation and analysis of the corresponding deterministic
model. The consideration of the deterministic model allows a reparametrization of the model.
Non-dimensional parameters are introduced that are of importance in the analysis of both the
deterministic and the stochastic versions of each model.

Analysis of the stochastic version of the SI model with demography and differential death rate
and proper infection rate is given in [7]. Analysis of the quasi-stationary distribution and of the
time to extinction for the SIS model without demography is contained in [8] and [9]. In these
two references, the population size is constant, so the proper infection rate is actually equal to
the conventional infection rate. Analysis of an SIR model with demography is given in [2]. This
model does not account for differential mortality. It uses a conventional infection rate as an
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approximation of the proper infection rate. The analysis in the present paper allows us to com-
ment on the consequences of this approximation.

The deterministic version of either of the models we consider here has a threshold that is de-
scribed in terms of the so-called basic reproduction ratio Ry, which is defined for each model in
terms of basic parameters. The threshold value Ry = 1 for the deterministic model identifies two
parameter regions, namely Ry > 1 and Ry < 1, with qualitatively different behaviours. The qual-
itative behaviour of the stochastic version of the model is described by identification of three
parameter regions with qualitatively different behaviours. The boundaries between these regions
depend on the value of N. The ‘extra’ region appearing in the stochastic model is a transition
region near Ry = 1. The width of the transition region approaches zero as N — oo. This explains
why this region is absent from the deterministic version of the model. The quasi-stationary dis-
tribution can be expected to be definitely non-normal in the transition region. The problem of
finding a useful approximation of this distribution is mathematically challenging. Some progress
has been made on this problem for the univariate SIS model in [9], while it remains unsolved in
any of the bivariate or multivariate models dealt with in this paper.

The results given in this paper are confined to the parameter region above the transition region.
It is therefore of considerable practical interest to know how large Ry, and N must be in each model
in order for the results to be valid. Such results are given for each model in terms of the rescaling
of Ry as function of N that is necessary for the study of the model in the transition region.

The analysis of all the models uses a diffusion approximation similar to that introduced in [2].
An important step in this analysis requires one to solve a linear system of equations, with coef-
ficients depending on the parameters of the model. The expressions that appear are in many cases
rather complicated. I have used Maple to solve this and related problems. Results are quoted here,
while the Maple programs that have been used to derive these results are found at the web address
http://www.math.kth.se/~ingemar/forsk/desto/desto.html.

2. A stochastic SI model with demography

The mathematical treatments of all models we deal with are rather similar. Some of the details
in the treatment of the simplest of the models, the SI model, are given in this section. These details
are not repeated in the following sections.

2.1. Model formulation

I introduce four parameters, namely the expected population size N in case there are no infected
individuals, the contact rate f3, the death rate per susceptible individual u, and an additional death
rate u, such that the death rate per infected individual is u + p;. Among these, N is a large positive
integer, f and u are positive, and u; is non-negative.

The hypotheses of the model are described by the transition rates in Table 1. The two state
variables S(7) (the number of susceptible individuals) and /(¢) (the number of infected individuals)
take values in the state space {(s, i): s =0,1,...,i =0,1,...}. The states (s, 0) communicate with
each other, but not with any state (s, i) with i > 1. The quasi-stationary distribution is supported
on the set of transient states (s, i) with i > 1. The stationary distribution is supported on the set of
states (s, 0), where the infection is extinct.
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Table 1

Transition rates for the SI model of Section 2
Event Transition Transition rate
Immigration of susceptible (s,0) = (s+1,i) A1(s,i) = uN
Death of susceptible (s,i) — (s = 1,9) (s i) = us
Death of infected (s,0) — (s,i— l) (s, i) = (u+ )i
Infection of susceptible (s,0) = (s=1,i+1) va(s, i) = Bsi/(s + i)

The Kolmogorov forward equations for the state probabilities py; (1) = P{S(¢) = s,1(t) = i} can
be written

Py(t) = (s = L,i)pe_1i(t) + By (s + 1, 0)porri(t) + po(s,i 4 1)psin (2)
Fva(s 4 1,0 = D)perrioa(2) — x(s, )pa(t),
where

K(s,8) = 21(s,0) + iy (5, 0) 4 a(s,8) + va(s, i).
2.2. The deterministic model and reparametrization

The deterministic version of the model leads to the following system of differential equations:

SI
S = —f=———uS
N =B =0,
_—— 1.
ﬂs+1 (u+ )
The model is reparametrized by the introduction of the following new parameters:
Ry = b , (2.1)
Ht 1y
51:ﬁ%ﬁL (2.2)

These parameters are both free of dimension. Ry is referred to as the basic reproduction ratio. The
deterministic version of the model has its threshold at Ry = 1. Among the parameters, Ry is strictly
positive, while §, is larger than or equal to one. Note that J; equals one if there is no differential
death rate.

For the derivation of diffusion approximations of the stochastic version of the model it will be
convenient to introduce the scaled state variables x; =S/N and x, =I/N. The differential
equations for the deterministic version of the model can be written as follows for these state
variables, using the reparametrization introduced above:

X1X2

! = 1 — SR
i K Hloxl—i—xz

o, (2.3)

X1X2

,U(S R() — ,u51X2. (24)

X2
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This system of differential equations has two critical points. One of them is at (1, 0), which
corresponds to the absence of infection. The other critical point corresponds to en endemic in-
fection level. Its coordinates are X = (X, x;), where

. 1
NS Ry — 1)+ 1
o Rl

TSR -1+ 1

2.3. Analysis of the stochastic model

The probability of having zero infected individuals at time ¢ is of importance both for the
derivation of the quasi-stationary distribution and for the study of the time to extinction. A
differential equation is derived for this probability. I write p,(t) = >~ pu(¢) = P{I(¢) = i} for the
marginal distribution of the number of infected individuals at time 7. By adding the Kolomogorov
forward equations for i = 0 over all non-negative values of S one obtains the differential equation

Plo(t) = uo1pa(2) (2:5)

for the probability p,y(¢) of zero infected individuals at time ¢.
The quasi-stationary distribution is a stationary distribution, conditioned on non-extinction.
The state probabilities conditioned on non-extinction at time ¢ are denoted g;(¢) and given by

~ . psi(t)
3,(0) = P{S() = 5,1(0) = /(1) > 0} = 220,
By differentiating this expression with respect to ¢ and applying the differential Eq. (2.5) above for
the function p,(f) one obtains the differential equation

» Pu(t) . psi(t)

quw_m®+m@ﬁg_m@. (2.6)
Here, ¢,(¢) = Y -, 4,:(¢) denotes the marginal distribution of the number of infected individuals at
time 7, conditioned on /(¢) > 0. A system of differential equations for the probabilities g, (¢) can be
derived from this expression by using the Kolmogorov forward equations for the probabilities
psi(t). The quasi-stationary distribution g is the stationary solution of this system of equations.

The distribution of the time to extinction t can be determined from the probability p,(¢), since
the event that 7 is less than or equal to 7 is equal to the event that /() = 0. Hence we get

P{t<t} =P{I(t) =0} = po(1).
Thus the probability that the time to extinction is less than or equal to # equals the probability that
the number of infected individuals at time ¢ equals 0.

The distribution of the time to extinction is especially simple when the initial distribution is
equal to the quasi-stationary distribution, i.e. when py;(0) = g for i > 1 and py(0) = 0. The time
to extinction with this initial distribution is denoted by 7q. I show that 7o has an exponential
distribution and that its expected value is equal to

1

1o1g.y

s=0,1,..., i=12...

E(tq) =
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To derive this result we put ¢/,(#) = 0 in (2.6). Thus I am led to the initial value problems

Pi(t) = —po1q.aps(t),  psi(0) = g, s=0,1,..., i=12,...,
with solutions
psi(t) = guexp(—uodigqt), s=0,1,..., i=1,2,...

This says that probability is leaking from all states with i > 1 with the same rate. By adding these
expressions for p,;(¢) over all values of s one gets

pi(t) = qiexp(—uodiqqt), i=12,...

The differential equation for p(¢) in (2.5) can now be solved since its right-hand side is known.
Using the initial value p,y(0) =0, I get
po(t) =1 —exp(—udiq.1t).
This establishes that 7q has an exponential distribution with expectation equal to 1/(ud1q.1).
Approximating normal distributions are derived of the quasi-stationary distribution in the
Sections 2.4 and 2.5. This means that the marginal distribution of the number of infected indi-
viduals in quasi-stationarity is normal. The normal distribution is modified by a truncation at 0.5,

to account for the fact that the number of infected individuals in quasi-stationarity is larger than
or equal to one. With this modification the probability ¢, is approximated as follows:

o Lol = /o)

oo (= 0.5)/a1)’
where y; and o; are the mean and standard deviation, respectively, of the marginal distribution of
the number of infected individuals in quasi-stationarity, and ¢ and @ denote the normal density
and the normal distribution function.

This approximation of the expected time to extinction from quasi-stationarity is coarse. The
reason is that the normal approximation of the marginal distribution of 7 in quasi-stationarity is
valid only in the parameter region formally defined by the condition that Ry > 1 as N — oo, and
there it is only valid in the body of the distribution. However, the state / = 1 will then lie in the left
tail of the marginal distribution of 7, and one can expect that the distribution will there deviate
from normality. On the other hand, if the condition Ry > 1 as N — oo is not satisfied, then the
state 7 = 1 will belong to the body of the marginal distribution of 7, but the body of the distri-
bution is then not normal.

2.4. Diffusion approximation for p, =0

The analysis of the process formulated above has as its main goal a derivation of the quasi-
stationary distribution when Ry is distinctly larger than one. This is done by the aid of a diffusion
approximation. The diffusion approximation has a continuous state space, in contrast with the
discrete state space of the original process. It is derived under the restrictions that N is large and
that R, is strictly larger than one. The main result is that the quasi-stationary distribution is then
approximated by a bivariate normal distribution.

The case when susceptible and infected individuals have the same death rate, i.e. when y; = 0,
will be treated in the present section, while I defer the treatment of the case y; > 0 to Section 2.5.
The method for derivation of diffusion approximations is common for all the models treated in
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this paper. Some of the details in the method are spelled out in the present section, and are not
repeated in the following sections.

The right-hand side of the system of differential equations (2.3) and (2.4) is denoted b(x), and
the Jacobian matrix of the vector h(x) with respect to x = (x1,x,) is denoted B(x):

B()_Sb(x)_ A—Bx, — 1 A — Bx;
X = ox —A+Bxy, —A-+Bx;—1)°
where
S = R()X]Xzz’
(x1 +x2)
R
B=—"_.
X1+)C2

We approximate the matrix B(x) by evaluating it at the critical point x = (1/Ry, (Ry — 1)/Ry):

o B —(Ry— 1)’ =Ry -1
50 =4 ( (Ry— 1)’ —<R0—1>>'

Next I determine the covariance matrix of the vector of changes in the state variables x; and x,
during the time interval (¢,7+ A¢). I write Ax; = x;(¢ + At) — x;(¢), i = 1,2. By applying the hy-
potheses of the model I get

Axy\ _ B (1+xi+Bxaxy —Bxix S
COV<M2> _N< —Bxx; Brix, +x, )M O(AN) ==+ o(Ar).

The matrix S(x) is approximated by evaluating it at the critical point x. The result is

o M 2Ry —(Ro—1)
S®) =% <—(R0 “1) 2Ry—1) >
The process +/N(x(f) — %) is approximated for large N and R, > 1 by a bivariate Ornstein—
Uhlenbeck process with local drift matrix B(x) and local covariance matrix S(x). Its stationary
distribution approximates the quasi-stationary distribution. This approximation is bivariate
normal with mean 0 and covariance matrix 2. The matrix X is determined from the matrices B(x)
and S(x) through the equation

B(®)X + 2B (x) = —-S(%), (2.7)

where the superscript T is used to denote transpose. By solving this equation with the above
expressions for B(x) and S(x) I get

Z_i((Ro— 12 +R, -1 )

R} -1 Ry + 1

These results allow the conclusion that the quasi-stationary distribution is approximated by a
bivariate normal distribution when R, > 1 and N is large. The expected values of the marginal
distributions of the number of susceptible and the number of infected individuals in quasi-sta-
tionarity agree with the corresponding steady-state values from the deterministic version of the
model. In particular, we find from above the following expressions for the mean and the variance
of the marginal distributions in quasi-stationarity for the number of susceptible and infected
individuals:
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1 Ry +1

~—N, o}

Mg Ry s R% )
_Ro—1 s (Ry—1)"+Ry

lul ~ RO N, O-] ~ R—%N

Furthermore, the covariance of S and 7 in quasi-stationarity is

~——N.

Osy Rﬁ

2.5. Diffusion approximation for u, >0

For the derivation of the diffusion approximation one starts by determining the local drift
matrix B(x) and the local covariance matrix S(x). They can be written as follows:

o K =8i(Ry— 1)’ — Ry —01 )
B(x) =—
®) Ry ( Si(Ro— 1) —~81(Ry— 1)
and
(51(R0—1>+1 —51(R0—1) 251(R0—1) )
The covariance matrix X is determined as the solution of the Eq. (2.7), with the above expressions
for B(x) and S(x). The solution derived with the aid of Maple leads to the following approxi-

mations for the means and variances of S and / in quasi-stationarity:
1

W™ S R )1
5 (01Ry+ 1)Ro[01(Ry — 1) + 1]+ 0,(6; — 1)
ag 3 N
[01(Ro — 1) +1]"Ro
N Ry—1 N
b S R+ 1
o2~ [01(Ro — 1)’ + R2)[81(Ro — 1) + 1] + 67 (Ry — 1)Ry
! [61(Ro — 1) + 1]°Ry
The results of Section 2.4 are recovered when §; = 1.

N

N.

2.6. Qualitative results

The deterministic version of the model contains the powerful qualitative result that the infec-
tion will go extinct if Ry < 1, while it will establish itself at a positive endemic level if Ry > 1. There
is no direct correspondence to this result in the stochastic version of the model, since the infection
will ultimately go extinct for all positive values of Ry. Note that the deterministic model qualitative
result takes the form that the one-dimensional parameter space where R, takes its values is
partitioned into two subsets with qualitatively different behaviours in state space. A similar
partitioning of the parameter space can be established for the stochastic version of the model.
Here it is important to observe that the parameter space for the stochastic version of the model is
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two-dimensional, containing both the basic reproduction ratio Ry and the population size measure
N. It is shown for the SIS model without demography studied in [8] that one can identify three
regions in this two-dimensional parameter space where the two important indicators of the in-
fection, namely the quasi-stationary distribution and the time to extinction, show qualitatively
different behaviours. Thus the stochastic version result contains an extra region that is absent
from the result that holds for the deterministic version of the model. This additional region is a
transition region where R, is close to one. The boundaries of the transition region depend on N.
The transition region becomes narrower as /N increases, and it becomes empty as N — oo. Thus,
the description of the qualitative results of the stochastic version of the model can be seen as a
generalization of the well-known threshold result for the deterministic version of the model. The
deterministic model is not valid in the transition region.

The different qualitative results for the stochastic version of the model in the three parameter
regions become evident by deriving asymptotic approximations of the quasi-stationary distribu-
tion and of the expected time to extinction from the quasi-stationary distribution as N — oo.
The analysis in the transition region requires a reparametrization that makes R, approach
one as N — oo. For the SIS model without demography this reparametrization takes the form
Ry =1+ p/+/N. Asymptotic analysis in the transition region is made by requiring the new pa-
rameter p to be fixed as N — oo. In the remaining two regions, Ry is kept fixed as N — oo. I refer
to the region where R, is fixed at a value larger than one (smaller than one) by saying that Ry is
distinctly larger than one (distinctly smaller than one).

Useful asymptotic approximations of the quasi-stationary distribution and of the time to ex-
tinction in the transition region can be derived with this approach for the univariate SIS model, as
shown in [9], but so far no progress has been made on the corresponding problem for any of the
multivariate models considered in this paper. The reparametrization for the transition region is,
however, still useful for another purpose, namely the one of identifying the boundary between the
transition region and the region where R, is distinctly larger than one. This boundary depends on
N. The width of the transition region is a measure of the width of the parameter region where the
deterministic model is not valid. The deterministic approximation is acceptable, as far as it goes,
in the region where R, is distinctly larger than one, but not in the transition region.

The parameter p used for the reparametrization of R, in the transition region can be identified
with the ratio of the mean to the standard deviation in the marginal distribution of the number of
infected individuals in quasi-stationarity. Furthermore, the boundary between the transition re-
gion and the region where R, is distinctly larger than one can be chosen where p = 3 or 4. The
choice of p-value here is dictated by the condition that the probability for a normal random
variable to deviate from its mean by less than three or four standard deviations is close to one.

To derive the reparametrization of Ry in the transition region I put provisionally p equal to the
approximation of the ratio of g, to ;. After that, I derive the asymptotic approximation of this
provisional value as Ry — 1. The resulting value of this ratio is defined as the new parameter p.
The result can be written

p=(Ry— 1)\/1V

This is formally the same as the expression for p for the SIS model without demography.
The transition region is narrow for the SI model. Indeed, it suffices for N to satisfy the in-
equality N > p?/(R — 1)2 to conclude (with Ry > 1) that we are outside the transition region.
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With p = 3 we find that this inequality is satisfied by any N larger than nine if R, is larger than
two.

3. A stochastic SIS model with demography

The SIS model without demography is a univariate model whose deterministic approximation
is given by the well-known logistic equation. The stochastic version of this model is a finite-state
birth-death process with an absorbing state at the origin. The goal of the mathematical analysis of
this model is to find approximations of the quasi-stationary distribution and of the time to ex-
tinction. Methods have been developed for such an analysis; results are given by [8] and [9]. The
SIS model without demography is based on the implicit assumption that individual hosts live
forever. This assumption is quite unsatisfactory, especially since the results show that the time to
extinction can in some cases become very long. It is therefore natural to study a SIS model with
demography, allowing birth and death of individual hosts.

In addition to the four parameters N, f3, 1, and u, introduced for the SI model of the previous
section, I use y, to denote the recovery rate per infected individual. The SIS model takes the form
of a bivariate Markov population process whose transition rates are given in Table 2.

The Kolmogorov forward equations for the state probabilities py;(t) = P{S(¢) = s,1(t) = i} can
be written

Pu(t) = Za(s = Li)pri(t) + i (s + 1, 0)pecri(t) + pio(s, i+ D)peia (1)
+vi(s = 1i+ Dpsyier () +va(s + Li — D)pey i1 (1) — k(s )pa(t),
where
k(s, 1) = 21(s,0) + [y (s,1) + 1o(s,8) + vi(s, 1) + va(s, ).

The deterministic version of the model leads to the following system of differential equations:
SI
S = —f———uS+1
N = B = nS+nl,

SI
I'=Bc——(n+pt+ml

S+1
I reparametrize the model by introducing the following new parameters:
- B 7 (3.1)
PAa

Table 2
Transition rates for the SIS model of Section 3

Event Transition Transition rate

Immigration of susceptible s,1) — (s + 1,0) Ai(s, i) = uN

(
Death of susceptible (s,0) — (s — L,4) By (s,1) = us
Death of infected (s,0) — (s,i— 1) Wo(s, i) = (u+py)i
Recovery of of infected (s,i) = (s+1,i—1) vi(s, i) = pi
Infection of susceptible (s,i) = (s—L,i+1) va(s, i) = Bsi/(s + i)
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i tut
o = )
U

5 B
)

The deterministic version of the model has its threshold at Ry = 1. Among the parameters, Ry is
strictly positive and «; is strictly larger than one, while 0, is larger than or equal to one. In most
cases of interest the average time infected, 1/(y, + p + g,), is much shorter than the average life
length 1/(p+ 1) of infected individuals, which in turn is less than or equal to the average life
length 1/p of susceptible individuals. This implies that o; is much larger than one. The analysis in
this and later sections will concentrate on this case.

The differential equations for the deterministic version of the model with the scaled state
variables x; = S/N and x, = I/N has two critical points. One of them is at (1, 0), which corre-
sponds to the absence of infection. The other critical point corresponds to an endemic infection
level. Its coordinates are x = (%;,X,), where

(3.2)

(3.3)

. 1

S Ro—1) + 1
) Ro—1

X ="~ ~.
2T 5 (R - 1)+ 1

By using arguments similar to those in Section 2.3 one finds that the probability of having zero
infected individuals at time ¢ obeys the differential equation

Po(t) = poapa(1). (3.4)

It follows that the time to extinction 7 from quasi-stationarity has an exponential distribution
with the expectation

1

E(TQ) U1 g '
The details in the derivation of the diffusion approximation are given in the Maple program that
can be found on the web-address cited above. The first step is a derivation of the local drift matrix
B(x) and the local covariance matrix S(x). The covariance matrix X is then determined as the
solution of the Eq. (2.7), with these expressions for B(x) and S(x). An explicit expression can be
found for X, but it turns out to be rather complicated. Each entry in X is a ratio of two poly-
nomials in the three parameters Ry, «;, and o;. I give therefore only the asymptotic approxima-
tions of the elements of the matrix 2 that result when o« — oo. The results are therefore
approximations in the interesting case when the average life length is much longer than the av-
erage time of being infected.

The moments for the marginal distributions of S and 7 in quasi-stationarity can then be written
as follows:

N 1 . Ry + 1
s SR — 11 ST ROR - 1)1 1]
Ry—1 , . R-Ry+1

PO —\ ~
b s R —D+1 7 T R6/(Ry — 1) + 1]
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An increase of the additional death rate for infected individuals u; causes J; to increase. This
causes all the four moments above to decrease. It is easy to verify that the coefficients of variation
of both S and I are increasing functions of ;.

The influence of the demographic forces on the moments of S and / in quasi-stationarity can be
understood by a comparison between the results without differential mortality (6, = 1) and the
results of the analysis of the SIS model without demography.

From the above results we get the following expressions for the means and the variances of the
marginal distributions in quasi-stationarity for the number of susceptible and infected individuals
when 0, = 1:

Ly o Rtl

MS%]TO ) Og ~ R% N7
Ry — 1 , R—Ry+1
‘LL1% RO N, O-I%TN

The SIS model without demography is considerably simpler than the one considered here, since
the total population size S + I is constant. This has two consequences, namely that the model is
univariate, and that the denominator in the expression for the infection rate is constant and equal
to N. From [8] we find for Ry > 1 the following expressions for the means and variances of S and /
in quasi-stationarity:

1 , 1

MS%R_ON, O-S%R—ON,
Ry—1 , 1

W = R, N, O'I%]TON.

A comparison between these two sets of results shows that the approximations of the means of S
and 7 in quasi-stationarity are the same with and without demography, and also that the variances
are larger with demography than when demography is ignored. This difference is related to the
fact that the sum of the random variables S and 7 is equal to the total population size in both
cases. This sum is constant and equal to N in the model without demography, while it is a random
variable in the model that accounts for demography. This random variable has (at least as-
ymptotically for large times) a Poisson distribution with both mean and variance equal to N. Thus
the variance of S + / equals 0 in the model without demography, while it equals N in the model of
the present subsection.

By using the same arguments as in Section 2.6 we find that the reparametrization of R, in the
transition region can be written

This relation has the same form as we found in the previous section for the SI model. Thus we
conclude that the transition region, where the deterministic model is not valid, is narrow.

4. A stochastic SIR model with demography

I proceed to formulate a stochastic SIR model with demography. The model is a Markov
population process with three state variables, S, I, and R, standing for the number of susceptible,
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infected, and recovered individuals, respectively. The recovered individuals are assumed perma-
nently immune to additional infections. I use the same five basic parameters as for the SIS model
of the previous section, namely the expected population size N if all individuals are susceptible,
the death rate per susceptible or removed individual y, the additional death rate u, per infected
individual, the contact rate 5, and the recovery rate per infected individual y,. The hypotheses of
the model are given in terms of the transition rates in Table 3.

The state probabilities are defined by p;,(¢)

forward equations for these probabilities can be written

p;ir(t) = il(s - 1? i? r)psfl,i-,r(t) + lal(s + la iv r)perl,i,r(t)
+ Hz(sa i+ lvr)pS,i-H.,r(t) + ,u3(s, iv r+ l)ps,i,r-H(t) + VZ(S + 17i - l?r)ps-kl,i—l,r([)

+vi(s, i+ Lr—

where

l)ps‘iJrl.rfl(t) - K(Sa iar)psir(t)’

=P{S(t) = s,1(¢)

I Nasell | Mathematical Biosciences 179 (2002) 1-19

=i,R(t) = r}. The Kolmogorov

K(S,i,l") :/Il(S,l',}")—|—ﬂl(S,i,l”)+,ll2(S,i,r) —|—/13(S,i,r)+V2(S,i,}’)—|—V3(S,i,V).

The deterministic version of the model leads to the following system of differential equations:

S"=uN —f

S
S+71+R

R =y, — uR.

I reparametrize the model in exactly the same way as for the SIS model by introducing the derived

S+I+R
—(n +Fu+w),

parameters Ry, o, and J;, defined in terms of the basic parameters in (3.1)—(3.3).

The system of differential equations for the deterministic version of the model with the scaled
= R/N has two critical points. One of them is (1, 0, 0) and
corresponds to the absence of infection. The other one corresponds to an endemic infection level.

state variables x; = S/N, x, = I/N, x3

Its coordinates are x = (X1,X,,X3), given by

N o — (6 — 1)

T Rty — (0 — 1)
. Ry-1
" Rooy — (6, — 1)
(Ro —1)(og — 0y)
R,0 — (51 - 1) '
Table 3

Transition rates for the SIR model with demography

Event Transition Transition rate
Immigration of susceptible (s,0,7) = (s+ 1,i,7) Ai(s,i,r) = uN

Death of susceptible (s,8,7) = (s — l,z,r) Iy (s,0,7) = s

Death of infected (s,8,7) = (s,i—1,r) W(s,i,r) = (4 w)i
Death of removed (s,8,7) = (s,i,r — 1) W(s,i,r) = pr

Infection of susceptible (s,8,7) = (s—1,i+ 1,r) va(s,i,r) = Psi/(s+i+r)
Recovery of infected (s,0,7) = (s,i—Lir+1) vi(s,i,r) =i
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The probability of having zero infected individuals at time ¢ obeys the differential equation
Plo.(t) = poup.(t).

It follows that the time to extinction tg from quasi-stationarity has an exponential distribution
with the expectation

1
poug.r.

As in Section 3, I find that the covariance matrix X that solves (2.7) with the expressions for B(x)
and S(x) for this model is too complicated to be useful. I therefore limit myself to a consideration
of the approximations of the moments of S, /, and R in quasi-stationarity that apply when the
ratio of average life length to average time infected is large. For the expectations of S, 7, and R |
derive the first terms in the asymptotic approximations of Nx;, Nx,, and Nx;, respectively, as
o — 00, and for the variances I evaluate the first terms in asymptotic approximations of the
diagonal elements of X, also as o — oo, followed by a multiplication by N. The results are

E(tq)

lN b O(lN
~—N, o;=-—=N,
Hs R s R%

Ry —1 Ry—1
W~ N, af% >—N,
R()OC] RO
R()—l ) o
Up & N, o,~—=5N
7Ry RRS

Note that these results are not influenced by the parameter ¢;, which measures the additional
mortality suffered by infected individuals. This is in sharp contrast to the situation for the SIS
model, where a clear influence of the differential mortality could be observed.

These results for the moments of S and / in quasi-stationarity are compared with the corre-
sponding results in the similar but somewhat simpler SIR model with demography dealt with in
[2]. This model differs from the present one in three ways. First, it does not allow for differential
mortality. The finding above prepares us for the result that this will not influence the means and
variances of S and [/ in quasi-stationarity. Second, this simpler model is bivariate instead of the
trivariate model of the present section, since the hypotheses of the model lead to the consequence
that the state variable R does not influence S or /. Thirdly, and most importantly, this simpler
model uses the conventional infection rate $SI/N instead of SI/(S + I + R). This represents an
unjustified simplification, since stochastic variability in the denominator of the expression for the
infection rate is not accounted for. It is therefore rather surprising to find that the two models
show agreement between the first-order terms in the asymptotic approximations as o; — oo of the
means and variances of S and 7 in quasi-stationarity. One consequence of this is that the ap-
proximation of the expected time to extinction from quasi-stationarity that is given in [2] applies
also to the SIR model with differential mortality and proper infection rate treated in this section.

The reparametrization of R, in the transition region can for this model be written

VR, — TVN

o
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The transition region is considerably wider for the SIR model than for the SI and SIS models
treated in the two previous sections. The condition N > o?p?/(Ry — 1) must be satisfied in order to
wind up in the region where Ry is distinctly larger than one, and where the deterministic model is
an acceptable approximation of the stochastic one. With o; = 3000 and p = 3 we find that N must
be larger than 81 million if Ry = 2, and larger than 4.2 million if Ry = 20.

5. A stochastic SIRS model with demography

This section is devoted to a study of an SIRS model with demography. The model differs from
the SIR model of the previous section only by allowing a loss of immunity. In addition to the five
basic parameters used in Sections 3 and 4, I introduce y, to denote the rate of loss of immunity.
The hypotheses of the model are spelled out in terms of the transition rates in Table 4.

The state probabilities at time ¢ are defined by py,(¢) = P{S(¢) = s,1(¢t) =i,R(t) =r}. The
Kolmogorov forward equations for these probabilities can be written

p;ir(t) = l](S - la I r)psfl,i,r(t) + ﬂl(S + la I r)ps+l ir( )
+ luz(sv i+ lvr)p9,5+1,r(t) + :“3(*97 iLr+ )per(t)
+vils = L, r+ Dpe i () +va(s + 1,i = 1,7)pg1io1.-(2)
+ V3(S, i + 1,7‘ - l)ps,iJrl.,rfl(t) K(Sa L, r)pwr(t)a
where
k(s,i,r) = A (s,i,r) + 0y (s,1,7) + (s, 6, 7) + p3(s,4,7) + vi(s,i,7) +va(s, i, 7) + v3(s,1,7).

The deterministic version of the model leads to the following system of differential equations:

S =N — f— S+ R

WN =P r 1S TR
S

I =p—20 I

ﬁS+I+R (y +p+ ),

R =yl — (u+7)R.
I reparametrize by introducing the parameters Ry, o; and J; as in (3.1)—(3.3), and in addition the
parameter o, defined by
HA 7
L

Oy =

Table 4
Transition rates for the SIRS model with demography

Event Transition Transition rate

Immigration of susceptible s,i,r) — (s+1,i,r) Ai(s,i,r) = uN

( (
Death of susceptible (s,i,r) = (s = 1,i,r) Iy (s,,7) = s
Death of infected (s,4,7) = (s,i— L,r) W(s,i,r) = (4 w)i
Death of removed (s,,7) = (s,i,r — 1) Ws(s,i,r) = pr
Loss of immunity (s,i,7r) = (s+ 1,i,r = 1) vi(s,i,r) = por
Infection of susceptible (s,0,7) = (s—=1,i+ L,r) va(s,i,r) = Psi/(s+i+7r)
Recovery of infected (s,,7) = (s,i—Lir+1) vi(s,i,7) = p,i
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As in the previous section we introduce the scaled state variables x; = S/N, x, =I/N, and
x3 = R/N. The system of differential equations for the scaled state variables has two critical
points. One of them is (1, 0, 0), corresponding to the absence of infection. The second one cor-
responds to an endemic infection level. It is equal to x = (%, %,,X3), where

)21 _ o+ 0y — 51

Roott + ((Ry — 1)61 + 1oy — 1Ry
% — (Ro — Do

Rooy + ((Ry — 1)1 + D)oy — 61Ry’
. (Ro — 1)(o1 — 61)
X3

- RoOCl + ((R() — 1)51 + 1)0(2 — 51Ro '

The probability of having zero infected individuals at time ¢ obeys the same differential equation
as in the SIR model:

p.lo.(t) = /JlOC1p414(t).

It follows that the time to extinction tq from quasi-stationarity has an exponential distribution
with the expectation
1
pong..
As in the case for the SIR model one finds that the covariance matrix 2 that solves (2.7) with the
expressions for B(x) and S(x) that hold for this model is too complicated to be useful. I therefore
derive the asymptotic approximations of the moments of S, 7, and R in quasi-stationarity when
the ratio of average life length to average time infected is large, i.e. when o; — oo. Here, I get
different results when o, is kept finite as compared to when «, grows with «;. Note that the SIR
model is a special case corresponding to o, = 1, and that the SIS model is recovered as o, — oo.
The following results are found for the moments of the three state variables as o; — oo and
Oy = O(l)
1 04}
~—N i
Us RO ’ GS OCzR%) )
- 0%} (R() — 1)
Ky —061 Ro
Ry—1
Up

E(tq)

Ry —1

2 o
N, o, ~ R2
0

N,

24
OCQRO

The results for the SIR model in Section 4 are recovered for o, = 1. The reparametrization of R, in
the transition region can be written

o
0= f\/RO — 1VN.
1

The approximating expressions for the moments of the three state variables are more complicated
when one considers the situation where o, and o, both grow toward infinity. To study this case I
put o, = 0o and let oy — oo with 6 = O(1). The following approximate expressions are then
found for the means of the three state variables in quasi-stationarity:
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N 0+1 N
B ™ S Ry — )0+ O+ Ry
(Ry—1)0
b S Ro— )0+ 0+ Ry
Ry—1
M ™ S Ry = 10+ 0+ Ry
The variances of the same state variables in quasi-stationarity are under the same condition ap-
proximated as follows:

2 (0 + D[Ry 4+ 1)0% + Ro(Ro + 2)0 + Ry
S RoO(0 + Ry)[01(Ry — 1)0 + 0 + Ry ’

2 o (B = Ry + 1)0” + (RS + Ro)0” + (RS + R§ — Ry)0 + RS — Ry
! Ro(0+ Ro)(0 + 1)[61(Ry — 1)0 + 0 + Ry]

N,

> Ro(Ro — 10> + (R — Ry + 1)07 + Ro(R2 — 2Ry +3)0 + R
K Ro0(0 + Ro)(0 + 1)[01(Ry — 1)0 + 0 + Ry

It is straightforward to verify that the results for the SIS model are recovered as 0 — oc.
The reparametrization of R, in the transition region can in this case be written

p= \/Wel(Ro — )VN.

The width of the transition region for the SIRS model depends strongly on the value of the
parameter o,. One can expect that the transition region is narrow if o, is large, and that it is wide if
o, 1s small. The reason for these expectations is that the SIS model, with its narrow transition
region, is recovered as a special case as oy — oo, and that the SIR model, with its wide transition
region, is recovered for o, = 1. These conclusions are valid in the case where the average life
length is much longer than the average time of being infected.

N.

6. Concluding comments

The fully stochastic models discussed here are too complicated to allow explicit solutions. The
results that have been given are all based on approximations. One would need to make com-
parisons with numerical evaluations in order to be able to judge the adequacy of these approx-
imations. In the absence of such numerical work, I can use my experience with detailed studies of
SIS and SIR models to make two conjectures. Both of them apply when the condition for being
above the transition region is satisfied. The first conjecture is that the normal approximation of
the body of the quasi-stationary distribution provides a reasonably good approximation. The
second conjecture concerns the adequacy of the approximation of the expected time to extinction
from quasi-stationarity. The estimate of this quantity is based on an extension to the tail of the
normal distribution that is valid only in the body. The second conjecture is that this approxi-
mation is crude, but that it gives correct order of magnitude.
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The conditions for validity of the approximations of the quasi-stationary distributions and of
the expected time to extinction from quasi-stationarity are also conditions for validity of the
corresponding deterministic models. It is noteworthy that there are some models (SIR and SIRS)
where huge population sizes are necessary for validity of the deterministic versions of the models.
This means that deterministic models for such situations are based on unacceptable mathematical
approximations for a large range of parameter values. This fact raises questions about the use-
fulness of deterministic models in this area, and shows that demographic stochasticity cannot be
ignored.

The importance of demographic stochasticity for understanding the phenomena of recurrence
and extinction in childhood infections is emphasized in [10]. This reference analyses the fully
stochastic counterpart of chaotic deterministic models for recurrent epidemics, and shows that the
mechanism that drives chaos in these models is an unjustified mathematical approximation in-
troduced in going from the stochastic to the deterministic formulation.

Deterministic models of endemic infections have advanced considerably beyond those con-
sidered here, to include such phenomena as age structure, heterogeneity, and spatial structure.
Examples are given in Hethcote’s review paper [4]. It is clearly desirable to extend the analysis of
stochastic models in a similar way. For work in this direction the reader is referred to Andersson
and Britton [11], where a stochastic SEIR model with demography is treated. Both the life length
and the waiting times in the E and I states are generalized from exponential distributions to
gamma distributions. Emphasis is placed on analyzing approximations of the quasi-stationary
distribution and of the expected time to extinction from quasi-stationarity.

A similar goal is pursued by Allen and Burgin [12]. They establish stochastic SIS and SIR
models in discrete time as approximations of the corresponding continuous-time models.
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