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STOCHASTIC MODELS OF THE SCATTERING OF
SOUND BY BUBBLES IN THE UPPER OCEAN*

PETER C. C. WANG and HERMAN MEDWIN
Naval Postgraduate School, Monterey, Calif.

Abstract. Stochastic models are developed to relate the statistics of sound speed
fluctuations and bubble density variations as a function of sound frequency in the
upper ocean. These predictions from the stochastic model have been compared with
ocean experimental data of sound speed modulation in the frequency range 15 to 150
kHz, and show satisfactory agreement. Future experiments and further modification
of this model are discussed.

I. Introduction. It is well known that during sound propagation in the ocean,
phase and amplitude fluctuations take place under the influence of temporal changes
of motion, temperature, depth and salinity. Recently, Medwin [3, 5, 8] and his students
have shown experimentally that the sound dispersion and phase fluctuations for fre-
quencies up to approximately 100 kHz depend, to a considerable extent, on the bubbles
present in the upper ocean.

Earlier an experiment investigating the scattering of sound by bubbles [4] generated
by an artificial wind in sea water showed that the size distribution of bubbles remains
invariant to changes in wind velocity at least for large wind velocities (greater than
8-10 m/sec). However, bubble density, regardless of its size distribution, does not
remain constant for various wind velocities. The bubble density near the surface is
dependent largely upon the wind velocity, wave height [8] and the depth.

Medwin [5] has investigated the dependence of bubble densities on depth in iso-
thermal coastal waters, at sea states one and two, over twenty-four-hour periods. It
is the purpose of this paper to develop stochastic models to explain some of the experi-
mental findings; through the model, we will be able to obtain additional information
regarding the dispersion behavior at other frequencies where experiments fail to obtain
data.

The initial task here is to make a study of the dependence of speed fluctuations
on sound frequencies and temperature fluctuations at various given bubble densities.
Denote the speed of sound as C{T, N, /), where T is the temperature, N is the bubble
density and / is the sound frequency and where depth and salinity are assumed to be
constant. We propose to compare the following pairs of random variables:
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C(T, , Ni | /,), C(T, , Ni | U), i, j = 1, 2, • • • , n

where /i , /2 denote two selected frequencies from 15-150 KHz. Corrections to the values
of C(Tj , Ni | /) must be made due to changes of depth and salinity.

For fixed frequency, we have determined the probability density function (p.d.f.)
of N from the knowledge of the p.d.f. of C and p.d.f. of T.

The variance of the speed fluctuations <rc2(j) as a function of / and /„ (the bubble
resonant frequency) are analysed in Sec. II and the theoretical graph of this function
is provided in Fig. 1. The asymptotic variance of the speed fluctuations (/ < /0) and
some critical values of <rc2(f) such as o-c2(/0/(l ± d)x/2) (where d is the bubble damping
constant; see Figure 5) have also been evaluated and are presented in detail in Sec. II.
Some statistical procedures and numerical examples are discussed in Appendix A.
An asymptotic regression model is presented in Appendix B. The Kolmogorov-Smirnov
two-sample test is considered in Appendix C.

This report includes part of our joint work developing statistical models in order to
explain the role of bubble density in the dispersion of sound and in the sound speed
fluctuations in the upper ocean.

II. Stochastic models on dispersions of sound speed fluctuations due to bubbles.
A. Summary. Our effort is directed to developing the relation between the distri-

butions of the sound speed C determined from the experimental equation (i.e., C =
xf/(n + <p/2t) where <p is the variable sound phase measured in radians, f is the sound
frequency and where x (the sound path length) and n (the number of wave lengths)
are known quantities [3]) and the sound speed CT determined from the Wilson formula
[3]. These two expressions for sound speed in the bubbly water in the upper ocean are
assumed to be related by the following functional form [9]:

C = CT[ 1 + a(f)V]~1/2 (1)

Figure 1
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where

a(f\ 3jWa))2 - 1] 
a{1) RW{[(uo/u)2 - l]2 + dW/c/)} (1 '

and V = N which is the bubble density (see [9, p. 84 for details of formula (1)), d is
the damping constant (see Fig. 5) and R is the radius of bubbles.

The distributions of C and CT are derived under some mild restrictions in Sees.
11(B) and 11(C) respectively. The distribution of V is provided in 11(C). The variance
of C and asymptotic variance of C are discussed in 11(D).

B. The experimental determination oj the variance oj sound speed C. It is given that
the speed in the real ocean can be experimentally determined by C = jx/(n + tp/2ir).
Assume that the variances of / and <p are known (actually var / = 0). It is the purpose
of this section to demonstrate that the variance of C can be determined. We further
assume that the p.d.f. of <p is a truncated Gaussian, i.e.

Hf) = —7=— exp (— (<p — <p0)2/2<r/) if 0 < <p < 2t, . .
a v 2ir <jv (4)

= 0 otherwise,

where a is the normalizing constant. The above hypothesis is confirmed as reasonable
by the research findings in Rautmann's recent work [3]. The cumulative distribution
function (c.d.f.) of the random variable C is denoted by G(c) and we have

G(c) = Pr {C < c}

= 0 if c < /x/(1 + n)
/*2t (.fx/c —n)

= 1—1 h(<p) d<p if jx/(n + 1) < c < fx/n (3)
Jo

= 1 if c > fx/n,
where h(ip) is given in formula (2).

The p.d.f. of the random variable C is g(c) = G'(c). Using the fact that C is a positive
random variable and

r* fx/n /*fx/n

E(C) = / [1 - (?(c)] dc, E(C2) = / 2c[l - G(c)] dc,
v fx/(n+l) «- /x/(n + l)

the variance of C, <rc2(/), can be expressed by the following equation:
nfx/n /»2 7r (fx/c — n) nfx/n /%2ir (fx/c—n) ~1 2

(Tc2(/) = / / 2Ch(<p) d<p dc — / h(<p) dtp dc\ ■
''fx/(1 + n) Jo LJ/x/in+1) J0 J

Note that both Eqs. (3) and (4) can be evaluated either by numerical procedures or
by the table on Gaussian distributions. Let us denote by H(<p) the c.d.f. of the random
variable then formula (4) becomes

^/(/) = fZ,n 2CH\2*(ff-n)
^ fx/(1+n) L \(y /J

-{r
{•'fx/il+n) L \C /

dc
(4')

dc
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C. Determination of the distribution of CT from Wilson's formula and V. It is assumed
for simplicity that the quantities d (depth) and S (salinity) in Wilson's formula are
constants and furthermore we replace the T2 and T3 terms with their corresponding
mean values. Wilson's formula is then reduced to the linear form

CT = a + bT (5)

where a = 1449 + ,017d + 1.39(5 - 35) - .055T2 + .00037'3, b = 4.6 - .012(5 - 35),
and T2 = 1/m 2«=i ™ T2 and T3 = l/m ^1 = xm T3; m is the sample size and the TVs
are the observed values of T. We further assume that b > 0 since S is very close to the
value of 35.

This linearized version of Wilson's formula is useful because of the distributional
properties of random variable C,T immediately obtainable. We assume that the random
variable T is distributed according to a Gaussian distribution; i.e., the p.d.f. of the
random variable T is

h(t) = —-t=— exp [ — {t — <0)2/2crr2] if 0 < t < co , (5')
z V 2ir <tt

= 0 if t < 0,

where z is the normalizing constant. The c.d.f. of the random variable CT is

Q(C,) = Pr{CT<Ct\
= 0 if C, < a,

(6)
C t —a) /b

= / h(t) dt if a < C, < co.
Jo

This implies that the p.d.f. of the random variable CT is

q(Ct) = J if a < C, < ~, (7)

= 0 otherwise,

The randomness of CT can be obtained more accurately if T2 and T3 terms in Wilson's
formula are included in the calculation, and the procedures used above can be extended
immediately to include terms such as Tand T3. The variance of crCT2 has the form
crCT2 = b2aT2 and o>2 can be obtained from Eq. (5'). We assume for simplicity that the
random variables C and CT are stochastically independent random variables because
C does not depend upon T and CT does not assume bubble density. Hence the joint
p.d.f. of random variables C and CT can be written as g(C, Ct) = g(c) -q(Ct) if a < C, < <*>
and fx/(n + 1) < C < fx/n. We can rearrange (1) and have

F " a"5) [Cr'/C" " «•

Using the distributions of C and CT derived in 11(B), 11(C) together with the condition
that the random variables C and CT are independent, the distribution function H(v)
of the random variable V can be derived in each of the following three cases depending
on whether a(f) > 0, o(/) < 0 or a(f) = 0. These cases correspond, respectively, to
sound frequencies co below, above, and equal to the bubble resonant frequency co0 .
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Case 1. a(j) > 0 for w < o>0 . The c.d.f. of the random variable V is

H,0) = 0 if v < 0
nfx/n i*C(l + a(.f)v) l/a

g(C, Ct) dC, dC
Jfx/n/(l + a(f)v)1/a *fx/n

if 0 < v < ^ [(n + 1/n)2 - 1] (8)

fx/n *C (.a(f)v +1)1/* -j

g(C, Ct) dC, dC if v > - [(n + 1/n)2 - 1],
J fx/(n +1) J fx/n a\J)

Case 2. a(f) < 0 if w > o0 • The c.d.f. of the random variable V in this case can be
expressed as

H2{v) = 0 if v < 0
/%fx/n /*&>

- / / g(C, Ct) dC, dC if 0 < v <
Jfx/(n +1) *'C[l+o(/)»] >/«

-1
«(/)

= 1 if V > -7^-
«(/)

Case 3. a(f) = 0 for co = co0. The c.d.f. on V, denoted as H3(v), is degenerate along
the line CT = C for all values of v, i.e.,

H3(v) = 0 if v < co ,

= 1 if v = CD .

The distribution function of V is governed by essentially two different functional
forms. For co < o>0 (for frequencies less than bubble resonance frequency) the distribution
of V is given in formula (8). For a> > , the distribution of V is given in formula (9).

D. The behavior of the variance of sound-speed fluctuation and the asymptotic variance
of sound speed at high frequencies. The behavior of the variance of C on the low-frequency
portion (relative to the resonant frequency) is provided by formulae (4) and (4') in
11(B). We must utilize information expressed in formula (8) to obtain ac2(f) for the
high-frequency portion as well. To approach this problem, we make certain assumptions
which are fairly reasonable from the experimental standpoint of view, namely:

1. The random variable V is Gaussian,
2. V and CT are independent random variables.

The p.d.f. k(v) of random variable V is Gaussian, i.e.,

/c(v) =  — exp [—(v — Vof /2<rr2], 0 < y < co
w v 2ir <yv

= 0, v < 0,

where w is the normalizing constant. The distribution function of the random variable
CT is given in formula (6). The distribution function of the random variable C can be
calculated as follows:
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Case 1. a(f) > 0 for w < co0 .

G^C) = 0 if C < 0 (11)

= f f q(Ct)k(v) d,C, dv if C > 0.
Jo J C[l + o(/)v] »/37[l + o(/)t>]

Case 2. a(j) < 0 for w > w0 •

(?2(C) = 0 if C < 0 (12)
/*— l/o(/) p<»

= / / q(.Ct)k(v) dC, dv if C > 0
•'0 Jcil+a(.f)v]

= 1 if C = CO

Note that here we have the condition 0 < v < —l/a(f). For v > — 1 /a(f), we have

<?2(0 = Pn{C < cj

= p< cl[l + a(f)v]
= 1.

Formula (11) may be rewritten as

G,(Q = f k(v)Q[C( 1 + a(/»1/2]} dt;, (13)
•> 0

and formula (12) may be rewritten as

G2(C) = / fc(t>){l - Q[C( 1 + a(/»l/2] dv. (14)
J 0

The variance of C can be computed from formula (13) for the case where w < w0
and from formula (14) for the case where co > io0 . We then have for to < <x>0 ,

i<rM = T f 2Ck(v)Q[C(l + a(f)v)1/2] dv dc (15)
J 0 Jo

- f k(y)Q[C(l + a(f)v),/2] dv dcj ■

Similarly, for oi > a>0 we have
/»co /*—1 /<*(/)

2<re2(/) = / 2Ck(v) {1 - Q[C(1 + a(/»1/2]j dy dc (16)
Jo «'o

r r°° r_1/a(/) "12
- |Jo Jo Kv)[l - Q[C( 1 + a(/»1/2]} dv dc\ ■

It is clear that we have the identities

i«r.3(/o~) = 2<r/(/o+) = & c = KTc2(0). (17)

(see Fig. 1). To differentiate Eq. (15) with respect to f, we get

D, 1(rc2(/) = [ [ 2k(v)(A - c) Z),Q di> dc
Jo *'o
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where

A = f [ fc(i;){l - Q[c(l + a(f)v)1/2]} dv dc
Jo J 0

and
ct q[c( 1 + a(/»'/2] D (i)

M 2 [1 + a(f)v]1/2 '

Letting D,a{j) = 0, we have found that the critical value of i<xc(/)2 is at the
point /o/a/I + d. Similarly, we can find from Eq. (16) that the critical value of the
function 2<rc(/) is at the point /0/"\/l — d. The graph of i<rc2(f) and 2cc2(/) for all fre-
quencies / > 0 is either an M-shaped curve or a TF-shaped curve. Based on the physics
of the problem, we conclude that this graph is an M-shaped curve which satisfies the
following inequality:

,<rc\fo/Vl - d) > <7/(/„).

This inequality will be established statistically in Eqs. (19-21).
In the remaining portion of this section we will demonstrate that the asymptotic

variance, defined below, depends on co0 and the lower bound of this asymptotic variance
is 0-/(0). As / —> oo, we have from (1') that a(j) —* — 3/(K2co02).

The asymptotic variance is denoted as

2ffc2(oo) = lim 2cc2(/)

-.(/. m(4 - -«%■)']} <**
■ [.(I tw{' " e[c(1" rS?) ]} *dc]

I'M A ,
Jo 1 - 3v/(RW)'ac n

+ E\c) ' k{v) dv _ f [R°"
Jo 1 - 3v/(RW) l

k(v) dv

('-A)""
From the Cauchy-Schwarz inequality, we have

'3 k(v) dvk(v) dv .

! .A"-1- t}2 2
/«>0

Ru o

Hence, we have the following inequality:
,*-.•/» dv

(>-&n
2

20",

U 0 /O

(°°) > <^o2(/o)'/ &(»)
Jo

1 7?2 2/I co0

3v (18)

= *c\fo) + ac\fo)[aE(V) + a2E(V2) + • • • + anE(Vn) + • • •]

where a = 3/R2u02 and E(Vn) = f0° vnk(y) dv, the nth moment of V.
Since all moments are nonnegative, we conclude that

2<r.s(oo) > ac2(f0). (19)
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Furthermore, letting w0 —> , we have

^sE(V) + -J-<E{V2) +
_L\i COq tb C00

lim 2ae (oo) > lim W(/0) + <rc2(/0) = <r/(/o),

(20)
which is to be verified.

The behavior of formula (20) is described in the graph in Fig. 2 for two superposed
curve with bubble frequencies /0 and f0', and this checks out with the experimental
data collected in [8] for high frequencies.  

It can be shown that the variance at the first peak / = /„/ V'l + d is greater than
the variance at the second peak where / = /0/ V'l — d. We have

2cr«U/VM, ,*.'<&/VTR). (21)
The comparison of these predictions with results of an actual experiment at sea

is interesting. Figs. 3 and 4 are from [8]. We tabulate below the suggested resonant
frequencies from this work, the predicted maxima of the variance following Eqs. (15),
(16), and the observed maxima at sea.

Resonance
Damping frequency Predicted maximum Nearest experimental

constant d in KHz of ac2 using Eqs. maxima of ac2
from Fig. 5 from Fig. 3 (15) and (16) from Fig. 4

Eq. (16) (Eq. (15))
.075 20 27 (29) 26*
.082 39 37 (41) 37*
.092 54 51 (57) 57-64 plateau*
.105 75 71 (79) 71*
.12 105 99 (112) 94, 109

Superimposed curve of

-► f
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Differential speed of sound M/Sec
i I I I

ooo-fcrooro-fco)
r

Corrected differential speed of sound M/Sec

Figure 3

The starred values represent what we believe to be substantial confirmation of the
predictions of the stochastic model.

It is observed that it is for frequencies above 100 KHz that the bubble model is
inadequate. In fact, the differential speeds at these high frequencies are rather small

1.0

b 0.8

> <->
£ c/! 0.6

H ^ 0.4
>0

0. 2

J I I 1 L
20 60 100 140

I Frequency (KHZ) i
'2200 Time I900l

Figure 4
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and the variance of the speed is more likely to be due to temperature fluctuations,
according to other evidence presented in [8].

E. Side experiments. In the experiment investigating the scattering of sound by
bubbles generated by wind in sea water under laboratory setup, several side experi-
ments can be considered. Namely:

(i) The temperature effect on the fluctuation of sound speed can be tested when
depth, salinity and bubble density are assumed to be kept at constant level.

(ii) Since bubble density and depth are inversely related, the exact graph of this
relation can be determined from experiments.

(iii) We conjecture that any modifications to Wilson's formula to include the effect
have to come from the depth term (i.e., 0.17d [3 p. 21]) if bubble density is incorporated
into Wilson's formula. We propose specifically that the linear depth term is to be re-
placed by a nonlinear term in Wilson's formula; i.e., the linear depth term (0.l7d) is
replaced by the following nonlinear term:

6,(d + ba)(N + b3)

where 6i , b2 and b3 are parameters to be estimated while d is the depth and N is the
bubble density. This side experiment should be carried out under conditions that the
salinity of sea water used is kept at 35 and temperature of sea water used is kept constant
at 50-60° F.

(iv) Since changes of depth (say due to waves overhead) cause changes in the
resonant frequency of the bubbles, we propose to study the consequences this dependence
in terms of the variance of the speed of sound as a function of wave height. Such effects
have been postulated by Fitzgerald [8] in explanation of the large cross-correlation of
sound phase with wave height near /0 .

Appendix A. Statistical procedures illustrated with numerical examples. The
basic question concerning the experiment is to determine how various bubble-density
fluctuations can change the sound-speed fluctuations at various temperature fluctuations
and frequencies of sound input. Here we discuss statistical procedures for testing the
difference of the two random variables C\, and Cfa . Two statistical procedures for
testing the difference of two empirical distributions are provided for illustrative purposes.
Sample sizes required to attain certain confidences are also discussed. Two simple
numerical examples are provided to illustrate how to apply these procedures to data
collected in the experiment.

A. Two-sample Kolmogorov-Smirnov test. The two-sample Kolmogorov-Smirnov
test can be used to test the difference of two empirical distributions given that they
differ by no more than p% of the average sound speed.

Let n be the size of the sample and let F„(t) and Gn(t) be the empirical distributions
corresponding to the two random variables; that is:

„ . , number of Cft's < c ,
K{c) - n

„ , N number of C,/s < c
Gn(c) = -

This test is based on the following statistic:
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Dnn = sup |Fn(c) — G„(c)|.

The null hypothesis that the samples are from the same distribution is rejected if J)nn
is sufficiently large. The exact distribution of the random variable nDnn is given by
Birnbaum and Hall [7], A numerical example is provided in the following. Assume that
observations CA( 1), C/l(2), C/t(3), C/t(4), Cft(5) are made under system one and ob-
servations CfX 1), CfX2), CrX%), C/3(4), C/,(5) are made under system two. These ob-
servations are assumed to be

(1400.5, 1401.2, 1401.4, 1402.3, 1403.0)
and

(1401.3, 1402.4, 1402.6, 1404.0, 1405.0).
The computation of Z>5,5 = -6 is shown in Table 1. In this case, nZ)„„ = 5(.6) = 3.0'
It can be found that the shaded region has an exact area A = .36 under the null hy-
pothesis. In this case, Dnn is not significant at any level less than 36% (say 10% level).

B. x2-^ of goodness of fit. An useful alternative to the Kolmogorov-Smirnov
test for testing the equality of two empirical distributions is the x2-test. Let Cfl and
Cf, be stochastically independent random variables with empirical distributions Fn(C)
and G„(C) respectively, as defined in the last example. Suppose [Ax , A2 , • • • , A K]
is a partition of the set of possible values of Cft and Cu and let

Pi = Pr{Cfl e Ai], i = 1,2, • • • , K)

q< = Pr{Cf, G Aj], j = 1,2, • • • , K.

TABLE I.

C/,(t) CfJJ) Fn G,. |F„ —Q„ I
1400.5 .2 0 .2
1401.2 .4 0 .4

1401.3 .4 .2 .2
1401.4 .6 .2 .4
1402.3 .8 .2 .6

1402.4 .8 .4 .4
1402.6 .8 .6 .2

1403.0 1.0 .6 .4
1404.0 1.0 .8 .2
1405.0 1.0 1.0 0
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TABLE 2

Observed Expected (w» e')2
Partitions Frequencies n; Frequencies e; e,:

Range C/t Cf, Cfl C,, C/, C,.
1401-1420 2 10 12 4.8* 7.2** 12 1.63A 1.09
1421-1440 6 21 27 10.8 16.2 27 2.13 1.42
1441-1460 8 15 23 9.2 13.8 23 .16 .10
1461-1480 13 7 20 8.0 12.0 20 3.12 2.08
1481-1500 11 7 18 7.2 10.8 18 2.45 1.63

40 60 100 40 60 100 Xf = 15.8
* 4.8 = 40 J2 ** 7.2 = 60 J2 A 1.63 = (4.8 - 2)2

100 100 4.8

If Cfl and Cta have the same distribution, then P, = q{ , i = 1, 2, • • • , K. Accordingly,
the hypothesis of interest is:

H„ : P, = q, : i = 1, 2, ■ ■ • , K.
This is the problem of testing the equality of two independent multinominal distributions.
The partition Ax , A2 , ••• , A K may be determined by the experimental values. The
test statistic has an approximate x(K — 1) distribution. Based on the above discussion,
a two-sample x2-test of the hypothesis that two independent sets of independent ob-
servations are from the same distribution may be conducted by classifying the observa-
tions on Cf, and Cf, into sets of K cells, At. , A2, ••• , A K , and computing, as expected
frequencies for each cell, the products of its marginal totals divided by the number of
observations, x2 is computed from the resulting observed and expected frequencies.
The approximate distribution of the x2 statistic is that of the x2—table with (K — 1)
degrees of freedom. As a general guideline, this x2 approximation should be used only
when the sample size n is such that n > maxisfst (5/p,).

Example. Observations, already grouped, are given in Table 2, along with the
table of expected frequencies and the computation of x2- From the x~ table with v — 4,
the tail area is AX2(H0) = .003. The null hypothesis that Cfl and Cf, are identically
distributed is therefore rejected at the .10 level.

The sample size n required to attain a confidence that the two empirical distributions
may differ by no more than 25% (arbitrarily picked) may be computed in the following
manner. If a = 10%, then 1.22 = y/n/2 Dnn . Since Z)„n = 25%, one may compute
for the required sample size:

n > 2(16) (1.22)2 = 48.

In a similar manner, one obtains n = 60 if a — 5% and n = 85 if a = 1%. The sample
sizes corresponding to a few selected values of a are summarized in Table 3.

Remarks: The 25% difference of the two empirical distributions required is used
only for illustrative purposes.

TABLE 3

10% 5% 1%
n 48 60 85
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Appendix B. Asymptotic regression model. In this section, a curve-fitting tech-
nique is briefly discussed in the study of sound-speed fluctuations and bubble density.

Let us assume that the sound-speed fluctuation is determined solely by the bubble-
density fluctuations. A nonlinear model is proposed for the above phenomenon, namely
the equation:

C(N) = A + BPN; 0 < P < 1,

where C is the speed of sound and N is the bubble density and A, B, p are parameters.
The least-squares method for fitting the proposed regression curve above requires the
estimates p, A and B by successive approximations. For equally spaced values of N,
solutions of the appropriate normal equations can be simplified. Stevens [1] gave an
ingenious method for estimating the parameter by maximum likelihood. The practical
application of that method has been explored by Hiorns [2], Most of the techniques
discussed in the above references can immediately be used to our problem except certain
modifications must be made in order to increase the efficiency of the estimators p, A
and B, particularly for the case when p is small and the sample size is large.

This may not be necessary since no prior knowledge about p is known at this moment.
A similar regression form has been used in Medwin [5] to describe the dependence of
bubble density on depth and wind speed.

There are different ways of writing the regression, curve that are essentially the
same insofar as the parameters in one form can be expressed in terms of the parameters
in the other forms. For example, the parameters in

C = ail - byN),

C — p(l — exp [-q(N + s)])

are related as follows:

a = A, ab = —B, y = p, exp ( — qs) = b, In y = —q.

The proposed regression curve can be used not only where sound-speed fluctuations
and bubble density are concerned but can also be applied to the following experiments:

a. Bubble density versus depth [5, Figure 5],
b. Speed of sound versus temperature with bubbles,
c. Speed of sound versus temperature without bubbles.
The procedures suggested above will be useful in reducing the gross standard error

and mean errors at each temperature and in achieving better accuracy in the sound
speed.

Appendix C. Kolmogorov-Smirnov two-sample test. In comparing random var-
iables C(T, N, /i) and C(T, N, /2), the sound speed will be adjusted for the difference in
temperature. Let us denote the adjusted random variables by Cr,(T, N, f0 and
Cri(T, N, /2). A non-parametric two-sample test should be used here to establish whether

N, fi) and Cfl(T, N, /2) are affected by the bubbles in a similar manner. Without
any prior knowledge of these quantities, we propose adopting a two-sample Kolmogorov-
Smirnov test in testing the differences between Cfl and Cf, .

A few words must be said about the sample size when one is dealing with observations
of the random variables C(T, N, /,). The sample size and confidence can now be deter-
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mined from the two-sample non-parametric test (see Table 3). In-situ measurement of
the speed of sound in the upper ocean is not recommended for the experiment proposed
above because of lack of control to the variable "bubble density". However, any in-situ
measurements of the speed of sound in the upper ocean should include the measurements
of bubble density at the time where the experiment is conducted, and these data can
be used to provide a cross check with results in the laboratory. The above experiment
can best be conducted under laboratory conditions by wind-agitated breaking waves
because the bubble density can be controlled by wind speed [4], A cross check among
experiments conducted in the laboratory and in-situ measurements in the upper ocean
should be made so that inferences about the speed fluctuations at an assumed level of
bubble density in the upper ocean can be made. For details of the procedures,
see Appendix A.

References

[1] W. L. Stevens, Asymptotic regression, Biometrics 7, 247-267 (1951)
[2] R. W. Hiorns, The fitting of growth and allied curves of the asymptotic regression type by Steven's

method, Tracts for Computers, XXVIII, University College, London, Cambridge University Press
(1965)

[3] Jurgen Rautmann, Sound dispersion and phase fluctuations in the upper ocean, Thesis, Naval Post-
graduate School(1971)

[4] V. P. Glotov, P. A. Kolobaev and G. G. Neuimin, Investigation of the scattering of sound by bubbles
generated by an artificial wind in sea water and the statistical distribution of bubble sizes, Soviet Physics
—Acoustics 7, 341-345 (1962)

[5] Herman Medwin, In-situ acoustic measurements of bubble populations in coastal ocean waters, J.
Geophys. Research 75, 599-611 (1970)

[6] Vincent A. Del Grosso, Sound speed in pure water and sea water, J. Acoust. Soc. Amer. 47, 947-950
(1969)

[7] Z. W. Birnbaum and R. A. Hall, Small sample distribution for multi-sample statistics of the Smirnov
type, Ann. Math. Stat. 31, 710-720 (1960)



STOCHASTIC MODELS OF THE SCATTERING OF SOUND 425

[8] James Fitzgerald, Statistical study of sound speed in the inhomogeneous upper ocean, Thesis
in Engineering Acoustics, Naval Postgraduate School, December, 1972

[9] E. Skudrzyk Meyer, Sound absorption and sound absorbers in water, NAVSHIPS 900.164, 1, 1 De-
cember 1950

[10] Peter C. C. Wang and Herman Medwin, Statistical considerations to experiments on the scattering
of sound by bubbles in the upper ocean, Technical Report NPS-53WG72101A, Naval Postgraduate
School, Monterey, California (1972)


