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Abstract

The theory of monotonicity and duality is developed for general one-dimensional
Feller processes, extending the approach from [11]. Moreover it is shown that lo-
cal monotonicity conditions (conditions on the Lévy kernel) are sufficient to prove
the well-posedness of the corresponding Markov semigroup and process, including
unbounded coefficients and processes on the half-line.

Key words. Stochastic monotonicity, duality, one-dimensional Markov processes, Lévy-
Kchintchine type generators.

1 Introduction

A Markov process X; in R is called stochastically monotone if the function P(X} > y)
(as usual, x stands for the initial point here) is nondecreasing in z for any y € R,t € R,
or, equivalently (by linearity and approximation), if the corresponding Markov semigroup
preserves the set of non-decreasing functions. A Markov process Y; in R is called dual to
X, if

P(Y/ <z) =P(X{ >y) (1)
for all t > 0, x,y € R. If a dual Markov process exists it is obviously unique.

Stochastic monotonicity for Markov chains is well studied and applied for the anal-
ysis of many practical models, see e.g. [1], [6], [7], [17]. Stochastic monotonicity and
the related duality are also well studied for diffusions (see [10] and [5]) and jump-type
Markov processes (see [1], [3], [4]), [21]). In [19] the monotonicity for stable processes
was analyzed. For general Markov processes the analysis of stochastic monotonicity and
related duality was initiated in [11] devoted to the case of one dimensional processes with
polynomial coefficients (note some nasty typos in the expression of the dual generator in
[11]). This was related to interacting particle models (see also [16]), and related Markov
models in financial mathematics. In [20] the theory of monotonicity was extended to
multidimensional processes of Lévy-Khintchine type with Lévy measures having a finite

first internal moment, i.e. with fly\ _v(z,dy) < oo (slightly more general in fact).
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In this note we first extend the theory of monotonicity and duality to arbitrary one-
dimensional Feller processes (Sections 2 and 3), following approach from [11]. We shall give
a criterion of stochastic monotonicity in terms of the generator of X; and, under additional
regularity assumptions, the explicit formula for the dual generator. Here our approach is
based on the discretization and eventually on the theory of stochastic monotonicity for
Markov chains.

In the second part of the paper (Sections 4,5) we use an alternative approach to the
analysis of monotonicity, adapting in particular the method used in [14] for the generators
of order at most one. Most importantly we show that local monotonicity conditions (con-
ditions on the Lévy kernel) are sufficient to prove the well-posedness of the corresponding
Markov semigroup and process, thus contributing to the important problem of building
a process from a given pre-generator (see e.g. [2], [9], [12], [15]). Stochastically mono-
tone processes on the half-line are finally constructed including the case of unbounded
coefficients.

Most of the results given are extendable to arbitrary dimensions, but the exposition of
one-dimensional theory as a first step seems to be in order, not least because its relevance
to option pricing, see [18].

To conclude the introduction, let me thank professor Mu Fa Chen for bringing to my
attention some relevant recent publications of the Chinese school.

2 Monotonicity via discrete approximations

Let us recall shortly the theory of stochastic monotonicity for Markov chains, following
[1]. Recall first that an infinitesimally stochastic matriz or Q-matriz Q) = (Qunn) With
m,n € Z is such a matrix that Q,,, > 0 for m # n and

an = - Z Qnm (2)

m#n

for all n. To any such matrix there corresponds a Markov process (generally not unique)
with the generator given by the matrix @) (which we shall denote by the same letter):

Taking into account the properties of (), one can rewrite it in other two useful forms:

(@)= Qunfom = fn) = Y Qumnlfrn — f)-

m#n

If the intensity of jumps, specified () is uniformly bounded, that is
Sup |Qna| < 00,

the corresponding Markov process is unique and conservative, the latter meaning that the
corresponding semigroup preserves constants.
A Q-matrix is called stochastically monotone if

Y Qui <Y Quiy ViEn+1 (3)

I j>1



(we separate indices by commas, like @, ,,, if needed for clearness). The key discrete result
states (proof in [1]) that if @ is stochastically monotone, then the corresponding Markov
chain X} is stochastically monotone in the sense that P(X}" > m) is nondecreasing in
n for any m,t and the dual Markov chain Y; (satisfying (1) with integer x,y) has the

(Q-matrix
o0

Qnj = > (Qu — Qj-11). (4)
l=n
It turns out that the monotonicity condition becomes more transparent if written in
terms of the matrix w = (wpy,), which is connected with the @-matrix by the equation
Wnm = Qnnim- Thus the entries wy,, define the probabilities of jumps to the right (m > 0)
and to the left (m < 0) of n. In fact, condition (3) takes form

Z W, < Z Wnt1m VI#En+ 1. (5)

m>l—n m>l—n—1

and this condition is equivalent to two separate conditions on the right and the left jumps:

Z Wnm S Wn+1,k—1 + Z Wn+1,m vk Z 27 (6)
m>k m>k

Wn,—k+1 + Z Wn,—m 2 Z Wn41,—m VEk Z 2. (7)
m>k m>k

Remark. It is straightforward to see that (6) is equivalent to (5) for 1l > n + 2.
equation (2) implies that (7) is equivalent to (3) for I < n.

It is worth noting that (6), (7) are satisfied if wy, 1, w, —1 are arbitrary (non-negative)
and other coefficients satisfy simpler inequalities

Z Wnm S Z Wn+1,m; Z Wn,—m 2 Z Wn+1,—m Vk 2 2. (8)

m>k m>k m>k m>k

Finally equation (4) rewrites as

e}

Qn,n+i = Z(QnJri,nJriJrl - Qn+i71,n+i+l)

I=—i

and hence in terms of @y, = Q. ptm as

oo

Wi = Z(Wn+i,l — Wntie1,041)- 9)

I=—i
In particular, if wy,, do not vanish only for |m| < 1, the same holds for @ and
ajnl = Wn,—1, J)n,—l = Wp—1,1- (10)

Moreover, by duality, right jumps turn to the left jumps and vice versa, i.e. if w,_; =0
for all 2 > 0, then @,; = 0 for + > 0 and

oo
W, —i = Wp—i; + Z (Wneiy — Wneic1y) 1> 0; (11)
l=i+1



and if w,; = 0 for all ¢ > 0, then @, _; =0 for ¢ > 0 and
Wni = Wptio1,—i + Z (Wntim1,—1 — Wnyi—1) @ > 0. (12)
I=i+1
The following is the main result of this short paper.

Theorem 2.1. Let X; be a Feller process in R with the generator of the usual Lévy-
Kchintchine form

Lf(w) = 56@)f"(a) + ba) £ (o) + [ (Fa+0) = £(@) = F @, ()l dy) - (13)

with continuous G,b,v, and let the space C*(R) be a core. For simplicity assume also
(though this is not very essential) that the coefficients are bounded, that is

sup (G(m) + |b(x)] + /(1 A y2)u(x,dy)) < o0.

If the Lévy measures v are such that for any a > 0 the functions

/:O (e, dy), /__al/(a:,dy) (14)

[e.e]

are non-decreasing and non-increasing respectively, as functions of x, then the process X,
18 stochastically monotone. Moreover, the dual Markov process exists.

Proof. Let h > 0 and set

fle+h)+ flz—h) —2f(x)
2h?

flz = h) = f(x)
h

[z + hsgn(b(x))) — f(x)

Lpf(z) = G(v) A

+ |o(2)]

K

+ Y [f(x+mh)— f(x)+

mhlg, (mh)v(z, [mh,mh+ h))

flx+h) - f(x)

+ B

[f(x —mh) — f(z) +

mhlg, (mh)|v(z, (mh — h,mh]). (15)

Mgg

1

3
I

These operators approximate L on C?(R) for h — 0. Since this space is a core for L,
the corresponding semigroups converge. But by the above mentioned result for Markov
chains, the processes X, generated by L;, are stochastically monotone. Consequently the
same holds for the process X; generated by L. Again by the properties of Markov chains,
the dual processes Y;; to X are well defined. Their transition probabilities converge,
because they are expressed in terms of the converging transition probabilities of X, ;. The
limiting Markov process Y; is dual to X;. ]



3 Dual generators

Under some regularity assumptions we can write explicitly the generator of the dual
process. To simplify formulas, we shall do it only for Lévy measures supported on R
(the case of measures supported on R_ is symmetric and is done using equation (12)
instead of (11) used below).

Proposition 3.1. Under the assumptions of the above Theorem suppose additionally that
the Lévy measures are supported on Ry and either (i) v(x,dy) = v(z,y)dy with v(z,y)
differentiable in x, or (i) v(z,dy) = a(x)v(dy) with a certain Lévy measure v and a
continuously differentiable function a (decomposable generator case). Then the generator
of the dual Markov process acts by

Lf(@) = S0 f"(r) ~ [5G () + bl ()

+ /Ooo[f(w —y) = f(@)+ f(@)1p, (y)]o(x, dy) + f'(x) /0 y(v —o)(z,dy)  (16)

on C?(R), where

v(x,dy) = [v(z —y,y) + % /yoo v(x —y, z)dz]dy

in case (i) and N
2z, dy) = alz — y)v(dy) + d(z —y) / v(dz) dy

in case (ii).

Proof. By linearity one can calculate the dual generator separately for diffusive, drift and
integral parts of L. By (10) the dual generator corresponding to the first term in (15) has
the form

(2h*) 7 G(2) f(z + h) + Gz — h) f(z — h) = (G(z) + G(z — h)) f(2)],

which converges to

S G (x) — G @) )

as h — 0. Similarly analyzing the drift part yields the first two terms in (16).
Next, from equation (11), it follows that the dual operator to the first sum in of (15)
equals

Z (z —mh) — f(z)) [v(z — mh, [mh, mh + h))

m=1
+ Z (x — mh, [lh,Ih + h)) — v(z —mh — h, [Ih, Ih + h))]
l=m+1

flz+h)—
+ h

x) i mhlg, (mh)v(x,[mh,mh+ h)).

m=1



In case (i) it rewrites as

Z (x—mh)—f(z)) [/m v(x —mh,y) dy + Z / (v(z — mh, z) —V(x—mh—h,z))dz]

m=1 mh l=m+1 lh

B — o0 mh-+h
Jleth) - @) thlgl(mh)/ v(z,y)dy,
h m=1 mh
yielding the first formula for 7. In case (ii), it rewrites as
Z (x—mh)—f(z)) |a(z — mh)v([mh,mh + h)) + Z (a(x — mh) — a(x — mh — h)v([lh,lh + h))
m=1 l=m+1

St h) =~ f@)

. Z mhlpg, (mh)a(z)v([mh,mh+ h)) dy,

m=1

yielding the second one.

4 Well-posedness via monotonicity

Apart from the definition of monotonicity, the remaining exposition is independent of the
previous results. Let us first describe our approach in the simplest situation.

Theorem 4.1. Let
Lf(z) = / (& +y) — F(@) — F' @)y, dy) (17)

with a continuous Lévy kernel v such that

sup / (| A lyP)o(z, dy) < oo

and the first two derivatives V' (x,dy) and V' (x,dy) of v with respect to x exist weakly and
define continuous signed Lévy kernels such that

sup [ Iyl APl (o dy)| < o, sup (ol AP (e, d)] < .

/aoo v(z,dy), /_: v(z,dy) (18)

are non-decreasing and non-increasing respectively, then L generates a unique Feller semi-
group with the generator given by (17) on the subspace Coo(R)NC?(R)). The corresponding
process is stochastically monotone.

If for any a > 0 the functions




Proof. We shall use the following two Taylor formulas:

Y

Fety) - f(2) - Pla)y = / ('@ + 2) — f/(2))dz = /O -+ 2z,

0

where of course foy =— fyo for y < 0.

Differentiating the equation f = Lf with respect to the spatial variable x yields the
following equation for g(z) = f'(x):

() = (L+ K)g(),

where

Kg(z) = / (x4 y) — F() = F (@) (. dy)

- [T ([ e+ —gonas) viean - [ ( / ol +2)— g(a))dz ) o (z.d)

—z

= [Castota 2 = o) [ )~ [ atta = 2) - o) [ i)

—0c0
The main observation is that by the assumptions of the theorem both terms represent
conditionally positive operators of the Lévy-Khintchine type. Differentiating once more
one gets for v = ¢’ = f” the equation

d

Gv@) = (L 2K)o(@) + (o ) = Fla) = 1) (o, dy),

S Y

y
T e R (TR R ) 8 e
0 0
(19)
and the last term represents a sum of a bounded operator applied to v and a bounded

curve whenever ¢ is bounded.
To make the rigorous analysis let us introduce the approximating operator Lj, h > 0,

= (L+2K)u(z)+ /

—0o0

as

Lnf(x) = /| U ) = @ dy).

Then Lj is the sum of the first order operator and a bounded operator in C(R) (the
latter is due to our assumptions on the moment of v). Hence it generates a conservative
Feller semigroup T}" for any h > 0. By the form of the equations for f’,i.e. ¢ = (L,+K})g
with bounded (in C(R)) and conditionally positive K}, and also f”, one concludes that
this semigroup acts by positive contractions on the derivatives ¢ = f’ and by bounded
operators on v = f” uniformly in h. Hence the spaces Coo(R)NCY(R) and Co (R)NC?(R)
are both invariant under Tf. Moreover, for any f € C.(R) N C%*(R), the functions T} f
belong to Cwo(R) N C?*(R) with bounds uniform in i € (0, 1] and ¢ € [0, o] for any .
Therefore, writing

t
(T;fhl - J:thQ)f - / j:fh—Qs(th - LhQ)Tshl ds
0



for arbitrary h; > hy and estimating

(L, = Lig) T f ()] < / 1T flleawlylPv(x, dy) = o) fllc=(R), - 7 — 0,

B,

yields
(T = TP) Il = o)t flle=(R), 7 — 0. (20)

Therefore the family T} f converges to a family T} f, as h — 0. Clearly the limiting family
T; specifies a strongly continuous semigroup in C(R).

Applying to T} the same procedure, as was applied above to Ty (differentiating the
evolution equation with respect to z), shows that T} defines also a contraction semigroup in
Coo(R)NCY(R), preserving positivity of derivatives (and hence stochastically monotone)
and a bounded semigroup in C,(R) N C?*(R).

Writing
Ti-f_(G-TOf  Tif -1
t t t
and noting that by (20) the first term is of order o(1)|| f||c2 as h — 0 allows to conclude
that
im S = _ f
t—0 t

for any f € C(R) N C?*(R). Hence for these f, the semigroup T;f provides classical
solutions to the Cauchy problem f = Lf. By the standard duality argument this implies
the required uniqueness. O

Let us discuss a more general situation including unbounded coefficients, where we
include a separate term in the generator to handle in a unified way a simpler situation
of Lévy measures with a finite first moment. Let C | |(R) denote the Banach space of
continuous functions g on R such that lim,_ .. g(z)/|z] = 0, equipped with the norm

l9lle..,, = sup.(lg(=)[/(1 + [z])).

Theorem 4.2. Let for the operator

LF(x) = 5G(@) () + Do) ()

" / (fz+9) — f@) - F@y)wiz,dy) + / (Fr+y) - f@)ule.dy), (1)

the following conditions hold:

(i) The functions G(x) and b(x) are twice continuously differentiable, G is nonnegative,
and the first two derivatives of v and p with respect to x exists weakly as signed Borel
measures and are continuous in the sense that the integral

/f v, dy) + |V (. dy)| + |V (z, dy) )

is bounded and depends continuously on x for any continuous f(y) < |y| A |y|*> and the
integral

/f (e, dy) + 1 (, dy) | + | (@, dy))



is bounded and depends continuously on x for any continuous f(y) < |yl.
(ii) For any a > 0 the functions

/a " dy), /_ ; vz, dy) (22)

are non-decreasing and non-increasing respectively.
(iii) For a constant ¢ > 0

/|y\ x,dy) + / ly + z|v(dy) < c(l4x), x>1,
(23)

+/|y|(u(:c,dy)+/_ ly+ zlv(dy) < c(1+|z]), =< -—1.

Then the martingale problem for L in C?(R) is well posed, the corresponding process
X7 s strong Markov and such that

E|X7| < (|2 + o), (24)

its contraction Markov semigroup preserves C(R) and extends from C(R) to a strongly
continuous semigroup in Cu | |(R) with a domain containing C2(R). If additionally, for

any a > 0 the functions
| wtean. [ty (25)

are non-decreasing and non-increasing respectively, then the process X[ is stochastically
monotone.

Proof. By condition (23) and the method of Lyapunov function (see e.g. Section 5.2 in
[14]) with the Lyapunov function f;, being a regularized absolute value, i.e. fr(x) is twice
continuously differentiable positive convex function coinciding with |z| for |z| > 1, the
theorem is reduced to the case of bounded coeflicients. And in this case its proof is a
straightforward extension of Theorem 4.1, where the approximating operator is now

Lf(x) = 3G f" () +b(w)f (2)

+/ uu+w—ﬂw—ﬂ@wmww+/ (x4 y) — F(@)ule, dy).
ly|>h ly|>h

and the rest of the proof remains the same, if one also takes into account that the diffusion
part of this L generates a Feller semigroup due to the well known fact about diffusions
with Lipschitz coefficients. m

5 Processes on the half-line

Theorem 5.1. Let an operator L be given by (21) for x > 0 and the following conditions
hold:
(i) The supports of measures v(zx,.) and u(z,.) belong to Ry = {x > 0},

swiw|+e + [ it ) + /@Afwawﬂ<m

z€(0,1

9



and the condition (i) of Theorem 4.2 holds for x > 0.
(ii) For any a > 0 the functions

/:O v(z,dy), /:o p(z, dy)

are non-decreasing in x.
(ii) For a constant ¢ > 0

b(z) + /yu(x,dy) <c(l4z), z=>1.

Then the stopped martingale problem for L in C2(R) is well posed and specifies a
stochastically monotone Markov process X7 in Ry = {z > 0}.

Proof. 1t follows from Theorem 4.2 and the well known localization procedure (see e.g.
[8]) for martingale problems. O

Applying the results from [12] on the boundary points of jump-type processes, one can
directly deduce from Theorem 5.1 various regularity properties of the stopped process and
its semigroup (extending the results from [11] obtained there under restrictive technical
assumptions). For example, one obtains the following.

Corollary 1. Let the assumptions of Theorem 5.1 hold.
(i) Suppose

G(z) = O(2?), /0 2v(x,dz) = O(2?), |b(z) AO| = O(x),

for x — 0. Then the point x is inaccessible for X{ and its semigroup preserves the space
C(Ry) of bounded continuous functions on R, .

(ii) Suppose the lim, o b(x) exists and G(x) = ax(l+ o(1)) as v — 0 with a constant
a > 0. If a < b(0), then again the point x is inaccessible for X and its semigroup
preserves the space C(Ry). If a > b(0), then the boundary point x is t-reqular for X7
and its semigroup preserves the space C(Ry.) of bounded continuous functions on R.
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