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Stochastic Multi-view Hashing for Large-scale

Near-duplicate Video Retrieval
Yanbin Hao, Tingting Mu, Member, IEEE, Richang Hong, Member, IEEE, Meng Wang, Member, IEEE,

Ning An, Senior Member, IEEE, and John Y. Goulermas, Senior Member, IEEE,

Abstract—Near-duplicate video retrieval (NDVR) has been a
significant research task in multimedia given its high impact
in applications, such as video search, recommendation and
copyright protection, etc. In addition to accurate retrieval perfor-
mance, the exponential growth of online videos has imposed heavy
demands on the efficiency and scalability of the existing systems.
Aiming at improving both the retrieval accuracy and speed,
we propose a novel stochastic multi-view hashing algorithm to
facilitate the construction of a large-scale NDVR system. Reliable
mapping functions, which convert multiple types of keyframe fea-
tures, enhanced by auxiliary information such as video-keyframe
association and ground truth relevance to binary hash code
strings, are learned by maximizing a mixture of the generalized
retrieval precision and recall scores. A composite Kullback-
Leibler (KL) divergence measure is used to approximate the
retrieval scores, which aligns stochastically the neighborhood
structures between the original feature and the relaxed hash code
spaces. The efficiency and effectiveness of the proposed method
are examined using two public near-duplicate video collections,
and are compared against various classical and state-of-the-art
NDVR systems.

Index Terms—Near-duplicate video retrieval, hashing, multi-
view learning, semi-supervised learning, divergence.

I. INTRODUCTION

There has been an explosive growth of video-related appli-

cations, such as video sharing websites, video broadcasting,

recommendation, monitoring and advertising services, etc.

This results in a large amount of online video data that keeps

growing rapidly. There are increasingly more online users

performing video editing, uploading, downloading, searching

and viewing activities. The leading internet technology com-

pany comScore has reported that the PC users crossed over

300 billion videos in August 2014 alone, with an average of

202 videos and 952 minutes per viewer. Amongst the huge

amount of online videos, there exist a substantial portion

of near-duplicate videos (NDVs), which possess formatting

and/or content differences from the non-duplicate ones [1]–

[7]. Various ways of defining NDV can be found in [1],

[3], [4], [6]. The existence of NDVs heavily affects video

applications such as copyright protection, video monitoring,

reranking, recommendation and thread tracking. Accurate and
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efficient NDV retrieval (NDVR) systems are thus required.

For instance, given a search engine, the users are much more

interested in diverse videos other than NDVs among the top-

ranked retrieval results. Another example is that the copyright

video products are exposed to severe risk of being compro-

mised by unauthorized copying, editing and redistribution, and

therefore, NDV detection is important for copyright protection.

A general NDVR strategy usually includes three main steps.

Videos are first represented by a sequence of keyframes,

which are extracted by uniform sampling [8] or shot-based

methods [1], [2]. Low-level features are then extracted to

characterize each keyframe [1], [2], [8]. Similarities between

videos are finally computed based on the extracted keyframes

and their low-level features, based on which relevant videos are

retrieved [1], [8]. To compute and compare similarity between

videos, pairwise keyframe comparison is a classical solution,

that is, to exhaustively compare all the available keyframe

pairs [1], [9]. Although such exhaustive comparison can offer

accurate retrieval results, it is very time-consuming in practice.

To improve the efficiency, the sliding window method can

be used, examining only keyframes within a certain sliding

window [1]. Instead of pairwise comparison over the keyframe

level, video signature offers a more efficient way to compute

similarity over the video level [6] based on the compact signa-

ture generated for each video by processing and combining its

low-level keyframe features (e.g., signatures based on the local

and global information of keyframes [1], [10] and signatures

based on the spatial and temporal information of the videos

[8]). There are also works combining the pairwise comparison

and video signature [4], [10], which however, can still be time-

consuming and not suitable for large-scale applications.

In addition to high accuracy, good scalability has become

increasingly important in modern information retrieval to

accommodate the big data era. Apart from a few research

works that have been developed to address the scalability

issue [7], [8], many existing NDVR works [11]–[13] cannot

be efficiently applied to process large-scale videos in real time

because they use certain photometric or geometric transforma-

tions. For instance, the retrieval system in [13] represents each

keyframe by more than 400 local descriptors and its keyframe

matching is computationally expensive. Another issue is that

there does not exist a single feature type, robust enough to

capture all the information variations. Different feature types

may contain complementary information. For example, the

global feature is sensitive to brightness, scale and contrast

changes, while the local feature is sensitive to changes in frame

rate, video length and captions [7]. The strategy of combining
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multiple types of features to improve video representation has

received growing interest in multimedia [14], [15] and NDV

[16], [17] research. This is often called multi-feature fusion

[18], or more generally multi-modal [19]–[22] and multi-view

learning [14], [15], [23]. Compared to multi-feature fusion,

multi-modal and multi-view also employ general data analysis

and machine learning tasks that involve joint processing of

multiple information resources available to the studied objects.

This work proposes a novel stochastic multi-view hashing

(SMVH) algorithm, which contributes to the development of

an efficient large-scale NDVR system. The proposed hashing

algorithm learns binary strings to characterize data samples

by combining multiple feature types and auxiliary information

through a stochastic matching procedure of the neighborhood

probabilistic models. In the NDVR system, the multiple views

include multiple types of video feature information (e.g.,

the global color histogram and the local texture pattern),

the keyframe and video association information, as well as

certain amount of ground truth relevance knowledge that is

partially available to some videos. They are converted to

simple binary strings through a set of mapping functions, so

that the similarity comparison can be efficiently implemented

by computing the Hamming distance between the strings based

on fast XOR operations. The mapping functions are learned

stochastically by maximizing a mixture of the generalized

retrieval precision and recall scores. The scores are approx-

imated by the composite Kullback-Leibler (KL) divergence

computed between two probabilistic models constructed in the

original feature space and a relaxed hash code space. Given

a query object, its hash code can be rapidly generated using

the learned mapping functions to support the subsequent hash

code matching. The efficiency and effectiveness of our NDVR

system are examined and compared against various state-of-

the-art NDVR systems using the two public video collections

CC WEB VIDEO and UQ VIDEO.

The remaining of this paper is organized as follows. Section

II briefly reviews some related work. Section III outlines the

structure of the developed NDRV system, while Section IV

explains the proposed hashing algorithm. In Section V, the

performance of the proposed system is assessed and compared

with several state-of-the-art methods in terms of both retrieval

accuracy and efficiency. Section VI concludes the work.

II. RELATED WORK

A. Feature Extraction

Feature extraction utilizes domain knowledge to generate

from the raw videos numerical features that make the retrieval

algorithms work. Most of the existing NDVR approaches

conduct feature extraction based on the video content infor-

mation [1], [4], [7], [8], [24], [25]. One common strategy is

to first select keyframes from videos via uniform sampling,

then extract low-level features to characterize each keyframe.

It is also possible to directly generate compact signature

representations for videos by skipping the keyframe selection

procedure. Usually, the global and (or) local information are

considered during feature extraction.

The most commonly used global feature is color histogram,

e.g. RGB and HSV histogram [1], [7], [8], [26], but it can only

be used to retrieve videos that are almost identical to the query

video with minor variations. Another type of global features

is based on the temporal shape information. e.g., the video

signature based on the ordinal measure of the re-sampled video

frames [27]. It reflects the relative intensity distribution within

a frame, but the curve length of the used ordinal measure

increases as the video length increases, consequently can be

sensitive to video length.

Compared to global features, local features can be more

robust to complex editing, photometric and geometric changes,

and they generally provide better performance when pro-

cessing videos with complex scenes and different lengths.

Commonly used local point detectors for extracting local

features include the difference of Gaussian (DOG) [28], the

scale invariant feature transform (SIFT) [29], a mixture of the

principal component analysis (PCA) and SIFT [30] referred to

as PCA-SIFT, and the local binary pattern (LBP) [31], etc. To

facilitate video retrieval and NDVR, trajectories of the local

descriptors along the video sequence have been particularly

studied [32]. Although good performance is offered by local

features, the computational cost can be high due to the large

number of pixels and the exhaustive match of keypoints [13].

Various research works aim at speeding up the computation,

by applying dimensionality reduction approaches [30], hashing

algorithms [2] and fast indexing structure (FIS) techniques

[1], [25], [33]. Although improvement has been achieved, in

general, it remains a challenge for the local feature approaches

to reach both high accuracy and efficiency, due to for example

a substantial amount of pairwise comparisons.

B. Dimensionality Reduction

The use of high-dimensional feature descriptors results in

high-dimensional data spaces to process. For example, there

exist from hundreds to thousands of local points per keyframe

for some videos with complex scenes [10]. It is known that

dependencies between different data dimensions often restrict

the data points to a manifold with its dimensionality much

lower than the dimensionality of the original data space [34].

To reduce the redundancy and discover hidden structure in

high-dimensional data, many sophisticated methods have been

developed over the last few decades, aiming at discovering and

unfolding a lower-dimensional manifold. In addition to the tra-

ditional dimensionality reduction techniques such as PCA [35]

and multidimensional scaling [36], successful manifold learn-

ing approaches are developed, including Isomap [34], locally

linear embedding [37], and different versions of stochastic

neighbor embedding [38], [39] that offer satisfactory neighbor

preservation performance in the reduced space. Most of these

methods attempt to bring data points that are similar to (or are

neighbors of) each other in the original high-dimensional space

closely together in the low-dimensional embedding space. In

order to learn a data representation that particularly suits the

information retrieval purpose, the neighbor retrieval visualizer

(NeRV) [40] is proposed to optimize the low-dimensional

space based on a measure of mean smoothed precision and

recall that approximates the retrieval performance. As shown

later, this measure is adapted in our proposed multi-view
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hashing method to seek an optimal embedding space that

maintains the inherent relationships between video keyframes

to facilitate the NDVR task.

C. Hashing

Hashing is a technique that is able to support large-scale

retrieval by enabling a fast pairwise similarity comparison

between videos [41]. It takes an arbitrary-length data vector

as the input and outputs a fixed-length binary string. In

general, longer hash code may result in better performance,

but this is associated with a larger memory consumption.

Most existing hashing approaches are projection driven. The

classical approach of locality sensitive hashing (LSH) maps the

video data to binary codes along a set of random projections,

so that similar objects are more likely to be mapped into

the same buckets [42]. Various extensions of LSH have been

developed. For example, [43] employs LSH to index the

local descriptors, and [44] projects the extracted features into

an auxiliary space using LSH, and represents the projected

features as a histogram. The performance of LSH and its

variations is however limited, because random projections

do not fully exploit the inherent data distributions. Many

machine learning algorithms have been proposed to derive

the hash code projections or mapping functions through more

sophisticated computations rather than random projections. For

example, the hashing method proposed in [45] jointly learns

the pseudo class labels and the hash code for the given objects

based on a discriminant embedding framework driven by linear

discriminant analysis. Algorithms such as spectral hashing

(SPH) [46], self-taught hashing (STH) [47], semi-supervised

hashing (SSH) [48], and supervised hashing with kernels [49]

use different distance measures to construct a similarity graph

between objects. These graph based methods learn the hash

code or hash function by schemes such as the binarization

of the eigenvectors of the graph or support vector mapping.

Recently, convolutional neural network (CNN) is employed

to work with graph based hashing method to achieve deep

hashing [50]. More detailed review on state-of-the-art hashing

techniques can be found in [51].

D. Learning From Multiple Types of Information

As mentioned in Section II-A, the global and local features

are two main types of features for representing videos. Often,

they offer complementary information that can enhance each

other. This naturally leads to the feature fusion strategy to

combine them, such as the early fusion (EF) [52] and the late

fusion (LF) [53], and is widely applied to the representation

of multimedia data [54]–[58]. The EF strategy performs the

fusion of multiple features at the input stage. For example, [54]

designs a hierarchical regression model to exploit the informa-

tion derived from each feature type and then, collaboratively

fuses these features to be fed into a multimedia semantic

concept classifier. However, it is often difficult to construct a

perfect unified space to project the multiple types of features,

which makes it challenging for EF to well preserve the indi-

vidual structural information of each feature type. Differently,

LF attempts to combine results obtained individually by each

feature type at the output stage, which however, considers less

the correlation information between the feature types.

Apart from combining different types of feature charac-

terizations to improve the video representation, researchers

have also investigated more generally how to utilize multiple

information resources to improve the searching performance.

For instance, search over different media types of queries

and results, such as text documents, images, audio and video

[20], [22]. In NDVR, the context information associated with

the web videos (e.g., thumbnail images, time durations, and

number of views, etc.) is combined with the video content

to boost the retrieval performance [10]. Specifically, the time

duration of the videos is used to rapidly, but coarsely identify

the preliminary groups of the NDVs. Then, a seed video is

selected from each group based on the color histograms of

the thumbnail images and their view counts. The final step

of the NDV detection is reduced to compare the thumbnail

images of the candidate videos with the selected seed videos.

This approach can reach around an 164 fold speedup, with a

slight loss of the retrieval accuracy. But it can only be used

to retrieve web videos, due to the use of the web context

information, which is unfortunately not always available in

other video corpora.

To improve the retrieval performance, while maintaining

good searching scalability, a substantial amount of research

works have been developed to learn high-quality hash codes

from multiple types of information. The current state-of-

the-art multi-view hashing algorithms are mostly algebraic

approaches based on trace (or norm) minimization, matrix fac-

torization or their mixtures [7], [14], [15], [59], or approaches

based on trace/norm induced objective functions alternatively

optimized over variables stored in multiple matrices [60],

[61]. There are few works studying hash code generation

based on a stochastic strategy. One relevant example is the

linear cross-modal hashing, which stochastically preserves the

neighborhood relationships under each view (or modal) via

neighborhood components analysis [62]. Given the recent

success of stochastic neighborhood preservation [39], [40] in

embedding generation and data visualization, we aim at con-

structing appropriate probabilisitic models for multi-view hash

code generation to further improve the retrieval performance

over the commonly used algebraic models.

III. THE NDVR SYSTEM

An information retrieval task is defined as a search task

that outputs a ranked list of objects that are relevant to a

specified query provided by the user. To search among NDVs,

we construct the following retrieval system step by step.

1) Keyframe Extraction: Given a collection of V videos,

multiple representative keyframes are extracted for each

video by using the shot-based sampling method. Assum-

ing n keyframes are extracted from V videos, the later

processing steps are focused on information provided by

the n extracted keyframes.

2) Feature Extraction: The global HSV (hue, saturation,

value) features and the local binary pattern (LBP) fea-

tures [31] are extracted, characterizing the global colour
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histogram and the local texture feature for each keyframe.

These result in two separate feature representations for

each of the n keyframes, stored in the two feature

matrices of X(1) =
[

x
(1)
ij

]

and X(2) =
[

x
(2)
ij

]

with

the sizes of n × d1 and n × d2, respectively. The

two column vectors x
(1)
i =

[

x
(1)
i1 , x

(1)
i2 , . . . , x

(1)
id1

]T

and

x
(2)
i =

[

x
(2)
i1 , x

(2)
i2 , . . . , x

(2)
id2

]T

are used to denote the

HSV and LBP feature vectors, respectively, for the ith

keyframe.

3) Hash Code Learning: In this step, a set of s hash

functions {hi(·)}
s
i=1 is learned. Each function takes the

extracted features of a keyframe as the input and returns

a binary number. The s hash functions lead to a binary

string of length s for each keyframe. The derived strings

of the n keyframes are stored in the rows of the n × s

binary hash code matrix H = [hij ].
4) Video Similarity Computation: Finally, a unique hash

code string is generated for each video from the relaxed

hash codes of its representation keyframes by Eq. (4).

The Hamming distance between the generated strings is

used to assess the similarity between videos. A list of

videos that possess the highest similarities to the query

video is returned.

In this system, the key video information supporting the

retrieval task is characterized by the HSV and LBP features

of the representative keyframes, stored in X(1) and X(2). The

success of this system relies on the hash code learning stage.

The quality of the learned hash code decides how well the

information contained in X(1) and X(2) can be transferred to

the binary hash code matrix H. It drives the quality of the

retrieval system through hash code matching.

Apart from HSV and LBP, there exist many other feature ex-

traction methods [8], [28]–[30] that can be used to characterize

the keyframes. To allow researchers in the field to explore and

combine various feature extraction methods of their choices,

we define the targeted research problem in a general manner.

Given a set of n objects characterized by multiple feature

matrices {X(g)}mg=1 each with the size of n× dg , the goal is

to derive an optimal n× s binary matrix H by simultaneously

preserving the useful information provided by the m feature

matrices, and auxiliary adjacency information if available. An

explicit mapping function between the binary feature matrix

H and the input features {X(g)}mg=1 is constructed.

IV. PROPOSED STOCHASTIC MULTI-VIEW HASHING

A. Hash Function Mapping

Given multiple feature matrices {X(g)}mg=1 to characterize a

collection of n objects, which are referred as different feature

views, the column vector x
(g)
i =

[

x
(g)
i1 , x

(g)
i2 , . . . , x

(g)
idg

]T

stores

the features of the ith object under the gth view. In the

NDVR system, the n objects correspond to the n keyframes.

For each object, to build a reliable connection between its

features {x
(g)
i }mg=1 and its length s binary hash code string

hi = [hi1, hi2, . . . , his] where hil ∈ {0, 1}, we construct s

hash functions {hl}
s
l=1 so that hil = hl

(

{x
(g)
i }mg=1

)

. These

functions are formulated as

hl

(

{

x
(g)
i

}m

g=1

)

= T (zil) , (1)

zil = sigmoid (z̃il) , (2)

z̃il =
m
∑

g=1

dg
∑

j=1

x
(g)
ij w

(g)
lj + bl. (3)

In the above equations, a one-dimensional embedding is first

computed, by assuming it is a linear combination of all the

observed features, where w
(g)
lj ∈ R are the combination

coefficients and bl ∈ R is a bias parameter. Then, the sigmoid

function is used to convert the positive and negative embedding

values to numbers close to one and zero. In the end, a thresh-

olding function, given as T (x) = 1 if x > 0.5, and T (x) = 0
otherwise, is applied to convert a real-valued input to a

binary number. The embedding vector zi = [zi1, zi1, . . . , zis]
T

obtained without applying thresholding, referred to as the

relaxed hash code, for which the n embedding vectors of the

n keyframes constitute an n × s relaxed hash code matrix

Z = [zil]. In NDVR, one classical way to generate hash

code for a video is to process the relaxed hash codes of its

representative keyframes by first performing averaging and

then the thresholding operations [7]. Letting h
(v)
il denote the

lth digit of the ith video’s hash code, Indi the set of keyframe

indices of this video and |Indi| its cardinality, the video hash

code can be expressed by

h
(v)
il = T





1

|Indi|

∑

j∈Indi

zjl



 . (4)

These codes constitute the V × s video hash code matrix

H(v) =
[

h
(v)
il

]

.

The composition of the linear combination function and the

sigmoid function as in Eqs. (2) and (3) constructs a smooth

mapping to transform {X(g)}mg=1 into a relaxed hash code

(embedding) matrix Z with each element zil ∈ [0, 1]. This

operation is equivalent to taking all the observed features as

the input of a single layer perceptron. An alternative setting

is to map {X(g)}mg=1 to Z by employing a neural network

with multiple layers to realize a nonlinear combination of

the features. As shown in the experimental section, we have

obtained satisfactory results using Eq. (3), which could be an

alternative. The use of the thresholding function enables the

approximation of the Hamming distance between two binary

strings hi and hj with the Euclidean distance between their

corresponding embeddings zi and zj . The benefit of such an

approximation is to avoid the more time consuming discrete

optimization of the hash code, by constructing a differentiable

cost function to directly optimize the embeddings, so that the

hash code strings are indirectly optimized.

B. Retrieval Score via Space Matching

In a retrieval system, the returned result is a set of objects

that are close to a query object. Thus, an accurate similarity

representation between objects plays a significant role in the
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success of a retrieval system. As a result of hashing, the

similarity between the ith and jth objects is evaluated by the

Hamming distance between the two binary strings hi and hj .

As explained earlier, due to Eqs. (1) and (2), the Hamming dis-

tance can be closely approximated by the Euclidean distance

between the two embedding vectors zi and zj . Thus, the re-

search focus becomes how to compute the optimal embeddings

{zi}
n
i=1 from the multiple views {X(g)}mg=1 so that correct

similarity information between objects can be reflected by the

Euclidean distances between their corresponding embeddings.

This results in two tasks: (1) how to encode the similarity

structure based on {X(g)}mg=1 and (2) how to preserve such a

structure in the embedded space through Euclidean distance.

1) Probabilistic Encoding of Similarity Structure: The goal

is to construct an accurate representation to reflect the reliable

similarity structure between the objects based on their multi-

view feature representations {X(g)}mg=1. We start from the

computation based on one single view by following the

probabilistic relevance model for information retrieval in [40].

Given the ith object as a query, a conditional probability p
(g)
j|i

of returning the jth (i 6= j) object as its related object can be

formulated by

p
(g)
j|i =

exp

(

−

∥

∥

∥
x

(g)
i

−x
(g)
j

∥

∥

∥

2

2

2σ2
ig

)

∑

l 6=i exp

(

−

∥

∥

∥
x

(g)
i

−x
(g)
l

∥

∥

∥

2

2

2σ2
ig

) , (5)

where ‖ · ‖2 denotes the l2-norm, and the Gaussian parameter

σig > 0 controls how fast the probability p
(g)
j|i vanishes

over the Euclidean distance between two objects. The value

of p
(g)
j|i reflects the similarity information between the ith

and jth objects under the gth view. The parameter value

of σig is selected by examining the Shannon entropy of

H

(

P
(g)
·|i

)

= −
∑

j 6=i p
(g)
j|i log2 p

(g)
j|i . When the entropy is equal

to log2 K, where the integer K controls the upper bound of

the number of the relevant objects of a given query and is set

by the user, the value of σig is shown to be a good choice

[38], [40]. For a retrieval task, it is not of any interest for

a query object to return itself as a relevant one, thus, it is

assumed that p
(g)
i|i = 0 for all cases. All these conditional

probabilities computed under different views constitute a set

of n × n probability matrices
{

P(g) =
[

p
(g)
j|i

]}m

g=1
for the n

objects, each indicating a relevance structure computed based

on a feature representation X(g).

For the specific application of NDVR, the n objects cor-

respond to different representative keyframes extracted from

different videos. Apart from the feature information provided

by {X(g)}mg=1, whether the keyframes are extracted from the

same video naturally contribute to the knowledge regarding the

keyframes. Therefore, this information can be used to control

the neighbor structure between the keyframes in the embedded

space. By assuming a rewarding score of 1 to pick up the

keyframes that are extracted from the same video as the query

keyframe, we construct the matrix P(W) =
[

p
(W)
ij

]

as

p
(W)
ij =











1, if the keyframes xi and xj(i 6= j) are

extracted from the same video,

0, otherwise.

(6)

It drives those keyframes from the same video to be related

to each other.

When there is ground truth information available regarding

to the relevance between objects, it is helpful to construct a

proximity matrix between the objects by rewarding the truly

related objects with a score of 1, while the non-related or

unknown ones with a score of 0. A supervised proximity

matrix P(S) =
[

p
(S)
ij

]

can be constructed to facilitate the NDVR

task, given as

p
(S)
ij =











1, if the keyframes xi and xj(i 6= j) are

extracted from near-duplicated videos,

0, otherwise.

(7)

It lets the keyframes from the truly related videos to be related

to each other.

All these matrices of
{

P(g)
}m

g=1
, P(W) and P(S) can be

treated as relevance matrices with each element representing

a relevance score between 0 and 1. A soft voting scheme can

be implemented by constructing an overall relevance matrix

P = [pij ] representing an accumulation of the relevance scores

offered by different views, such that

P = N

(

m
∑

g=1

αgP(g) + αm+1P(W) + αm+2P(S)

)

, (8)

where the summation weights {αg}
m+2
g=1 are all positive and

satisfy
∑m+2

g=1 αg = 1. Given an input matrix A = [aij ], the

function N(·) normalizes each of its rows
∑

j aij = 1, so

that the resulting matrix P can be viewed as a conditional

probability matrix with the ijth element pj|i representing the

probability of returning the jth object as the related one to the

query object i.

2) Structure Matching in the Embedded Space: The con-

structed matrix P as in Eq. (8) retains the structural informa-

tion between objects offered by all the views. The embeddings

{zi}
n
i=1 to be learned should be able to preserve optimally

the relevance structure contained by P. Given the fact that

each element of P represents the probability of returning the

jth object given the query object i, a natural way to learn

the embeddings is to re-compute such probabilities in the

embedded space and minimize the difference between the

two sets of probabilities. Specifically, we use the following

probability formulation in the embedded space

qj|i =
exp

(

−‖zi − zj‖
2
2

)

∑

l 6=i exp
(

−‖zi − zl‖
2
2

) . (9)

Slightly different from Eq. (5), a fixed scaling is adopted in the

embedded space without introducing the Gaussian parameter

σi. It is not necessary to scale the distances in both spaces,

since similar effects can be achieved by scaling one and
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fixing the other. These newly computed quantities constitute

another probability matrix Q = [qj|i]. In order to preserve the

information contained by P, the quality of the embeddings can

be assessed by examining how well the structures of P and Q

match.

Following the structure matching scores as used in [38]–

[40], we employ a composite KL divergence score to assess

the difference between the two conditional probability matrices

of P and Q, given as

SKL = λ

n
∑

i=1

KL
(

p·|i ‖ q·|i
)

+ (1− λ)

n
∑

i=1

KL
(

q·|i ‖ p·|i

)

= λ

n
∑

i=1

∑

j 6=i

pj|i log
pj|i

qj|i
+ (1− λ)

n
∑

i=1

∑

j 6=i

qj|i log
qj|i

pj|i
,

(10)

where 0 < λ < 1. Under the binary neighborhood assump-

tion, minimizations of the the terms
{

KL
(

p·|i ‖ q·|i
)}n

i=1

and
{

KL
(

q·|i ‖ p·|i

)}n

i=1
are equivalent to the maximizations

of the generalizations of recall and precision, respectively,

for a retrieval task [40]. The overall score SKL contains

the smoothed recall and precision averaged over all the n

observed objects. In most real-world retrieval applications, it

is difficult for a system to achieve the maximization of both

the precision and recall simultaneously, thus, the parameter λ

is used to control the system preference between its accuracy

and completeness in search.

C. Model Optimization

According to the mapping functions in Eqs. (2) and (3), the

computation of the embeddings is driven by the weight param-

eters {w
(g)
lj }l,j,g and the bias parameters {bl}l. Therefore, the

discovery of the optimal embeddings can be converted to the

minimization problem of the composite KL divergence score

with respect to the weight and bias parameters. Incorporating

Eqs. (2) and (3) into Eq. (10) and introducing a regularization

term, we construct the following optimization problem

min
w

(g)
lj

,bl

O = SKL

(

w
(g)
lj , bl

)

+
µ

2

m
∑

g=1

s
∑

l=1

dg
∑

j=1

(

w
(g)
lj

)2

, (11)

where µ > 0 is the user-set regularization parameter. The

objective function O is smooth and differentiable. A gradient

descent algorithm can be employed to find a good solution.

To compute the gradient, we first decompose the objective

functions into multiple components as

O = λKL1 + (1− λ)KL2 + µOr, (12)

KL1 =

n
∑

i=1

∑

t 6=i

pt|i log
pt|i

qt|i
, (13)

KL2 =
n
∑

i=1

∑

t 6=i

qt|i log
qt|i

pt|i
, (14)

Or =
1

2

m
∑

g=1

s
∑

l=1

dg
∑

j=1

(

w
(g)
lj

)2

. (15)

Then, following the compound function derivation law, we

have

∂O

∂w
(g)
lj

=

[

λ
∂KL1

∂zil
+ (1− λ)

∂KL2

∂zil

]

∂zil

∂w
(g)
lj

+ µw
(g)
lj , (16)

∂O

∂bl
=

[

λ
∂KL1

∂zil
+ (1− λ)

∂KL2

∂zil

]

∂zil

∂bl
. (17)

It can be seen that the targeted gradients depend on different

components of ∂KL1

∂zil
, ∂KL2

∂zil
, ∂zil

∂w
(g)
lj

and ∂zil
∂bl

.

Letting ∂KL1

∂zi
=
[

∂KL1

∂zi1
, ∂KL1

∂zi2
, . . . , ∂KL1

∂zil
, . . . , ∂KL1

∂zis

]T

and

∂KL2

∂zi
=
[

∂KL2

∂zi1
, ∂KL2

∂zi2
, . . . , ∂KL2

∂zil
, . . . , ∂KL2

∂zis

]T

, we conduct the

computation of ∂KL1

∂zil
and ∂KL2

∂zil
by operating on the vector

level. Two auxiliary variables dit and Uj are introduced, given

as

dit = ‖zi − zt‖2 , (18)

Uj =
∑

k 6=j

exp
(

−‖zj − zk‖
2
2

)

=
∑

k 6=j

exp
(

−d2jk
)

, (19)

which simplify the following quantities as

qt|i =
exp

(

−d2it
)

Ui

, (20)

log qt|i = −d2it − logUi. (21)

Although dit and dti possess exactly the same formulation,

they are treated as two independent terms in the cost function,

both of which involve zi. The gradient computation further

proceed as

∂KL1

∂zi
=

∂KL1

∂dit

∂dit

∂zi
+

∂KL1

∂dti

∂dti

∂zi
, (22)

∂KL2

∂zi
=

∂KL2

∂dit

∂dit

∂zi
+

∂KL2

∂dti

∂dti

∂zi
. (23)

We first focus on computing ∂KL1

∂dit
and ∂KL2

∂dit
. Ignoring the

constant terms in KL1 with respect to dit, it has

∂KL1

∂dit
=
∑

k 6=i

−pk|i
∂
(

log qk|i
)

∂dit
. (24)

Following a similar routine of ignoring the constant terms, we

have

∂KL2

∂dit
=
∑

k 6=i

[

∂
(

qk|i log qk|i
)

∂dit
−

∂
(

qk|i log pk|i
)

∂dit

]

=
∑

k 6=i

log qk|i
∂qk|i

∂dit
+ qk|i

∂
(

log qk|i
)

∂dit
− log pk|i

∂qk|i

∂dit

=
∑

k 6=i

(

log qk|i + 1− log pk|i
)

× qk|i ×
1

qk|i
×

∂qk|i

∂dit

=
∑

k 6=i

(

qk|i log
qk|i

pk|i
+ qk|i

)

∂
(

log qk|i
)

∂dit
(25)
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It can be seen that both derivatives in Eqs. (24) and (25) are

depending on
∂(log qk|i)

∂dit
, which can be calculated as follows

after incorporating Eqs. (20) and (21):

∂
(

log qk|i
)

∂dit
=

∂
(

−d2ik
)

∂dit
+

∂ (− logUi)

∂dit

=

{

−2dit −
1
Ui

∂Ui

∂dit
, if k = t,

− 1
Ui

∂Ui

∂dit
, if k 6= t,

=

{

−2dit −
1
Ui

exp
(

−d2it
)

(−2dit) , if k = t,

− 1
Ui

exp
(

−d2it
)

(−2dit) , if k 6= t,

=

{

−2dit + 2qt|idit, if k = t,

2qt|idit, if k 6= t.
(26)

By incorporating Eq. (26) into Eqs. (24) and (25), and utilizing
∑

k 6=i pk|i = 1 and
∑

k 6=i qk|i = 1, we obtain

∂KL1

∂dit
= 2pt|idit − 2qt|idit

∑

k 6=i

pk|i = 2(pt|i − qt|i)dit, (27)

and

∂KL2

∂dit
=− 2dit

(

qt|i log
qt|i

pt|i
+ qt|i

)

+ 2qt|idit
∑

k 6=i

(

qk|i log
qk|i

pk|i
+ qk|i

)

=2





∑

k 6=i

qk|i log
qk|i

pk|i
− log

qt|i

pt|i



 qt|idit. (28)

As shown above, ∂KL1

∂dti
and ∂KL2

∂dti
can be computed from

Eqs. (27) and (28), and it is easy to calculate

∂dit

∂zi
=

∂dti

∂zi
=

zi − zt

dit
. (29)

Substituting these into Eqs. (22) and (23), it results in

∂KL1

∂zi
= 2(pt|i + pi|t − qt|i − qi|t)(zi − zt), (30)

and

∂KL2

∂zi
= 2



qt|i
∑

k 6=i

qk|i log
qk|i

pk|i
+ qi|t

∑

k 6=t

qk|t log
qk|t

pk|t

− log
qt|i

pt|i
− log

qi|t

pi|t

)

(zi − zt). (31)

Now, the computation remains ∂zil

∂w
(g)
lj

and ∂zil
∂bl

. Based on Eqs.

(2) and (3), it can be easily obtained that

∂zil

∂w
(g)
lj

=sigmoid (z̃il) [1− sigmoid (z̃il)]x
(g)
ij , (32)

∂zil

∂bl
=sigmoid (z̃il) [1− sigmoid (z̃il)] . (33)

By substituting Eqs. (30), (31), (32) and (33) into Eqs. (16)

and (17), the complete formulations of ∂O

∂w
(g)
lj

and ∂O
∂bl

can be

derived. With gradient descent optimization, the embeddings

{zi}
n
i=1 can be computed, then the video hash code can be

generated base on Eq. (4). We provide the pseudocode for the

proposed multi-view hashing method in Algorithm 1.

Algorithm 1 Stochastic Multi-view Hashing (SMVH)

Input: n keyframes
{

x
(g)
i

}n

i=1
extracted from V videos

represented by m types of dg-dimensional features (g =
1, 2, . . .m).

Output: The V × s video hash code matrix H(v).

Algorithm parameters: Hash code length s, neighbor

bound K, balancing parameter λ, regularization parameter

µ, multi-view weights {αi}
m+2
i=1 .

Optimization parameters: Iteration number T , learning

rate η and momentum ζ (t).
Initialization: Assign random values to the weight
{

w
(g,0)
l,j

}

and bias variables
{

b
(0)
l

}

.

for t = 1 to T do

Compute gradient ∂O

∂w
(g,t)
lj

.

Compute gradient ∂O

∂b
(t)
l

.

Set the updates:

w
(g,t+1)
lj = w

(g,t)
lj + η ∂O

∂w
(g,t)
lj

+ ζ (t)
(

w
(g,t)
lj − w

(g,t−1)
lj

)

.

b
(t+1)
l = b

(t)
l + η ∂O

∂b
(t)
l

+ ζ (t)
(

b
(t)
l − b

(t−1)
l

)

.

end for

Hash code computation: Obtain the video hash code by

Eqs. (2), (3) and (4).

After characterizing each video with a unique hash code

string, only the efficient XOR and bit count operations are

needed for the video retrieval task. This can avoid the costly

pairwise keyframe comparison and effectively improve the

retrieval efficiency. Overall, the training phase of the developed

NDVR system is conducted off-line, so that it does not affect

the online retrieval speed. In the training phase, the com-

putational complexity of obtaining the composite probability

matrix P is approximately O(mn2+2n2) and only needs to be

computed once before the optimization starts. The complexity

of the weight and bias parameter updating procedure is approx-

imately O(n3) in each iteration with standard gradient descent

approach. It can be seen that the training cost is dominated

by the number of the used representative keyframes from the

training videos. The training cost can be further reduced when

stochastic gradient descent is performed, where the gradient

is estimated from a mini batch of the keyframes instead of

all and this leads to a reduced cost of O(n3
s) (ns ≪ n) in

each iteration with ns denoting the batch size. The trained

NDVR system is able to convert any new video to a hash code

string very rapidly. This is because (1) the proposed system

only employs very simple HSV and LBP features that can be

computed much faster than the more expensive features such

as DOG, SIFT, PCA SIFT and some mixed features; and (2)

the hash code is computed based on very simple operations

such as linear combination, sigmoid and thresholding with

a low cost of around O (1). This, being combined with the

fast XOR and bit count operations for hamming distance

calculation, leads to a very fast online NDVR system. Its

efficiency will be demonstrated in the results section.
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V. EXPERIMENTS AND RESULTS

A. Datasets and Experimental Setup

We examine the performance of the NDVR system con-

structed based on the proposed hashing algorithm SMVH

using two publicly available web video datasets. The

CC WEB VIDEO dataset [1] consists of 12,790 video clips

downloaded from the video sharing websites such as YouTube,

Google and Yahoo! through keyword search, and is organized

into 24 sets. Within each set, the most popular video is

used as the query, and the remaining videos were manually

labeled by two non-expert assessors to create ground truth.

Shot boundaries of each video are detected and each shot is

represented by a keyframe1 , which results in a total of 398,015

keyframes. There are 162 HSV and 256 LBP features extracted

for each keyframe. The UQ VIDEO dataset [7] expands the

CC WEB VIDEO dataset with YouTube videos dowloaded

by searching against 400 most popular queries selected from

the Google Zeitgeist Archives from 2004 to 2009. This results

in a total of 169,952 videos, for which 2,570,554 keyframes

are extracted, and 162 HSV and 256 LBP features are used to

characterize each keyframe.

Comparative analysis is conducted against a set of existing

NDVR systems constructed using either the classic feature

extraction methods or the state-of-the-art hashing methods:

• Global Feature (GF): This GF-based NDVR system [1] is

used as a baseline for performance comparison. It employs

the most typical global feature of color histogram to char-

acterize the keyframes. A 24-dimensional vector based on a

normalized color histogram over all the keyframes in each

video is used as the video signature.

• Hierarchical Fusing (HF): This system [1] combines the

global and local features, by firstly using the color histogram

signature to detect the NDVs with high confidence and filter-

ing out the very novel ones, and then performing a pairwise

comparison based on the local features to further determine

the uncertain videos. When this system is implemented using

36-dimensional rotation invariant LBP features [1], it is

referred to as HF-36.

• Spectral Hashing (SPH): This system relies on the hashing

method SPH [46], which is based on spectral relaxation

1The shot-based extraction and uniform sampling are the two most com-
monly used keyframe extraction methods for videos in NDVR [2], [7].
Apart from detecting the shot boundaries, we also experiment with uniform
sampling, of which the extracted keyframes are used to perform the same
retrieval task as the shot-based ones. We compare these two keyframe
extraction methods for both the proposed hashing method and the state-of the-
art method multiple feature hashing [2], [7] in Table I. It is observed that shot-
based extraction outperforms uniform sampling with subtle difference, and we
use shot-based keyframe extraction to conduct all the remaining experiments
in this work.

TABLE I: Comparison of keyframe extraction methods of shot

based and uniform sampling using randomly selected query

sets of CC WEB VIDEO data.

Methods Q1 Q5 Q9 Q14 Q20 Mean

shot (proposed) 0.999 0.950 1.000 0.974 0.962 0.977
uniform (proposed) 0.974 0.968 0.984 0.974 0.937 0.967

shot (MFH) 0.991 0.944 0.999 0.977 0.903 0.963
uniform (MFH) 0.994 0.953 0.988 0.960 0.903 0.960

TABLE II: Parameter setting for the proposed algorithm.

Optimization param. Value Algorithm param. Value

T 1200 λ 0.9

η 0.05 µ 0.01

ζ (t) (t < 250) 0.5 s 320

ζ (t) (t ≥ 250) 0.75 K 20

TABLE III: SMVH performance change given varying length

of the hash code evaluated using the UQ VIDEO data.

Hash Code Length (s) MAP Time(s)

s=280 0.8782 0.0531

s=300 0.8803 0.0568

s=320 0.8882 0.0592

s=340 0.8738 0.0623

s=360 0.8865 0.0645

s=380 0.8777 0.0679

s=400 0.8661 0.0703

s=420 0.8698 0.0737

and rectangular approximation of the eigenfunction of the

weighted Laplacian operator. It includes the HSV and LBP

features within a vector to be used as the input of SPH.

• Self-taught Hashing (STH): This system relies on the

hashing method STH [47], which shares similar hash code

training procedure to SPH, but achieves out-of-sample ex-

tension through a different scheme based on linear SVM.

Similar to above, the HSV and LBP features are included

within a vector as the input of STH.

• Multiple Feature Hashing (MFH): This system is based

on a sophisticated multi-view extension of SPH, referred to

as MFH [2], [7]. It encodes the information provided by

the HSV and LBP features as a neighbor graph and seeks

a hash function to preserve the desired neighbor structure.

A semi-supervised extension of MFH is also implemented

by utilizing the ground truth information to improve the

neighbor adjacency graph, referred as SMFH.

• Proposed SMVH: This system is based on the proposed

hashing method SMVH. An unsupervised version of SMVH

is also implemented by setting αm+2 = 0, referred as

USMVH. The same HSV and LBP features as used by the

existing methods are employed as the input of SMVH.

Although MFH, SMFH, USMVH and SMVH are designed to

process multi-view information, it is also important to observe

and compare how they respond to one single feature type. This

indicates the information preservation power of the learned

hash code. The single-view implementation takes only the

HSV features as the algorithm input, referred as MFH-HSV,

SMFH-HSV, USMVH-HSV and SMVH-HSV. To evaluate the

retrieval performance, the classic metric of the mean average

precision (MAP) commonly used in the NDVR community is

employed [1], [7]. The precision-recall curve is used to provide

a more thorough view of the retrieval performance.

For SMVH and its different versions, the optimization

parameter setting as listed in the left column of Table II is

adopted, which are set by following the empirical recommen-

dations for gradient descent optimization [39]. The parameter

η is initially set as 0.05 and then updated in each iteration

following the adaptive learning rate scheme in [63]. The algo-
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Fig. 1: (a) compares the precision-recall curve with varying values of the hash code length s for the SMVH-based retrieval

system examined using the UQ VIDEO data. (b) displays an enlarged portion of (a). (3) demonstrates the effect of iteration

number T in terms of the MAP performance in percentage for both video collections and the training time in minutes.
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Fig. 2: Comparison of MAP performance against different settings of the weight parameters for the SMVH-based retrieval

system using the UQ VIDEO data.

rithm parameter setting listed in the right column of Table II

is used, where the settings of the balancing parameter λ and

the neighbor bound K follow the empirical recommendations

for stochastic neighbor preservation [40]. The regularization

parameter µ does not affect the performance much when it is

within a reasonable range. The hash code length s is tuned

from 100 and 420 with a step size of 20. To demonstrate

the performance sensitivity against the hash code length s

of the SMVH-based retrieval system, we show in Table III

and Fig. 1(a) the changes of the MAP performance and the

precision-recall curves for different values of s using the

UQ VIDEO data. An enlarged portion of Fig. 1(a) is displayed

in Fig. 1(b). It can be seen that within a certain range, e.g.,

280 ≤ s ≤ 380, different lengths actually provide quite similar

retrieval performance. The retrieval time though can differ

according to the used hash code length and the employed

binarization scheme of the relaxed hash code (embedding). It

can be seen from Fig. 1(a) that a longer hash code reduces the

retrieval speed. We report in Fig. 1(c) how the setting of the

iteration number T affects the retrieval performance and the

training speed. It can be seen that the MAP performance for

both video collections stabilizes after around 150 iterations,

and of course larger iteration number requires higher training

time. Although we employ the suggested iteration number

setting T = 1200 by [39], it is actually sufficient to use

a smaller number of T to accelerate the training without

sacrificing much the retrieval performance.

For the multi-view weights {αg}
m+2
g=1 (m = 2), instead

of exhaustively searching a good setting within the range of

[0, 1]4, we first determine a preliminary weight arrangement by

applying a traditional pairwise comparison [1] in each feature

space among a small collection of videos. Specifically, the

duplicate keyframes are first identified under each feature type

g for this small collection, and then the number of shared

duplicate keyframes is computed by

s
(g)
ij =

1

2
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 , (34)

where I
(g)
i denotes the duplicate keyframe set contained by the

ith video. Given a targeted similarity sij between two videos

(e.g., the ground truth relevance information corresponding to

a binary value representing whether the jth video is retrieved

given the ith video as a query), a linear relationship between

sij and {s
(g)
ij }mg=1 can be used to approximate the contributions

of the different feature types to achieve a good approximation

of sij . By restricting the linear combination coefficients as

nonnegative values, the contribution estimation can be realized

by solving the following nonnegative least squares problem

min
{wg≥0}m

g=1

∑

i 6=j

(

sij −

m
∑

g=1

wgs
(g)
ij

)2

. (35)
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TABLE IV: Performance comparison in terms of the MAP performance and the retrieval speed. The best performance and

speed are highlighted in bold and the second best underlined. HF and HF-36 are only examined using the comparatively small

data CC WEB VIDEO due to their low speed.

CC WEB VIDEO UQ VIDEO

Methods Feature Type MAP Time (10−4 s) MAP Time (s)

GF [1] HSV unsupervised 0.892 25.0 0.640 0.2190
MFH-HSV [7] HSV unsupervised 0.918 4.81 0.715 0.0362
SMFH-HSV HSV semi-supervised 0.920 4.81 0.718 0.0363
USMVH-HSV HSV unsupervised 0.934 4.61 0.787 0.0306
SMVH-HSV HSV semi-supervised 0.951 4.61 0.836 0.0305
HF [1] HSV, PCA-SIFT unsupervised 0.952 >8000.0 — —
HF-36 [1] HSV, LBP unsupervised 0.936 >8000.0 — —
SPH [46] HSV, LBP unsupervised 0.864 6.14 0.546 0.0634
STH [47] HSV, LBP unsupervised 0.932 6.50 0.775 0.0642
MFH [7] HSV, LBP unsupervised 0.928 6.38 0.757 0.0679
SMFH HSV, LBP semi-supervised 0.936 6.39 0.766 0.0679
USMVH HSV, LBP unsupervised 0.955 6.06 0.851 0.0593
SMVH HSV, LBP semi-supervised 0.971 6.07 0.888 0.0592

Instead of supervised learning of {wg}
m
g=1 based on ground

truth relevance, it is also possible to conduct an unsupervised

learning by employing a voted version of sij based on the

multi-view features [64]. For instance, sij = 1 when more

than 50% of the views agree that the jth video is retrieved

given the ith video as a query, and sij = 0 otherwise. After

obtaining {wg}
m
g=1 by Eq. (35), the selection of the m + 2

weight parameters {s
(g)
ij }m+2

g=1 can be reduced to the selection

of the two parameters of 0 < αm+1 < 1 and 1 − αm+1 <

αm+2 < 1, with which the remaining weights are computed

by αg = (1 − αm+1 − αm+2)
wg

∑

m
g=1 wg

for g = 1, 2, . . .m.

Solution of Eq. (35) indicates w1 ≈ w2 for the used datasets,

representing almost equal contributions of the HSV and LBP

features. After letting α1

α2
= 1, a rough search of α3 and α4

suggests 0.01 ≤ α3 ≤ 0.1 and 0.19 ≤ α4 ≤ 0.39 offer good

performance. Searching within these two suggested ranges and

allowing α1

α2
to vary slightly around one, the fine tuning results

in the final setting of α1 = 0.4, α2 = 0.3, α3 = 0.01 and

α4 = 0.29 for SMVH. Similar parameter selection strategy

leads to the setting of α2 = 0, α1 = 0.7, α3 = 0.01 and

α4 = 0.29 for SMVH-HSV, and α4 = 0, α1 = 0.55, α2 = 0.4
and α3 = 0.05 for USMVH.

To demonstrate the algorithm sensitivity of SMVH, we

display its performance change against different values of

the weight parameters in Fig. 2 using the UQ VIDEO data.

In general, as expected, the ground truth information P(S) is

more important than the association information P(W) between

keyframes and videos. This is evidenced by the observation

that α4 > α3 usually leads to better performance, as seen in

Figs. 2(a) and 2(b). Both HSV and LBP features contribute

significantly and similarly to the retrieval task. This is evi-

denced by the observation that, by setting α1

α2
around one, good

performance can be achieved, as seen in Fig 2(c). It is worth

to mention that, although the contribution weight of P(W) is

low, its participation is necessary, as we have observed that a

small value of α3 provides better performance than a zero α3.

For the competing methods, we either conduct the im-

plementation using the same setting as reported in their

published works or employ the existing code provided by

the authors. In all experiments, the semi-supervised training

setup is implemented by randomly selecting 360 videos for

training, where 240 videos (10 from each of the 24 video clip

sets) are provided with the ground truth information and the

remaining videos not. The unsupervised setup is implemented

by randomly selecting 600 videos for training, where none

of them is provided with the ground truth information. The

hash code length is fixed as s = 320 for all the multi-view

methods and s = 100 for ones using only HSV features in

all the experiments. The online retrieval speed is computed

using MATLAB R2013a running on a server with Intel Xeon

E5-2630 2 CPUs, 32 GB RAM and 64-bit Windows Server

2012 operating system.

B. Comparative Analysis

Table IV summarizes the MAP performance of all the

methods and records their averaged online retrieval speed in

seconds for the two datasets. Because HF and HF-36 are time

consuming in searching, we only examine their performance

with the smaller dataset CC WEB VIDEO. The averaged

precision-recall curves are displayed in Fig. 3, where the

multi-view systems and the single-view systems are compared

separately. A bar graph comparing the average precision (AP)

over each query is provided in Fig. 4 for the UQ VIDEO data.

It can be seen from Table IV and Fig. 3 that the proposed

SMVH outperforms all the competing methods under all the

tested learning environments, that is, single-view, multi-view,

semi-supervised and unsupervised. For example, when learn-

ing from one feature type HSV in an unsupervised manner,

USMVH-HSV provides better performance than MFH-HSV

and much better performance than GF. When unsupervised

multi-view learning is performed using both the HSV and LBP

features, USMVH performs better than HF, STH, MFH, and

much better than SPH. The poor performance of SPH is pos-

sibly caused by the non-uniform distribution of the video data

within a hyper-rectangle in the feature space which is against

the assumption required by SPH. When partially available

ground truth information is incorporated to enhance the learn-

ing quality, the sem-supervised extensions of MFH/MFH-HSV
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Fig. 3: Comparison of the averaged precision-recall curves for different methods and datasets.

and USMVH/USMVH-HSV in general perform better than the

unsupervised ones, and overall, the proposed SMVH achieves

the best performance. It can be seen from Fig. 3(d) that, for the

large UQ VIDEO data, SMVH is able to achieve over 90%
precision given the recall values up to 70%. As shown in Table

IV, the MAP performance achieved by the proposed system

is 0.971 for CC WEB VIDEO and 0.888 for UQ VIDEO,

which is significantly better than the best performance of 0.952

for CC WEB VIDEO and 0.775 for UQ VIDEO achieved by

the competing methods. This is also better than the current

state-of-the-art MAP performance reported by [7], which is

0.958 for CC WEB VIDEO and 0.883 for UQ VIDEO. The

system in [7] learns from 1000 unlabeled training videos,

while ours learns from 240 labeled and 120 unlabeled training

videos, all randomly chosen. Because both systems work on

the scale of O(n3), heavily relying on the used keyframe

number n during training, the much smaller training data size

required by our system greatly improves the training speed.

In terms of unsupervised learning, we are able to achieve

comparable performance of 0.955 for CC WEB VIDEO and

0.851 for UQ VIDEO by learning from only a small training

set of 600 videos.

Table IV also compares the retrieval speed. All the hashing-

based systems, such as SPH, STH, as well as MFH and SMVH

and their corresponding variations, are able to achieve real-

time retrieval, even when using MATLAB (less than 7×10−4

seconds in CC WEB VDIEO dataset). Both GF and HF

rely on time consuming distance computation and searching

strategies, and are thus not suitable for large-scale applications.

Finally, in Fig. 4 we summarize the AP performance of

different methods over each of the 24 queries using the

UQ VIDEO data. For most queries, the multi-view methods

such as STH, MFH, SMFH and SMVH perform better than

the single-view methods such as GF. By incorporating partially

available ground truth information, both the single-view and

multi-view performance can be improved, which are exempli-

fied by most queries (e.g., SMFH, SMFH-HSV, SMVH-HSV

and SMVH). There exist a few individual cases such as Q5

and Q13 for which the multi-view performance is not better

than the single-view one. Also Q11 and Q13, for which the

semi-supervised learning does not improve the unsupervised

one. However, this does not change the overall conclusion

that, taking into account all the queries, the global and local

features are in general complementary to each other in video

representation, and that it is effective to combine both views,

and moreover that it is helpful to perform semi-supervised

learning to improve performance.

VI. CONCLUSION

We have proposed a novel stochastic multi-view hashing

method (SMVH), to facilitate the construction of a large-scale

NDVR system. The proposed method addresses the accuracy,

efficiency and scalability issues that are very important in

recent NDVR applications and contributes to the performance
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Fig. 4: Comparison of the AP performance of different methods over each query (Q1-Q24) evaluated using the UQ VIDEO

dataset. The first bar “MEAN” represents the averaged MAP performance over all the 24 queries.

improvement. A reliable mapping function is learned to con-

vert the video content to a unique hash code signature so

that a fast matching can be achieved by inexpensive XOR

operations. In order to accurately retrieve the NDVs, multi-

type feature information of the video keyframes is consid-

ered, and is further enhanced by auxiliary information such

as association between videos and keyframes and partially

available ground truth to further boost the system performance.

Given that both the feature and auxiliary information can be

extracted from the videos in efficient and straightforward ways,

the main challenge remains how to accurately blend, refine

and preserve such information using hash codes, in order to

realize accurate and fast retrieval. To tackle the problem, a

multi-view probabilistic relevance model is constructed, which

accurately represents the stochastic neighbor structure between

video keyframes in a target space. Moreover, a composite KL

divergence score is used to align the constructed neighborhood

structures in the original and the relaxed hash code spaces,

which approximates the retrieval precision and recall scores to

suit the particular nature of the retrieval task. This work, for the

first time, contributes a multi-view and hashing extension of

the stochastic neighbor embedding strategy that is particularly

tailored for a large-scale retrieval task.

Performance of the developed NDVR system using the

proposed hashing method is examined using public datasets

based on various performance metrics, such as MAP and AP,

as well as the precision-recall curves, tested under different

learning environments with single-view, multi-view, unsu-

pervised and semi-supervised setups. Extensive experiments

verify the superior performance of the proposed system in

terms of both effectiveness and efficiency. Compared with

a series of classical and state-of-the-art NDVR systems, the

proposed one provides the best MAP performance of 0.971 and

0.888 for the CC WEB VIDEO and UQ VIDEO datasets,

respectively, and achieves an on-line retrieval speed of no

greater than 6×10−4 seconds, which is fast enough even under

the MATLAB implementation. For the particularly large video

collection UQ VIDEO, over 90% precision has been achieved

with a recall performance of up to 70%.
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