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STOCHASTIC NETWORKED CONTROL SYSTEMS WITH

DYNAMIC PROTOCOLS

Duarte Antunes, João P. Hespanha, and Carlos Silvestre

ABSTRACT

We consider networked control systems in which sensors, controllers, and actuators communicate through a shared network

that introduces stochastic intervals between transmissions, delays, and packet drops. Access to the communication medium is

mediated by a protocol that determines which node (one of the sensors, one of the actuators, or the controller) is allowed to

transmit a message at each sampling/actuator-update time. We provide conditions for mean exponential stability of the networked

closed loop in terms of matrix inequalities, both for investigating the stability of given protocols, such as static round-robin

protocols and dynamic maximum error first-try once discard protocols, and conditions to design new dynamic protocols. The

main result entailed by these conditions is that, if the networked closed loop is stable for a static protocol, then we can provide

a dynamic protocol for which the networked closed loop is also stable. The stability conditions also allow for obtaining an

observer-protocol pair that reconstructs the state of a linear time invariant plant in a mean exponential sense and for less

conservative stability results than other conditions previously appearing in the literature.

Key Words: Networked control systems, dynamic protocols, scheduling, stochastic systems.

I. INTRODUCTION

The proliferation of network communication systems

in recent years has paved the way for important research in

the area of networked control systems. This research area

addresses control loops closed via a shared network that pro-

vides the medium for sensor, actuator, and controller nodes to

communicate.

Walsh and co-authors [1] made strides in the analysis of

control systems closed via a local area network, such as a

controller-area network, an ethernet, and wireless 802.11 net-

works. The key assumptions in [1] are that there exists a

bound on the interval between transmissions denoted by

maximum allowable transfer interval (MATI), and that trans-

mission delays and packet drops are negligible. In [1], an

emulation set-up is considered in the sense that the controller

for the networked control system is obtained from a

previously designed stabilizing continuous-time controller.

Two basic types of protocols have been proposed: static pro-

tocols, such as the round-robin (RR) protocol, where nodes

take turns transmitting data in a periodic fashion, and

dynamic protocols, such as the maximum error first-try once

discard (MEF-TOD) protocol, where the node that has the top

priority in using the communication medium is the one whose

current value to transmit differs the most from the last trans-

mitted value. Under this setup, one can attempt to provide an

upper bound on the MATI for which stability can be guaran-

teed. Since these protocols have been proposed in the papers

referenced above, MATI bounds have been improved [2–4].

Although [1] illustrated through simulations that using the

MEF-TOD protocol allows for preserving stability of the

networked closed loop for a larger MATI than that obtained

when using the RR protocol, similar conclusions are obtained

in [2–4] from sufficient stability conditions, no analytical

result has been established proving that this holds in general.

As mentioned in [1], the occurrence of transmission

events on the network is often model more appropriately as a

random process. This feature is taken into account in [5],

which considers networked control systems with MEF-TOD

and RR protocols, and with independent and identically dis-

tributed (i.i.d.) intervals between transmissions. It is shown

that stability can be guaranteed for distributions of the inter-

transmission intervals that have a support larger than previ-

ously derived deterministic upper bounds for the MATI [1–3].

The conservativeness of these results for linear networked

control systems using the RR protocol was eliminated in [6].
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Recently, [7] addressed a model of networked control systems

with i.i.d. intervals between transmissions and stochastic

delays for a class of quadratic protocols that is more general

than MEF-TOD. Through a convex over-approximation

approach, sufficient conditions were given for mean exponen-

tial stability. In [8], a method was proposed to design an

observer-protocol pair to asymptotically reconstruct the states

of a linear time invariant (LTI) plant, where the plant outputs

are sent through a network with constant intervals between

transmissions. The protocol to be designed can be viewed as

a weighted version of the MEF-TOD.

In the present paper, we follow this line of research

considering that the network imposes i.i.d. intervals between

transmissions. We also take into account stochastic delays

modeled as in [7] and packet drops. We consider that access

to the network is mediated by a dynamic protocol specified as

follows. Associated to each node, there is a set of quadratic

state functions, which are evaluated at a given transmission

time. The node allotted permission to transmit is the one

corresponding to the least value of these quadratic state func-

tions. These protocols are more general than the quadratic

protocols considered in [7]; thus they are more general than

the MEF-TOD protocol.

We establish two stability results for the networked

control system. Both of these provide conditions in terms of

linear matrix inequalities (LMIs) for investigating the stabil-

ity in a mean exponential sense of given protocols and

provide conditions in terms of BMIs to design quadratic state

functions, specifying the dynamic protocol, that yield the

networked closed loop stable. The first stability result allows

one to prove that, if the networked closed loop is stable for a

static protocol, then we can provide a dynamic protocol for

which the networked closed loop is also stable. This is the

main contribution of this paper and gives an analytical justi-

fication on why one should utilize dynamic protocols rather

than static, while, e.g., in [1], this conclusion is only illus-

trated through simulation. The second stability result allows

us to extend the work [8] to the case where transmission

intervals are stochastic. We also address the relation of this

stability result with the necessity of existence of a quadratic

stochastic Lyapunov function that assures stability for the

networked control system.

We illustrate through benchmark examples that the con-

ditions in this paper are significantly less conservative than

other conditions previously appearing in the literature.

A preliminary version of the results presented here

appeared in a conference paper [9]. Besides including all of

the formal proofs of the results, here we establish the con-

nection between the second of our two main stability results

and the existence of a quadratic stochastic Lyapunov function

that assures stability for the networked control system.

The remainder of the paper is organized as follows. The

networked control problem setup is given in Section II.

The main results are stated in Section III. In Section IV,

we compare our results with previous works. Concluding

remarks are given in Section V. The proofs of the results are

provided in the Appendix.

Notation. We denote by In and On the n × n identity and zero

matrices, respectively, and by diag([A1 . . . An]) a block diago-

nal matrix with blocks Ai. For dimensionally compatible

matrices A and B, we define (A, B) := [A⊺ B⊺]⊺.

II. PROBLEM FORMULATION

We start by introducing the networked control stability

problem before showing that it can be cast into analyzing the

stability of an impulsive system.

2.1 Networked control setup

We consider a networked control system for which

sensors, actuators, and a controller are connected through a

communication network, possibly shared with other users.

The plant and controller are described by the following state-

space model.

Plant: ɺx A x B u y C xP P P P P P= + =ˆ, (1)

Controller: ɺx A x B y u C x D yC C C C C C C= + = +ˆ ˆ, . (2)

Following an emulation approach, we assume that the

controller has been designed to stabilize the closed loop when

the process and the controller are directly connected, i.e.,

û(t) = u(t), ŷ(t) = y(t), t ≥ 0, and we are interested in analyzing

the effects of the network on the stability of the closed loop.

Note that this assumption implies that (AP, CP) is detectable

and that (AP, BP) is stabilizable. We denote the times at which

a node transmits a message by {tk, k ∈ N}, and we assume

that û and ŷ are held constant between transmission times, i.e.,

ˆ ˆ ˆ ˆu t u t y t y t t t t kk k k k( ) ( ), ( ) ( ), [ , ), .1 0= = ∈ ∈+ ≥Z (3)

We denote by e the error signal between the process output

and controller input (ŷ − y) and between the controller output

and process input (û − u). In particular,

e y y u u: ( , ).= − −ˆ ˆ (4)

We assume that, while m := ny + nu nodes compete for the

network, where ny and nu denote the number of sensor and

actuator nodes, respectively, only one of them is allowed to

transmit at each given transmission time. Hence, in our ter-

minology, a single transmitting node can be associated with

several entries of the process output y or with several entries

of the controller output u. We partition the process output

vector as y y yny
= ( , , )1 … , the controller output vector as

© 2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd
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u u unu
= ( , , )1 … , and the error vector as e = (e1, . . . , em),

where each e ti
si( ) ∈R is the error associated with node

i ∈ M := {1, . . . , m}, i.e., ei corresponds to a sensor node yi if

i ∈ {1, . . . , ny} and to an actuator node ui ny− if i ∈ {ny + 1,

. . . , ny + nu}. The setup is shown in Figure 1. The state of the

networked control system is defined by the vector x := (xP, xC,

e), where xP
nP∈R , xC

nC∈R , e ne∈R , and x nx∈R . We are

interested in scenarios for which the following assumptions

hold:

(i) The time intervals {hk := tk+1 − tk} are i.i.d. described

by a probability measure μ with support on [0, γ],

γ ∈ R≥0 ∪ {+∞}, i.e., Prob( ) ( )a h b drk a

b
≤ ≤ = ∫ µ for

a, b ∈ [0, γ].

(ii) Corresponding to a transmission at time tk there is a

transmission delay dk no greater than hk = tk+1 − tk; A

joint stationary probability density χ describes

(hk, dk), in the sense that

Prob( , ) ( , )a h b c d d dr dsk k
c

d

a

b

≤ ≤ ≤ ≤ = ∫∫ χ (5)

where a, b ∈ [0, γ] and Prob(a ≤ hk ≤ b,

c ≤ dk ≤ d) = 0 if c > b. In view of (i) and (ii), we see

that μ([a, b]) = χ([a, b], [0, b]).

(iii) At each transmission time, there is a probability pdrop

that a packet may not arrive at its destination or that it

may arrive corrupted (packet drop).

(iv) The nodes implement one of the two protocols:

Dynamic protocol (DP): This protocol is speci-

fied by mD symmetric matrices { , }R ii D∈M ,
MD Dm: 1= { , }… , mD ≥ m. A subset of these matrices

{Ri, i ∈ Ij} is associated with node j ∈M where

I i i ij
j j

r
j

j
: { , , , }= 1 2 … is an index subset of MD . These

subsets are assumed to be nonempty, i.e., rj ≥ 1,

disjoint, and the rj are such that ∑ ==j
m

j Dr m1 . The

node j allotted to transmit at tk is determined by the

map d :Rnx ֏M,

d d d( ( )) ( ( )),1 2x t x tk k
− −= � (6)

where d2 :Rn
D

x ֏M is given by

d argmin2( ( )) : ( ) ( ),x t x t R x tk i k i kD

−
∈

− −= M
⊺ (7)

and d1 :M MD ֏ is given by

d1( ) : { : }.i j i I j= ∈ (8)

In case the minimum in (7) is achieved simultaneously

for several values of the index i, stability of the

networked control system should be guaranteed

regardless of the specific choice for the argmin. In view

of (6), the error e is updated at time tk according to

e t I e tk n x t ke k
( ) ( ) ( ),

( ( ))
= − −

−Λ
d

(9)

where Λ j s s s
i
j

i j
i j
m

i
I j: ([0 0 ]),

1
1

1
= ∈

∑ ∑=
−

= +
diag M. That is,

only the components of ŷ or û associated with the node

that transmits are updated by the corresponding

components of y tk( )− or u tk( )− . We call a dynamic

protocol regular if for every j D∈M there exists a state

x such that j is the unique index such that

j x R xi iD
= ∈argmin M

⊺ . An irregular dynamic protocol

can always be made regular by discarding unnecessary

matrices Ri.

Static Protocol (SP): The nodes transmit in a

mS-periodic sequence determined by a periodic function

s :N֏M (10)

with period mS. In this case, the error e is updated at time

tk according to

e t I e tk n k ke
( ) ( ) ( ).( )= − −Λs (11)

We assume that s is onto, i.e., each node transmits at

least once in a period. When mS = m, each node transmits

exactly once in a period.

As mentioned in Section I, Assumptions (i)–(iii) are appro-

priate for networked control systems in which feedback loops

are closed via local area networks (cf. [1,10]). In particular,

Assumption (i) holds for scenarios in which nodes attempt to

do periodic transmissions of data, but these regular transmis-

sions may be perturbed by the medium access. It is typically

the case in carrier sense multiple access (CSMA) protocols

that nodes may be forced to back off for a typically random

amount of time until the network becomes available. Note

that networks with CSMA protocols protocol, such as the

ethernet of wireless 802.11, are prevalent in modern commu-

nication systems. The probability distribution of the time

interval between transmissions, which can be estimated

experimentally or by running Monte Carlo simulations of the

Fig. 1. Networked control setup.
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protocol, is determined by two factors: the congestion of the

network and the delay introduced by the medium access

protocol.

The class of dynamic protocols that we describe in (iv)

allows a node to transmit if the state of the networked control

system lies in a given region of the state space, partitioned

according to quadratic restrictions. This class of protocols

boils down to the quadratic protocols introduced in [7] when

mD = m. Thus, our definition allows for ampler partitions of

the state-space than quadratic protocols, and, as we shall see,

it also allows us to see that dynamic protocols are in a sense

better than static ones. If we make mD = m and choose P > 0

such that R Pi n n iP C
= − >+diag([0 ]) 0Λ , then (6) becomes the

usual MEF-TOD protocol, where the node that transmits is

the one with the maximum norm of the error ei(t) between its

current value and its last transmitted value.

2.2 Impulsive systems

Suppose that there are no delays, i.e. dk = 0, and no

packet drops, i.e., pdrop = 0. Then, we can write the networked

control system (1), (2), (3), (4), in the form of the following

impulsive system:

ɺx t Ax t t t t

x t J x t k

k

k x t k k
k

( ) ( ), ,

( ) ( ),

0

( ( ), ) 0

= ∈ ≠
= ∈

≥
−

−

R

N
p

(12)

where x nx∈R , x(0−) := x0, and tk+1 − tk are i.i.d. random

variables characterized by the probability density μ, and

where the map p takes the following form for dynamic and

static protocols

DP p d: ( ( ), ) ( ( ))x t k x tk k
− −= (13)

SP p s: ( ( ), ) ( ).x t k kk
− = (14)

For example, the following expressions for A and { , }J ii ∈M
correspond to the case in which the controller and plant are

directly connected and only the outputs are transmitted

through the network, i.e., û(t) = u(t), x = (xp, xC, ŷ − y).

A
A A

A A

A
A B D C B C

B C A

A
B D

B

P P C P P C

C P C

P C

= ⎡
⎣⎢

⎤
⎦⎥

=
+⎡

⎣⎢
⎤
⎦⎥

=

11 12

21 22

11

12

CC

P

P

i n n n i

A C A

A C A

J I I
P C e

⎡
⎣⎢

⎤
⎦⎥

= −[ ]
= −[ ]
= −+

21 11

22 12

0

0

([ ]),diag Λ ii ∈M.

(15)

This case will be considered in Section IV. Expressions for

the general case considered in Section II can be obtained (see,

e.g., [11, p. 5]).

To take into account delays and packet drops modeled

as described in Section II, we consider the following impul-

sive system:

ɺx t Ax t t t t

x t K x t k

x s

k

k x t k

q
k

k

k

k

( ) ( ), ,

( ) ( ),

( )

0

( ( ), ) 0

= ∈ ≠
= ∈

≥

−
−

R

N
p

== ≤ ≤−
+Lx s t s tk k k k( ), ,1

(16)

where p(xk, k) is defined as in (13) for dynamic protocols and

as in (14) for static protocols and where the initial condition

is set to x(0−) := x0. The random variables tk and sk are defined

completely by the inter-sampling times hk := tk+1 − tk and by

the delays dk := sk − tk. The (hk, dk) are i.i.d., and are as

described by (5). The qk ∈ {1, . . . , nq} are i.i.d., and such that

Prob[qk = j] = wj ∀j ∈ {1, . . . , nq}, k ≥ 0. Below we provide

expressions for A, L, wi, and Ki
j , i ∈M, j ∈ {1, . . . , nq},

which model the case where the controller and the plant are

directly connected and only the plant outputs are transmitted

through the network, i.e., û(t) = u(t). The state is now

considered to be x x x y vP C
nx= ∈( , , , )ˆ R where v ne∈R is an

auxiliary vector (v1, . . . vm) that is updated with the sampled

value vj = yj(tk) at each sampling time tk at which node j is

allowed to transmit. Nevertheless, the update only takes place

if a packet sent at tk is not dropped and the sampled value vj

is used only to update the value of ŷj after a transmission delay

dk at time sk = tk + dk.

A

A A

A
A B C

A

A
B D

B

P P C

C

P C

C

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤

11 12

11

12

0

0 0 0

0 0 0

0

⎦⎦⎥

= = − =

=

n w p w p

K

I

I

I

C I

q

i

n

n

n

i P n

P

C

e

e

2, 1 ,

0 0 0

0 0 0

0 0 0

0 0

1 2

1

drop drop

Λ −−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= ∈

=
⎡

⎣

⎢

+ +

+

Λi

i n n n

n n

n

n

K I i

L

I

I

I

P C e

P C

e

e

,

,

0 0

0 0

0 0

2
2 M

⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

(17)

Again, the expressions for the general case considered in

Section II can be obtained. It is also important to mention that

there are other ways to model the setup with delays and

© 2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd
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packet drops described in Section II. For example, one can

find a similar model to (16) but introduce the dependency on

the variable qk modeling the packet drops in the matrix L.

2.3 Stability notion

We define stability for System (12) in terms of the

following auxiliary system obtained by considering the state

of (12) only at times tk
−:

z e J z kk
Ah

z k k
k

k+ = ∈1 ( , ) 0, ,p N (18)

where z x tk k: ( )= − , and z0 = x0. We say that (12) is mean

exponentially stable (MES) if there exist constants c > 0 and

0 < α < 1 such that, for any initial condition x0, we have:

E[ ] , .0 0 0z z c z zk k
k

k
⊺ ⊺≤ ∀ ≥α (19)

The same definition of MES is used for System (16). We

assume that the following condition holds:

e r t ce cA t t2 ( )
1( ) 0, 0.1λ α α< > >− for some (20)

where λ( )A is the real part of the eigenvalues of A with

largest real part and r(t) := μ((t, γ]) denotes the survivor

function. Assuming (20), we were able to prove in [6],

considering only static protocols, that (19) is equivalent to the

more common notion of mean exponential stability in

continuous-time where one requires E[ ( ) ( )]x t x t⊺ to decrease

exponentially. In the present paper, we make no such

assertion, although assuming (20) is still useful (e.g., (20)

guarantees that (22) is bounded).

III. MAIN RESULTS

For simplicity, we assume in Subsections 3.1 and 3.2,

that there are no delays, i.e., dk = 0, ∀k, and no packet

drops, i.e., pdrop = 0, and we consider the general case in

Subsection 3.3.

3.1 Stability result I and dynamic vs. static protocols

The following is our first stability result for (12), pro-

viding a test for sufficent conditions for (12) to be mean

exponentially stable.

Theorem 1. The system (12) with dynamic protocol (13)

is MES if there exist scalars {0 1 , }≤ ≤ ∈p j iji D, M
with ∑ = ∀= ∈j

m
ji i

D
D

p1 1, M and nx × nx symmetric matrices

{ 0, }R ii D> ∈M such that:

J p E R J Ri ji j

j

m

i i i

D

Dd d1 1( )

1

( )( ) 0, ,⊺
M

=
∈∑

⎛

⎝⎜
⎞

⎠⎟
− < ∀ (21)

where

E R e R e dhj
A h

j
Ah( ) : ( ).

0
= ∫

⊺

µ
γ

(22)

□

This result can be used to analyze if a given protocol

yields the networked control system stable or to synthesize a

protocol that achieves this.

Analysis. Note first that a given dynamic protocol specified

by Ri > 0, i D∈M , is equivalent to a dynamic protocol speci-

fied by

ɶR P R ii i D= + > ∈0, ,M (23)

where P can be any symmetric matrix such that P + Ri > 0. If

we replace in (21) the matrices Ri by ɶRi, given by (23), we

obtain that (21), (23) are LMIs in the variables P and pji (using

the fact that ∑ = ∀= ∈j
m

ji ip
D1 1, M ).

Synthesis. If we allow Ri to be variables in (21), then (21) are

basically BMIs. In fact, if we chose a basis Bl for the linear

space of symmetric matrices, we have R b Bi l
n

il l
s= ∑ =1 and (21)

depends on the products pjibil. In this case, the dynamic

protocol, determined by the matrices Ri, comes out from

the solution to (21).

Remark 2. Stability condition (21) resembles a stability con-

dition for Markov jump linear systems [12]. Indeed, suppose

that we choose protocol p for (12) according to the following

stochastic rule:

Prob |

p d

[ ] , ,

( ( ), ) ( ), 0,

1

1

ω ω µ
ω

k k ij D

k k

j i i j

x t k k

+

−

= = = ∈

= ≥

M
(24)

where ωk is a Markov chain with mD ≥ m states,

∑ = ∀= ∈j
m

ji i
D

D1 1µ , M , and d1 is described by (8). Then, it is

known (cf. [12, ch. 4]) that (18) with scheduling (24) is mean

square stable ( limk k kx t x t→∞
− − =E[ ( ) ( )] 0⊺ , ∀x0 ) if and only if

there exist nx × nx symmetric matrices { , }R ii D> ∈0 M such

that (21) holds for pji = μji, ∀i, j D∈M . Note, however, that

contrary to Protocol (24), Protocol (6), (8) is a deterministic

state-dependent protocol and Theorem 1 assures stability in

the deterministic sense (19).

To state the next theorem, we need the following result,

which provides necessary and sufficient stability conditions

under which (12) is mean exponentially stable for a static

protocol (14). The proof can be found in [6] and is omitted
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here. Let i i+⎢⎣ ⎥⎦ = +1 1: if i ∈ {1, . . . , mS − 1} and i +⎢⎣ ⎥⎦ =1 1

if i = mS. Let MS Sm: { , , }= 1… .

Theorem 3. The system (12), with static protocol (14) is

MES if and only if there exist nx × nx symmetric matrices

{ , }R ii S> ∈0 M such that:

J E R J Ri i i i i Ss s( ) [ 1] ( )( ) 0,⊺
M+ ∈− < ∀ (25)

where E(R[i+1]) is given as in (22).

The following result, which builds upon Theorems 1

and 3, establishes that, if the networked closed loop is stable

for a static protocol, then we can provide a dynamic protocol

for which the networked closed loop is also stable. This is one

of the main contributions of the paper.

Theorem 4. If the networked control system is MES for a

static protocol with period mS then there exists a dynamic

protocol taking the form (6), with mD = mS, that yields the

networked control system MES.

Proof. Since the stability conditions of Theorem 3 are nec-

essary and sufficient, there exists a static protocol with

period mS that yields the networked control system MES

if and only if there exist { , }R ii S∈M such that (25) holds

for (12) with matrices defined by (15). This implies that,

if we consider a dynamic protocol with mD = mS,

I k k j jj S= ∈ = ∈{ : ( ) },M Ms , then d1(i) = s(i), for i S∈M
and (21) holds with

p

i m j i

i m jji

D

D=
< = +
= =

⎧
⎨
⎪

⎩⎪

1 1

1 1

0

, ,

, ,

if and

if and

otherwise

and with { , }R ii S D∈ =M M taken to be the solution to (25).

From the proof of Theorem 4, we see that the matrices
{ , }R ii D∈M that characterize the dynamic protocol men-

tioned in its statement can be taken to be the solution to

(25). Note that, in the special case where mD = m = mS,

Theorem 4 states that, if there exists a round-robin protocol

with period mS = m, i.e., each node only transmits exactly

once in a period, which yields the networked control

system MES, then one can find a quadratic protocols, as

introduced in [7], that also yields the networked control

system MES.

Remark 5. The fact that the stability conditions of Theorem

3 are necessary and sufficient the key to obtaining Theorem 4.

In [4], a similar reasoning to Theorem 4 can be used to prove

that, if the stability conditions provided there for quadratic

protocols (cf. [4, Theorem 3]) hold, then so do the stability

conditions for a static protocol in the special case where each

node transmits only once in a period (cf. [7, Theorem 3]).

Nevertheless, since the conditions provided in [4] are only

sufficient for the RR protocol, it does not allow one to con-

clude that, if a stabilizing static protocol exists, then so does

a dynamic protocol, as stated in Theorem 4. Although [7]

does not explicitly present stability conditions for a static

protocol, the same remarks should apply, since convex over-

approximations introduce conservativeness.

3.2 Stability result II and observer-protocol design

The following is our second stability result for (12).

Similar to Theorem 1, this theorem provides testable sufficent

conditions for (12) to be mean exponentially stable. Never-

theless, it will allow us to obtain different results than

Theorem 1.

Theorem 6. The system (12) with dynamic protocol (13)

is MES if there exist an nx × nx symmetric matrix W > 0,

scalars { , , , }c i j i jij D≥ ∈ ≠0 M , and nx × nx matrices
R ii D, ∈M such that:

J E W J c R R Wi i ij j i

j j i

m

i

D

Dd d( ) ( )

1,

( ) ( ) 0,⊺
M+ − − < ∀

= ≠
∈∑ (26)

where E W e We dhAh Ah( ) : ( ) ( ).0= ∫
γ

µ⊺

Given a quadratic protocol, i.e., specific values for the

matrices Ri, testing if (26) holds is an LMI feasibility

problem. To design a protocol for which mean exponential

stability of the networked control system is guaranteed, we

can take the { , }R ii D∈M as additional unknowns and (26)

should now be viewed as a BMI feasibility problem.

The proof of Theorem 6 builds upon establishing that, if

there exists a positive definite matrix W, positive constants

cij and matrices Ri such that (26) holds, then the quadratic

function

V x x Wx( ) := ⊺ (27)

is a stochastic Lyapunov function for System (18) (which

models (12) at sampling times) in the sense that the following

condition holds for (18)

E
R

[ ( )] ( ) , ,1V z V z z Zzk k k k zk
nx+ ∈− ≤ − ∀⊺ (28)

for some Z > 0. The next result shows that, under certain

conditions, which include the case mD = m = 2, i.e., only two

nodes pertaining to the closed loop access the network, the

converse holds. Let co( )A denote the convex hull of a set A ,

and, for each i D∈M , define the function
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g y y W J E W J yi
i i0 ( ) ( )( ) : ( ( ) )= −⊺ ⊺

d d

and the mD − 1 functions

g y y R R y j ij
i

j i D( ) ( ) , { }.= − ∈ −⊺ M

Define also the following sets in Rmx

Ki i i
i
i

i
i

m
m

g y g y g y g y

g y y i
D

x

: {( ( ), ( ), , ( ), ( ), ,

( )) },

0 1 1 1=
∈

− +… …

| R ∈∈MD,

and

N : {( , , , ) 0, 0,1 }.0 1 0= < > ≤ ≤η η η η η… m k DD
k m|

Theorem 7. Suppose that the dynamic protocol (13) is

regular. Then, if

K N K N M
i i

ico
D

∩ ∩= 0 ( ) 0, ,/ ⇒ = / ∀ ∈ (29)

there exists an nx × nx symmetric matrix W > 0, scalars
{ 0, , , }c i j i jij D≥ ∈ ≠M , and nx × nx matrices R ii D, ∈M
such that (26) holds if and only if there exists a quadratic

stochastic Lyapunov function taking the form (27) such that

(28) holds. In particular, (29) holds if mD = 2.

The proof of Theorem (7) relies on the S-Procedure [13]

which is a relaxation technique that can be used to provide

stability conditions for linear systems with quadratic con-

straints. In particular, Condition (29) is a condition for the

S-Procedure to be lossless, and it is always satisfied in the

case in which there is only one quadratic constraint (mD = 2).

We show next that Theorem 6 allows one to extend the

observer-protocol design proposed in [8].

3.2.1 Observer design

Suppose that we wish to estimate the state of the fol-

lowing plant

ɺx t A x t y t C x t x xP P P P P P P( ) ( ), ( ) ( ), (0) 0= = =

where the m outputs y t y y ym i
si( ) ( , , ),1= ∈… R are sent

through a network that imposes i.i.d. intervals between

transmissions to a remote observer. As in Section II, we

denote by μ the measure that defines the inter-transmission

times hk = tk+1 − tk and we let M = { , }1… m . Also let
Ψ j s s sI

j m
: ([0 , , , , 0 ])

1
= diag … … , for j ∈M. A natural model

based linear remote observer for this system is defined by

ˆ ˆ ˆɺx t A x t L C x t y tP k x t P k k
e k

( ) ( ) ( ( ) ( )),
( ( ))

= + −−
− −Ψ

c
(30)

where the observer gains Lk to be designed are allowed to

depend on the index k and the map

c argmin( ( )) : ( ) ( )x t x t C S C x te k j e k P j P e k
−

∈
− −= M
⊺ ⊺ (31)

determines which node transmits at tk, based on the estimation

error x t x t x te k k P k( ) : ( ) ( )− − −= −ˆ , where { , }S jj ∈M is a set of m

matrices. As argued in [8], the sensors should run a replica of

the remote observer to access x̂ t( ), which allows each node to

encode in the message arbitration field x t C S C x te k P j P e k( ) ( )− −⊺ ⊺ ,

where C x t C x t y t jP e k P k j k( ) ( ) ( ),− − −= − ∈ˆ M.

The resulting estimation error x x xe P:= −ˆ evolves

according to

ɺx t A x t L C x te P e k x t P e k
e k

( ) ( ) ( ).
( ( ))

= + −
−Ψ

c
(32)

We can cast this problem into the framework of (12)

with dynamic protocol (13) by adding an auxiliary variable v

that holds the value of L C x tk x t P e k
e k

Ψ
c( ( ))

( )−
− in the interval

between transmission times [tk, tk + 1)], considering x = (xe, v)

and

A
A I

J
I

L
C

P n

n n

i

n n

n n k

i P

P

P P

P P

P P

= ⎡

⎣⎢
⎤

⎦⎥

= ⎡

⎣⎢
⎤

⎦⎥
+ ⎡
⎣⎢

⎤
⎦⎥
[ ]

0 0
,

0

0 0

0
0Ψ ,,

0

0 0
,1 .R

C S C
i m mi

P i P

n

D

P

=
⎡

⎣
⎢

⎤

⎦
⎥ ≤ ≤ =

⊺

(33)

In the following theorem, we propose a method to

obtain observer gains Lk that yield the networked control

system MES. To state the result we need the following

assumption:

H s e dr sA r
s

P( ) : [0, ].
0

= ∈∫ is invertible for every γ (34)

While this assumption holds for a large class of matrices AP,

it is possible to construct examples where it does not, as in

the case where γ > s = 2π and AP =
−
⎡
⎣⎢

⎤
⎦⎥

0 1

1 0
, in which case

H(s) = 0. Let n sy i
m

i:= ∑ =1 .

Theorem 8. Suppose that (34) holds. If there exist an nP × nP

symmetric matrix P > 0, an ny × ny matrix Y, an nP × ny matrix

M, ny × ny matrices { , }S ii ∈M , and scalars { , , }c i jij ≥ ∈0 M ,

such that

F P DM C DM C C YC

c C S C C S C P

i P i P P P

ij P j P P i P

j j

( ) ( )

( ) 0
1

+ + +

+ − − <
=

Ψ Ψ ⊺ ⊺

⊺ ⊺

, ≠≠
∈∑ ∀

i

m

i, M

(35)

P M

M Y⊺

⎡
⎣⎢

⎤
⎦⎥
> 0, (36)
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where F P e Pe dr
A r A rP P( ) : ( )0= ∫

γ
µ

⊺

and D e drA rP: ( )= ∫0

γ
µ , then

the observer gain Lk = H(hk)
−1P−1M yields (12) with matrices

(33) MES.

Note that our proposed observer gain Lk depends on the

length hk of the time interval {tk+1 − tk}, which is not known at

time tk ≤ t < tk+1 (30). In practice, this results in a delay in

constructing the state estimate that never needs to exceed hk

since the state of the remote observer (30) can only be

updated with measurement y(tk) at time tk+1, at which hk can be

computed.

Similar to Theorem 6, the conditions of Theorem 8 can

be used to investigate the stability of a given protocol deter-

mined by matrices Rj, in which case the problem reduces to an

LMI feasibility problem, or they can be used to design a

protocol, where one needs to solve a BMI feasibility problem.

Remark 9. When the intervals between transmission are

constant, one can show that the stability conditions (35) and

(36) are equivalent to the ones given in [8], where such an

assumption is made. In this case, the matrices Lk do not

depend on k, and can be computed off-line.

3.3 Extensions to handle delays and packet drops

Theorems 6 and 1 can be extended to the case where the

network introduces packet drops and delays modeled by (16)

with Matrices (17). We state these extensions next.

Theorem 10. System (16) with dynamic protocol (13)

is MES if there exist scalars { , , }0 1≤ ≤ ∈p j iji DM ,

with ∑ = ∀= ∈j
m

ji i
D

D
p1 1, M , and nx × nx symmetric matrices

{ , }R ii D> ∈0 M such that:

w K p E R K Rl i
l

ji j

j

m

i
l

i

l

n

i

Dq

d d1 1( )

1

( )

1

( ) 0,⊺

==
∈∑∑

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
− < ∀ MMD

,

where

E R e Le R e Le dh dsj
Ah s As

j
Ah s As

h

( ) : ( ) ( , ).
00

= − −∫∫ ⊺ χ
γ

(37)

Theorem 11. System (16) with dynamic protocol (13)

is MES if there exist an nx × nx symmetric matrix W > 0,

scalars { , , , }c i j i jij D≥ ∈ ≠0 M , and nx × nx matrices
R ii D, ∈M such that:

w K E W K

c R R W

l i
l

i
l

l

n

ij j i

j j i

m

i

q

( ) ( )

( ) 0,

1 1( ) ( )

1

1

d d
⊺

M

=

= ≠
∈

∑

∑+ − − < ∀
,

DD
,

where E(W) is defined as in (37).

IV. NETWORKED CONTROL RESULTS

In this section, we show that Theorems 6 and 11 reduce

the conservatism of the results in [3], [5], and [7]. These three

works use the same benchmark problem for the control of a

batch reactor, where the plant (1) and controller (2) matrices

are given by:

AP =

− −
− −

−

1 38 0 2077 6 715 5 676

0 5814 4 29 0 0 675

1 067 4 273 6 65

. . . .

. . .

. . . 44 5 893

0 048 4 273 1 343 2 104

0 0

5 679 0

1 136

.

. . . .

,

.

.

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−

BP
33 146

1 136 0

1 0 1 1

0 1 0 0.

.

, .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−⎡

⎣⎢
⎤
⎦⎥

CP

A B

C D

C C

C C

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

=
−⎡
⎣⎢

⎤
⎦⎥

=
−⎡

⎣⎢
⎤
⎦⎥

0 0

0 0

0 1

1 0

2 0

0 8

0 2

5 0

, ,

, .

Only the two outputs are sent through the network, i.e.,

u(t) = û(t). The network imposes i.i.d. intervals between

transmissions, possibly contains packet drops, and has no

delays. The networked control closed loop can be written as in

(12), (15) in the absence of drops and as in (16)–(17) when

drops occur. Thus, the stability of the networked control

system can be tested by Theorems 1, 6, and 10, 11. The results

are shown in Table I, considering two distributions μ for the

inter-transmissions intervals hk: uniform in the interval [0, γ],

and exponential with expected value 1/λexp.

From Table I, we can conclude that our results allow a

significantly reduction the conservatism of the conditions in

[5] and [3] for the same benchmark examples. The results in

[7] are very close to the ones obtained with Theorem 1, and

both outperform the results obtained with Theorem 6.

In Table II, we show the results obtained by allowing Ri

in Theorem 1 to be additional variables, i.e., the protocol is to

be designed. Note that Theorem 4 assures that the values

obtained with Theorem 1 for the maximum support of a

uniform distribution that preserves stability when a dynamic

protocol (obtained from solving (21)) is utilized are larger

than the ones obtained with the necessary and sufficient con-

ditions provided by Theorem 3 for the static protocol, which

matches well with the results in Table II.

V. CONCLUSIONS AND FUTURE WORK

We provided stability results for networked control

systems with stochastic intervals between transmissions,

© 2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd

Asian Journal of Control, Vol. 17, No. 1, pp. 99–110, January 2015106



delays, and packet drops. Our main result was to show that

one can analytically prove that dynamic protocols preserve

stability for larger sampling intervals between transmission

than static protocols; therefore fewer communication and

control computations are required for such protocols in

networked control systems.

The assumptions on the communication network in the

present work were inspired by the most prevalent communi-

cation networks (e.g. ethernet and wireless protocols) in

which data is transmitted in atomic units called packets. In

such networks, packets carry a large number of bits for data;

hence bit-rate limitations are not the main feature of interest.

Nevertheless, it would be interesting in the future to consider

a networked control system with both packet based commu-

nication links and communication links in which bit-rate

limitations are the main feature of interest. For work consid-

ering bit-rate limitations, see [14].

Although we considered here, for simplicity, a

disturbance-free model for the plant, other works cope with

stochastic disturbance models for the plant [5]. Taking into

account disturbances in the model of the plant can also be a

direction for future work.

Motivated by recent research [15–17] on H2 optimal

problems in the context of networked control systems, an

additional possible line for future research is to consider

related optimal control problems in the scenarios addressed in

the present paper.

VI. APPENDIX A. PROOFS

Proof of Theorem 1. The discrete-time process zk,

described by (18), can be shown to be a Markov process due

to the i.i.d. assumption on hk. In particular

E E Ez z k l m z k l mk k l k
V z V z[ [ ( )]] [ ( )]+ + + + += (38)

for any bounded measurable function V, where Ezk
denotes

expectation given zk, i.e., E Ez kk
z[.] : [. ]= | . If one can find a

function V and positive constants c1, c2, c3, such that

c z V z c z z nx
1

2
2

2
( ) ,≤ ≤ ∀ ∈R (39)

and

E Rz k k k k
n

k
xV z V z c z z[ ( )] ( ) ,1 3

2
+ − ≤ − ∀ ∈ (40)

then we can prove that

E[ ] , 0 1 00 0 0z z c z z ck k
k

k
⊺ ⊺≤ ∀ < < >≥α αfor some , . (41)

which implies MES for (12) according to Definition (19)

since x(tk) = Jizk for some i ∈M. In fact, if (39) and (40) hold,

then

E V z V zz k kk
[ ( )] ( )1+ ≤α (42)

where 0 1 1
3

2

< = − <α
c

c
must be greater than zero since V is

positive. From (38) and (42), we can conclude that

E V z V zz k
k

0
[ ( )] ( ).0≤α (43)

From (39) and (43), we obtain:

E z
c

c
z kz k

k
0
[ ] , 0.

2 2

1

0
2≤ ≥α

Take V z z R zk i k i kD
( ) := ∈min M

⊺ , which satisfies (39)

since Ri > 0 ∀i∈Q. Suppose that zk is such that

i z z R zk j k j kD
= = ∈d argmin2( ) M

⊺ , i.e., V z z R zk k i k( ) = ⊺ . Note

that, in the case where the minimum is achieved

simultaneously for several values of the index i, any of these

indices can be chosen without affecting the present proof.

Then, for any p pji j
m

ji
D≥ ∑ ==0 : 11 , we have:

Table I. Stability results for the batch reactor example-MEF-
TOD and Round Robin protocol. NA stands for Not
Available.

Dynamic Protocol Static Protocol

no drops p = 0.5 no drops p = 0.5

Max. γ :

hk ∼ Uni.(γ)

Results from [3] NA NA NA NA

Results from [5] 0.0372 0.0170 0.0517 0.0199

Results from [7] 0.11 NA NA NA

Ths. 6 and 11 0.0550 0.024 NA NA

Ths. 1 0.111 NA NA NA

Th. 3 NA NA 0.112 0.0385

Max. 1/λexp:

hk ∼ Exp(λexp)

Results from [3] 0.0095 0.0046 NA NA

Results from [5] 0.0158 0.00795 0.0217 0.00924

Results from [7] NA NA NA NA

Ths. 6 and 11 0.0226 0.01124 NA NA

Ths. 1 0.0357 NA NA NA

Th. 3 NA NA 0.0417 0.0188

Table II. Stability results for the batch reactor example-Protocol
design, no packet drops.

Dyn. Prot. Design (Th. 1) Static Prot. (Th. 3)

Max. γ :
hk ∼ Uni.(γ)

0.140 0.112
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E E

E

z k z
j

k i
A h

j
Ah

i kk k
D

V z z J e R e J z[ ( )]1 ( ) ( )1 1+
∈

= ⎡
⎣⎢

⎤
⎦⎥

≤

min
M

⊺ ⊺ ⊺

d d

zz ji k i
A h

j
Ah

i k

j

m

k i j

k

D

p z J e R e J z

z J p

⊺ ⊺

⊺ ⊺

⊺

d d

d

1 1

1

( ) ( )

1

( )

=
∑
⎡

⎣
⎢

⎤

⎦
⎥

= ii j i k

j

m

E R J z
D

( )
1( )

1

d

=
∑

(44)

Suppose we choose pji such that (21) holds, i.e.,

J p E R J R Qi ji j i i

j

m

i

D

d d1 1( ) ( )

1

( )⊺ − = −
=
∑

for some Qi > 0. Then, from (44), we conclude that

Ez k k k i k kk
V z V z z Q z i z[ ( )] ( ) , ( )1 2+ − ≤ − =⊺ d , which implies (40)

and concludes the proof.

Proof of Theorem 6. As in the proof of the Theorem 1, it is

sufficient to find a function V such that (39), (40) hold. Take

V(z) = z⊺Wz, where W is the solution to (26), and suppose that

i z R zj j= ∈argmin M
⊺ . Then

Ez k k k i i k

k ij j

k
V z V z z J E W J W z

z c R

[ ( )] ( ) [ ( ) ] ,

(

1 ( ) ( )1 1+ − = −

= − −

⊺ ⊺

⊺

d d

RR Q zi i

j j i

m

k

D

)
1

+
⎡

⎣
⎢

⎤

⎦
⎥

= ≠
∑

,

(45)

where Qi > 0. Since i z R zj k j k= ∈argmin M
⊺ we have

z c R R zk j j i
m

ij j i k
D⊺[ ( )] 01∑ − ≥= ≠, for every zk

nx∈ℜ . Therefore

from (45), we conclude that V satisfies (40). It is also clear

that V satisfies (39), which concludes the proof.

Proof of Theorem 7. If, for a given zk ≠ 0, i D∈M is such

that i z R zj k j kD
= ∈argmin M

⊺ , which is equivalent to

g zj
i

k j iD
( ) 0, ,{ }≥ ∀ ∈ −M (46)

then we have that z e J zk
Ak

i k
k

+ =1 ( )d , in which case (28) boils

down to

g zi
k0 0( ) .> (47)

The fact that the dynamic protocol is regular implies that

there exists at least one y such that (46) holds with strict

inequality. Then, a straightforward adaptation of the lossless

S-Procedure theorem provided in [13, Theorem 2] to handle

strict inequalities in the objective function g yi
0( ) assures that,

under Condition (29), (47) holds if and only if there exist
c j iij D≥ ∈ −0, { }M such that:

g y c g yi
ij j

i

j i
y

D

nx0

{ }
{0}

( ) ( ) 0, .− > ∀
∈ −

∈ −∑
M

R (48)

The result then follows by noticing that (48) is equivalent

to (26). The fact that (29) holds if mD = 2 (in which case

there is only one quadratic constraint) follows from [13,

Theorem 3].

Proof of Theorem 8. We first prove that, if there exists P > 0

such that

( ( ) ) ( ( ) ) ( )

(

0
e H h L C P e H h L C dh

c C S C

A h
k i P

A h
k i P

ij P j P

P P+ +

+ −

∫ Ψ Ψ⊺

⊺

γ
µ…

CC S C PP i P

j j i

m
⊺ ) 0

1

− <
= ≠
∑

,

(49)

then (26) holds for (12) with Matrices (33). Note that we can

assume that d1( ) ,i i i= ∀ ∈M since, if this is not the case, we

can relabel the sensor nodes in such a way that this holds. For

A, Ji given by (33) we have:

e J
e H h L C

L C

Ah
i

A h
k i P

k i

P

=
+⎡

⎣
⎢

⎤

⎦
⎥

( ) 0

0
.

Ψ
Ψ

Using this expression and considering W P InP
= diag([ ])ε

in (26), where P satisfies (49) and ε is a given positive

constant, we have:

B h
dh

P

I

c
C S C C S C

n

ij

P j P P i P

n

P

( ) 0

0 0
( )

0

0

0

0 0

0

⎡
⎣⎢

⎤
⎦⎥

− ⎡

⎣⎢
⎤

⎦⎥

+
−

∫ µ
ε

γ

⊺ ⊺

PPj j i

m

i

⎡

⎣
⎢

⎤

⎦
⎥ < ∀

= ≠
∈∑ 0,

1,

M

(50)

where

B h L C L C

e H h L C P e H h L C

k i P k i P

A h
k i P

A h
k i

P P

( ) ( ) ( )

( ( ) ) ( ( )

=
+ + +
ε Ψ Ψ

Ψ Ψ

⊺

⊺
PP ).

From this expression we conclude that, if (49) holds, then

(50) holds for sufficiently small ε. Set Lk = H(hk)
−1P−1M for a

nP × m matrix. Then, (49) can be written as:

F P DM C DM C C MP MC

c C S C C S C P

i P i P P P

ij P j P P i P

j

( ) ( )

( ) 0

1+ + +

+ − − <

−Ψ Ψ ⊺ ⊺

⊺ ⊺

== ≠
∈∑ ∀

1

, .
, j i

m

i M

(51)

If we let Y > 0 be such that M⊺P−1M < Y, which, applying the

Shur complement, can be seen to be equivalent to (36), we

see that, if (35) holds, then (51) holds, which concludes the

proof.

Proof of Theorem 10. The proof is obtained by following

the same steps of Theorem 1 and by noticing that, using a

similar reasoning to (44), one obtains:

Ez k l i
l

ji j

j

m

i
l

l

k

D

V z w K p E R K[ ( )] ( )1 ( )

1

( )1 1+
==

≤
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟∑d d
⊺

11

.

nq

∑
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Proof of Theorem 11. The proof is obtained by following

the same steps of Theorem 6 and by noticing that, in (45)

Ez k l i
l

i
l

l

n

k

q

V z w K E W K[ ( )] ( ) ( ) .1 ( ) ( )

1

1 1+
=

=∑ d d
⊺
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