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Abstract. We analyze a master equation formulation of stochastic neurodynamics for a network
of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons.
The state of the network is specified by the fraction of active or spiking neurons in each population,
and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we
recover standard activity-based or voltage-based rate models. We derive the lowest order corrections
to these rate equations for large but finite N using two different approximation schemes, one based on
the Van Kampen system-size expansion and the other based on path integral methods. Both methods
yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form
a closed system of equations for the first- and second-order moments. Taking a continuum limit of
the moment equations while keeping the system size N fixed generates a system of integrodifferential
equations for the mean and covariance of the corresponding stochastic neural field model. We also
show how the path integral approach can be used to study large deviation or rare event statistics
underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics;
such an analysis is not possible using the system-size expansion since the latter cannot accurately
determine exponentially small transitions.
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1. Introduction. Continuum models of neural tissue have been very popular
in analyzing the spatiotemporal dynamics of large-scale cortical activity (reviewed in
[24, 35, 7, 16]). Such models take the form of integrodifferential equations in which the
integration kernel represents the spatial distribution of synaptic connections between
different neural populations, and the macroscopic state variables represent population-
averaged firing rates. Following seminal work in the 1970s by Wilson, Cowan, and
Amari [72, 73, 2], many analytical and numerical results have been obtained regarding
the existence and stability of spatially structured solutions to continuum neural field
equations. These include electroencephalogram (EEG) rhythms [55, 46, 67], geometric
visual hallucinations [25, 26, 70, 8], stationary pulses or bumps [2, 62, 50, 51, 30],
traveling fronts and pulses [27, 61, 6, 74, 17, 32], spatially localized oscillations or
breathers [31, 33, 59], and spiral waves [44, 49, 71, 48].

One potential limitation of neural field models is that they only take into ac-
count mean firing rates and thus do not include any information about higher-order
statistics such as correlations between firing activity at different cortical locations.
It is well known that the spike trains of individual cortical neurons in vivo tend
to be very noisy, having interspike interval distributions that are close to Poisson
[68]. However, it is far less clear how noise at the single cell level translates into
noise at the population level. A number of studies of fully or sparsely connected
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STOCHASTIC NEURAL FIELD THEORY 1489

integrate-and-fire networks have shown that under certain conditions, even though
individual neurons exhibit Poisson-like statistics, the neurons fire asynchronously
so that the total population activity evolves according to a mean-field rate equa-
tion with a characteristic activation or gain function [1, 36, 3, 10, 9, 66]. Formally
speaking, the asynchronous state only exists in the thermodynamic limit N → ∞
where N is the number of neurons in the population. Moreover, even if the asyn-
chronous state exists, it might not be stable. This has motivated a number of
authors to analyze statistical correlations and finite-size effects in spiking networks
[37, 54, 53, 69, 5]. A complementary approach has been developed by Cai and col-
laborators based on a Boltzmann-like kinetic theory of integrate-and-fire networks
[14, 65], which is itself a dimension reduction by moment closure of the so-called
population density method [56, 58]. The population density approach is a numer-
ical scheme for tracking the probability density of a population of spiking neurons
based on solutions of an underlying partial differential equation. In the case of simple
neuron models, this can be considerably more efficient than classical Monte Carlo
simulations that follow the states of each neuron in the network. On the other
hand, as the complexity of the individual neuron model increases, the gain in ef-
ficiency of the population density method decreases, and this has motivated the
development of moment closure schemes. However, as recently shown by Ly and
Tranchina [52], considerable care must be taken when carrying out the dimension
reduction, since it can lead to an ill-posed problem over a wide range of physio-
logical parameters. That is, the truncated moment equations may not support a
steady-state solution even though a steady-state probability density exists for the full
system.

Although there has been some progress in analyzing the stochastic dynamics of
fully connected or sparsely connected networks, there has been relatively little work
in developing stochastic versions of continuum neural field models. One notable ex-
ception is the so-called path integral approach of Buice and Cowan [12] (see also [13]).
This can be viewed as a minimal extension of a deterministic neural field model, in
which the dynamics is described by a master equation whose state transition rates are
chosen such that the original model is recovered in the mean-field limit. The latter is
obtained by setting all second- and higher-order cumulants to zero. Adapting meth-
ods from nonequilibrium statistical physics previously applied to reaction-diffusion
systems [19, 20, 60], Buice and Cowan [12] have shown how to construct a path inte-
gral representation of the associated moment generating functional. This path integral
representation has two particularly useful features. First, diagrammatic perturbation
methods (Feynman graphs) can be used to generate a truncated moment hierarchy,
and thus determine corrections to mean-field theory involving coupling to two-point
and higher-order cumulants [12, 13]. Second, renormalization group methods can be
used to derive scaling laws for statistical correlations close to criticality, that is, close
to a bifurcation point of the underlying deterministic neural field model [12].

In this paper we revisit the path integral approach of Buice and Cowan [12] in
order to determine how it is related to a well-known perturbative approach to ana-
lyzing master equations, namely, the Van Kampen system-size expansion [47]. We
first briefly describe the construction of population-based rate models, which reduce
to neural field equations in an appropriate continuum limit, and introduce the mas-
ter equation formulation of stochastic neurodynamics due to Buice and Cowan [12]
(see section 2). However, we consider a rescaled version of the Buice and Cowan
[12] master equation in which population activity is taken to be the fraction rather
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1490 PAUL C. BRESSLOFF

than mean number of active neurons in each population. This allows us to treat the
size N of each population as a system-size parameter and, hence, to carry out an
expansion of the master equation under the assumption that fluctuations about the
mean-field solutions are O(N−1/2) (see section 3). The associated moment equations
can then be expressed as series expansions in powers of N−1 such that the coupling
between the nth moment and the (n + p)th moment is O(N−p). This provides a
systematic procedure for truncating the moment hierarchy provided that the under-
lying mean-field system is not operating close to criticality. Taking an appropriate
continuum limit that preserves the system-size expansion, we calculate the lowest
order corrections to mean-field theory, which yields a pair of coupled integrodiffer-
ential equations describing the dynamics of the mean and covariance of population
activity. We then show how these equations can also be derived by carrying out
a 1/N loop expansion of the path integral representation of the master equation
based on the steepest descents or the saddle-point method (see section 4). A sim-
ilar path integral expansion was previously carried out by Buice and Cowan [12]
and Buice, Cowan, and Chow [13], except that for their choice of scaling there does
not exist a natural system-size or loop parameter N . Hence, it is necessary to con-
sider different moment closure conditions, and this leads to different corrections to
mean-field theory. (Note that the use of path integrals to carry out an effective
system-size expansion has also been developed within the context of the Kuramoto
model of coupled phase oscillators [39, 40].) We conclude the paper by showing
that for our choice of scaling, the path integral representation of the master equa-
tion can be used to investigate large deviations or rare event statistics underlying
escape from the basin of attraction of a stable fixed point of the mean-field dynam-
ics (see section 5), following along similar lines to previous work on large deviations
in reaction-diffusion systems [38, 21, 22, 29]. Such an analysis is not possible us-
ing the standard Van Kampen system-size expansion, since the latter cannot accu-
rately determine exponentially small transitions. Finally, note that in this paper we
consider the basic analytical formalism of the master equation approach to stochas-
tic neurodynamics. Elsewhere we will present a numerical study based on direct
Monte Carlo simulations that track the state of each neuron in a population, com-
paring the different choices of scaling for the master equation and characterizing the
resulting statistical behavior as a function of the system size and network topol-
ogy.

2. Master equation for neural field models. In this section we outline the
construction of rate-based models of interacting neural populations, which in the con-
tinuum limit are described by neural field equations. Such equations can be voltage-
based or activity-based [63, 24, 35]. We then show how a stochastic version of the
neural field equations can be introduced using a rescaled version of the master equa-
tion formulation of Buice and Cowan [12] and Buice, Cowan, and Chow [13].

2.1. Population-based rate models. Suppose that there exist M homoge-
neous populations each consisting of N neurons labeled by p ∈ Ii, i = 1, . . . ,M , and
|Ii| = N . Assume that all neurons of a given population are equivalent in the sense
that the interaction between neuron p ∈ Ii and neuron q ∈ Ij depends only on i and
j. Each neuron p in population i receives input from all neurons q in population j
with strength wij = Wij/N such that Wij is independent of N . The total synaptic



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC NEURAL FIELD THEORY 1491

current to neuron p ∈ Ii from the various populations is then taken to be of the form

ai(t) =

M∑
j=1

Wij

∫ ∞

0

ε(τ)ν
(N)
j (t− τ)dτ,(2.1)

where the kernel ε is the postsynaptic response to a single action potential or spike

and ν
(N)
j (t) is the population activity

ν
(N)
j (t) =

1

N

∑
q∈Ij

∑
m∈Z

δ(t− Tm
q ).(2.2)

The double sum runs over all firing times Tm
q of all neurons in the population. Let

us now take the thermodynamic limit N → ∞ with νj(t) = limN→∞ ν
(N)
j . The

macroscopic variable νj(t)δt represents the total activity of the jth population, that
is, the fraction of neurons firing in the interval [t, t + δt). We can then define an
asynchronous state as one with constant activity νj(t) = ν∗j for all j = 1, . . . ,M
[1, 36, 10, 9, 66]. It follows that the total synaptic current is also time independent,
ai(t) = a∗i , with

a∗i =
∑
j

Wijν
∗
j .(2.3)

We have assumed that ε is normalized according to
∫∞
0 ε(τ)dτ = 1. Suppose that

each homogeneous population’s steady-state activity is related to the synaptic input
according to some effective gain function which we denote by f , ν∗j = f(a∗j ) [1, 36,
10, 9]. Substitution into (2.3) then yields the steady-state equation

a∗i =
∑
j

Wijf(a
∗
j).(2.4)

We shall assume throughout that f is a positive, monotonically increasing bounded
function such as a sigmoid function.

The above analysis can be extended to the case of time-varying activities provided
that each population remains in a state of incoherent firing so that the synaptic input
is slowly varying in time. That is, under the approximation νj(t) = f(aj(t)) we obtain
the closed integral equation

ai(t) =
∑
j

Wij

∫ ∞

0

ε(τ)f(aj(t− τ))dτ.(2.5)

In the case of exponential synapses, ε(τ) = αe−ατ with α−1 = τm identified as a
membrane or synaptic time constant, (2.5) reduces to the form

τm
dai
dt

= −ai(t) +
∑
j

Wijf(aj(t)).(2.6)

The rate equation (2.6) is expressed in terms of the postsynaptic current ai(t) and
the sum over weights is outside the nonlinear gain function f . Sometimes ai(t) is
identified with the postsynaptic potential rather than current, and (2.6) is referred
to as a voltage-based rate model [15, 43, 24]. Note that the reduction breaks down
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1492 PAUL C. BRESSLOFF

when the population activity changes rapidly relative to τm due to fast transients or
the existence of a coherent state exhibiting collective oscillations, such as when the
asynchronous state becomes unstable. An alternative version of the rate equation is
obtained in cases where the postsynaptic response ε is relatively fast compared to
the response of population activity to changes in synaptic input. If we model the
latter as a low-pass filter and make the approximation ε(τ) = δ(τ), then we obtain
the so-called activity-based rate model [72, 73, 63]

τs
dνi
dt

= −νi(t) + f

⎛⎝∑
j

Wijνj(t)

⎞⎠ .(2.7)

2.2. Continuum limit. So far we have formulated the network dynamics in
terms of a set of interacting homogeneous populations. This is motivated by the ob-
servation that neurons in cortex with similar response properties tend to be arranged
in vertical columns. A classical example is the columnar-like arrangement of neu-
rons in primary visual cortex that prefer stimuli of similar orientation [45]. Neurons
within a cortical column share many inputs and are tightly interconnected, so that
it is reasonable to consider the mean activity ν(t) of the given neural population,
rather than keeping track of the spiking of individual cells. At the next spatial scale
beyond cortical columns one observes interactions between columns that have a dis-
tinctive spatial arrangement. Roughly speaking, intercolumnar interactions depend
on the distance between the interacting columns. This motivates us to consider a
spatially distributed network of neural populations. For concreteness, we consider
a one-dimensional network, although the construction is easily extended to higher
spatial dimensions.

Suppose that there is a uniform density ρ of neural populations (columns) dis-
tributed along the x axis. We partition the x axis into discrete intervals of length Δx
within which there are ρΔx populations. Let us denote the set of populations in the
interval [mΔx, (m + 1)Δx) by N (mΔx). As a further approximation, suppose that
the weights Wij are slowly varying on the length scale Δx so that we can write

Wij = ω(mΔx, nΔx)

for all i ∈ N (mΔx) and j ∈ N (nΔx). The sum over all populations j in the rate
equation (2.7) can now be decomposed as∑

j

Wijνj =
∑
n

ω(mΔx, nΔx)
∑

k∈N (nΔx)

νk.

Define the local spatially averaged activity variable ν(nΔx) according to

(2.8) ν(nΔx) =
1

ρΔx

∑
k∈N (nΔx)

νk,

where ρΔx is the number of populations in each set N (nΔx). Spatially averaging the
rate equation (2.7) with respect to i ∈ N (nΔx) then gives

τs
dν(mΔx, t)

dt
= −ν(mΔx, t) + f

(
ρΔx

∑
n

ω(mΔx, nΔx)ν(nΔx, t)

)
.(2.9)
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Finally, setting x = mΔx and y = nΔx and taking the continuum limit Δx → 0 we
obtain the Wilson–Cowan equation

τs
∂

∂t
ν(x, t) = −ν(x, t) + f

(
ρ

∫
ω(x, y)ν(y, t)dy

)
.(2.10)

Note that our choice of continuum limit involves grouping together local populations in
an infinitesimal interval Δx rather than distributing neurons within a local population
across an interval Δx [35].

A similar analysis can be applied to the voltage-based rate equation (2.6). In this
case we make the approximation∑

j

Wijf(aj) =
∑
n

ω(mΔx, nΔx)
∑

k∈N (nΔx)

f(ak)

≈ ρΔx
∑
n

ω(mΔx, nΔx)f

⎛⎝ ∑
k∈N (nΔx)

ak

⎞⎠
= ρΔx

∑
n

ω(mΔx, nΔx)f(a(nΔx, t)).

Spatially averaging (2.6) with respect to i ∈ N (mΔx) and taking the continuum limit
gives

τm
∂

∂t
a(x, t) = −a(x, t) + ρ

∫
ω(x, y)f(a(y, t))dy.(2.11)

(2.10) and (2.11) are examples of neural field equations, which have been widely used
to study large-scale spatiotemporal dynamics of cortical tissue [72, 73, 2, 25, 24, 8, 7,
16]. They can easily be extended to higher spatial dimensions as well as to separate
populations of excitatory and inhibitory neurons.

2.3. Rate models as Markov processes. The construction of the rate models
(2.6) and (2.7) relies on various forms of spatial and temporal averaging. In particular,
each interacting population is assumed to be homogeneous, and the thermodynamic
limit is taken so that an asynchronous state of constant population activity can be
defined. The resulting neural field equation is then deterministic even though the
spike trains of individual neurons within each homogeneous population is stochastic
[1, 36, 10, 9]. A more realistic network model would have a finite number of neurons
in each population, would allow for heterogeneities within and between populations,
and would incorporate various sources of intrinsic and extrinsic noise.

In this paper we follow Buice and Cowan [12] by considering a phenomenological
master equation approach to incorporating noise into neural field models. However,
in contrast to Buice and Cowan [12], we keep N finite rather than taking the thermo-
dynamic limit N → ∞ and keep track of how various quantities such as the synaptic
weights scale with N . This will allow us to carry out a system-size expansion of the
master equation along the lines of Van Kampen [47] (section 3). It also provides
a natural small parameter, 1/N , that can be used to carry out a systematic loop
expansion in the path integral approach developed previously by Buice and Cowan
[12] (section 4). In order to illustrate the basic idea, let us write down a stochastic
version of the rate equation (2.7). The first step is to reinterpret the population ac-

tivity ν
(N
i (t). We now assume that neurons in each homogeneous population can be
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in one of two states, quiescent or active, i.e., in the process of generating an action
potential. Suppose that in the interval [t, t + Δt) there are mi(t) active neurons in
the ith population. It follows that the activity of this population is given by

(2.12) ν
(N)
i (t) =

mi(t)

NΔt
.

We will take Δt to be equal to the width of an action potential (approximately 1msec)
and fix time units such that Δt = 1. The state or configuration of the network is
now specified by the vector m(t) = (m1(t),m2(t), . . . ,mM (t)), where each mi(t) is
treated as a stochastic variable that evolves according to a one-step jump Markov
process. The rates for the state transitions mi → mi ± 1 are then chosen so that in
the thermodynamic limit N → ∞ one recovers the deterministic rate equation (2.7).
Let P (n, t) = Prob[m(t) = n] denote the probability that the network of interacting
populations has configuration n = (n1, n2, . . . , nM ) at time t, t > 0, given some initial
distribution P (n, 0).1 The probability distribution evolves according to the master
equation [12]

dP (n, t)

dt
= α

∑
i

⎡⎣(ni + 1)P (ni+)− niP (n, t) +Nf

⎛⎝Wii(ni − 1)/N(2.13)

+
∑
j �=i

Wijnj/N

⎞⎠P (ni−, t)−Nf

⎛⎝∑
j

Wijnj/N

⎞⎠P (n, t)

⎤⎦
for 0 ≤ ni ≤ N . Here ni± denotes the configuration with ni replaced by ni ± 1 and
α = 1/τs. Equation (2.14) is supplemented by the boundary conditions P (n, t) ≡ 0 if
ni = N + 1 or ni = −1 for some i. The master equation preserves the normalization
condition

∑M
i=1

∑N
ni=0 P (n, t) = 1 for all t ≥ 0.

The one major difference between (2.13) and the corresponding master equation
of Buice and Cowan [12] is the relationship between the activity variable νi in the
rate equation (2.7) and the mean 〈mi(t)〉 ≡ ∑

n P (n, t)ni. Buice and Cowan make
the identification νi = 〈mi〉 and allow mi(t) to be unbounded; that is, they first take
the thermodynamic limit N → ∞ with Nf replaced by f . The rate equation (2.7)
is then recovered by taking a mean-field limit in which all second- and higher-order
correlations are set to zero. This particular choice of scaling effectively assumes that
the neurons in each local population are strongly correlated such that the popula-
tion activity is Poisson-like [13, 11]. On the other hand, we take νi = 〈mi〉/N and
wij = Wij/N with Wij independent of N , where N is the size of each local popula-
tion. We then naturally recover the rate equation (2.7) in the thermodynamic limit
N → ∞ provided that f is scaled by the factor N in the master equation. (In general
one might expect the gain function f itself to depend on the size N , but we ignore
this additional complication here.) Our choice of scaling is motivated by the analysis
of asynchronous states in homogeneous networks [1, 36, 10, 9, 66]. That is, we con-
sider a regime in which the asynchronous state of each local population is stable so
that the firing patterns of the neurons within a local population are approximately

1In probability theory it is conventional to distinguish between a random variable and the par-
ticular value it takes by writing the former as uppercase and the latter as lowercase. In this paper
we use lowercase for both. Thus 〈m(t)〉 = n states that the expectation value of the random variable
m(t) at time t is n.
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uncorrelated for large N and the law of large numbers holds. From a mathematical
perspective, there is a major difference between dealing with finite N and taking the
thermodynamic limit ab initio. In the former case, the master equation describes a
jump process on a large but finite-dimensional state space consisting of NM states.
Assuming that the weight matrix W is irreducible, it follows that the correspond-
ing transition matrix of the master equation (2.13) is also irreducible and, hence,
there exists a unique stationary solution [47]. However, the presence of the nonlinear
gain function f means that it is not possible to obtain exact solutions of the mas-
ter equation so that some approximation scheme is required. In this paper, we will
consider two such approximation schemes, one based on the Van Kampen system-size
expansion (section 3) and the other based on path integrals and steepest descents
(section 4). Both approaches assume that mi(t) is unbounded, while treating N as
a fixed parameter of the transition rates, and involve perturbation expansions in the
small parameter N−1 about deterministic (mean-field) solutions. In general, these
perturbative approximations will not generate the correct stationary behavior of the
finite system in the limit t → ∞. However, they can still capture quasi-stationary
(metastable) states in which the finite network spends a long but finite time.

Another important observation is that the construction of the master equation is
nonunique. For example, any master equation of the form

dP (n, t)

dt
= α

∑
i

[(ni + 1)Gi(ni+/N)P (ni+, t)− niGi(n/N)P (n, t)

+ N(Hi(ni−/N)P (ni−, t)−Hi(n/N))P (n, t)](2.14)

will reduce to the rate equation (2.7) in the large-N limit, provided that

(2.15) Gi(ν) = 1 + Γi(ν), Hi(ν) = f

⎛⎝∑
j

Wijνj

⎞⎠+ νiΓi(ν),

where Γi is an arbitrary positive function. This raises two issues. How do correc-
tions to mean-field theory depend on Γi? Are there additional constraints that can
determine Γi? We will attempt to address the first question in this paper. A mas-
ter equation of the general form (2.14) can also be constructed for the voltage-based
model given by (2.6). However, we first need to write down a rate equation for the
activity νi(t). This can be achieved by an application of the chain rule:

(2.16)
dνi
dt

= f ′(ai)
dai
dt
.

Assuming that f is invertible such that ai = g(νi) and using (2.6), we find that

(2.17)
dνi
dt

=
α

g′(νi)

⎡⎣−g(νi) +∑
j

Wijνj

⎤⎦ ,
where we have used the relation f ′(a) = 1/g′(ν). We are assuming that g′(ν) �= 0 for
all ν. By analogy with the previous case, the master equation (2.14) reduces to the
above rate equation in the thermodynamic limit provided that

(2.18) Gi(ν) =
g(νi)

νig′(νi)
+ Γi(ν), Hi(ν) =

1

g′(νi)

∑
j

Wijνj + νiΓi(ν).
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In this case, Γi should be chosen such that both Gi and Hi are positive transition
rates. That is, in general the weight matrix Wij includes both excitatory (positive)
and inhibitory (negative) synapses. One possibility is to choose Γi such that all
inhibitory inputs contribute to the transition rate Gi.

In this paper we will develop both the Van Kampen system-size expansion and
the path integral approach for the general master equation (2.14). Our results can
then be applied to activity-based and voltage-based neural field models using (2.15)
and (2.18), respectively, and taking the appropriate continuum limit. However, we
will illustrate our results using the simpler activity-based model in order to compare
directly with Buice and Cowan [12].

3. System-size expansion. In this section we carry out a system-size expansion
of the general master equation (2.14), following the method originally developed by
Van Kampen [47] in the context of chemical reactions and birth-death processes.
For simplicity, we will assume that the initial state of the network is known so that
mi(0) = ni with probability one

(3.1) P (n, 0) =
∏
i

δni,ni .

Note that a system-size expansion for a single homogeneous network was previously
carried out by Ohira and Cowan [57]. Let us rewrite (2.14) in the more compact form

(3.2)
dP (n, t)

dt
= α

∑
i

[
(Ei−1) [niGi(n/N)P (n, t)]+N

(
E
−1
i −1

)
[Hi(n/N)P (ni, t)]

]
,

where Ei is a translation operator: E±1
i F (n) = F (ni±) for any function F . Perform

the change of variables

(3.3) (ni, t) → (Nνi(t) +
√
Nξi, t),

where νi(t) is some time-dependent function to be determined below, and set

(3.4) Π(ξ, t) = P (Nν(t) +
√
Nξ, t).

Note that since ni is integer valued, ξi is also a discrete variable but takes on values
separated by integer multiples of 1/

√
N . Thus, in the large-N limit we can treat ξi

as continuous valued. Differentiation with respect to time gives

∂P (n, t)

∂t
=
∂Π(ξ, t)

∂t
+

M∑
j=1

∂ξj
∂t

∂Π(ξ, t)

∂ξj

=
∂Π(ξ, t)

∂t
−
√
N

M∑
j=1

∂νj(t)

∂t

∂Π(ξ, t)

∂ξj
,(3.5)

where we have used the fact that the variable ni is kept fixed when taking the partial
derivative with respect to t. The next step is to set ni/N = νi(t) + N−1/2ξi in the

coefficients of the master equation (3.2) and to Taylor expand with respect to ξ/
√
N .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC NEURAL FIELD THEORY 1497

For example, denoting by 1i the vector with components [1i]j = δi,j we have

E
−1
i [Hi(n/N)P (n, t)] = Hi

(
ν(t)+N−1/2(ξ−N−1/21i)

)
Π(ξ−N−1/21i, t)(3.6)

=

(
Hi(ν(t))−N−1/2

∑
j

∂Hi(ν(t))

∂φj
(ξj−N−1/2δi,j) + . . .

)

×
(
Π(ξ, t)−N−1/2 ∂Π(ξ, t)

∂ξi
+
N−1

2

∂2Π(ξ, t)

∂ξ2i
+ . . .

)
.

The final result is a Taylor expansion of the master equation in powers of N−1/2.
Identifying the leading order N1/2 terms gives

(3.7)
∑
i

dνi(t)

dt

∂Π(ξ, t)

∂ξi
= α

M∑
i=1

[−νi(t)Gi(ν(t)) +Hi(ν(t))]
∂Π(ξ, t)

∂ξi
.

These terms cancel provided that we take ν(t) to be a solution of the rate equation

(3.8) τs
dνi(t)

dt
= Fi(ν(t)) ≡ −νi(t)Gi(ν(t)) +Hi(ν(t)).

Note that substitution of (2.15) or (2.18) into (3.8) recovers the corresponding rate
equation (2.7) or (2.6). Assuming that ν(t) satisfies (3.8), the master equation ex-
pansion to order N−1/2 is then

τs
∂Π

∂t
= −

∑
i

∂

∂ξi

[
F

(1)
i (ξ,ν)Π(ξ, t)

]
+

1

2

∑
i

∂2

∂ξ2i

[
F

(2)
i (ξ,ν)Π(ξ, t)

]
− N−1/2

6

∑
i

∂3

∂ξ3i
[Fi(ν)Π(ξ, t)] +O(N−1),(3.9)

where

F
(1)
i (ξ,ν) =

∑
k

Aik(ν)ξk +
N−1/2

2

∑
k,l

Aikl(ν)ξkξl +O(N−1),(3.10)

F
(2)
i (ξ,ν) = Bi(ν) +N−1/2

∑
k

Bik(ν)ξk +O(N−1),(3.11)

and

Aik(ν) =
∂Fi(ν)

∂νk
, Aikl(ν) =

∂2Fi(ν)

∂νk∂νl
,(3.12)

Bi(ν) = νiGi(ν) +Hi(ν), Bik(ν) =
∂Bi(ν)

∂νk
.(3.13)

3.1. Linear noise approximation. Keeping only the O(1) terms in (3.9) leads
to the linear Fokker–Planck equation [47]

τs
∂Π

∂t
= −

∑
i,k

Aik(ν)
∂

∂ξi
[ξkΠ(ξ, t)] +

1

2

∑
i

Bi(ν)
∂2

∂ξ2i
Π(ξ, t)(3.14)

with ν(t) evolving according to (3.8). Suppose, for the moment, that we treat Π(ξ, t)
as a probability density on R

M such that

M∏
i=1

∫ ∞

−∞
dξiΠ(ξ, t) = 1.
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In order to represent Π(ξ, t) as a probability density in the large-N limit, we have to
introduce a scale factor in (3.4) of the form P = N−M/2Π and make the approximation
N−1/2

∑
ξi

≈ ∫
dξi for each i = 1, . . . ,M . We are also assuming that there is a

negligible probability of the stochastic process approaching the boundaries at mi =
0, N so that we can take −∞ < ξi < ∞. Under these simplifying assumptions, the
linear noise approximation decomposes the discrete random variables mi(t) into a
deterministic component and a stochastic component such that

(3.15) N−1mi(t) = νi(t) +N−1/2ξi(t)

with ξi(t) approximated by a multivariate Gaussian process corresponding to solutions
of the Fokker–Planck equation (3.14). In other words, we can represent the stochas-
tic dynamics in terms of O(N−1/2) fluctuations around a background deterministic
trajectory, with the latter corresponding to a solution of the rate equation (3.8).

A Gaussian process is completely specified by its first- and second-order statistics.
Let us define the mean

(3.16) 〈ξi(t)〉 ≡
∫
ξiΠ(ξ, t)dξ = N−1/2〈mi(t)〉

and covariance

Ckl(t) ≡ 〈ξk(t)ξl(t)〉 − 〈ξk(t)〉〈ξl(t)〉 = N−1 [〈mk(t)ml(t)〉 − 〈mk(t)〉〈ml(t)〉] .(3.17)

Taking moments of the Fokker–Planck equation (3.14), it can be shown that (see also
section 3.2)

τs
∂〈ξp〉
∂t

=
∑
k

∂Fp(ν)

∂νk
〈ξk〉(3.18)

and

(3.19)
dC

dt
= A(ν)C +CA(ν)T +B(ν),

where the matrix components Akl are given by (3.12) andBkl = Bkδk,l with Bk given
by (3.13). The deterministic initial conditions (3.1) imply that we can set 〈ξi(0)〉 = 0.
(3.18) then implies that 〈ξ(t)〉 = 0 for all t > 0 and, hence, 〈mi(t)〉 = Nνi(t). Suppose
that the rate equation (3.8) has a unique stable fixed point solution ν∗. It follows that
the Fokker–Planck equation has a stationary solution given by the multidimensional
Gaussian

(3.20) Π(ξ) =
1√

(2π)M detC
exp

⎛⎝−
∑
k,l

ξkCklξl

⎞⎠
with the stationary covariance matrix satisfying the equation

(3.21) A(ν∗)C +CA(ν∗)T +B(ν∗) = 0.

The autocorrelation matrix of the stationary process, Ξij(t) = 〈ξi(t)ξj(s)〉, is given
by

(3.22) Ξ(t) = CeA(ν∗)|t−s|.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC NEURAL FIELD THEORY 1499

This can be derived by noting that [47], for t > s,

〈ξi(t)ξj(s)〉 = 〈ξj(s)〈ξi(t)〉ξ(s)〉 = 〈ξj(s)ξi(s)〉eA(ν∗)|t−s|.

That is, we solve the first moment equation (3.18) given the initial condition ξ(s) and
then set 〈ξi(s)ξj(s)〉 = Cij after averagingwith respect to the stationary distribution. A
similar result holds for t < s. Noting from (3.12) that the matrixA(ν∗) is the Jacobian
of the fixed point ν∗, it follows that A(ν∗) has negative definite eigenvalues and hence
Ξ(t) → 0 as t→ ∞. However, (3.21) implies thatC becomes singular as detA(ν∗) → 0.
This reflects the well-known result that the standard system-size expansionbreaks down
at critical points [47]. That is, fluctuations near the critical point are enhanced so that
as the critical point is approached more and more terms in the system-size expansion
are required to maintain a given accuracy. At the critical point itself, it is usually nec-
essary to carry out the expansion in powers of N−μ for some μ �= 1/2 [47]. One of the
interesting aspects of the path integral approach developed by Buice and Cowan [12] is
that renormalization group methods can be used to extract the power law behavior of
statistical correlations in the vicinity of a critical point.

For a general weight matrix Wij we expect the rate equations (2.6) and (2.7)
to have multiple fixed points [43]. In this case, the system-size expansion can still
be used to analyze the effects of fluctuations well within the basin of attraction of
a locally stable fixed point. However, there is now a small probability that there is
a noise-induced transition to the basin of attraction of another fixed point or to an
absorbing boundary. Since the probability of such a transition is usually of order e−N

except close to the boundary of the basin of attraction, such a contribution cannot
be analyzed accurately by carrying out a perturbation expansion in N−1/2 and using
standard Fokker–Planck methods [47]. These exponentially small transitions play
a crucial role in allowing the network to approach the unique stationary state (if it
exists) in the asymptotic limit t→ ∞. In section 5 we will show how the path integral
representation of the master equation presented in section 4 can be used to estimate
the lifetime of the active metastable state, following recent work on the analysis of
rare event statistics in reaction-diffusion systems [38, 21, 22, 29].

3.2. Moment equations. Returning to the more general Taylor expanded mas-
ter equation (3.9), we can generate a hierarchy of moment equations by multiplying
both sides with products of components of ξ, integrating with respect to ξ, and then
performing successive integrations by parts. Our choice of scaling with respect to the
system size N means that we can systematically truncate this moment hierarchy by
specifying the order of N . For simplicity, we will truncate at order N−1/2. (The accu-
racy of the truncation will depend on how close the system is to criticality; see section
3.1.) As in the O(1) linear noise approximation, we treat Π(ξ, t) as a probability
density with the appropriate normalization and ignore boundary effects.

In the case of the first moment,

τs
∂〈ξi〉
∂t

= −
∑
j

∫
dξξi

∂

∂ξj

[
F

(1)
j (ξ,ν)Π(ξ, t)

]
=

∫
dξF

(1)
i (ξ,ν)Π(ξ, t).(3.23)
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Substituting for F
(1)
i using (3.10) and (3.12) then gives

τs
∂〈ξi〉
∂t

=
∑
k

Aik(ν)〈ξk〉+ N−1/2

2

∑
k,l

Aikl(ν)〈ξkξl〉+O(N−1)

=
∑
k

∂Fi(ν)

∂νk
〈ξk〉+ N−1/2

2

∑
k,l

∂2Fi(ν)

∂νkνl
〈ξkξl〉+O(N−1).(3.24)

Similarly, the second moment equation is

τs
∂〈ξiξj〉
∂t

= −
∑
k

∫
dξξiξj

∂

∂ξk

[
F

(1)
k (ξ,ν)Π(ξ, t)

]
+

1

2

∑
k

∫
dξξiξj

∂2

∂ξ2k

[
F

(2)
k (ξ,ν)Π(ξ, t)

]
=

∫
dξ

[
ξjF

(1)
i (ξ,ν) + ξiF

(1)
j (ξ,ν)

]
Π(ξ, t)

+ δi,j

∫
dξF

(2)
i (ξ,ν)Π(ξ, t).(3.25)

Substituting for F
(2)
i using (3.11) then gives

τs
∂〈ξiξj〉
∂t

=
∑
k

Aik(ν)〈ξkξj〉+
∑
k

Ajk(ν)〈ξkξi〉+Bi(ν)δi,j

+
N−1/2

2

∑
k,l

[Aikl(ν)〈ξjξkξl〉+Ajkl(ν)〈ξiξkξl〉]

+ N−1/2δi,j
∑
k

Bik(ν)〈ξk〉+O(N−1).(3.26)

At first sight it would appear that, since the second moments couple to third moments
at O(N−1/2), we need to determine the equation for third (and possibly higher)
moments by going to order O(N−1). Note, however, that the first moment already
couples to the second moment at order O(N−1/2); see (3.24). Therefore, if we are
only interested in the lowest order corrections to the rate equation (3.8) that couple
the first and second moments together, we can drop the O(N−1/2) terms from the
second moment equation. Thus,

τs
∂〈ξiξj〉
∂t

= Bi(ν)δi,j +
∑
k

Aik(ν)〈ξkξj〉+
∑
k

Ajk(ν)〈ξkξi〉+O(N−1/2)

= [νiGi(ν) +Hi(ν)] δi,j +
∑
k

[
∂Fi(ν)

∂νk
〈ξkξj〉+ ∂Fj(ν)

∂νk
〈ξkξi〉

]
+ O(N−1/2).(3.27)

The various coefficients in the moment equations (3.24) and (3.27) depend on the
time-dependent solution ν(t) of the deterministic rate equation (3.8). It is useful to
combine (3.8) and (3.24) by setting

(3.28) νi = νi +N−1/2〈ξi〉
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such that

τs
∂νi
∂t

= τs
∂νi
∂t

+N−1/2τs
∂〈ξi〉
∂t

(3.29)

= Fi(ν) +
1

2N

∑
k,l

∂2Fi(ν)

∂νk∂νl
Ckl +O(N−2),

where Ckl is the covariance matrix (3.17). The corresponding initial conditions are

νi(0) = ν
(0)
i and Ckl(0) = 0 (deterministic initial conditions). The covariance matrix

C satisfies the same equation to lowest order as the second moments,

τs
∂Cij

∂t
= [νiGi(ν) +Hi(ν)] δi,j +

∑
k

[
∂Fi(ν)

∂νk
Ckj +

∂Fj(ν)

∂νk
Cki

]
+O(N−1),(3.30)

which recovers the O(1) result (3.19). (3.29) and (3.30) generate the lowest order
correction to the rate equation (3.8) that couples the mean activity to the covariance
matrix. In the thermodynamic limit N → ∞ this coupling vanishes, and we recover
the deterministic rate equation. An important observation is that the right-hand side
of (3.30) depends on the sum Bi(ν) = νiGi(ν) + Hi(ν). It follows from (2.18) and
(2.15) that the covariance depends on the arbitrary function Γi(ν); the latter cancels
in the case of Fi(ν). The resulting moment equations for the activity-based rate
model (2.7) can be obtained by substituting (2.15) into (3.29) and (3.30):
(3.31)

τs
∂νi
∂t

= −νi + f

⎛⎝∑
j

Wijνj

⎞⎠+
1

2N
f ′′

⎛⎝∑
j

Wijνj

⎞⎠∑
k,l

WikWilCkl +O(N−2),

and

τs
∂Cij

∂t
=

[
νi + f

(∑
p

Wipνp

)]
δi,j − 2Cij

+
∑
k

[
f ′
(∑

p

Wipνp

)
WikCkj + f ′

(∑
p

Wjpνj

)
WjkCki

]
+ O(N−1),(3.32)

where we have set Γi = 0 for simplicity.

3.3. Continuum limit of moment equations. Following section 2, we can ob-
tain a continuum limit of the moment equations (3.31) and (3.32) of the activity-based
model by considering a continuum of populations (cortical columns) and performing
local spatial averaging. This preserves the system size N of each homogeneous popu-
lation so that one can still apply the system-size expansion. Introducing the spatially
averaged activity variable ν(mΔx, t) according to (2.8), we spatially average (3.31)
over an infinitesimal region to give (Γi ≡ 0)

τs
∂ν(mΔx, t)

∂t
= −ν(mΔx, t) + f (u(mΔx, t)) +

N−1

2
f ′′ (u(mΔx, t))

× [ρΔx]2
∑
k,l

ω(mΔx, kΔx)ω(mΔx, lΔx)C(kΔx, lΔx, t),
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where

u(mΔx, t) = ρΔx
∑
n

ω(mΔx, nΔx)ν(nΔx, t)(3.33)

and

C(kΔx, lΔx, t) =
1

[ρΔx]2

∑
i∈N (kΔx)

∑
j∈N (lΔx)

Cij(t).(3.34)

Similarly, spatially averaging equation (3.32)

τs
∂C(kΔx, lΔx, t)

∂t
= [ν(kΔx) + f (u(kΔx, t))]

δk,l
ρΔx

− 2C(kΔx, lΔx, t)

+ f ′ (u(kΔx, t)) ρΔx
∑
p

ω(kΔx, pΔx)C(pΔx, lΔx, t)

+ f ′ (u(lΔx, t)) ρΔx
∑
p

ω(lΔx, pΔx)C(pΔx, kΔx, t).

Finally, taking the continuum limit leads to the lowest order corrections to the Wilson–
Cowan equations:

τs
∂ν(x, t)

∂t
= −ν(x, t) + f (u(x, t))(3.35)

+
1

2N
f ′′ (u(x, t)) ρ2

∫∫
ω(x, y)ω(x, y′)C(y, y′, t)dydy′,

and

τs
∂C(x, x′, t)

∂t
= [ν(x) + f (u(x, t))]

δ(x− x′)
ρ

− 2C(x, x′, t)

+ f ′ (u(x, t)) ρ
∫
ω(x, z)C(z, x′, t)dz

+ f ′ (u(x′, t)) ρ
∫
ω(x′, z)C(z, x, t)dz(3.36)

with

(3.37) u(x, t) = ρ

∫
ω(x, y)ν(y, t)dy.

(3.35) and (3.36) provide the minimal extension of the Wilson–Cowan neural
field equations that take into account the coupling between mean activity and the
second-order cumulant. The extended neural field equations can be used to study how
intrinsic noise due to the finite size of local populations affects spatially structured
solutions of neural field equations such as traveling pulses and fronts, spiral waves and
bumps. However, as we discussed in section 3.1, they are only valid provided that the
network does not operate close to criticality. Moreover, they do not take into account
large deviations (rare events) of the full stochastic dynamics, which can induce escape
from the basin of attraction of a stable solution of the neural field equations (see
section 5). (3.35) and (3.36) are almost identical to the corresponding neural field
equations originally derived by Buice and Cowan [12] using path integral methods,
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except that in our case the mean activity ν(x) couples to the covarianceC(x, x′) rather
than the so-called normal-ordered covariance Ĉ(x, x′) = C(x, x′)−ρν(x)δ(x−x′); the
latter is obtained by taking the continuum limit of Ĉij = Cij−νiδi,j . The significance
of the normal-ordered covariance in the neural field equations of Buice and Cowan
[12] was recently made explicit by Buice, Cowan, and Chow [13], who used a more
direct approach to deriving these equations based on closure of the moment hierarchy.
Indeed, one way to interpret the difference between our neural field equations (3.35)
and (3.36) and those of Buice and Cowan [12] is that they involve different moment
closure conditions (see section 4).

4. Path integrals and the 1/N expansion. In this section we show how the
system-size expansion of the master equation (2.14) is equivalent to a 1/N (loop)
expansion of a corresponding path integral representation of the master equation.
The latter method was recently introduced by Buice and Cowan [12] and further
refined by Buice, Cowan, and Chow [13], based on a modification of previous work on
reaction-diffusion systems [19, 20, 60]. It should be noted that, as in the case of the
Van Kampen system-size expansion, the path integral representation assumes that
there is no upper bound on the number of active neurons mi in each local population,
while N is treated as a fixed parameter of the transition rates.

4.1. Path integral representation of the master equation. The technical
details regarding the derivation of the path integral representation are presented in
Appendix A (see also [12]). Here we follow a more heuristic approach along the
lines of Buice, Cowan, and Chow [13]. Let us first consider the representation of
the joint probability density for the fields Φi = {Φi(s), 0 ≤ s ≤ t}, with Φi = Nνi
and νi satisfying the deterministic rate equation (3.8). Assuming an initial condition

Φi(0) = Φ
(0)
i , the joint probability density can be written formally as an infinite

product of Dirac delta functions that enforce the solution of the rate equation at each
point in time:

P [Φ] = N
∏
s≤t

∏
i

δ
(
∂tΦi + αΦiGi(Φ/N)− αNHi(Φ/N)− δ(t)Φ

(0)
i

)
,(4.1)

where N is a normalization factor. Introducing the standard Fourier representation
of the Dirac delta function, we can rewrite this equation as

P [Φ] =

∫ ∏
i

DΦ̃ie
−S[Φ,Φ̃],(4.2)

where we have absorbed the normalization factor into the integration measure

DΦ̃i ∼
∏
s≤t

dΦ̃i(s),

each Φ̃i(s) is integrated along the imaginary axis, and S is the so-called action

S[Φ, Φ̃] =

∫
dt
∑
i

Φ̃i(t) [∂tΦi + αΦiGi(Φ/N)− αNHi(Φ/N)]−
∑
i

Φ̃i(0)Φ
(0)
i .

Following along similar lines to Buice and Cowan [12], it can be shown that when
fluctuations described by the master equation (2.14) are taken into account, the prob-
ability density P [Φ] is still given by (4.2) except that the action S now takes the form
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(see Appendix A)

(4.3) S[Φ, Φ̃] =

∫
dt
∑
i

Φ̃i

[
∂tΦi + αĜi(Ψ/N)Φi − αNĤi(Ψ/N)

]
−
∑
i

Φ̃i(0)Φ
(0)
i ,

where Ψj = Φ̃jΦj+Φj and, for simplicity, the initial distribution is given by a product

of independent Poisson processes with means ni = Φ
(0)
i ,

(4.4) P (n, 0) =
[ni]

nie−ni

ni!
.

Note that the functions Ĝ and Ĥ are obtained from the functions G and H after
“normal-ordering” the action. That is, after moving all fields Φ̃ to the right of all
fields Φ using repeated application of the commutation rule

(4.5) ΦiΦ̃j = Φ̃jΦi + δi,j .

Thus, if g(Ψ) = (Φ̃i + 1)Φi(Φ̃j + 1)Φj , then

ĝ(Ψ) = (Φ̃i + 1)(Φ̃j + 1)ΦiΦj + (Φ̃i + 1)Φiδi,j .

(Of course, Φi(t) and Φ̃i(t) are just numbers rather than operators: the commutation

rule is simply a prescription for how to construct the functions Ĝ and Ĥ ; see Appendix
A.)

Given the probability distribution P [Φ], we can calculate mean fields according
to2

〈〈Φk(t1)〉〉 =
∫ ∏

i

DΦiΦk(t1)P [Φ]

=

∫ ∏
i

DΦi

∫ ∏
i

DΦ̃i Φk(t1)e
−S[Φ,Φ̃].(4.6)

Similarly two-point correlations are given by

〈〈Φk(t1)Φl(t2)〉〉 =
∫ ∏

i

DΦi

∫ ∏
i

DΦ̃i Φk(t1)Φl(t2)e
−S[Φ,Φ̃].(4.7)

In terms of the statistics of the physical activity variables mi(t) one finds that

(4.8) 〈mk(t)〉 ≡
∑
n

nkP (n, t) = 〈〈Φk(t)〉〉,

whereas the covariance is given by [12, 13]

(4.9) 〈mk(t)ml(t)〉−〈mk(t)〉〈ml(t)〉=〈〈Φk(t)Φl(t)〉〉−〈〈Φk(t)〉〉〈〈Φl(t)〉〉+〈〈Φk(t)〉〉δk,l.
Another important characterization of the system is how the mean activity re-

sponds to small external inputs. Suppose that we add a small external source

2We use double angular brackets to distinguish between expectation values of fields within the
path integral formalism and expectation values of random variables with respect to some probability
distribution.
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term hi(t) onto the right-hand side of the deterministic rate equation (3.8). Lin-
earizing about the time-dependent solution of the unperturbed equation (h ≡ 0)
leads to the following (nonautonomous) linear equation for the perturbed solution
ui(t) = Φh

i (t)− Φi(t) where Φi(t) = Nνi(t):

τs
dui
dt

=
∑
k

∂Fi(Φ/N)

∂Φk
uk(t) +Nhi(t).(4.10)

Introducing the Green’s function or propagator G0
ij(t, t

′) according to the adjoint
equation

−τs
dG0

ij(t, t
′)

dt′
=
∑
k

∂Fk(Φ/N)

∂Φj
G0
ik(t, t

′) + δi,jδ(t− t′),(4.11)

we can express the linear response as

(4.12) ui(t) = N

∫ t∑
j

G0
ij(t, t

′)hj(t′)dt′.

In other words, in terms of functional derivatives

(4.13)
δΦi(t)

Nδhj(t′)
= G0

ij(t, t
′).

Now suppose that we add a source term in the path integral representation. This
corresponds to adding a term

∫ ∑
i hi(t)Φ̃i(t)dt to the action (4.3). It follows that

the associated Green’s function for the full stochastic model is given by

(4.14) Gij(t, t
′) ≡ δ〈〈Φi(t)〉〉

Nδhj(t′)
= 〈〈Φi(t)Φ̃j(t

′)〉〉.

The above analysis motivates the introduction of the generating functional

Z[J , J̃ ] =

∫ ∏
i

DΦi

∫ ∏
i

DΦ̃ie
−S[Φ,Φ̃]e

∫
dt

∑
j[Φ̃j(t)Jj(t)+J̃j(t)Φj(t)].(4.15)

Various moments of physical interest can then be obtained by taking functional deriva-
tives with respect to the “current sources” J , J̃ . For example,

〈〈Φi(t)〉〉 = δ

δJ̃i(t)
Z[J , J̃ ]

∣∣∣∣∣
J=J̃=0

,(4.16)

〈〈Φi(t)Φj(t
′)〉〉 = δ

δJ̃i(t)

δ

δJ̃j(t)
Z[J , J̃ ]

∣∣∣∣∣
J=J̃=0

,(4.17)

〈〈Φi(t)Φ̃j(t
′)〉〉 = δ

δJ̃i(t)

δ

δJj(t)
Z[J , J̃ ]

∣∣∣∣∣
J=J̃=0

.(4.18)

4.2. Loop (1/N) expansion. Suppose that we perform the rescaling Φi →
φi = Φi/N so that the generating functional can be rewritten as

Z[J , J̃ ] =

∫ ∏
i

Dφi

∫ ∏
i

Dφ̃ie
−NS[φ,φ̃]eN

∫
dt

∑
j[φ̃j(t)Jj(t)+J̃j(t)φj(t)](4.19)
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with the action

S[φ, φ̃] =

∫
dt

[∑
i

φ̃i∂tφi +H(φ, φ̃)

]
−
∑
i

φ̃i(0)φ
(0)
i ,(4.20)

where

(4.21) H(φ, φ̃) = α
∑
i

φ̃i

[
Ĝi(ψ)φi − Ĥi(ψ)

]
and ψi = φ̃iφi + φi. For convenience of notation we have set Φ̃ = φ̃ and rescaled
the current J . Under this rescaling, the normal ordering of a function g is generated
using the commutation rule

(4.22) φiφ̃j = φ̃jφi +N−1δi,j .

(3.17), (4.8), and (4.9) imply that

(4.23) νk(t) ≡ N−1〈mk(t)〉 = 〈〈φk(t)〉〉
and

N−1Ckl = N−2 [〈mk(t)ml(t)〉 − 〈mk(t)〉〈ml(t)〉]
= 〈〈φk(t)φl(t)〉〉 − 〈〈φk(t)〉〉〈〈φl(t)〉〉+N−1〈〈φk(t)〉〉δk,l.(4.24)

Moreover, (4.14) can be rewritten as

(4.25) N−1Gij(t, t
′) = 〈〈φi(t)φ̃j(t′)〉〉.

The loop expansion of the path integral (4.19) is essentially a diagrammatic
method for carrying out a 1/N expansion based on steepest descents or the saddle-
point method. In the limit N → ∞, the path integral is dominated by the “classical”
solutions a(t) and ã(t), which extremize the exponent of the generating functional:

(4.26)
δS[φ, φ̃]

δφi(t)

∣∣∣∣∣
φ̃=ã,φ=a

= −J̃i(t), δS[φ, φ̃]

δφ̃i(t)

∣∣∣∣∣
φ̃=ã,φ=a

= −Ji(t).

In the case of zero currents J = J̃ = 0, these equations reduce to

(4.27)
∂ai
∂t

= −∂H(a, ã)

∂ãi
,

∂ãi
∂t

=
∂H(a, ã)

∂ai
.

(4.27) take the form of a Hamiltonian dynamical system in which ai is a “coordinate”
variable, ãi is its “conjugate momentum,” and H is the Hamiltonian. It immediately
follows from the form of H, (4.21), that one type of classical solution is the mean-field
classical solution ãi(t) ≡ 0 for all i, which implies that a(t) satisfies the rate equation
(3.8), since to lowest order we can ignore any normal ordering of Fi. Interestingly,
there are also non-mean-field classical solutions, ã(t) �= 0, which play an important
role in determining large deviations or rare event statistics [22]; see section 5. We
now perform a perturbation expansion of the path integral (4.19) about the classical
solution by setting

φ = a+ ϕ, φ̃ = ã+ ϕ̃
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and expanding to second order in ϕ, ϕ̃:

Z[J , J̃ ] ≈ e−NS[a,ã]eN
∫
dt

∑
j[ãj(t)Jj(t)+J̃j(t)aj(t)]

∫ ∏
i

Dϕi

∫ ∏
i

Dϕ̃i

× exp

⎡⎣−N ∫
dtdt′

∑
i,r

∑
j,s

ϕr
i (t)

δ2S

δφri (t)δφ
s
j(t

′)

∣∣∣∣∣
φ̃=ã,φ=a

ϕs
i (t

′)

⎤⎦ .(4.28)

We have introduced the extra index r = 1, 2 such that ϕ1
i = ϕi, ϕ

2
i = ϕ̃i. Evaluating

the infinite-dimensional Gaussian integral gives

Z[J , J̃ ] ≈ e−NS[a,ã]eN
∫
dt

∑
j[ãj(t)Jj(t)+J̃j(t)aj(t)]Det [D[a, ã]]

−1/2
,

where D[a, ã] is the matrix with components

(4.29) D[a, ã]rs(i, t; j, t′) =
δ2S

δφri (t)δφ
s
j(t

′)

∣∣∣∣∣
φ̃=ã,φ=a

.

Using the following identity for a matrix M :

DetM = eTr logM ,

we obtain the O(N−1) approximation

Z[J , J̃ ] ≈ e−NSeff [a,ã]eN
∫
dt

∑
j[ãj(t)Jj(t)+J̃j(t)aj(t)],(4.30)

where

(4.31) Seff [a, ã] = S[a, ã] +
1

2
N−1Tr log [D[a, ã]] .

In order to use the above expansion to determine corrections to the dynamical
mean-field equation (3.8), it is first necessary to introduce a little more formalism.

Given the mean fields νk = 〈〈φk〉〉 and ν̃k = 〈〈φ̃k〉〉, consider the Legendre transfor-
mation

(4.32) Γ[ν, ν̃] =W [J , J̃ ] +

∫
dt
∑
j

[
ν̃j(t)Jj(t) + J̃j(t)νj(t)

]
,

where W [J , J̃ ] = −N−1 logZ[J , J̃ ] and Γ is known as the effective action. Since

(4.33) νk(t) = − δW

δJ̃k(t)
, ν̃k(t) = − δW

δJk(t)
,

it follows from functionally differentiating equation (4.32) that

(4.34) Jk(t) =
δΓ

δν̃k(t)
, J̃k(t) =

δΓ

δνk(t)
.

Dynamical equations for the physical mean fields νk(t) are then generated by setting

J = 0 = J̃ in (4.34). Another useful result is obtained by functionally differentiating
equations (4.33) with respect to the mean fields ν, ν̃:

δ(t− t′)δr,sδk,l =
δνrk(t)

δνsl (t
′)

= − δ2W

δJr
k(t)δν

s
l (t

′)
= −

∑
u=1,2

M∑
p=1

∫
δ2W

δJr
k (t)δJ

u
p (y)

δJu
p (y)

δνsl (t
′)
dy,

(4.35)
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where ν1i = νi, ν
2
i = ν̃i, etc. Differentiating (4.34) with respect to J , J̃ then shows

that

(4.36)
∑
u=1,2

M∑
p=1

∫
δ2W

δJr
k (t)δJ

u
p (y)

δ2Γ

δνup (y)δν
s
l (t

′)
dy = −δr,sδk,lδ(t− t′).

In other words, defining the infinite-dimensional matrix D̂[ν, ν̃] according to

(4.37) D̂[ν, ν̃]r,s(i, t; j, t′) =
δ2Γ

δνri (t)δν
s
j (t

′)
,

we see that D̂[ν, ν̃] is the inverse of the two-point covariance matrix with components

(4.38) − δ2W

δJr
i (t)δJ

s
j (t

′)
= N

[〈〈φri (t)φsj(t′)〉〉 − 〈〈φri (t)〉〉〈〈φsj(t′)〉〉
]
.

Returning to the expansion about the classical solution, we make the observation
that the classical solution (a, ã) and mean-field solution (ν, ν̃) differ by terms of
O(N−2) due to the fact that the classical solution is an extremum of the action S.
Hence, keeping only terms up to O(N−1) we can equate the two solutions. It follows
from (4.30) and (4.32) that Γ[ν, ν̃] = Seff [ν, ν̃] + O(N−2). Moreover, (4.29) and

(4.37) imply that D̂[ν, ν̃] = D[ν, ν̃] +O(N−1); that is, we can take D[ν, ν̃] to be the
inverse of the two-point covariance matrix. The first-order correction to the mean-field
equation is then obtained from (4.34) after setting J = J̃ = ν̃ = 0:

0 =
δΓ[ν, ν̃]

δν̃i(t)

∣∣∣∣
ν̃=0

=
δS[ν, ν̃]

δν̃i(t)

∣∣∣∣
ν̃=0

+
1

2
N−1TrD[ν, ν̃]−1 δD[ν, ν̃]

δν̃i(t)

∣∣∣∣
ν̃=0

.(4.39)

Functionally differentiating D[ν, ν̃] with respect to ν̃i(t) forces [D[ν, ν̃]−1]r,s(i, t; j, t′)
to be evaluated at the equal times t = t′. Since the only nonvanishing equal-time
two-point correlation functions exist for r = s = 1 [13], it follows that
(4.40)

N−1TrD[ν, ν̃]
−1 δD[ν, ν̃]

δν̃i(t)

∣∣∣∣
ν̃=0

= −
∑
k,l

[〈〈φk(t)φl(t)〉〉 − 〈〈φk(t)〉〉〈〈φl(t)〉〉] ∂
2F̂i(ν)

∂νk∂νl
,

where F̂i(ν) = −Ĝi(ν)νi + Ĥi(ν). Adding this to the O(1) rate equation (3.8) and
using (4.24), we have

τs
∂νi
∂t

= F̂i(ν) +
1

2N

∑
k,l

∂2F̂i(ν)

∂νk∂νl
Ĉkl +O(N−2),(4.41)

where

(4.42) Ĉkl = Ckl − νkδk,l = N−1 (〈mkml〉 − 〈mk〉〈ml〉 − 〈mk〉δk,l)

is the normal-ordered covariance [13]. Finally, using the fact that

F̂i(ν) = Fi(ν) +
1

2N

∑
k

∂2Fi(ν)

∂ν2k
νk +O(N−2),
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we have

τs
∂νi
∂t

= Fi(ν) +
1

2N

∑
k,l

∂2Fi(ν)

∂νk∂νl
Ckl +O(N−2),(4.43)

which is identical to the first-order moment equation (3.29) derived using the Van
Kampen system-size expansion. It is also possible to derive a corresponding dynamical
equation for C by extending the definition of the effective action along the lines of
Buice, Cowan, and Chow [13], and this is consistent with (3.30). We have thus
established that the Van Kampen system-size expansion and the loop expansion of
the corresponding path integral representation yield the same lowest order corrections
to mean-field theory; we expect this agreement to hold to arbitrary orders in N−1.

The above path integral loop expansion differs in one crucial respect from the
corresponding expansion of the activity-based rate model carried out by Buice and
Cowan [12] and Buice, Cowan, and Chow [13]. That is, these authors interpreted ai
as the mean number rather than the fraction of active neurons in a local population
and took the thermodynamic limit N → ∞ ab initio with NHi → Hi in the action
(4.3) and Gi, Hi given by (2.15). Under this particular choice of scaling there does not
exist a natural small parameter N−1 with which to carry out a system-size or loop
expansion. Nevertheless, one can still formally carry out the one loop expansion of the
path integral to obtain (4.41) without the factor N−1. However, some other moment
closure condition is now needed in order to justify truncating the loop expansion away
from critical points. As shown by Buice, Cowan, and Chow [13], such a truncation can
be carried out provided that both the nonlinear gain function f and the cumulants are
kept in normal-ordered form. Substituting (2.15) into (4.41) and taking the continuum
limit then leads to the neural field equation (3.35), with f and C replaced by their
normal-ordered forms and the factor N−1 removed. This form of moment closure
assumes that the population activity is approximately Poissonian [13].

4.3. Continuum limit of the action. In the case of the activity-based model,
it is possible to take the continuum limit of the path integral prior to carrying out
the loop expansion. Substituting for Gi and Hi using (2.15) and setting Γi = 0, the
action (4.20) takes the particular form

S[φ, φ̃] =

∫
dt
∑
i

φ̃i

⎡⎣∂tφi + αφi − αf̂

⎛⎝∑
j

Wij [φ̃jφj + φj ]

⎞⎠⎤⎦
−
∑
i

φ̃i(0)φ
(0)
i ,(4.44)

where f̂ is the normal-ordered gain function. In order to determine the continuum
limit of the above action, we perform spatial averaging along the lines of sections 2
and 3, that is, grouping populations together over an interval of length Δx. Suppose
that there is a uniform density ρ of neural populations distributed along the x axis. As
before, we partition the x axis into discrete intervals of length Δx within which there
are ρΔx populations and denote the set of populations in the interval [nΔx, (n+1)Δx)
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by N (nΔx). The action (4.44) can then be rewritten as

S[φ, φ̃] =

∫
dt ρΔx

∑
n

φ̃(nΔx, t)

[
∂tφ(nΔx, t) + αφ(nΔx, t)

− αf̂

(
ρΔx

∑
m

ω(nΔx,mΔx)[φ̃(mΔx, t)φ(mΔx, t) + φ(mΔx, t)]

)]
− ρΔx

∑
n

φ̃(nΔx, 0)φ(0)(nΔx).(4.45)

We have assumed that the auxiliary field φ̃ is a slowly varying function of space,
which is consistent with the classical solution φ̃(nΔx, t) = 0. If we now consider
a generating functional that generates moments of the spatially averaged fields, we
obtain the following continuum path integral in space and time:

Z[J , J̃ ] =

∫
DφDφ̃ie

−NS[φ,φ̃]eN
∫
dtdxφ̃(x,t)J(x,t)+J̃(x,t)φ(x,t)(4.46)

with

S[φ, φ̃] = ρ

∫
dtdxφ̃(x, t)

[
∂tφ(x, t) + αφ(x, t)

− f̂

(
ρ

∫
dx′ω(x, x′)[φ̃(x′, t)φ(x′, t) + φ(x′, t)]

)]
− ρ

∫
dx φ̃(x, 0)φ(0)(x).(4.47)

Applying steepest descents to the continuum path integral generates the continuum
moment equations (3.35) and (3.36), after expanding the normal-ordered gain function
f in powers of N−1.

5. Hamiltonian dynamics and rare event statistics. Although it is inter-
esting from a mathematical perspective to establish the relationship between the loop
expansion of the path integral and Van Kampen’s system-size expansion, one could
argue that the latter approach is much simpler. This then raises an issue regarding
the usefulness of the path integral formalism within the context of stochastic neural
field theory. Buice and Cowan [12] have already demonstrated one important appli-
cation, namely, that renormalization group methods can be used to study power law
behavior in the vicinity of critical points. Moreover, as we have clarified in this paper,
the path integral approach provides alternative perturbation schemes in the absence
of a natural system-size parameter, for example, normal ordering the gain function
and cumulants [13]. In this section we illustrate a further application of path inte-
gral methods, namely, to the study of large deviations or rare event statistics. More
specifically, Elgart and Kamenev [22] have shown that in the case of reaction-diffusion
systems, the Hamiltonian-like dynamical system obtained by extremizing the associ-
ated path integral action (cf. (4.27)) can be used to determine the most probable or
optimal path that leads to escape from the basin of attraction of a stable fixed point
of the mean-field dynamics. This provides an estimate of the lifetime of a metastable
state. We will show how the same ideas can be used to analyze metastability in the
activity-based neural master equation (2.13). For the sake of illustration we consider
a single homogeneous population (M = 1).
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Let us begin by considering fixed point solutions of the activity-based rate equa-
tion (2.7) for a single population:

(5.1) τs
dν

dt
= −ν + f(Wν).

The fixed points and their stability can be determined graphically by plotting the
intercepts of the function f(ν) with the linear function ν/W . This is illustrated in
Figure 5.1(a) for f(ν) = tanh(ν), ν ≥ 0. If W < 1, then there is a single stable fixed
point at ν = 0. The fixed point becomes critical at W = 1 such that for W > 1 it is
unstable and there is an additional stable fixed point at ν = νc > 0. In Figure 5.1(b)

we show corresponding results for the gain function f(ν) = e−r/(ν−κ)2Θ(ν−κ), where
Θ is the Heaviside function, κ is a positive threshold, and r−1 is a gain parameter. The
exponential factor ensures that the function is continuously differentiable at ν = κ
for r > 0 [51]; if r = 0, then we recover the standard Heaviside gain function. Note
that this gain function is similar in form to the gain function derived from studies
of asynchronous states in noisy spiking networks [10, 9, 35, 66]. Now the zero fixed
point is always stable for κ ≥ 0, whereas an additional stable/unstable pair of fixed
points arises via a saddle-node bifurcation at the critical point W = Wc. Thus, the
deterministic network is bistable when W > Wc. A similar scenario would occur
on varying the threshold κ. How does the basic picture of mean-field theory change
when fluctuations are taken into account? The linear noise approximation (see section
3.1) suggests that, depending on initial conditions, the dynamics is characterized by
Gaussian fluctuations about one of the stable fixed points. The mean and variance
evolve according to the equations

τs
∂〈ξ〉
∂t

= −〈ξ〉+ f ′(Wν)W 〈ξ〉(5.2)

and

(5.3) τs
dC

dt
= ν + f(Wν) + 2[−1 +Wf ′(Wν)]C.

Criticality of a fixed point ν∗ occurs when W = Wc with W−1
c = f ′(Wcν

∗). One
problem with the linear noise approximation away from critical points is that it does
not take into account the fact that the number of active neurons n = Nν is bounded,
0 ≤ n ≤ N . However, a more serious problem arises from the observation that if
f(0) = 0, then the zero activity state n = 0 is an absorbing state of the corresponding
master equation. This means that Pn(t) → δn,0 in the limit t → ∞; that is, δn,0 is
a unique stationary probability distribution. It follows that the nonzero stable fixed
point appearing in Figures 5.1(a,b) is only metastable.

Let us now consider the generating functional (4.19) for a single population, which
takes the form

Z[J, J̃ ] =

∫
Dφ

∫
Dφ̃ e−NS[φ,φ̃]eN

∫
dtφ̃(t)J(t)+J̃(t)φ(t),(5.4)

where S is the single population model version of the activity-based action (4.44):

S[φ, φ̃] =

∫
dt
[
φ̃∂tφ+H(φ, φ̃)

]
− φ̃(0)φ(0)(5.5)
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W > 1 W > Wc

Fig. 5.1. Fixed points of the mean-field equation (5.1) for (a) f(ν) = tanh(ν) and (b) f(ν) =

e−r/(ν−κ)2Θ(ν − κ) with r = 1 and κ = 0.1.

with

(5.6) H(φ, φ̃) = αφ̃φ− αφ̃f(W [φφ̃ + φ]).

Since we will be working to leading order inN−1, we have dropped the normal ordering
of the gain function f . It follows from the saddle-point method that the path integral
is dominated by the classical solution φ = q, φ̃ = p, which is obtained by extremizing
the action (5.5). (In contrast to section 4, we write the classical solution as (q, p)
rather than (a, ã) in order to emphasize the connection with Hamiltonian dynamics.)
This leads to the Hamiltonian dynamical system

(5.7)
dq

dt
= −∂H

∂p
= −αq + αf(Wq(p+ 1)) + pqWf ′(Wq(p+ 1))

and

(5.8) τs
dp

dt
=
∂H
∂q

= αp (1− (p+ 1)Wf ′(Wq(p+ 1))) .

(5.7) and (5.8) have an integral of motion given by the conserved “energy”

(5.9) E = H(q(t), p(t)) = αp(t) [q(t)− f (Wq(t)(p(t) + 1))] .

The fact that H(q, 0) = 0 is a direct consequence of probability conservation, whereas
the fact that H(0, p) = 0 for f(0) = 0 reflects the existence of an absorbing state. It
follows from energy conservation that the action evaluated along a classical trajectory
is given by

(5.10) S[q, p] = Et+

∫ t

0

p∂τqdτ − n̄

N
p(0).

The action is a functional of the classical solutions p(τ) and q(τ) with 0 ≤ τ ≤ t.
As shown by Elgart and Kamenev [22] in the case of reaction-diffusion systems,

the plot of constant energy trajectories in the phase plane (p, q) corresponding to solu-
tions of the Hamiltonian equations (5.7) and (5.8) provides important insights into the
dynamics underlying destabilization of a metastable state due to the presence of an
absorbing state. This is illustrated in Figure 5.2 for the gain function f(q) = tanh(q)
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Fig. 5.2. Phase portrait of constant energy trajectories for the Hamiltonian system given by
(5.7) and (5.8) with f(q) = tanh(q) and W = 1.5. Zero-energy trajectories are indicated by thick
curves. The stable and unstable fixed points of the mean-field dynamics are denoted by Q+ and Q−.
These are connected to a fluctuational fixed point P via zero-energy heteroclinic connections. The
curve Q+P is the optimal path from the metastable state to the absorbing state.

(cf. Figure 5.1(a)). The zero-energy trajectories are highlighted as thicker curves, since
they play a crucial role in determining the long-term dynamics of the network. One
zero-energy curve is the line p = 0 along which (5.7) reduces to the mean-field equa-
tion (3.8). It follows from (5.9) that the energy of the mean-field solution is zero and
S[q, 0] = 0. If the dynamics were restricted to the one-dimensional manifold p = 0,
then the nonzero fixed point of the mean-field equation would be stable. However,
it becomes a saddle point of the full dynamics in the (p, q) plane, denoted by Q+ in
Figure 5.2, reflecting the fact that it is metastable when fluctuations are taken into
account. A second zero-energy curve is the absorbing line q = 0 which includes two
additional hyperbolic fixed points denoted by Q− and P in Figure 5.2. Q− occurs at
the intersection with the mean-field line p = 0 and corresponds to the unstable fixed
point of the mean-field dynamics, whereas P is associated with the effects of fluctua-
tions. Moreover, there exists a third zero-energy curve, which includes a heteroclinic
trajectory joining the mean-field fixed point at t = −∞ to the fluctuational fixed point
P at t = ∞. This heteroclinic trajectory represents the optimal (most probable) path
linking the metastable fixed point to the absorbing boundary. It follows from large
deviation theory [34, 38, 21, 22] that the mean escape time τ from the metastable
state is, with exponential accuracy, τ ∼ eNS0, where S0 is the zero-energy action

(5.11) S0 =

∫ P

Q+

pdq

with the integral evaluated along the heteroclinic trajectory from Q+ to P . A similar
analysis can be applied to the metastable state shown in Figure 5.1(b) for the gain

function f(q) = e−r/(q−κ)2Θ(q − κ). The corresponding phase portrait is shown in
Figure 5.3. Here there are three hyperbolic fixed points Q±, Q0 lying on the line
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Fig. 5.3. Phase portrait of constant energy trajectories for the Hamiltonian system given

by (5.7) and (5.8) with f(q) = e−r/(q−κ)2Θ(q−κ), r = 0.1, κ = 0.5, and W = 3. Zero-energy
trajectories are indicated by thick curves. The hyperbolic fixed points Q± correspond to stable
equilibria of the mean-field dynamics, whereas Q0 corresponds to an unstable equilibrium. The
fixed point Q+ is connected to Q0 via a zero-energy heteroclinic connection, which represents
the optimal path from the metastable state to the boundary of its basin of attraction.

p = 0, corresponding to the two stable and one unstable fixed points of the mean-field
rate equation. In this case there is a non-mean-field heteroclininc connection Q+Q−
that is the optimal path for escape from the basin of attraction of the active stable
state. Evaluating the action along this path again determines the mean escape time.
Note that a more explicit expression for the zero-energy action (5.11) can be obtained
by performing the canonical transformation

(5.12) q̃ = (p+ 1)q, p̃ = log(p+ 1).

The zero-energy curves are then given by solutions of the equation

(5.13) q̃(e−p̃ − 1) + f(Wq̃)(ep̃ − 1) = 0.

In particular, the non-mean-field solution is

(5.14) p̃ = log

[
q̃

f(Wq̃)

]
such that

(5.15) S0 =

∫ P̃

Q̃+

log

[
q̃

f(Wq̃)

]
dq̃.

In the case of a single neural population, it is possible to calculate the prefactor in
the expression for the lifetime τ of a metastable state by carrying out an asymptotic
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expansion of the original master equation (2.13) based on a WKB approximation
[41, 18, 28]. However, this asymptotic analysis becomes considerably more difficult
in the case of multiple interacting populations or when parameters of the network
become time dependent. On the other hand, the above Hamiltonian formulation
extends to these more complicated cases. Moreover, the topological structure of the
phase portrait for the single population model could provide insights into the nature
of phase transitions in corresponding continuum neural field models. This is suggested
by recent work of Elgart and Kamenev [23], who developed a classification scheme
of phase transitions in reaction-diffusion models based on the phase portraits of the
corresponding reaction Hamiltonian. For example, the phase portrait shown in Figure
5.2 would correspond to a phase transition belonging to the directed percolation (DP)
universality class [42], whereas the one shown in Figure 5.3 would correspond to a
first-order phase transition [23]. Whether or not a similar classification scheme can be
applied to nonlocal neural field models remains to be established. Interestingly, Buice
and Cowan [12] have used path integral and renormalization group methods to show
how the Wilson–Cowan continuum model can exhibit a dynamical phase transition
which belongs to the DP universality class. Moreover, the existence of such a phase
transition is consistent with scaling laws found in many measurements of cortical
activity, both in vitro and in vivo [4, 64]. Our results suggest that the occurrence of
a DP phase transition requires both fine-tuning of the firing threshold and concavity
of the gain function close to the absorbing state (see Figures 5.1, 5.2, and 5.3). The
necessity of fine-tuning was also previously noted by Buice, Cowan, and Chow [13].

6. Discussion. In this paper we have explored the connection between two ap-
proximation methods for analyzing a master equation formulation of stochastic neu-
rodynamics, one based on the Van Kampen system-size expansion and the other on
path integrals and steepest descents. Under the assumption that each local population
fluctuates about an asynchronous state, we have shown how both methods generate
an expansion of the moment equations in powers of N−1, where N is the size of each
local population. Our analysis complements previous work on path integral methods
in neural field theory [12, 13], which assumed that the mean-field represents the mean
number rather than a fraction of active neurons in a population. In the latter case,
there does not exist an explicit small parameter to carry out a system-size expan-
sion so that other constraints are needed in order to truncate the moment hierarchy.
In particular, moment closure is achieved by assuming that the network population
dynamics is Poisson-like and by expressing the moment equations in terms of normal-
ordered gain functions and cumulants. Which version of stochastic neural field theory
is more appropriate is likely to depend on the particular application and whether pop-
ulation activity is better described by a Poisson process or by Gaussian fluctuations
about a mean field. Moreover, as we highlighted in the paper, there is an ambiguity in
how to construct the master equation, which directly affects the dynamical equations
for second- and higher-order statistics. Such ambiguity reflects the phenomenological
nature of the master equation and suggests that additional biophysical constraints
are needed. In order to fully characterize the differences between the various models
and how these depend on the system size N , it will be necessary to carry out di-
rect Monte Carlo simulations of the corresponding master equations for a variety of
network configurations. We will present the results of such simulations elsewhere.

Although the master equation formulation has a number of limitations, it still
yields important insights into the general problem of stochastic neural field theory.
First, it provides a framework for analyzing possible forms of coupling between mean
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activity and higher-order statistics, which is not captured by additive white noise
processes. Hence, one obtains extensions to standard neural theory, which can be
used to study the effects of noise on spatially organized phenomena such as traveling
waves and bumps. Second, it demonstrates that even when fluctuations scale as
N−1/2, they can be significant in the vicinity of critical points of the underlying
deterministic equations. Moreover, the path integral representation of the master
equation provides a powerful framework for studying the dynamics close to critical
points. For example, the renormalization group can be used to extract the power law
behavior of correlations arising from dynamical phase transitions [12], and these can
then be compared with experimental studies of spontaneous activity in vivo and in
vitro [4, 64]. Finally, as we also showed in this paper, path integral methods can be
used to study large deviations or rare event statistics, which determine the optimal
path for escape from the basin of attraction of a stable fixed point of the underlying
neural field equations away from criticality [21, 22, 29, 28]. These optimal paths are
solutions to an effective Hamiltonian dynamical system, which might prove useful in
classifying dynamical phase transitions in stochastic neural field models.

Although we have focused on one particular formulation of stochastic neurody-
namics that is based on a phenomenological master equation, our analysis raises some
issues that relate to other approaches. In particular, investigating corrections to
mean-field theory by carrying out a system-size expansion and truncating the mo-
ment hierarchy has been applied elsewhere to binary and integrate-and-fire networks
[37, 54, 53, 69, 5]. However, as we have highlighted in this paper, any such moment
closure method can at best capture only the quasi-steady-state behavior of a large
network. That is, when there are multiple fixed points, the truncated moment equa-
tions fail to take into account exponentially small transitions between fixed points,
which underlie the asymptotically slow approach to the true steady state of the full
probabilistic model (assuming that it exists). It would be interesting to explore the
issue of rare event or large deviation statistics within the context of population den-
sity methods, where failure of moment closure even occurs in the absence of multiple
fixed points [52].

Appendix A. In this appendix we describe how to derive the path integral
representation of the master equation (2.14), following along similar lines to Buice
and Cowan [12] for the Wilson–Cowan equation and Doi and Peliti [19, 20, 60] for
reaction-diffusion systems. This will make clear how the issue of normal ordering
arises within the path integral framework, which plays a crucial role in differentiating
between our choice of scaling and that used by Buice and Cowan [12] and Buice,
Cowan, and Chow [13]. The first step is to introduce creation-annihilation operators
for each population according to the commutation rule

(A.1) [Φi,Φ
†
j ] ≡ ΦiΦ

†
j − Φ†

jΦi = δi,j .

These operators generate a state space by acting on the “vacuum” state |0〉, which
represents the state in which all populations are quiescent (ni = 0 for all i), with
Φi|0〉 = 0. The representation of the state with configuration n is then generated
according to

(A.2) |n〉 =
∏
i

Φ†
i

ni |0〉.

Inner products in this state space are defined by 〈0|0〉 = 1 and the commutation

relations. It follows that the dual of the vector Φ†
i |0〉 is 〈0|Φi. The number of active
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neurons in the ith population can be extracted by operating on a state vector with
the number operator Φ†

iΦi and using the commutation relations,

(A.3) Φ†
iΦi|n〉 = ni|n〉.

The next step is to construct an operator representation of the master equation
(2.14). Given the probability distribution P (n, t), we introduce the state vector

(A.4) |φ(t)〉 =
∑
n

P (n, t)
∏
i

Φ†
i

ni |0〉 =
∑
n

P (n, t)|n〉,

where the sum is over all possible configurations n. Introducing the projection state

(A.5) |1〉 = exp

(∑
i

Φ†
i

)
|0〉

with Φi|1〉 = |1〉, we can then express expectation values in terms of inner products.
For example,

(A.6) 〈1|Φ†
iΦi|φ(t)〉 =

∑
n

niP (n, t) = 〈ni(t)〉.

Differentiating the state vector |φ(t)〉 with respect to t and using the master equation
(2.14) gives

τs∂t|φ(t)〉 =
∑
n

∂tP (n, t)|n〉

=
∑
i

[
(ni + 1)Gi(ni+/N)P (ni+, t)− niGi(n/N)P (n, t)

+ N
(
Hi(ni−/N)P (ni−, t)−Hi

( n

N

))
P (n, t)

]
|n〉

=
∑
i

[
(Φi − Φ†

iΦi)Gi(Ψ/N) +N(Φ†
i − 1)Hi(Ψ/N)

]|φ(t)〉,(A.7)

where Ψi = Φ†
iΦi. It is convenient to express all expectation values by taking the

inner product with respect to the vacuum state |0〉 rather than the projection state |1〉.
This can be achieved by moving exp(

∑
iΦ

†
i ) all the way to the right in expectation

values. From the commutation relation, this is equivalent to performing the shift
Φ†

i → Φ†
i + 1 in all operator expressions. Thus

(A.8) 〈ni(t)〉 = 〈0|Φ†
iΦi +Φi|φ(t)〉.

Hence, performing such a shift in (A.7) we see that the operator representation of the
master equation (2.14) is

(A.9) ∂t|φ(t)〉 = −H|φ(t)〉

with

(A.10) H = α
∑
i

[
Φ†

iΦiGi(Ψ/N)−NΦ†
iHi(Ψ/N)

]
,
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Ψi = Φ†
iΦi+Φi, and α = τ−1

s . Note that the operator equation (A.9) can be converted
to a PDE describing the evolution of the corresponding generating function G(z, t) of
the probability distribution P (n, t). This follows from setting

G(z, t) ≡ 〈0|e
∑

i ziΦi |φ(t)〉 =
∑
n

[∏
i

zni

i

]
P (n, t),

and converting the operators Φi,Φ
†
i to d/dzi, zi. Both sets of operators satisfy the

same commutation relations.
Formally speaking, the solution to the operator version of the master equation

(A.9) can be written as

(A.11) |φ(t)〉 = e−Ht|φ(0)〉 = e−HtI0|0〉,

where I0 is the operator that generates the initial state. The expectation value of
some physical quantity such as the number ni(t) can now be expressed as

(A.12) 〈ni(t)〉 = 〈0|(Φ†
iΦi +Φi)e

−HtI0|0〉.

For simplicity, we will assume that the initial state is given by a Poisson distribution
so that

(A.13) I0|0〉 =
∏
i

e−n̄i

∑
k

n̄k
i

k!
Φ†

i

k|0〉 = exp

(∑
i

(−n̄i + n̄iΦ
†
i )

)
|0〉.

After performing the shift Φ†
i → Φ†

i + 1, we see that

(A.14) I0 = exp

(∑
i

n̄iΦ
†
i

)
.

In order to convert the operator form of the expectation value into a path integral, we
divide the time interval [0, t] into N intervals of length Δt = t/N and set tr = rΔt,
r = 0, 1, . . . ,N . We then introduce coherent states of the form

(A.15) |ϕ(t)〉 = exp

(
−1

2

∑
i

ϕ̃i(t)ϕi(t)

)
exp

(∑
i

ϕi(t)Φ
†
i

)
|0〉,

such that ϕi(t) is the complex-valued eigenvalue of the annihilation operator Φi, with
complex conjugate ϕ̃i. Coherent states satisfy the completeness relation

(A.16)

∫ ∏
i

dϕidϕ̃i

πM
|ϕ〉〈ϕ| = 1.

At each discrete time step we insert a complete set of coherent states using the com-
pleteness relation (A.16) so that the expectation value becomes

〈ni(t)〉 = 〈0|(Φ†
iΦi +Φi)|ϕ(t)〉(A.17) [N−1∏

r=0

〈ϕ(tr+1)|(1 −HΔt)|ϕ(tr)〉
]
〈ϕ(t0)|I0|0〉,
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where we have made use of the formula

(A.18) e−Ht = lim
N→∞

(1−HΔt)N.

The crucial observation is that at the rth time step we can replace the annihilation
and creation operators Φi and Φ†

i inH by the corresponding coherent state eigenvalues
ϕ̃i(tr+1) and ϕi(tr), provided that we normal order the operator H. Finally, taking
the limits N → ∞ and Δt → 0, we obtain the following path integral representation
of the expectation value:

〈ni(t)〉 =
∫ ∏

j

Dϕj

∫ ∏
j

Dϕ̃j ϕi(t)e
−S[ϕ,ϕ̃],(A.19)

where S is given by the action (4.3) after making the change of variable ϕ→ Φ, ϕ̃→
Φ̃ with Φ and Φ̃ now treated as numbers rather than operators. Note that since
〈0|Φ†

i = 0 we have replaced Φ†
iΦi + Φi by Φi in the first inner product on the right-

hand side of (A.17).
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