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ABSTRACT Over the past few years, with the advent of blockchain technology, there has been a massive
increase in the usage of Cryptocurrencies. However, Cryptocurrencies are not seen as an investment
opportunity due to the market’s erratic behavior and high price volatility. Most of the solutions reported in
the literature for price forecasting of Cryptocurrencies may not be applicable for real-time price prediction
due to their deterministic nature. Motivated by the aforementioned issues, we propose a stochastic neural
network model for Cryptocurrency price prediction. The proposed approach is based on the random walk
theory, which is widely used in financial markets for modeling stock prices. The proposed model induces
layer-wise randomness into the observed feature activations of neural networks to simulate market volatility.
Moreover, a technique to learn the pattern of the reaction of the market is also included in the prediction
model. We trained the Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) models for
Bitcoin, Ethereum, and Litecoin. The results show that the proposed model is superior in comparison to the
deterministic models.

INDEX TERMS Cryptocurrency, multilayer perceptron, long short-term memory, random walk,
stochasticity.

I. INTRODUCTION

In a continuously evolving technological landscape, there has
been a paradigm shift in the mode of transactions from phys-
ical payments like cash and cheques to digital transactions.
One important aspect of using currency, either as a medium
of transaction or as an asset, is to predict its expected value.
To a great extent, the value and stability of any currency
depends on the controlling authority, which in the case of
fiat currencies is the Government of the country. Detrimental
Governmental interference in the financial system can lead
to unforeseen consequences of devastating scales, as seen in
Venezuela [1]. But, in the case of digital currencies, the value
is determined by the consistency and security of the platform
that the currency is deployed on. Conventional digital cash is
prone to the flaw of double-spending. Digital currencies in
cyberspace are exposed to security attacks which may lead to
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transaction data manipulation. With an increasing number of
such flaws, traditional currencies fall prey to instability and
devaluation [2].

A plausible solution to the aforementioned issues is the
usage of blockchain-based Cryptocurrencies. Blockchain is
an emerging technology, which stores the information in
an immutable way across a network to provide security,
decentralization, and transparency, which is precisely what is
needed for an effective currency [3]–[5]. Cryptocurrencies,
unlike conventional money, use cryptographical ciphers to
conduct financial transactions. Over the past decade, digital
finance has grown exponentially, with Cryptocurrencies at the
helm of this innovative stride forward [6]. Themarket capital-
ization of Cryptocurrencies is calculated to $266 billion and is
projected to have a growth of 11.9% by 2024 as per the CAGR
reports [7]. The essential feature of a Cryptocurrency is that
it cannot be controlled by a central authority due to its decen-
tralized nature inherited from blockchain and thus it restricts
corruption. Due to this, Cryptocurrencies are naturally robust
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FIGURE 1. Bitcoin vs Gold prices over a span of 1300 days.

TABLE 1. Correlation of BTC with major financial assets [10].

towards corruption induced devaluations, which may occur in
fiat currencies. Cryptocurrencies avert the problem of double-
spending through multiple verifications from the neighboring
nodes in the blockchain network. As the number of confir-
mation increases, the transaction becomes more and more
reliable and irreversible. Transactional records in the ledger
of blockchain are immutable as a record is virtually impos-
sible to alter in all network nodes. Thus, after a successful
transaction, the record can not be tampered.
As a consequence of the aforementioned advantageous

characteristics and global access to Cryptocurrencies, they
can be used as a medium of transaction, as well as a store of
wealth [8], [9]. However, the value of Cryptocurrencies still
heavily relies on erratic market trends and social sentiments.
Also, Cryptocurrencies have a low correlation with major
financial assets [10], [11], thus traditional methods, that have
been used in finance are rendered ineffective. Table 1 shows
the Pearson correlation of Bitcoin with other major financial
assets. It is evident from Fig. 1 that the price Bitcoin has no
correlation with the price of Gold.
Having vast amounts of openly available data on the Cryp-

tocurrencies market and social trends information, machine
learning algorithms can be used to forecast the prices with
Cryptocurrencies [12]. These algorithms are a set of methods
for learning mathematical models from data without explic-
itly programming the computer to do a specific task. But,
with an increase in the complexity of the data for the Cryp-
tocurrency market, there is a need of different models, which
can capture more complex representations of data. Deep
learning models [13] specifically recurrent neural networks
can be used to solve the time-series problem of predicting
the prices of Cryptocurrencies. Numerous research has been

explored by various authors in the last to predict the value
of equity and securities using machine learning and deep
learning algorithms [14], [15]. However, comparatively fewer
research work has been carried out on forecasting the price of
Cryptocurrencies.

A. MOTIVATION

Cryptocurrencies are primarily used as a means of money
exchange. But, in the past few years, we have seen that trad-
ing with Cryptocurrencies has been an attractive investment
opportunity [16]. It is the prevalent opinion of stock market
professionals and other investors that the Cryptocurrency
market is the most uncertain place for investment due to its
volatility and heavy reliance on social sentiments. Along with
this, effectively predicting the price of various cryptocur-
rencies will allow us to predict the total compute power of
blockchain [17]. The value of Cryptocurrencies is primarily
affected by a large number of factors like social sentiment,
legislature, past price trends, and trade volumes. A signifi-
cant amount of research work to anticipate Cryptocurrency
prices using machine learning techniques has already been
explored in the last few years [18], [19]. Motivated from the
aforementioned discussion, in this paper, we provide a pre-
diction model, which is used to predict the price of different
cryptocurrencies using deep learning models. We address the
problem of erratic fluctuations in the prices of Cryptocurren-
cies by inducing stochastic behaviour in deep neural networks
to simulate market volatility.

B. CONTRIBUTION

Following are the research contributions of this paper.

• A technique to predict the prices of prevalent Cryptocur-
rencies, i.e., Bitcoin, Ethereum, and Litecoin is designed
using a stochastic neural network process.

• Amathematical formulation of stochastic layers in deep
neural networks is done that characterizes the erratic
behavior of a financial system.

• We determine the pattern of the market’s reaction to any
updated information regarding the Cryptocurrency and
exhibits improvement over existing models in predicting
the prices of Cryptocurrencies.

C. ORGANIZATION

Rest of the paper is organized as follows. Section II discusses
the previous work that has been done to forecast Cryptocur-
rency prices. Section III explains the concept of stochasticity
and its application in the financial market. In Section IV,
we present a mathematical formulation of stochasticity in the
context of neural networks. Section V discusses the experi-
mental details of models for predicting Cryptocurrency prices
and finally, Section VI concludes the paper.

II. RELATED WORK

A substantial amount of research has been carried in the
prediction of stability and prices of equity and other market
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assets over the past decades. However, due to its newfangled-
ness, there is unsubstantial research done on the value predic-
tion of Cryptocurrencies. Nonetheless, there is an increasing
trend in the research effort done to anticipate the prices of
Cryptocurrencies. In this section, we present pivotal mile-
stones in the field. Here, we acquaint the reader with a
diversified set of machine learning approaches [20] that have
been used to predict price trends of various currencies.

A. REGRESSION

The fundamental task in modeling a Cryptocurrency is to
predict the price given to the priors. A simplistic approach
to forecast the price over a continuous space is regression.
Regression is a type of statistical method to determine the
relationship between a dependant variable and one or more
independent variables. This relationship is represented as a
sum of products of independent variables with some rela-
tional constant weight. In the context of price prediction,
market indicators and social sentiments can be used as the
independent variables and price as the dependent variable.

y = θ0 + θ1x1 + θ2x2 + . . .+ θnxn (1)

Saad et al. [21], [22] used a multivariate regression model
trained using gradient descent over mean square error. Fea-
tures such as price, mining difficulty, hash rate, user count,
etc were used regress and obtain the predicted price. They
achieved a mean absolute error of 0.0162 and 0.0563 over
bitcoin and Ethereum, respectively when testing over half of
the dataset. Mittal et al. [23] extended usage of regression
to social sentiments. They exhibited a positive correlation
between the price fluctuations of Bitcoin and social sen-
timent. They showed that there is a significant correlation
between Google trends, tweet sentiment, and tweet volume.
Linear regression and polynomial regression were used to
predict the prices. They evaluated the models by calculating
the frequency of correct predictions within the bounds of
margin accuracy. An accuracy of 77.01% and 66.66% was
observed incorrectly predicting the trend of the price using
tweet volume and google trends respectively. An obvious
issue with regression models is that they are unable to learn
non-linear and multi-leveled dependencies among the fea-
tures.

B. MULTILAYER PERCEPTRON

Following the Moore’s Law, faster and more efficient com-
puting power has been harnessed to train Artificial Neu-
ral Networks (ANN). Neural nets can effectively learn and
represent linear and non-linear dependencies between key
variables and the output variable. They consist of input layers
that are further connected to a hierarchy of hidden layers,
which in turn pass the learned information to the output layer.
Each edge connecting the neurons in different layers com-
prise of weights and bias representing the relation between
the connected neurons. Activation functions are applied after
linear matrix computation is carried out. These functions

FIGURE 2. Cryptocurrency price prediction using MLP.

are responsible for introducing non-linearities into the net-
work, which can essentially help in price forecasting [24] as
required in our case. Commonly used non-linear activation
functions are sigmoid and tanh functions. The architecture of
the network determines the kind of dependencies the neural
network learns. Neural nets are trained using a learning algo-
rithm known as backpropagation [25]. The training process
begins by initiating network weights and biases randomly,
and then iteratively calculating error and propagating error
signal as gradients of weights.Weights are updated iteratively
till a feasible set of weight values is obtained. Fig. 2 illustrates
an exemplification of MLP in case of Cryptocurrency price
prediction.

The approach of an ensemble of neural networkswas incor-
porated in the model proposed by Sin et al. [26], to predict the
upward or downward trend using bitcoin market data of the
50 consecutive days. Each network module in the ensemble
was a multi-layered perceptron three layers deep, taking a
total of 190 features. They used the Lavenberg-Marquardt
algorithm for training the MLPs. Genetic Algorithm based
Selective Ensemble (GASEN) was employed to select the
five best-performing perceptrons. They achieved an accuracy
of 64% in classifying whether an upward trend or downward
trend is to be expected. Their model did not predict the price,
rather just a green or red signal. Their work was limited to
only one Cryptocurrency, Bitcoin.

Using Bayesian theory, Jang et al. [27] explained the Bit-
coin’s high price volatility. They proposed a multi-layer per-
ceptron that maximizes the value of posterior, instead of max-
imizing likelihood like traditional neural architectures. Their
model was trained using the rollover framework, wherein an
old price time-step value is discarded for every new price.
In this way, they dispose of long term dependencies that may
be irrelevant for anticipating newer prices. Using the rollover
strategy means less computational cost while training as
opposed to sequential recurrent architectures. They achieved
a test Mean Absolute Percentage Error of 1% in predicting
the log price of Bitcoin in the surge.

C. RECURRENT NEURAL NETWORKS

Forecasting prices of currencies is an inherently sequential
task. To deal with time-dependent data, a new class of neural
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FIGURE 3. Unfolding of recurrent neural networks.

networks was introduced termed as Recurrent Neural Net-
works [28]. In this architecture, a directed graph along the
sequence is formed to manage sequential data. Here, the data
at the previous time step is used to feed as inputs to predict
the values at the next time step. Typical RNNs use previous
values as well as some inputs at that time step to predict the
values at each time step.

ht = f (Whhht−1 +Whxxt + bh) (2)

yt = f (Wyhht + by) (3)

Associating this with price prediction in Fig. 3, newmarket
information, x is fed into the model at each timestep. The
model picks up the necessary temporal dependencies, h uti-
lizes them to predict the price, yt of the Cryptocurrency.

D. LONG SHORT-TERM MEMORY

Recurrent Neural Networks are unable to capture long term
dependencies after some amount of sequence length and thus
again a new powerful architecture was proposed by Hochre-
iter et al. [35] known as LSTM. In this network, a new
memory cell state is added along with gating functionality
that controls what information is to be discarded and what
new information is to be added to provide long term depen-
dencies. Here, the cell states are passed across the network
and accordingly they are updated and modified as per the
importance of the previous cell state data which is being
carried since it became important for the future. Gates are
used to modifying the cell state as well as process inputs and
produce output.

ft = sigmoid(Wf .[ht−1, xt ]+ bf ) (4)

it = sigmoid(Wi.[ht−1, xt ]+ bi) (5)

In Eq. (4) and (5) the f gate, by observing the previous
activations, h and the current market and social indicators,
x outputs a value between 0 and 1 for each cell states, where
1 represents to keep this information for future purposeswhile
the 0 discards the information [36]. The i gate conveys the
amount of current information that will be relevant in the
future.

C∗t = tanh(Wc.[ht−1, xt ]+ bc) (6)

Ct = ft ∗ Ct−1 + it ∗ C
∗
t (7)

The candidate for the cell update is the C∗. Using f , i and C∗,
a suitable update is performed to the cell state that is passed

FIGURE 4. A long short-term memory cell.

throughout the network to capture long term dependencies.

ot = sigmoid(Wo.[ht−1, xt ]+ bo) (8)

ht = ot ∗ tanh(Ct ) (9)

Based on the cell state, o gate determines what part of the
cell is going to be the output. This output is combined with
the current cell state activated by the tanh layer to give the
current activation h.

Mittal et al. [23] proposed an RNN and LSTM model
that utilizes google trends and tweet volume along with mar-
ket factors to anticipate the price of bitcoin. They showed
that sequential models outperformed ARIMA (Autoregres-
sive integrated moving average) [37], the standard model to
analyze time-series data in traditional statistics and econo-
metrics. The RNNmodel achieves an accuracy of 62.45% and
53.46% on trends and volume respectively. On the other hand,
their LSTM model achieves an accuracy of 50% and 49.89%
on trends and volume respectively. Smuts [29] used VADER
[38], a sentiment analysis python library for social media text,
to correlate telegram sentiment and the price of Bitcoin and
Ethereum and predict the price of the currencies using an
LSTM. They achieved an accuracy of 63% on Bitcoin data
and 56% on Ethereum data.

E. OTHER METHODS

Apart from the previously introduced methods, regression
trees, decision trees, support vector regression [39], and other
algorithms have been used. For example, Laura et al. [30]
designed two models, an ensemble of regression trees and
a recurrent neural net. Two versions of the ensemble of
regression trees were considered, the first was a single model
to describe the price change for all currencies combined.
The second method was to construct individual models for
each currency. The regression tree models were built using
the XGBoost algorithm. To exploit temporal dependencies,
a LSTM was selected as their second model. They evaluate
the models by calculating the return on investment (ROI)
[40] and comparing the performance against a simple moving
average.
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TABLE 2. A relative comparison of recent works in the field of Cryptocurrency price prediction.

III. PROBLEM FORMULATION AND STOCHASTIC

PROCESSES

In this section, we describe the key obstacle restrict-
ing the effective price prediction, which is erratic fluc-

tuations in Cryptocurrency prices. As randomness is
at the core of the problem, we introduce stochas-
tic processes and show how they are related to the
Cryptocurrency market. At the end of the section,
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we show how the market can be modeled as a random
walk.

A. THE PROBLEM OF ERRATIC FLUCTUATIONS

The value of market assets is determined by various factors
that include supply and demand, the performance of the
economy, growth rate, inflation, political factors, and human
psychology. With all of these factors continuously changing,
the aggregation of these factors generates erratic and irregular
fluctuations in the prices of market assets. Cryptocurrencies,
like other market assets, are prone to the problem of random-
like fluctuations in their prices. The financial market is not
inherently stochastic, however, it is sufficiently complex
to be incomprehensible to us and our systems. And thus,
designing a deterministic model that takes into considera-
tion, all the socio-economic factors is out of option. In this
section, we will describe how to model market assets non-
deterministically.

B. STOCHASTIC PROCESSES

All processes in nature can be classified as deterministic
given all the information pertaining to them. However, most
natural systems are too complicated to be modeled given
limited information about them. Thus, stochastic processes
come into the picture, wherein partial information of the
system can be used to determine a possible outcome over
the set of all possibilities in the probability space. Stochastic
processes are sets of random variables that evolve over time in
an arbitrary manner. Most natural systems can be considered
as stochastic processes from our perspective. Examples of
stochastic processes include the weather system, audio-video
signals, and the financial market.
The value of a market asset, like a Cryptocurrency, is deter-

mined by intricate factors that are continuously evolving in
a near-random direction at a seemingly random pace [41].
At the core, collective human behavior determines the supply
and demand of an asset which in turn determines the current
value of the said asset. Modeling, human behavior is an
impossible task, and thus we consider the value of an asset
to stochastically determined. Defining the behavior of the
market as an erratic process gives us the advantage of using
the well-defined mathematical field of stochasticity.
Before we introduce stochasticity into the market scene,

we present the types of stochastic processes and how we can
relate them to the Cryptocurrency market. The most rudimen-
tary stochastic process is the Bernoulli process, where ran-
dom variables hold binary value and the sequence produced
by it is Identically and Independently Distributed (IID). The
IID property, which states that the system of random variables
is drawn from the same probability distribution and all the
random variables are mutually independent, is at the essence
of the market’s stochasticity. Building on that, random walk
is a stochastic process that sums up IID random variables and
thus has the property of evolution in time. Burton Malkiel
[42] proposed that market assets follow a random walk.

A randomwalk is defined as the path formed by a sequence
of random IID steps, given the starting point.

yt = y0 +

t
∑

i=1

ξi (10)

where ξi is an IID at time step i and y0 is the starting point of
the process.

Alternatively, we can obtain a path uncovered by a random
walk as a bootstrapping process, taking into account the most
recent state of the system. Consider the second last state of a
system yt−1,

yt−1 = y0 +

t−1
∑

i=1

ξi (11)

Moving one step forward as defined by the process, we obtain
the next state of system as shown below.

yt−1 + ξt = y0 +

t−1
∑

i=1

ξi + ξt (12)

yt−1 + ξt = yt (13)

Eq. (13) is more convenient to use as it is more computation-
ally efficient when t is extremely large. Hence, this notion is
used in the implementation of the proposed approach.
Bringing this into context with the value of a market asset,

like a Cryptocurrency, the value can be thought of as being
produced by a random walk, where ξt can be considered as
an aggregation of all market factors that may have possibly
affected the value of the asset [32]. However, this approach
does not take into consideration information regarding essen-
tial market factors. We address this issue by introducing neu-
ral networks to take into account important market statistics
and social sentiment [43], [44].

IV. PROPOSED APPROACH: STOCHASTIC NEURAL

NETWORKS

In this section, we incorporate stochasticity into neural
networks and formulate the mathematics for a layer-wise
stochastic walk. Moreover, we introduce the algorithm for
stochastic forward propagation in neural networks. We pro-
pose stochastic MLP and LSTM models to predict the prices
of Cryptocurrencies.

A. STOCHASTICITY IN NEURAL NETWORKS

According to the efficient market hypothesis by Malkiel
[45], all the past information regarding the market asset is
reflected in the current value of the asset and the market
will instantly acknowledge new information and react to it
accordingly. Therefore, all the effort of predicting prices by
analyzing information is futile. However, we can observe how
the market reacts to information and develop a pattern that
exhibits the behavior of the market when new information is
widely available. This pattern has to be stochastic [46] so as
to accommodate the multiplicity of all possible outcomes to
the arrival of new knowledge.
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Before we introduce stochasticity into the picture, we need
a way to distill market features and describe the interdepen-
dencies between market statistics and social sentiment. To do
this, we use a neural network because a neural network is a
universal function approximator that tries to map dependen-
cies between variables. The final value of a market asset is
determined by a hierarchy of features that roots from factors
like supply and demand, economy and human behavior and a
neural network is an excellent candidate to do just this [47].
There are two ways to inculcate randomness in a neural

network, the first is to randomly change the weights by a
small degree and the second way is by adding randomness
to the activations at runtime. The first approach is not ideal
because it would mean that feature detection will get noisy as
the network evolves and may eventually forget dependencies.
Intuitively, the second approach seems fitting because the ran-
domness in activations can be interpreted as random changes
in features, which in turn can be thought of as replicating the
erratic behaviors of the market.
We propose a generalized formulation of the stochastic

behavior of a layer in a deep neural network as follows,

st = ht + γ ξt × reaction(ht , st−1), 0 < γ < 1 (14)

where hi is the activation values of the ith time step.We define
γ as a perturbation factor that controls the amount of stochas-
ticity. ξ is an operator that produces a vector of random
variables of the same dimensions as the activation. reaction is
a general function that determines how the current activations
will react with respect to the activations of the previous time
step. Finally, si is the vector of values of the post-stochastic
operation.

Let us break down each of the terms in the generalized
equation of stochasticity in the layers of the neural network.
γ is the perturbation factor that determines the amount of ran-
domness to be infused in the activations. reaction is a function
that determines the direction to move based on the current
activation values and the previous post-stochastic operation
values. If we define ξ to be an operator that produces a vector
of IIDs as a probability, i.e 0 < X < 1,∀X ∈ ξ , then we
can interpret each neuron as having its own probability of
absorbing randomness.

In determining the reaction function, we only include two
parameters that are ht and st−1. This choice is more suitable
and intuitive due to the Markov property exhibited by the
financial markets. This implies that given the prior stochastic-
activation st−1, the current stochastic-activation st is indepen-
dent of the other past activations. Thus, wemodel the reaction
function as the difference between current activations and
previous activations, showing the direction in which to move.

reaction(ht , st−1) = ht − st−1 (15)

Therefore from Eq. (15) and Eq. (16),

st = ht + γ ξt (ht − st−1) (16)

Eq. (16) can be thought of as a random-like walk that takes
into account the pattern of reaction of the market in progres-
sive time steps.

In a continuously evolving market, it is of utmost impor-
tance that the direction of movement corresponds to the pat-
tern that has been observed in the recent time steps as opposed
to initial time steps. The pattern should be adapting to changes
in market reaction. Here, we show how this formulation gives
priority to recent activations over older activations. Eq. (16)
for a system at time step, t can be written as follows.

st = (1+γ ξt )ht−γ ξt (st−1) (17)

st = (1+γ ξt )ht−γ ξt ((1+γ ξt−1)ht−1−γ ξt−1(st−2)) (18)

st = (1+γ ξt )ht−γ ξt (1+γ ξt−1)ht−1+γ 2ξtξt−1(st−2) (19)

Extending this till time, t = 0 where s0 = 0, we obtain a
general form of the Eq., which can be written as follows.

st = (1+ γ ξt )ht +
t−1
∑

i=1

(−γ )t−i(1+ γ ξi)hi

t
∏

j=i+1

ξj (20)

From the above Eq. (20), we can infer that the first term
is given more attention than the second term. We observe
that previous activations have exponentially decaying signif-
icance because 0 < γ, ξ < 1. Thus, the recent activations
have higher priority as compared to the previous ones in
determining the direction of the stochastic walk. Implementa-
tion of Eq. (16) in a neural network, during runtime is shown
in Algorithm 1.
Algorithm 1 describes the forecasting phase of the pro-

posed model where the processed input data (Xt ) is fed into
the neural network at every timestep. A reaction vector is
calculated at every layer from the previous timestep’s stochas-
tic activation (st−1) and current timestep’s feature activations
(ht ). At each layer in the proposed model a random vector
(r) is created and multiplied to a perturbation factor (γ ).
Then, a hadamard product between the reaction vector and
random vector is added to the current feature activation ht .
The resultant vector is st . The st of the last layer of the neural
network is the predicted price.

B. STOCHASTIC MODELS

At the heart of the stochastic neural network is the stochastic
module, which is appended at the output of every layer in a
neural network. After performing a matrix multiplication and
activation of the layer, the output is passed on to the stochastic
module. Alongwith current activations, themodule also takes
in the previous timestep’s stochastic activations as input.
Fig. 5 is a neural network integrated with stochastic modules.
The stochastic module as shown in Fig. 6 consists of 3 core

components; the reaction submodule, random variable vector
generator, and perturbation factor. The reaction submodule
takes in current timestep’s activations and previous timestep’s
stochastic activations as input. Here, the reaction submodule
can be any function capable of capturing the market’s pattern
of reaction to new information. In our model, we used a sim-
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Algorithm 1 Forward Propagation in a Stochastic Neural
Network
Input: X , Market indicators and Cryptocurrencies data.
Input: Model architecture having l hidden layers.
Input: TrainedW i, bi, i ∈ {1, . . . , l}.
Output: Pt , t ∈ {1, . . . , n}.
Forward Propagation:

for t = 1 to n do
s0t = Xt
for k = 1 to l do
zkt = bkt +W

k
t s

k−1
t

hkt = activation(zkt )
r← random variable vector, ξ kt
skt = h

k
t + γ × r ⊙ reaction(hkt , s

k−1
t )

end for

Predicted price Pt ← slt
end for

FIGURE 5. Architecture of stochastic neural network.

FIGURE 6. Stochastic module.

ple subtraction operation. However, the reaction submodule
could be a neural network itself.

C. PROPOSED SYSTEM MODEL

To predict the price of a Cryptocurrency, we take 3 essential
data sources [31], the first being market statistics. Market
statistics include the day low/high and volume. Secondly,

we use blockchain network information that includes hash
rate, transaction count, transaction fee, e.t.c. Finally, we use
social sentiment information like google trends and tweet
volume. All the data from the 3 sources are accumulated into a
dataloader. The data features are mean-normalized and N-day
data stacks are created. This data is sequentially forwarded to
a stochastic neural network which predicts the (N+1)th day’s
price. Fig. 7 illustrates the design of the system model.

V. RESULTS AND DISCUSSION

In this section, we describe the features of the data we use
to forecast the price of various Cryptocurrencies. Moreover,
we explain the preprocessing task of the data. We present
the evaluation metrics used to measure the performance of
the models and the training process used. Finally, the results
obtained by the proposed models are exhibited.

A. DATASET DESCRIPTION

A total of 23 features are used in the proposed models with
the window side of 7. We trained the model with the previous
data of the past 7 days to predict the price of the eighth
day. We trained the model on the data ranging from mid
of 2017 to the end of 2019. A total of 850 data points used in
the proposed model to extract patterns from the data. We had
used data available on bitinfocharts [48].

1) TRANSACTIONS

Number of transactions performed on a given particular day.
Cryptocurrency, unlike the share markets, is not listed in any
stock exchange. Here, there is no opening time or closing
time because there is no regulatory body having power over
it. We considered the number of the coins traded in a single
day as one of our features.

2) MARKET VOLUME

This is the worth of market movement on a given particular
day. It is necessary to know the total units of currency flowing
through the market. The quantity of the coins flowing the
market is an indicator of the value it possess.

3) MINING DIFFICULTY AND HASHRATE

Mining difficulty is the computational difficulty required to
mine a single block of the coin. Mining and confirming trans-
actions requires special hardware. The better the hardware,
the more hashes it will hit to mine a block. Thus, there is a
tradeoff between the hash rate and power consumption. So,
we considered the mining difficulty and hash rate of coin and
how much profit is it to mine it.

4) MINING PROFITABILITY

Profitable income to the miner against the use of resources
for consuming power and time. With the increase in
the number of miners, reward per miner is decreased
exponentially.
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FIGURE 7. The proposed system model.

5) TRANSACTIONS FEE

It is the average transaction fee paid by the parties for the
confirmation for their transactions. The fee is required in
order to process the transaction in the network.

6) CONFIRMATION TIME

Average time required to confirm the transactionmade by one
party to another. Transaction made by one party to another
party is to be confirmed by all the others and must be logged
in the table of blocks. Logging the transaction requires time
to confirm the transaction made known as confirmation time
(usually around 10 minutes). That time depends upon the cur-
rently active users and their geographical location to update
their block table.

7) MARKET CAPITALIZATION

Total amount of the Cryptocurrency present in the market on
a given particular day in USD.

8) TWEETS AND GOOGLE TRENDS

It is observed that people tend to perform more transactions
when tweet volume increases [23], [29]. These are not only
correlations but also includes causation with a feedback loop
[49]. That correlation does not end with tweet volume. People
tend to search more about the trending topics to remain
updated about it [50]. Spike in Google search also seemed
to have an association with the price of the coins, which too
is a trivial assumption [51].

9) HIGHEST AND LOWEST VALUE

The highest and the lowest value a coin had reached on a
given particular day. The market for trading Cryptocurrencies
remains open for the whole day. So, we considered the peak
and the lowest value of the coin attained in a day.

B. DATA PREPROCESSING

We took the utmost care in choosing factors that may affect
the price. Some factors that seemed redundant were either
removed or removed in the later stage when the trained model
was examined. The dataset was normalized in two different

ways. The first way was to normalize the whole dataset
by the respective feature means. This dataset is referred to
as the Norm dataset. The latter one includes the mean-
normalization of all features except that of price. This is
named as UNorm dataset. The reasoning for the same is
that the magnitude of the future price is determined by the
previous prices and the deviations from the previous price is
captured by other features present in the dataset as described
above. Accordingly, the Norm and UNorm datasets were
further split into train and test. The training dataset is 75%,
while the testing is 25% of the whole dataset. This was done
for all the three Cryptocurrencies viz. Bitcoin, Ethereum, and
Litecoin.

C. EVALUATION METRICS

The trainedmodels are evaluated on the basis of the following
different performance metrics. The Mean Absolute Percent-
age Error (MAPE), Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Squared Error (MSE) are
used to assess the proposed models. The formulas for the
same are presented below [52].

MAPE =
1

n

n
∑

t=1

|yt − ŷt |

|yt |
× 100 (21)

MAE =
1

n

n
∑

t=1

|yt − ŷt |

|yt |
(22)

RMSE =

√

√

√

√

1

n

n
∑

t=1

(

yt − ŷt

yt

)2

(23)

MSE =
1

n

n
∑

t=1

(yt − ŷt )
2 (24)

where yt is the actual values and ŷt are the forecasted values.

D. RESULTS

Two prediction model classes were trained viz. Multi-
layer perceptron and LSTM were trained on 3 market-
dominating Cryptocurrencies i.e. Bitcoin, Ethereum, and
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FIGURE 8. Price prediction of Bitcoin using stochastic neural networks.

TABLE 3. Train results of MLP & LSTM on Norm dataset.

Litecoin. We trained two model variations for each currency-
architecture pair, with the difference in the choice of nor-
malization of data. The first variation has all data features
normalized by the feature mean of the train data. The second
variation has all features but one, the price normalized. The
intuition behind using leaving the price unnormalized is that
we wanted the models to obtain the magnitude of the price of
the currency directly from data instead of obtaining it from
the model.
In this paper, we have used MLP and LSTM models

because their is a need of capturing the non-linear dependen-
cies between the market factors, blockchain data and social
sentiment and neural networks are most suitable ones for
these tasks. MLP is the most basic type of neural network
and the LSTM models are most widely used in the scenarios
of time dependent data, like the market prices of cryptocur-
rencies. Thus, for the amalgamation of stochasticity and non-
linear dependencies these models were chosen.

1) DETERMINISTIC MODELS

In this section, we present the results obtained by the deter-
ministic models on train and test data. Four models were
trained for each currency thus leading to a total of twelve
models.
We trained twomodels on both Norm and UNorm datasets.

The architecture of models for all the Cryptocurrencies used
is the same as mentioned below.

TABLE 4. Train results of MLP & LSTM on UNorm dataset.

TABLE 5. Test results of MLP & LSTM on Norm dataset.

TABLE 6. Test results of MLP & LSTM on UNorm dataset.

The trained MLP model contains 6 layers, each with the
same activation function i.e. ReLU and trained using Adam
algorithm for 700 epochs. The input consists of 23 features
over the past 7 days, flattened to form a vector of length
161. The layers contain 130, 100, 50, 25, 10, 1 neurons
hierarchically in the input to the output direction.

The base sequential model consists of a single LSTM layer.
The output of each LSTM unit is fed into a small MLP
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FIGURE 9. Price prediction of Ethereum using stochastic neural networks.

FIGURE 10. Price prediction of Litecoin using stochastic neural networks.

containing 20, 15, 7, 1 neurons respectively, to give the final
output of the next day price. All the activations used were
ReLU and trained using Adam algorithm for 1500 epochs.

2) STOCHASTIC MODELS

In this section, the results obtained by our models on test data
using stochastic layers in the neural networks are presented.
The parameters of the trained model remain the same as in
the deterministic models.
However, here we test the models using non-zero pertur-

bation factors thus inducing stochasticity in the models. The
results are divided by the currency namely Bitcoin, Ethereum
and Litecoin. Each run of a stochastic model is known as a
realization as referred to in the literature of stochastic pro-
cesses. To test out our hypothesis, we ran all twelve models
with stochasticity activated for 100 realizations to investigate
the effect of inducing randomness into the neural network
layers.
We demonstrate the probability distribution of MAPE of

predicted prices by stochastic neural networks over these
realizations. Two perturbation factor values are tested for

each trained model to determine the effect of variation of the
value of γ . With a very minute change in the perturbation
factor, γ , the error distribution changed disproportionately as
shown in Fig. 11. Furthermore, the model performed slightly
poor as compared to the deterministic model. We specu-
late that a stochastic model will perform worse when minor
changes in γ lead to major changes in the type of error
distribution.

Hyperparameter tuning is the key to choosing the optimal
values for γ . Choosing 0.12 over 0.1 significantly improves
the performance of our MLP model for Litecoin as shown
in Fig. 12. The LSTM model for Litecoin on UNorm dataset
showed a better performance with γ = 0.12, while the
MLPmodel for Ethereum using onUNorm dataset performed
better with γ = 0.1 as shown in Fig. 13. Thus, we show that
the magnitude of γ has no correlation with the performance
of a stochastic neural net [53].

For every trained model, we see that the MAPE error
distribution has no correlation with the value of γ . Therefore,
we are posed with the problem of selecting the optimal values
of γ for every model. The process for choosing these values
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TABLE 7. Test results using stochastic neural networks and the corresponding average relative improvement for Bitcoin.

TABLE 8. Test results using stochastic neural networks and the corresponding average relative improvement for Ethereum.

TABLE 9. Test results using stochastic neural networks and the corresponding average relative improvement for Litecoin.

FIGURE 11. Drastic change observed in error distribution of Bitcoin over
LSTM on minute change in γ .

manually is time-consuming and there is no guarantee for
finding the optimum solution.
We can speed up this task by treating γ as a learnable

parameter. After training the deterministic neural network,
we can freeze all parameters except γ and optimize the values
of γ by error backpropagation in combination with gradient
descent. Another advantage of doing this is that each layer
has its individual value of γ , and hence the optimization

FIGURE 12. Error distribution of Litecoin on MLP.

process picks up the maximum value of γ that the individual
layers can tolerate. By learning the values of γ , we observe a
significant improvement in model performance as shown in
tables 7, 8 and 9.

VI. CONCLUSION

In this paper, we predict the price of Cryptocurrencies by
using a stochastic neural network model. We introduced a
technique to adaptively learn the pattern of the market’s
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FIGURE 13. Error distribution of Ethereum on LSTM.

reaction to any updated information. The results show that
the proposed hypothesis was not only valid but effective in
decrypting market volatility. Almost all of the stochastic ver-
sions of the neural net models outperformed the deterministic
versions. The average relative improvement by using stochas-
tic neural networks over regular neural networks is 1.56% in
the Norm dataset at γ = 0.1, 1.73% at γ = 0.12 and 1.76%
when γ is set as a learnable parameter. The improvement
is much more significant for the UNorm dataset where the
average relative improvement is 3.91% at γ = 0.1, 4.52% at
γ = 0.12 and 7.41% when γ is set as a learnable parameter.
In future, it may be worth exploring an optimizing tech-

nique to tune the hyperparameter, γ to find its most suitable
value. Moreover, alternate reaction functions can be tested
to learn the pattern of the market’s reaction to fresh data.
These functions can themselves be stochastic in nature to
better simulate market volatility. In addition to that, there
are a lot of unexplored territories in the cross-disciplinary
field of stochastic processes and neural networks that can be
exploited in Cryptocurrency markets.
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