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In this paper, a multiple-cluster downlink multiple-input single-output (MISO) nonorthogonal multiple access (NOMA)
system is considered. In each cluster, there are one central user and one cell-edge user. *e central user has a data buffer with
finite storage units, which will decode the cell-edge user’s message and store it at the data buffer. To enhance the performance of
the cell-edge user, the central user operates as a relay and helps forward the message to the cell-edge user. Our objective is to
maximize the long-term average sum rates for the cell-edge users by designing the beamforming vectors and online power
control, under the constraints of the data buffer causality, required information rates for central users, and transmit power at
the base station and central users. Based on the current buffer state and the channel state information, we propose a low-
complexity online Lyapunov optimization algorithm combined with a constrained concave-convex procedure (CCCP) to solve
the causal and nonconvex problem. Furthermore, we verify the asymptotic optimality of the proposed online Lyapunov
optimization algorithm. Simulation results demonstrate that our proposed scheme performs better than the greedy algorithm
and the orthogonal multiple access (OMA) scheme.

1. Introduction

Recently, nonorthogonal multiple access (NOMA)
scheme is considered as a breakthrough key technology
for the fifth generation networks and has attracted great
attention [1, 2]. Combined with successive interference
cancellation (SIC) and beamforming technique, the
NOMA scheme allows a single base station to serve more
users with higher spectral efficiency [3, 4]. NOMA also has
an extension to a cooperative relaying system, where users
with poor capabilities can be improved by requesting the
ones with strong capabilities acting as relays, which can
decode and forward (DF) the messages to the poor ones
[5, 6]. By using cooperative relaying and maximum ratio
combining, the spatial diversity of NOMA systems can be
enhanced [7, 8]. Furthermore, Zhang et al. [9] had shown

that the data buffer, which can store messages sent by the
base station, applied in the cooperative relays can improve
the performances of NOMA cooperative relaying systems
significantly.

In the practical and causal NOMA cooperative relaying
system, the current information is reachable only when it
arrives, which is involved with the online resource allocation
problem. In [10–12], the authors manage to solve the re-
source allocation problem by merely utilizing the current
information and applying dynamic programming algo-
rithms [13]. Because of the high computational complexity
of dynamic programming algorithms, some studies propose
the Lyapunov optimization approach [14–16]. *e authors
of [14] propose a low-complexity optimization algorithm
using Lyapunov functions to achieve close-to-optimal utility
performance in energy-harvesting networks. Mao et al. [15]
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aimed to minimize the long-term average network service
cost on hybrid energy supply networks by optimizing the
base station selection and power allocation. Choi and Kim
[16] considered a wireless powered system, and its objective
was to minimize the expected energy transmission power
while stabilizing data queue for all nodes. To the best of our
knowledge, the stochastic optimal control for multiple-input
single-output (MISO) NOMA cooperative relaying systems
has not been studied.

A cellular downlink MISO NOMA system is being
considered in our study, which consists of multiple clusters.
In each cluster, there are one central user and one cell-edge
user. �e central user has a data buffer with finite storage
units and operates as a relay to help forward the message to
the cell-edge user. For cell-edge users with high quality of
service (QoS) requirement, by designing optimal beam-
forming vectors and power allocation, our objective is to
maximize the long-term average achievable information bits
for the cell-edge users under the constraints of required
number of achievable information bits for the central users
and transmit power constraints. �e optimization problem
is causal and nonconvex and thus hard to solve. Based on the
current buffer state and the channel state information, we
propose a low-complexity online Lyapunov optimization
algorithm combined with a constrained concave-convex
procedure (CCCP). �e asymptotic optimality of the pro-
posed online Lyapunov optimization algorithm is also
verified.

�e rest of this paper is organized as follows: Section 2
presents the system model in detail. Section 3 presents the
proposed low-complexity online Lyapunov optimization
algorithm. Section 4 verifies the asymptotic optimality of the
proposed online Lyapunov optimization algorithm. Section
5 provides the simulation results. Finally, Section 6 con-
cludes the paper.

Notations. For a vector, a, a†, and ||a|| denotes its conjugate,
transpose, and Frobenius norm, respectively. E[x] and
Re x{ } denote the expectation and the real part of x, re-
spectively. CN(a, b) denotes the Gaussian variable with
mean a and variance b.

2. System Model and Problem Formulation

We consider a buffer-aided cooperative NOMA downlink
system consisting of a base station and 2K users as shown
in Figure 1, where the base station is equipped with N

antennas and each user is equipped with a single antenna.
�e clustering algorithm is a significant factor in the
multiuser NOMA system since it will influence the system
performance [17–19]. In [17], a clustering algorithm was
proposed based on selecting two highly correlated users
with a large channel-gain difference. In [18], the authors
selected users for satellite by a channel quality-based
scheme and proposed a user pairing method by maxi-
mizing the minimum channel correlation between users
in the same group. �e authors in [19] investigated three
user clustering schemes from a fairness perspective by

maximizing the throughput of the worst user. However,
the aforementioned studies focused on the one-time-slot
problem without considering the long-term performance
of the system. By employing the clustering scheme pro-
posed in [19], we group the 2K users into K clusters in
advance and formulate a multitime-slot online stochastic
optimization problem in the following. In the kth cluster,
k ∈K � 1, 2, . . . , K{ }, two users are included, i.e., a central
user and a cell-edge user.

�e base station transmits signals to central users
directly while transmits signals to cell-edge users with the
cooperation of central users. We assume that the trans-
mission time duration is partitioned into M slots with
equal length of T. Each time slot is further partitioned into
(K + 1) phases. In each time slot, the base station transmits
signals to central and cell-edge users using the NOMA
protocol during the first phase, and all the central users
decode and forward the signals to cell-edge users using the
timed-division multiple access scheme during the
remaining K phases. �us, during the first phase of themth
time slot, m ∈M � 1, 2, . . . ,M{ }, the transmitted signal
from the base station to the central and cell-edge users is
expressed as

xm � ∑
K

k�1

vk,msk,m,1 + wk,msk,m,2( ), (1)

where sk,m,1 and sk,m,2 denote the signals intended to the
central and cell-edge users of the kth cluster with
E[|sk,m,1|

2] � 1 and E[|sk,m,2|
2] � 1, respectively, and

vk,m ∈ CN×1 and wk,m ∈ CN×1 are the corresponding
beamforming vectors. Accordingly, the received signals at
the central and cell-edge users of the kth cluster are

yk,m,1 � h
†
k,mxm + nk,m,1,

yk,m,2 � g
†
k,mxm + nk,m,2,

(2)

where hk,m ∈ CN×1 and gk,m ∈ CN×1 denote the channel
response from the base station to the central and cell-edge
users of the kth cluster, respectively, and nk,m,1 ∼ CN(0, σ2)
and nk,m,2 ∼ CN(0, σ2) denote the additive Gaussian noises
at the central and cell-edge users of the kth cluster.

Base
station

Central
user Cell-edge

user

Figure 1: �e model for a buffer-aided cooperative NOMA
downlink transmission system.
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In the kth cluster, the central user first decodes sk,m,2 by
treating sk,m,1 as interference and then removes sk,m,2 using
successive interference cancellation to decode sk,m,1. *e
signal-to-interference-and-noise ratios (SINRs) for decod-
ing sk,m,2 and sk,m,1 at the kth central user, k ∈ K, are

ck,m,1,2 �
h†
k,mwk,mw

†
k,mhk,m

ξk,m + h†
k,mvk,mv

†
k,mhk,m + σ2

, (3)

ck,m,1,1 �
h†
k,mvk,mv

†
k,mhk,m

ξk,m + σ2
, (4)

where ξk,m is the intercluster interference and

ξk,m � ∑
i≠k,i∈K

h
†
k,m wi,mw

†
i,m + vi,mv

†
i,m( )h†

k,m. (5)

Accordingly, at the kth central user, the numbers of
achievable information bits intended for the kth central and
cell-edge users in the first phase are

Rk,m,1 � α log2 1 + ck,m,1,1( ),
Ck,m,1 � α log2 1 + ck,m,1,2( ), (6)

where α � BT/(K + 1) and B denotes the bandwidth. At the
kth cell-edge user, k ∈ K, the SINR for decoding sk,m,2 is
expressed as

ck,m,2,2 �
g†k,mwk,mw

†
k,mgk,m

ζk,m + g†k,mvk,mv
†
k,mgk,m + σ2

, (7)

where

ζk,m � ∑
i≠k,i∈K

g
†
k,m wi,mw

†
i,m + vi,mv

†
i,m( )gk,m. (8)

During the remaining K phases of the mth time slot,
the kth central user, k ∈ K, decodes and forwards the
signals to the kth cell-edge user in any phase among the
remaining K phases. *e received signal at the kth cell-
edge user is

yk,m,3 � fk,m

����
Pk,m

√
sk,m,2 + nk,m,3, (9)

where fk,m denotes the channel response from the kth
central user to the kth cell-edge user, Pk,m denotes the
transmit power, and nk,m,3 ∼ CN(0, σ2) denotes the additive
Gaussian noise at the kth cell-edge user. Accordingly, the
number of achievable information bits transmitted from the
kth central user to the kth cell-edge user is

Ck,m,2 �
BT

K + 1
log2 1 + ck,m,2,3( ), (10)

where the denominatorK is included because the orthogonal
multiple access (OMA) transmission scheme among K
clusters is employed and ck,m,2,3 denotes the SINR for
decoding sk,m,2 as

ck,m,2,3 �
fk,m
∣∣∣∣ ∣∣∣∣2Pk,m

σ2
. (11)

*e central users can store the information bits at the
data buffers for later transmission. We assume the data

buffers at the central users have finite storage units,
denoted as Dmax. Denote Dk,m as the number of storage
units and stored information bits in the kth central user,
k ∈ K, at the end of the first phase of the mth time slot,
m ∈ M. *us, considering the data buffer’s states and
channel states, the central users will transmit the in-
formation bits to the cell-edge users with the following
data causal constraint:

Ck,m,2 ≤Dk,m ≤Dmax. (12)

*e dynamics of data buffer is

Dk,m+1 � Dk,m + Ck,m+1,1 −Ck,m,2. (13)

At the kth cell-edge user, maximum ratio combining is
employed to combine the signals transmitted from the base
station and the kth central user. *us, in the mth time slot,
the number of achievable information bits intended for the
kth cell-edge user is

Rk,m,2 � α log2 1 +min ck,m,1,2, ck,m,2,2 + ck,m,2,3( )( ). (14)

For the cell-edge users with high QoS requirement, our
objective is to maximize the long-term average achievable
information bits for the cell-edge users under the constraints
of required number of achievable information bits for the
central users and transmit power constraints, which is
formulated as

P0: max
vk,m{ ,

wk,m ,

Pk,m}

lim
M⟶∞

1

M
∑M
m�1

E R̂m[ ],
(15a)

s.t. (12),E Rk,m,1[ ]≥ rk, (15b)

∑K
k�1

vk,m




 



2 + wk,m





 



2( )≤Pmax
b , (15c)

Pk,m ≤Pmax
c , ∀k ∈ K, m ∈ M, (15d)

where rk denotes the required number of achievable in-
formation bits for the kth central user in any time slot; Pmax

b

and Pmax
c mean the transmit power constraints at the base

station and central users, respectively; and

R̂m � ∑K
k�1

Rk,m,2. (16)

Problem P0 is a stochastic optimization problem which
needs all the channel state and buffer state of all time du-
ration ahead, it is impractical and challenging. *erefore, we
will solve this problem with an online algorithm.

3. Online Lyapunov Algorithm

In this section, an online Lyapunov algorithm to solve
problem P0 is proposed. *e main idea is to convert the
causal constraints into virtual buffers and maintain their
stability.
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According to the Lyapunov optimization [20], we first
introduce a virtual buffer queue Vk,m for the actual buffer
state Dk,m at the kth user as Vk,m � Dk,m − θk, ∀m ∈ M,
where θk denotes the perturbation parameter. Specifically,
Neely [20] had proved that maintaining the stability of all
the virtual buffers Vk,m is equivalent to meeting their
causality requirements (13). *en, we define the quadratic
Lyapunov function with respect to the data buffer at the kth
central user as

Lk,m �
Vk,m( )2
2

�
1

2
Dk,m − θk( )2, ∀m ∈ M. (17)

Accordingly, the per-time-slot Lyapunov drift with re-
spect to the data buffer at the kth central user is

Δk,m � E Lk,m+1 −Lk,m Dk,m

∣∣∣∣[ ], ∀m ∈ M, (18)

which describes the expected change in the Lyapunov
function over one time slot. Based on the Lyapunov op-
timization framework [20], we consider the minimization
of the drift-plus-penalty function rather than using the
objective of (15a)–(15d) directly, which is a technique to
maintain the stability of the queue and optimize the
long-term average objective function in the meantime.
*erefore, the Lyapunov drift-plus-penalty function is
expressed as

Um �∑K

k�1
Δk,m − ρE R̂m Dm

∣∣∣∣[ ], (19)

where ρ denotes a control parameter and

Dm � D1,m, . . . , DK,m{ }. (20)

Because of the dynamics involved in Δk,m, it is still
difficult to minimize the Lyapunov drift-plus-penalty
function (19) directly. Instead, we turn to minimize the
upper bound of (19). *us, we present the following lemma
to provide an upper bound on the Lyapunov drift-plus-
penalty function.

Lemma 1. For any feasible vk,m,wk,m, Pk,m{ }, the drift-plus-
penalty function has an upper bound as

Um ≤E ∑K
k�1

Dk,m − θk( ) Ck,m+1,1 −Ck,m,2( )− ρR̂m Dm

∣∣∣∣ 

+
1

2
E ∑K

k�1

Cmax
k,m+1,1( )2 + Cmax

k,m,2( )2 ,
(21)

where

Cmax
k,m+1,1 � max

vk,m+1 ,wk,m+1{ }
Ck,m+1,1, (22)

Cmax
k,m,2 � max

Pk,m
Ck,m,2. (23)

Proof. From the dynamics of data buffer (13), we have

Δk,m �
1

2
E Dk,m+1 − θk( )2 − Dk,m − θk( )2[ ]

�
1

2
E Dk,m + Ck,m+1,1 −Ck,m,2 − θk( )2 − Dk,m − θk( )2[ ]

�
1

2
E[ Ck,m+1,1 − Ck,m,2( )2

+ 2 Dk,m − θk( ) Ck,m+1,1 −Ck,m,2( )]
≤ 1

2
E[ Ck,m+1,1( )2 + Ck,m,2( )2

+ 2 Dk,m − θk( ) Ck,m+1,1 −Ck,m,2( )],
(24)

where the identity (a− b)2 ≤ a2 + b2 is used.
From (22) and (23), we have

Δk,m ≤
1

2
E[ Cmax

k,m+1,1( )2 + Cmax
k,m,2( )2

+ 2 Dk,m − θk( ) · Ck,m+1,1 − Ck,m,2( )].
(25)

Substituting (25) into (19), we obtain (21).
*e Lyapunov algorithm only needs the current system

state, and thus, we turn it into a per-slot problem and
minimize the drift-plus-penalty function’s upper bound.
Since Cmax

k,m+1,1 and Cmax
k,m,2 are constants, given Dm, then

Cmax
k,m+1,1, C

max
k,m,2, and the expectation can be removed. *us,

the optimization problem P0 is reduced to

min
vk,m ,wk,m ,

Pk,m

∑K
k�1

Dk,m − θk( ) Ck,m+1,1 −Ck,m,2( )− ρR̂m,

s.t. Rk,m,1 ≥ rk, (15c), (15d), ∀k ∈ K.

(26)

In problem (26), the constraintRk,m,1 ≥ rk is equivalent to

ξk,m + σ2 ≤
h†
k,mvk,mv

†
k,mhk,m

2rk/α − 1
. (27)

Using (3), (7), and (11), problem (26) is recast as

P1: min
vk,m ,wk,m ,
Pk,m,dk,m ≥ 0

α∑K
k�1

Dk,m − θk( ) ·Θk − ρdk,m( ), (28a)

s.t. (29), (17c), (17d), (28b)

ξk,m + h
†
k,mvk,mv

†
k,mhk,m + σ2 ≤

h†
k,mwk,mw

†
k,mhk,m

dk,m
, (28c)
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ζk,m + g
†
k,mvk,mv

†
k,mgk,m + σ2 ≤

g†k,mwk,mw
†
k,mgk,m

dk,m − fk,m
∣∣∣∣ ∣∣∣∣2Pk,m/σ2( ),

∀k ∈ K,

(28d)
where dk,m is an introduced slack variable and

Θk � log2 1 + dk,m( ) − log2 1 +
fk,m
∣∣∣∣ ∣∣∣∣2Pk,m

σ2
 . (29)

Problem P1 is still nonconvex on account of the objective
function, constraints (27), (28c), and (28d). To work out the
problems (28a)–(28d), we employ an iterative algorithm
based on CCCP [21].

Note that when Dk,m − θk ≤ 0, (Dk,m − θk) · Θk in the
objective function is convex and when Dk,m − θk > 0,
(Dk,m − θk) ·Θk is concave. To proceed, we define it by its
first-order Taylor expansion around the point Υ̃k,m �
(P̃k,m, d̃k,m) as [22]

Θ̂k �

log2 1 + dk,m( )− Pk,m − P̃k,m( ) fk,m
∣∣∣∣ ∣∣∣∣2

fk,m
∣∣∣∣ ∣∣∣∣2 + σ2( )ln 2− log2 1 +

fk,m
∣∣∣∣ ∣∣∣∣2P̃k,m

σ2
 , if Dk,m − θk ≤ 0,

−log2 1 +
fk,m
∣∣∣∣ ∣∣∣∣2Pk,m

σ2
  + log2 1 + d̃k,m( ) + dk,m − d̃k,m( ) 1

1 + d̃k,m( )ln 2, if Dk,m − θk > 0.


(30)

*e right-hand side of (27) can be approximated by its
first-order Taylor expansion around the point ṽk,m as

ψk,m vk,m; ṽk,m( ) � 2Re h†
k,m vk,m − ṽk,m( )ṽ†k,mhk,m{ }

2rk/α − 1
. (31)

Similarly, the right-hand sides of (28c) and (28d) can
also be approximated by their first-order Taylor expansions
around the points Ω̃k,m � (w̃k,m, d̃k,m, P̃k,m) as

ϕk,m Ωk,m; Ω̃k,m( ) � 2Re h†
k,mwk,mw̃

†
k,mhk,m{ }

d̃k,m
+
dk,mh

†
k,mw̃k,mw̃

†
k,mhk,m

d̃
2

k,m

,

φk,m Ωk,m; Ω̃k,m( ) � 2Re g†k,m wk,m − w̃k,m( )w̃†
k,mgk,m{ }

d̃k,m − fk,m
∣∣∣∣ ∣∣∣∣2P̃k,m/σ2( )

+
fk,m
∣∣∣∣ ∣∣∣∣2 Pk,m − P̃k,m( )/σ2( )− dk,m − d̃k,m( )

d̃k,m − fk,m
∣∣∣∣ ∣∣∣∣2P̃k,m/σ2( )( )2

· g
†
k,mw̃k,mw̃

†
k,mgk,m,

(32)
where Ωk,m � (wk,m, dk,m, Pk,m).

*us, in our iterative algorithm, given v(l)k,m,{
w(l)k,m, P

(l)
k,m, d

(l)
k,m} which is optimal in the lth iteration, we

solve the following problem in the (l + 1)th iteration:

min
vk,m,wk,m ,

Pk,m ,dk,m ≥ 0

α∑K
k�1

Dk,m − θk( ) · Θ̂k − ρdk,m( ),

s.t. ξk,m + σ2 ≤ψk,m vk,m; v
(l)
k,m( ), (17c), (17d),

ξk,m + h†
k,mvk,mv

†
k,mhk,m + σ2

≤ϕk,m Ωk,m;Ω(l)
k,m( ),

ζk,m + g†k,mvk,mv
†
k,mgk,m

+ σ2 ≤φk,m Ωk,m;Ω(l)
k,m( ), ∀k ∈ K,

(33)

where Ωk,m � (w
(l)
k,m, d

(l)
k,m, P

(l)
k,m). Problem (33) is convex and

can be solved effectively using the interior point method [23].
Now, we summarize the proposed online Lyapunov

algorithm in Algorithm 1. □

Remark 1. (Complexity Analysis for Algorithm 1): the
computational complexity for the online Lyapunov algo-
rithm combined with CCCP is mainly from solving problem
(33), which is a semidefinite programming (SDP). From
[24], the complexity of solving an SDP is O(msdpn

7/2
sdp +

m2
sdpn

5/2
sdp +m

3
sdpn

1/2
sdp), where msdp denotes the number of

semidefinite cone constraints and nsdp denotes the di-
mension of the semidefinite cone. For problem (33), msdp �

3K and nsdp � N. *us, the complexity of solving problem
(33) is O(3KN7/2 + (3K)2N5/2 + (3K)3N1/2). Denote the
iteration number of CCCP iterations as L, the complex-
ity of the proposed Algorithm 1 is O(L(3KN7/2 +

(3K)2N5/2 + (3K)3N1/2)), which indicates the complexity of
Algorithm 1 grows as the number of clusters increases.

Remark 2. (Application Issue of Algorithm 1): actually, the
expected number of users that the system can support de-
pends on the implementation hardware. For example, under
our experimental circumstance (the central processing unit
is Intel Core i7-4790K with 4.0GHz and the random access
memory is 8GB), the average time required to solve one
CCCP procedure is about 0.7ms for the scenario thatK � 4,
i.e., 8 users.*us, for each time slot, T � 1ms is a pessimistic
setting in our experiment, which aims to adapt our proposed
Lyapunov algorithm to suit other conditions. Furthermore,
as the unit for data transmission and scheduling, the sub-
frame lasts for 1ms, which is called transmission time in-
terval (TTI) in the LTE standard [25, 26]. *erefore, in most
cases, TTI requires our proposed algorithm should be ex-
ecuted within 1ms. In reality, it is feasible to implement our
proposed algorithm on real base stations since they have
much more powerful processing ability to execute the
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algorithm within such quite short time slot. Specifically, our
proposed algorithm aims at the downlink NOMA system
considering the user clustering scenario [19]. In most
existing cellular systems [1], with powerful computing
hardware equipped in the base station (such as macro base
station), our proposed algorithm can still be applicable even
when more users are involved in the system.

From (11), if the channel response between the kth central
user and the kth cell-edge user, fk,m, is a circularly symmetric
complex Gaussian random variable, ck,m,2,3 is unbounded
given a positive Pk,m because |fk,m|

2 is an exponentially
distributed random variable. To work out this problem, we
propose a modified algorithm from Algorithm 1 to provide a
feasible solution for the case when ck,m,2,3 > cmax, where cmax

is defined as the maximum gain [27].
Firstly, we give the feasible set and its complement on the

possible range of ck,m,2,3 asG≜ [0, cmax] andG
c ≜ (cmax,∞),

respectively. *e case ck,m,2,3 ∈ G
c is defined as an outage

event. Let ε denote the outage probability, i.e., Pr
(ck,m,2,3 ∈ G

c) � ε. When ck,m,2,3 ∈ G, Algorithm 1 still
provides the feasible solution to problem P0. When
ck,m,2,3 ∈ G

c, the causal constraint (12) may be violated and
the solution obtained by Algorithm 1 may be infeasible.
*us, the transmit power of the kth central user is given by

P∗k,m � min
σ2 2Dk,m/α − 1( )

fk,m
∣∣∣∣ ∣∣∣∣2 , Pmax

c

 . (34)

Remark 3. *emain idea of this modified algorithm above is
that we use the buffer state Dk,m to determine the transmit
power of the central user in the current time slot. To
maintain the causal constraint, i.e., Ck,m,2 ≤Dk,m, and the
transmit power constraint (15d), we can choose Pk,m
according to (34) adaptively. Specifically, when the central
user transmits all the messages of the data buffer, the critical
value of the transmit power can be obtained by setting
Ck,m,2 � Dk,m. To avoid the SINR ck,m,2,3 reaching the in-
feasible region, the transmit power should be less than Pmax

c ,
which is the power limit we have predefined.

4. Performance Analysis

In this section, the online Lyapunov algorithm’s perfor-
mance is analyzed. From [27], the perturbation parameters,
θk{ }, are defined as

θk � α log2 1 + cmax( ) + ρ, k ∈ K. (35)

*e asymptotic optimality of our proposed online
Lyapunov algorithm is verified as follows.

We first define the following optimization problem re-
lated to P0 as

P2 : max
vk,m{ ,

wk,m ,

Pk,m}

lim
M⟶∞

1

M
∑M
m�1

∑K
k�1

E Rk,m,1 + Rk,m,2( ),
(36a)

s.t. lim
M⟶∞

1

M
∑
m�1

M

E Ck,m,1 −Ck,m,2( ) � 0, (36b)

Rk,m,2 ≥ bk, (36c)

∑K
k�1

vk,m




 



2 + wk,m





 



2( )≤Pmax
b , (36d)

Pk,m ≤Pmax
c , ∀k ∈ K, m ∈ M, (36e)

where the data causal constraint (12) are replaced by con-
straint (36b), i.e., in a long time, the average number of data
units stored at the kth central user equals to that transmitted
to the kth cell-edge user.

Lemma 2. Problem P2 is the relaxed problem of P0.

Proof. For any feasible solution of problem P0, because of
the dynamics of the data buffer (13), we have

lim
M⟶∞

1

M
E Dk,M+1( )− lim

M⟶∞
1

M
E Dk,1( )

� lim
M⟶∞

1

M
∑
m�1

M

E Ck,m,1 −Ck,m,2( ).
(37)

Since Dk,M+1 <∞, Dk,1 � 0, we have limM⟶∞ 1/ME

(Dk,M+1) � limM⟶∞ 1/ME(Dk,1) � 0, i.e., (36b) is satisfied.
*erefore, P2 is the relaxed problem of P0, and any feasible
solution for (15a)–(15b) is also feasible for P2.

To continue, we have the following result for problem P2

whose proof can be found in ([20], (Appendix 4.A)). □

Lemma 3. Let Ψ � vk,m,wk,m, Pk,m{ }. @ere exists a solution
to problem P2 without the constraint (36b), denoted as Ψ1,
which satisfies the following equalities:

E R̂m[ ]∣∣∣∣∣Ψ�Ψ1

� τ1 + ε, ∀m ∈ M,

E Ck,m,1 −Ck,m,2( ) � ηk, ∀k ∈ K, m ∈ M,
(38)

where τ1 denotes the optimal objective value of problem P2, ηk
is an arbitrary small positive number, and ε≥ 0.

*en the asymptotic optimality of our proposed online
Lyapunov algorithm is verified in the following lemma.

(1) Initialize: m � 0, Dk,m � 0;
(2) While m≤M

Initialize: l � 0, v(0)k,m, w
(0)
k,m, P

(0)
k,m;

Repeat:
Solve (33) to obtain v(l+1)k,m ,w(l+1)k,m , P(l+1)k,m , d(l+1)k,m{ };

l ≔ l + 1;
Until: Convergence;
m ≔ m + 1; Update Dk,m.

(3) End While

ALGORITHM 1: *e proposed online Lyapunov algorithm.
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Lemma 4. Denote τ2 and τ3 as the optimal objective values of
problems P0 and P1, respectively. We have

τ2 ≤ τ3 +
ς

ρ
, (39)

where

ς � κ +∑K
k�1

E Cmax
k,m+1,1θk + C

max
k,m,2D

max( ),

κ �
1

2
E ∑K

k�1

Cmax
k,m+1,1( )2 + Cmax

k,m,2( )2 .
(40)

Proof. Since the objective of problem P1 is minimization of
the drift-plus-penalty function, we have

∑K
k�1

E Lk,m+1 − Lk,m Dk,m

∣∣∣∣[ ]− ρτ3 ≤Um. (41)

From Lemma 1, we have

Um ≤E ∑K
k�1

Dk,m − θk( ) Ck,m+1,1 −Ck,m,2( ) −E ρR̂m Dm

∣∣∣∣[ ]
+ κ≤KDmaxη− ρ τ1 + ε( ) + κ,

(42)
where the last inequality comes from Lemma 3 and
η � maxk∈K ηk. Combining (41) and (42), we have

τ1 − τ3 ≤
1

ρ
KDmaxη− ∑K

k�1

E Lk,m+1 − Lk,m Dk,m

∣∣∣∣ ∣∣∣∣[ ]− ρε + κ 

≤ 1

ρ
KDmaxη + κ +∑K

k�1

E Cmax
k,m+1,1θk + C

max
k,m,2D

max( ) .
(43)

Since problem P2 is a relaxation of problem P0, we have
τ2 ≥ τ1. Let η ⟶ 0, we can obtain

τ2 − τ3 ≤ τ1 − τ3 ≤
ς

ρ
, (44)

where ς � κ +∑Kk�1E(Cmax
k,m+1,1θk + C

max
k,m,2D

max). Summing up
the equations for m � 0, . . . ,M− 1, then dividing by M and
letting M⟶∞, and when ς/ρ ⟶ 0, the asymptotic
optimality is proved. □

5. Simulation Results

In this section, we provide the simulation results of our
proposed algorithm. We consider the NOMA system with
complex Gaussian random channels, where the channel
responses hk,m, gk,m, andfk,m are modeled as Gaussian
random variables with zero-mean and variance σ2h �
1, σ2g � 0.4, and σ2f � 2, respectively. We assume that there
are 3 clusters in the system and the base station has 4 an-
tennas, and we set T � 1ms, B � 1MHz,Dmax � 50 bits, and

Pmax
b /σ2 � 10 dB. *e central users transmit signal with
Pmax
c � 0.1W, and the central users’ QoS constraint is
rk � 0.3 bps/Hz. Moreover, the greedy algorithm and the
conventional OMA are used for comparison. *e greedy
algorithm maximizes the sum rate during each time slot as
local optimal solution. For the conventional OMA scheme,
time-division multiple access is utilized, which means the
base station serves all the users independently for different
time slots. All the simulation works are conducted in the
MATLAB-based framework. To solve the convex problem,
we use the CVX optimization software [28].

Figures 2 and 3 show the long-term average sum rate of
cell-edge users and all users versus time slot respectively,
with the control parameter ρ � 5. As we can see, the overall
performance of the proposed online Lyapunov algorithm is
superior to the greedy algorithm and conventional OMA
scheme because our proposed online Lyapunov algorithm
can decode and forward messages according to the channel
states and buffer states, i.e., when the channel states are good
and buffers have enough storage, more information bits will
be transmitted; when the channel states are poor and buffers
are insufficient, the information will be stored for later
transmission. However, the greedy algorithm can only op-
timize the current sum rate without considering the channel
states and buffer states.

From the perspective of time slots, Figures 2 and 3 also
reveal that our proposed Lyapunov algorithm is worse than
the greedy method and the OMA scheme in the first several
tens of time slots while outperforms them afterwards. *is is
because the information of the channel states and buffer
states is inadequate in the beginning, which is adverse to the
online optimization in the Lyapunov algorithm. Besides, the
average sum rate obtained by our proposed Lyapunov al-
gorithm tends to be stable after approximately 400 time slots,
which is the time needed to reach the saturation, i.e., rate
stability [20]. In order to get more insights into how the
number of users impact on that time, we further evaluate the
system performance based on the proposed Lyapunov al-
gorithm with respect to different numbers of users. As a
result, for the scenarios K � 1, 2, 3, 4, i.e., 2, 4, 6, 8 users, the
required time slots to achieve stability are 130, 250, 400, 620,
respectively. Concretely, it takes more time slots to reach the
sum rate saturation if we increase the number of users in the
system because more users included will add up the number
of the causal constraints (12), which requires the additional
Lyapunov optimization process to achieve the stability of the
system.

Figure 4 describes the data buffer dynamic versus time
slot with the control parameter ρ � 5. As Figure 4 shows, the
data buffers’ levels of the three clusters are confined within
the range of θk under Dmax and verify that the proposed
online Lyapunov algorithm can stabilize the buffer length.
*e weight parameter ρ aims to remain the stability of the
buffer queue in the Lyapunov drift-plus-penalty function.
Actually, the choice of the value of ρ depends on the specific
conditions. In the problem we formulated, we figure out that
setting ρ � 5 can better strike the balance of good system
performance and fast convergence rate. *us, we suggest
choosing the value of ρ based on the specific problem.
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Figure 5 shows the long-term average sum rate of cell-
edge users with 400 time slots versus transmit power con-
straints at the base station. Here, we include another two
schemes, where all the central users decode and forward the
signals to cell-edge users in one phase after the base station
transmission (denoted as “one-phase scheme” in the legend)
and the cell-edge users only receive signals from central
users while the base station can transmit signals in each
phase (denoted as “center-to-edge scheme”). It is seen from
Figure 5 that the long-term average sum rate increases with
the growth of Pmax

b . Moreover, Figure 5 also shows that our
proposed online Lyapunov algorithm has a significant
performance improvement over the greedy algorithm, the
one-phase scheme and the center-to-edge scheme, especially

when the transmit power is large. �is can be explained as
follows. For the one-phase scheme, when the central users
transmit signals simultaneously in one phase, extra-
interferences are introduced in the SINRs of the cell-edge
users, which will cause degradation on their channels. For
the center-to-edge scheme, except for the extrainterferences,
the cell-edge users only receive signals from the central
users, which act as relays. �us, the amount of the trans-
mitted information bits is reduced since the BS does not
support the direct transmission to the cell-edge users. In-
stead, our proposed method can avoid the interference
channels and obtain more effective performance by com-
pleting the transmission with K + 1 phases.

6. Conclusions

Considering the NOMA system with buffer-aided co-
operative relaying, we have proposed the online Lyapunov
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Figure 2: Long-term average sum rate of cell-edge users versus
time slot.
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algorithm combined with the constrained concave-convex
procedure to solve the causal long-term average trans-
mission sum rate maximization problem and verified the
asymptotic optimality of the proposed online Lyapunov.
Simulation results have shown that the proposed online
Lyapunov algorithm outperforms the greedy algorithm and
the conventional OMA scheme.
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