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Abstract

Understanding the underpinnings of biological motor control is an important issue in move-

ment neuroscience. Optimal control theory is a leading framework to rationalize this problem

in computational terms. Previously, optimal control models have been devised either in

deterministic or in stochastic settings to account for different aspects of motor control (e.g.

average behavior versus trial-to-trial variability). While these approaches have yielded valu-

able insights about motor control, they typically fail in explaining muscle co-contraction. Co-

contraction of a group of muscles associated to a motor function (e.g. agonist and antago-

nist muscles spanning a joint) contributes to modulate the mechanical impedance of the

neuromusculoskeletal system (e.g. joint viscoelasticity) and is thought to be mainly under

the influence of descending signals from the brain. Here we present a theory suggesting

that one primary goal of motor planning may be to issue feedforward (open-loop) motor

commands that optimally specify both force and impedance, according to noisy neuromus-

culoskeletal dynamics and to optimality criteria based on effort and variance. We show that

the proposed framework naturally accounts for several previous experimental findings

regarding the regulation of force and impedance via muscle co-contraction in the upper-

limb. Stochastic optimal (closed-loop) control, preprogramming feedback gains but requiring

on-line state estimation processes through long-latency sensory feedback loops, may then

complement this nominal feedforward motor command to fully determine the limb’s mechan-

ical impedance. The proposed stochastic optimal open-loop control theory may provide new

insights about the general articulation of feedforward/feedback control mechanisms and jus-

tify the occurrence of muscle co-contraction in the neural control of movement.

Author summary

This study presents a novel computational theory to explain the planning of force and

impedance (e.g. viscoelasticity) in the neural control of movement. It assumes that one

main goal of motor planning is to elaborate feedforward motor commands that determine

both the force and the impedance required for the task at hand. These feedforward motor
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commands (i.e. that are defined prior to movement execution) are designed to minimize

effort and variance costs considering the uncertainty arising from sensorimotor or envi-

ronmental noise. A major outcome of this mathematical framework is the explanation of

muscle co-contraction (i.e. the concurrent contraction of a group of muscles involved in a

motor function). Muscle co-contraction has been shown to occur in many situations but

previous modeling works struggled to account for it. Although effortful, co-contraction

contributes to increase the robustness of motor behavior (e.g. small variance) upstream of

sophisticated optimal closed-loop control processes that require state estimation from

delayed sensory feedback to function. This work may have implications regarding our

understanding of the neural control of movement in computational terms. It also provides

a theoretical ground to explain how to optimally plan force and impedance within a gen-

eral and versatile framework.

Introduction

Optimal control theory is a leading framework for understanding biological motor behavior in

computational terms [1–4]. Historically, this research has been carried out along two lines. On

the one hand, deterministic optimal control (DOC) theory focused on the planning stage and

sought to explain average motor behaviors in humans or animals. The minimum jerk and

minimum torque change models are well-known representatives of this line of research [5, 6],

which provided researchers with simple models accounting for the formation of average trajec-

tories (e.g. bell-shaped velocity profiles in reaching tasks). This laid the foundations for more

advanced studies like inverse optimal control ones, where the goal is to recover relevant opti-

mality criteria from (averaged) experimental motion data [7, 8]. On the other hand, stochastic

optimal control (SOC) theory was used to account for the variability of biological movement

observed across multiple repetitions of the same task [9–11]. The noise that affects the neuro-

musculoskeletal system, and the uncertainty it induces about movement performance, are

taken into account in this approach [12, 13]. This class of model can also be used to explain

motor planning (e.g. via the specification of feedback gains prior to movement onset) but the

genuine motor commands are only revealed along the course of the movement, once the cur-

rent state of the system has been optimally estimated (e.g. hand/joint positions, velocities etc.).

The SOC theory led to a number of valuable predictions among which the minimal interven-

tion principle, stating that errors are corrected on-line only when they affect the goal of the

task [9].

However, both of these approaches fail at accounting for a fundamental motor control strat-

egy used by the central nervous system (CNS) and often referred to as co-contraction or co-

activation of muscles groups (see [14] for a recent review). This frequent phenomenon is

known since more than a century and the work of Demenÿ [15], and has been investigated

extensively since then. There is now a strong evidence that co-contraction is voluntarily used

by the CNS in a number of tasks, especially those requiring high stability, robustness or end-

point accuracy [16–18]. Co-contraction indeed contributes to modulate the mechanical

impedance of the neuromusculoskeletal system. For instance, co-contraction can drastically

increase the apparent joint stiffness by a factor 4 to 7 [19]. This effect results both from the

summation of intrinsic stiffness of muscles around a common joint [20, 21] and reflexes [22–

24]. The former short-range stiffness implements an instantaneous (feedback-free) mecha-

nism. The latter implements both a short-latency (low-level) feedback mechanism via fast-con-

ducting mono- or oligo-synaptic spinal pathways [response latency at muscle level ~20-40 ms
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after a mechanical perturbation] and a long-latency (high-level) feedback mechanism via

transcortical pathways [response latency ~50-100 ms]. The two above-mentioned approaches

(DOC and SOC) are not able to account for co-contraction in a principled way for fundamen-

tally distinct reasons. First, co-contraction contributes to modulate the effective limb’s imped-

ance (e.g. joint viscoelasticity), whose actual effect can only be seen when unexpected

perturbations are applied to the limb [19, 25]. As there are no such random perturbations in

deterministic models, they will usually not predict co-contraction. Indeed, there is no func-

tional gain at co-contracting opposing muscles in those models. Co-contraction just appears as

a waste of energy considering that such models typically aim at minimizing effort or energy-

like costs [26, 27]. Therefore, whenever a deterministic model exhibits co-contraction, it is an

artifact of muscle modeling (e.g. due to response times of muscle activation dynamics) that

does not serve any task-oriented, functional purpose. In SOCmodels, the presence of sensori-

motor and environmental noise is taken into account so that co-contraction could become a

relevant strategy regarding disturbance rejection and task achievement. However, SOC con-

trollers typically exhibit reciprocal muscle activation patterns on average because they also

minimize (expected) effort costs (e.g. see Fig. 2 in [28] or Fig. 3a in [29]), and correct errors

using sensory feedback and reciprocal activations that are less costly than co-contraction. A

few studies have nevertheless attempted to predict co-contraction from the SOC framework.

These studies had to rely on advanced noise models explicitly reducing signal-dependent vari-

ance during co-contraction or on advanced viscoelastic muscle models yielding co-contraction

without clear task dependency or functional purpose [29, 30]. More fundamentally, a closed-

loop optimal control scheme requires optimal state estimation combining delayed sensory sig-

nals with an efferent copy of the motor command –the latter being converted into state vari-

ables via forward internal models– [31]. The neural substrate underlying SOC is thought to

involve the long-latency transcortical pathway passing through the primary motor cortex [32–

34]. This may seem to contrast with the feedforward nature of impedance that has been dem-

onstrated in several studies [16, 18, 35–37]. However, the planning of optimal feedback gains

may be viewed as a form of feedforward control of impedance in SOCmodels [38]. The main

difference with co-contraction is that control via feedback gains critically depends on the abil-

ity of the CNS to form accurate estimates of the current system state. As this ability may be lim-

ited in some cases (e.g. unpredictable interaction with the environment, unstable task or too

fast motion), co-contraction may constitute an alternative strategy to regulate mechanical

impedance without the involvement of high-level, long-latency feedback mechanisms. In this

vein, several studies on deafferented monkeys (without feedback circuitry at all) suggested that

an equilibrium point/trajectory resulting from the co-contraction of opposing muscles was

preprogrammed by the CNS during point-to-point movements without sight of the arm [39–

42]. Similar conclusions were drawn with deafferented patients who were able to perform rela-

tively accurate reaching movements without on-line vision –if allowed to see their arm tran-

siently prior to movement execution– [43]. Furthermore, neurophysiological studies seem to

agree that muscle co-contraction has a central origin with little contribution from spinal mech-

anisms [14, 19, 44]. Noticeably, during co-contraction of antagonistic muscles, disynaptic

reciprocal inhibition has been shown to be reduced by central signals [45, 46]. This highlights

the singularity of muscle co-contraction in impedance control and departs from the reciprocal

activations predicted by standard models based on DOC or SOC theories. For these reasons,

co-contraction may be a critical feature of descending motor commands (i.e. open-loop control

in computational terms) which may serve to generate stable motor behaviors ahead of the opti-

mal closed-loop control machinery.

In this paper, we thus propose a novel stochastic optimal control framework to determine

force and impedance –via muscle co-contraction– at the stage of motor planning. Our
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approach lies in-between DOC and SOC theories from a mathematical standpoint and we

refer to it as stochastic optimal open-loop control (SOOC) theory to stress that we consider sto-

chastic dynamical systems controlled by open-loop, deterministic controls [47]. This work is

in the vein of seminal motor control studies [5, 48, 49]. We generalize and extend these

approaches to the planning of upper-limb movement within a versatile mathematical frame-

work that can handle a variety of motor tasks, types of noise, nonlinear limb dynamics and

cost functions. The proposed theory primarily accounts for co-contraction as a means to mod-

ulate the apparent mechanical impedance of the musculoskeletal system via feedforward,

descending motor commands that do not require any advanced on-line estimation of the sys-

tem state. Although we use the term open-loop –in the sense of control theory– we do not nec-

essarily exclude the role of reflexes that contribute to the spring-like behavior of intact muscles

beyond their short-range stiffness. However, we do exclude from this open-loop terminology

all the optimal closed-loop control processes integrating sensory data during movement execu-

tion through transcortical feedback loops [32]. The critical role of SOC is rather attributed to

those long-latency, sophisticated and task-dependent motor responses that are triggered by

the CNS to correct large-enough external perturbations [33, 34].

Materials andmethods

Our working hypothesis is that both force and mechanical impedance are planned by the

brain via descending motor commands. To illustrate our purpose, we will focus on the control

of arm posture and movement, and compare the predictions made by our framework to exist-

ing experimental data. In this work, the major premise is to assume open-loop control (which

makes sense at the stage of the motor planning process) while acknowledging the stochastic

nature of the neuromusculoskeletal system. We shall illustrate that this formulation of motor

planning as a SOOC problem naturally accounts for optimal muscle co-contraction and

impedance control without the need to estimate the state of the system during movement

execution.

To introduce the SOOC theory, we first revisit the seminal work of [48]. Hogan considered

the problem of maintaining the forearm in an unstable upright posture in presence of uncer-

tainty and without feedback about the system state. The forearm was modeled as an inverted

pendulum in the gravity field, actuated by a pair of antagonistic muscles as follows:

I€y ¼ Tðu
1
� u

2
Þ � Kðu

1
þ u

2
Þy� b _y þmglc sin ðyÞ þ GZ ð1Þ

where θ is the joint angle (0˚ being the upright orientation of the forearm and a dot above a

variable standing for its time-derivative), I is the moment of inertia,m, lc, and g are respectively

the mass, length to the center-of-mass and gravity acceleration, b is a damping parameter, and

η is some noise (typically Gaussian). Parameters T and K are constants –as well as the noise

factor G for the moment– and ui are the “neural” non-negative inputs to the flexor (i = 1) and

extensor (i = 2) muscles. With this simplified model, Hogan showed that the optimal open-

loop controls (ui(t)i=1‥2) that should be used to maintain the forearm in the unstable upright

position while minimizing an expected cost based on effort and variance led to some optimal

amount of co-contraction (i.e. u1 = u2> 0). The variable stiffness property of muscles, and the

fact that stiffnesses of opposing muscles add, allowed to maintain this unstable posture even

without on-line feedback about the actual system state. This minimal example captures a cru-

cial feature for our subsequent theoretical developments: the controlled system to obtain this

result involved interaction between control and state components (i.e. terms in ui θ). Without

gravity (g = 0) or with linearization of gravitational torque (e.g. sin(θ)� θ), this type of system

is called “bilinear” in control theory and it will be the simplest class of systems for which the
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SOOC framework makes original and relevant predictions regarding force and impedance

planning. For linear control systems, which are often assumed in the motor control literature

for simplicity, no difference with a deterministic approach would be observed. In the follow-

ing, we build upon these ideas to model movement planning (not only posture as in Hogan’s

initial work) and extend the method to more general nonlinear dynamics (not only one

degree-of-freedom or bilinear dynamics as in this example).

Stochastic optimal open-loop control for bilinear systems

Consider stochastic dynamics with bilinear drift of the form:

dxt ¼ ½ðAþ
X

p

i¼1

NiuiðtÞÞxt þ BuðtÞ�dt þ GðuðtÞ; tÞdot ð2Þ

with ωt being a m-dimensional standard Brownian motion. The stochastic state is denoted by

xt 2 Rn and the deterministic control is denoted by uðtÞ 2 Rp. The matrix GðuðtÞ; tÞ 2 Rn�m

can account for noise with both constant and signal-dependent variance.

In the simplest setting, our goal is to find the optimal open-loop control u(t) that minimizes

a quadratic expected cost of the form:

CðuÞ ¼ E½
Z tf

0

ðuðtÞTRuðtÞ þ xTt QxtÞ dt þ xTf Qf xf �: ð3Þ

where R is a positive definite matrix and Q, Qf are positive semi-definite matrices, all of appro-

priate dimensions. Note that because u(�) is a deterministic function by hypothesis, the related

integral value can be taken outside the expectation operator.

We assume that the system has an initial state distribution that is known, x0, at the initial

time (hence state estimation from sensory feedback is at least required initially for motor plan-

ning). Time tf is the total movement duration, which can be fixed a priori or left free. For such

a bilinear system, xt will be a Gaussian process because the associated stochastic differential

equation is actually linear (since u(t) is deterministic in the drift and diffusion). Therefore, the

process xt can be fully determined by propagation of its mean and covariance.

The propagation of the mean and covariance of the process xt (denoted respectively by

mðtÞ ¼ E½xt� and PðtÞ ¼ E½etetT� with et = xt −m(t)) are given by the following ordinary dif-

ferential equations (see [50] for example):

_m ¼ ðAþPi NiuiÞmþ Bu

_P ¼ ½AþPi Niui�P þ P½AþPi Niui�
T þ GGT:

8

<

:

ð4Þ

The latter equation shows explicitly the dependence of the covariance propagation on the

control u.

Next, a simple calculation shows that the expected cost C(u) in Eq 3 can be rewritten as fol-

lows:

CðuÞ ¼
Z tf

0

ðuTRuþmTQmþ traceðQPÞÞ dt þmT
f Qmf þ traceðQfPf Þ ð5Þ

Therefore, we have just shown that the initial SOOC problem reduces to an exactly-equivalent

DOC problem, the state of which is composed of the elements of the mean and covariance of

the stochastic process xt.
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It must be noted that this equivalent deterministic problem has nonlinear dynamics but a

quadratic cost. This constraint of a quadratic cost is however not critical as any Lagrangian

depending on the mean and covariance could be added to the original cost function. For

example, the following more general type of costs could be considered as well:

CðuÞ ¼ E½
Z tf

0

ðLðmðtÞ; uðtÞÞ þ xTt QxtÞ dt þ xTf Qfxf �: ð6Þ

The deterministic term L(m, u) can be used for instance to implement a minimum hand

jerk on the mean behaviour, in agreement with the deterministic control literature [5]. Note

also that the term xTt Qxt could be replaced by ðxt �mðtÞÞT �Qðxt �mðtÞÞ to introduce a penalty
on the state covariance alone in the equivalent DOC problem, in agreement with the minimum

variance model [49]. Terminal state constraints or path constraints could also be added on the

mean and covariance of the state process xt without any difficulty but they are not described

here. Typically, this could be useful to impose hard constraints on the mean state to reach and/

or on the covariance state to set a desired final accuracy. Such modeling choices will be illus-

trated in the subsequent arm movement and posture simulations, and can easily be handled

within the equivalent DOC framework. Remarkably, optimal solutions of such DOC problems

can be obtained via efficient existing numerical methods (e.g. [51]).

Stochastic optimal open-loop control for general nonlinear systems

We now consider more general stochastic dynamics of the form

dxt ¼ fðxt; uðtÞ; tÞ dt þ Gðxt;uðtÞ; tÞ dot: ð7Þ

An example of such nonlinear system would be the system of Eq 1 (due to the gravitational

torque). Multijoint arms also exhibit complex nonlinear dynamics due to inertial, centripetal,

Coriolis, and gravitational torques. Nonlinearities will also arise for more advanced musculo-

skeletal models of the upper-limb. Therefore, we need a method to solve SOOC problems for

the general class of nonlinear stochastic systems described in Eq 7.

Here we thus seek for a deterministic control u(t) minimizing the expectation of the above

quadratic cost function (see Eq 6) and acting on the stochastic dynamics of Eq 7. The random

process xt is not necessarily Gaussian anymore. However, mean and covariance are still vari-

ables of major interest for movement control and their propagation would yield significant

information about both mean behaviour and its variability. Actually we have shown in [47]

that via statistical linearization techniques the control u(t) can be approximated by the solution

of a DOC problem involving the propagation of the mean and covariance.

For instance, with Gaussian statistical linearization based on first order Taylor approxima-

tions, computations in [47] show that the dynamics of the mean and covariance in the corre-

sponding DOC problem are:

_mðtÞ ¼ fðmðtÞ; uðtÞ; tÞ;

_PðtÞ ¼ FðmðtÞ; uðtÞ; tÞPðtÞ þ PðtÞFðmðtÞ; uðtÞ; tÞT þ E½Gðxt;uðtÞ; tÞGðxt; uðtÞ; tÞ
T�

8

<

:

ð8Þ

where FðmðtÞ; uðtÞ; tÞ ¼ @f

@x
ðmðtÞ; uðtÞ; tÞ:

If G = G(u(t), t) models constant and signal-dependent noise, then the latter expectation

simply equates to G(u(t), t)G(u(t), t)T. For a more general term, such as G(xt, u(t), t), more

terms may be used to approximate the covariance propagation and the reader is referred to

[52] for more information.
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In summary, approximate solutions of the original SOOC problem can also be obtained

from an associated DOC problem based on the mean and covariance of a process approximat-

ing the two first moments of the original process xt. Then, state-of-the-art DOC solvers can be

used to find numerical solutions and model other constraints if desired (e.g. set a desired final

positional variance or final mean position as a hard constraint. . .). The accuracy of these

approximate solutions can be tested by simulating the original stochastic equation (Eq 7) with

the obtained optimal control, and by comparing the evolution of the mean and covariance

with Monte Carlo sampling techniques.

Stochastic optimal open-loop control in the neural control of movement

The mathematical SOOC framework being formally introduced, we are now left with model-

ing choices to describe the effects of co-contraction. On the one hand, one may consider an

end-effector or joint level description of the stiffness-like property of the neuromusculoskeletal

system (e.g. [48] or the r- and c-commands in [14]). On the other hand, one may consider

more advanced models representing the multiple muscles crossing each joint, the activation of

which will modulate both the apparent stiffness of the musculoskeletal system and net joint

torques (e.g. [53]). This choice is related to the hierarchical control hypothesis, as discussed in

[4, 14] for instance. As this choice is still elusive, we will consider both joint and muscle levels

of description. In particular, this will highlight the generality and consistency of the proposed

theory beyond specific modeling choices.

Joint level modeling: Explicit description of force and impedance planning. In this par-

agraph, we extend Hogan’s model presented above to account for the control of movement.

Consider again the forearm model given in Eq 1. To simplify the derivations, we note that the

state of a joint can be modified only in two ways: it can either (1) be moved to another position

via changes of net torques or (2) be stiffened with no apparent motion via co-contraction [14].

Accordingly, the forearm dynamics can be rewritten as

I€y ¼ tðtÞ � KskðtÞðyðtÞ �YðtÞÞ � Kd

ffiffiffiffiffiffiffiffi

kðtÞ
p

ð _yðtÞ � _YðtÞÞ � b _y þmglc sin ðyÞ þ GZ; ð9Þ

where tðtÞ 2 R is the net joint torque and kðtÞ 2 Rþ modulates the joint stiffness (two control

variables). The function Θ(t) serves as a reference trajectory which is not present in Hogan’s

original formulation but is critical to change the limb’s working position. A potential justifica-

tion could be that intact muscles behave like “nonlinear springs with modifiable zero-length”

[54]. Hence, we assume that the resultant joint-level effect of this characteristics allows to set

an equilibrium joint position or trajectory. In addition to stiffness, damping also seems to be

modified through co-contraction [55]. We thus added a term in factor of Kd ¼
ffiffiffiffiffiffi

IKs

p
such that

the damping ratio, in terms of a second-order model, was constant (here equal to 1/2, e.g. see

[56, 57]).

In order to determine the reference trajectory Θ(t), there are several choices. For instance,

one could consider a third control variable to choose Θ(t), by adding an equation such as

_Y ¼ uðtÞ. This reference trajectory might be very simple (e.g. steady state or linear). The

drawback is to introduce a third control variable, the choice of which seems rather elusive (e.g.

what cost function on it). Alternatively, a better choice may be to consider reference trajecto-

ries that are themselves solutions of the joint-level dynamics. In this case, we assume that Θ(t)

satisfies the rigid body dynamics

I €Y ¼ tðtÞ � b _Y þmglc sin ðYÞ ð10Þ

with Θ(0) = θ(0). Hence, if we define Δ(t) = θ(t) − Θ(t), one can derive the following system
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from Eqs 9 and 10:

I €Y ¼ tðtÞ � b _Y þmglc sin ðYÞ

I €D ¼ �KskðtÞD� Kd

ffiffiffiffiffiffiffiffi

kðtÞ
p

_D � b _D þmglcðsin ðDþYÞ � sin ðYÞÞ þ GZ

8

>

<

>

:

ð11Þ

with Δ(0) = 0, Θ(0) = θ(0) and _Dð0Þ ¼ 0, _Yð0Þ ¼ 0. The advantage of this formulation, relying

on a reference angle Θ and deviations Δ from it, is that only two controls are needed, namely

τ(t) that specifies the net joint torque and κ(t) that specifies the joint stiffness (and damping).

As such, this modeling implements a separate control of force (via reciprocal commands) and

impedance (via co-contraction commands), which is compatible with several experimental

findings [18, 19, 58, 59].

Now assume that the goal is to minimize an expected cost of the form

Cðt; kÞ ¼ E
Z tf

0

ðt2 þ ak2 þ qvarðD2 þ qv
_D
2ÞÞdt þ qvarðD2

f þ qv
_D
2

f Þ
� �

: ð12Þ

where the cost elements in Δ and _D penalize deviations from the reference trajectory (vari-

ance), and the control costs penalize effort. Weight factors α, qv and qvar can be chosen to

adjust the optimal behavior of the system. Typically, optimal solutions will yield minimal net

joint torque and impedance to remain close to the reference trajectory to some extent deter-

mined by the weight qvar (and qv).

In the present form, the dynamics of Θ and Δ are coupled by the gravitational term. To

derive an interesting result, let us focus on horizontal movements for a moment. The system

then simplifies to:

I €Y ¼ tðtÞ � b _Y

I €D ¼ �KskðtÞD� Kd

ffiffiffiffiffiffiffiffi

kðtÞ
p

_D � b _D þ GZ:

8

>

<

>

:

ð13Þ

This system is actually a controlled SDE with a 4-D state vector ðY; _Y;D; _DÞ>. Interest-
ingly, the first two states are deterministic (in Θ) and noise only affects deviations from these

reference states (in Δ, which we now rewrite Δt to stress that it is a random variable). Remark-

ably, the original SOOC problem is completely decoupled in this case. On the one hand, we

have a deterministic sub-problem with dynamics in Θ and cost in τ2. On the other hand, we

have a stochastic sub-problem with dynamics in Δt and cost in κ2 and Dt;
_Dt. This SOOC prob-

lem only involving the mean and covariance of the state ðDt;
_DtÞ can be solved by deriving an

equivalent DOC problem as described before. Since the mean of ðDt;
_DtÞ is zero given the ini-

tial conditions, propagation of the mean can be neglected for this part. Regarding Θ(t), since it

is a deterministic variable, the propagation of its covariance can be neglected. In summary, the

componentsYðtÞ; _YðtÞ correspond to the mean of the actual state yt;
_yt, and the covariance of

Dt;
_Dt corresponds to the covariance of the actual state yt;

_yt . Therefore, the net torque τ(t)

controls the mean of the stochastic process in yt;
_yt whereas κ(t) controls its covariance inde-

pendently. As the process in Eq 13 is Gaussian, it is thus fully characterized and controlled.

These derivations are useful to understand the functioning of the model but, in more realis-

tic scenarios, the above decoupling will not hold anymore. This is in no way an issue or limita-

tion because more general cases can be easily handled within the SOOC framework. For

instance, if gravity is not neglected, Eq 11 can be used together with Eq 12 to formulate a
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nonlinear SOOC problem that can be resolved with the methods described in the previous

subsections.

Finally, these considerations may be reminiscent of the equilibrium point theory [60].

However, the approach differs from equilibrium point theory in the sense that a feedforward

torque controller τ(t) is assumed (hence our approach requires “internal models”). It neverthe-

less fits with some aspects of the equilibrium point theory in the sense that a “virtual” reference

trajectory Θ is planned together with time-varying impedance parameters (which may be

tuned in practice via co-contraction of opposing muscles). As such, τ(t) and κ(t) might resem-

ble the c- and r-commands described in [14] even though movement is not generated only by

the viscoelastic properties of the musculoskeletal systems and shifts in equilibrium points/tra-

jectories in our case (see also Discussion).

Muscle level modeling: Implicit description of force and impedance planning. Here we

use more advanced models of the musculoskeletal system. In this work, we used the muscle

model proposed by Katayama and Kawato [53] and assume that a feedforward motor com-

mand can be sent to each muscle individually.

Single-joint arm. For a single-joint system like the forearm moving in the horizontal

plane, Katayama and Kawato’s model writes as follows:

I€y ¼ t
1
þ t

2
þ GZ ð14Þ

where τ1 and τ2 are the muscle torques that are respectively functions of muscle activations u1
and u2, defined as follows:

ti ¼ �aiTi; i ¼ 1 or 2

Ti ¼ ðk
0
þ kiuiÞðriui þ l

0
� lmi

þ aiyÞ þ ðb
0
þ biuiÞai _y; i ¼ 1 or 2

ð15Þ

In this case, the system state is x ¼ ðy; _yÞ>. Muscle parameters were taken from [53]. Here

we have I = 0.0588 kg.m2, ki = 1621.6 N/m, k0 = 810.8 N/m, bi = 108.1 N.s/m, b0 = 54.1 N.s/m,

ai = 2.5 cm, ri = (−1)i × 2.182 cm for i = 1‥2, lm1
� l

0
¼ 5:67 cm and lm2

� l
0
¼ 0:436 cm. We

also setm = 1.44 kg, lc = 0.21 m, and the forearm length was 0.35 m.

In this model, the muscle torque thus depends on the muscle activation as well as on the

angular position and velocity. The muscle activations can therefore modulate both the net

joint torque and the joint viscoelasticity, in particular via muscle co-contraction.

Two-joint arm. A two degrees-of-freedom (dof) version of the arm with 6 muscles was

also considered to simulate planar arm reaching movements, corresponding to the full model

of [53]. The state of the arm is then x> ¼ ðq>; _q>Þ 2 R4 where q = (θ1, θ2)
> denotes the joint

angle vector (1st component for shoulder and 2nd component for elbow) and _q ¼ ð _y
1
; _y

2
Þ>

denote the corresponding joint velocity vector. The dynamics of the arm follows a rigid body

equation of the form:

€q ¼M�1ðqÞðtðq; _q; uÞ � Cðq; _qÞ _qÞ ð16Þ

whereMðqÞ is the inertia matrix, C _q is the Coriolis/centripetal term, τ is the net joint torque

vector produced by muscles and u 2 R6 is the muscle activation vector (restricted to be open-

loop/deterministic in this work).

The net joint torque vector is a function tðq; _q; uÞ depending on the moment arms

(assumed constant) and on the muscle lengths/velocities expressed as affine functions of the

joint positions and velocities as in Eq 15. All the parameters of the complete model with 6

muscles can be found in the Tables 1, 2, and 3 in [53]. Finally, by introducing noise (ωt is a

2-dimensional standard Brownian motion), we obtain the following SDE modeling the noisy
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musculoskeletal dynamics of a multijoint arm:

dxt ¼ fðxt; uðtÞÞdt þ Gdot ð17Þ

with

fðxt;uðtÞÞ ¼
_qt

M
�1ðqtÞðtðqt; _qt; uðtÞÞ � Cðqt; _qtÞ _qtÞ

 !

ð18Þ

and G is a matrix allowing to define the coupling of the system to the noise.

Results

In this section, we consider simulations accounting for results of several experimental findings

about the planning of force and impedance as well as on the role of muscle co-contraction in

posture and movement control. Different models, types of noise, and cost functions will be

used to illustrate the flexibility of the framework in making consistent predictions about the

role of co-contraction and impedance for the open-loop control of stochastic systems.

Co-contraction planning in 1-dof motor tasks

Unstable postural task with the forearm. In Hogan’s study described above [48], the

maintenance of a human forearm in an upright posture was considered. Hogan described a

system controlled by a pair of agonist/antagonist muscles and showed that co-contraction was

a strategy used by participants to maintain such an unstable posture. Here, we reconsider this

task to test our framework with this simple starting example. As already mentioned, Hogan

modeled the forearm as an inverted pendulum in the gravity field driven by opposing muscles

having the essential force-length dependence of real muscles (see Eq 1). Here we considered

two scenarios tested in Hogan’s experiment depending on whether the forearm was loaded

(mload = 2.268 kg attached at the hand) or unloaded. To efficiently resolve the problem, we

showed in [47] that via statistical linearization techniques we can get a bilinear system as in Eq

2 (which amounts to linearize the gravitational torque, i.e. sin θ� θ with a small angle hypoth-

esis), with matrices defined as follows:

A ¼
0 1

mglc
I

� b

I

0

B

@

1

C

A
; B ¼

0 0

T

I
�T

I

0

B

@

1

C

A
; andNi ¼

0 0

�K

I
0

0

B

@

1

C

A
; i ¼ 1 or 2: ð19Þ

where the parameters are defined by Eq 1.

In our simulations, noise was taken of constant variance and acting at acceleration level,

G = (0, .1)>. We set T = K = 1 and considered a fixed damping parameter b = 1 Nms/rad. The

cost was defined as R = diag(1, 1), Q = Qf = diag(104, 103) (see Eq 3). These weights were cho-

sen such as to make effort and variance costs of comparable magnitude (note that angles are in

radians). We assumed that the system was at state x0 = 0 at initial time t = 0 with zero covari-

ance. The goal of the task was to maintain the inverted pendulum around this position without

on-line sensory feedback for tf = 5 s while minimizing a compromise between variance (cost

depending on Q, Qf) and effort (cost depending on R). In the equivalent DOC problem, the

final covariance Pf was left free whereas the final mean state was set to zero (mf = 0). Results of

simulations are reported in Fig 1. In these graphs, one can see that an optimal level of stiffness

is achieved to stabilize the forearm in this unstable posture. We checked that, if there was no

co-contraction, the forearm would fall in about one second due to the combined effects of

noise and gravity (remind that feedback control is prevented). Therefore, co-contraction
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creates a resultant stiffness that is just enough to compensate the task instability. Note that if

noise magnitude is larger, a larger co-contraction becomes optimal (dashed-dotted line in Fig

1B). This change in co-contraction with noise magnitude agrees with a study of Hasson [61].

In the loaded case, the destabilizing gravitational torque increases and the optimal co-contrac-

tion level becomes larger to counteract it. Remarkably, it can be observed that, like in Hogan’s

original work [48], the activation of the flexor muscle in the loaded case is larger than the cor-

responding activation of that muscle that would be necessary to maintain the forearm horizon-

tal in the unloaded case (dotted line in the bottom-right panel). Note that the exact shape of

the optimal solutions depends on the terminal state constraints (on mean and covariance), the

weights in the cost function (i.e. the effort/variance trade-off) and the level of noise. The lack

of steady-state behavior near the end of the simulation is in particular due to the finite time-

horizon used in these simulations and the associated terminal cost/constraints.

Reaching task with the forearm

Joint-level modeling. Here we consider single-joint pointing movements performed with

the forearm. We first use the joint-level description of force and impedance derived in Eqs 9–

13. For these simulations, we focus more specifically on the controlled system described in Eq

13 and on the experimental data reported in [57, 62]. Bennett’s main findings were that the

elbow joint stiffness varies within point-to-point movements (either cyclical or discrete). The

forearm was found to be overall quite compliant (measured stiffness ranging between 2 Nm/

Fig 1. Co-contraction during maintenance of an upright forearm posture. A. Position (in degrees) and velocity (in degrees per second) for the
unloaded case. Thick black lines depict the means and shaded areas depict standard deviations (from 500 samples). Three single trajectories are
displayed to illustrate their stochastic nature. B. Corresponding optimal joint stiffness (solid black line) and flexor/extensor muscle torques (solid and
dashed respectively) for the unloaded case. In dotted gray line, the “divergent” stiffness level that co-contraction must overcome for stability is depicted
(i.e.mglc in our case). In dashed-dotted black line, we also report the optimal stiffness when noise magnitude is increased by a factor 5, i.e. G = (0, .5)>.
C-D. Same information for the loaded case where I was increased bymload l

2 andmglc was increased bymload gl. A significant increase of stiffness,
originating from a larger co-contraction of flexor and extensor muscles, can be noticed. Parameters:m = 1.44 kg,mload = 2.268 kg, l = 0.35 m, lc = 0.21
m, I = 0.0588 m.kg2 and g = 9.81 m/s2.

https://doi.org/10.1371/journal.pcbi.1007414.g001
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rad and 20 Nm/rad). Yet, stiffness significantly increased when the hand approached the target

and stiffness had minimal values near peak velocity. Additionally, mean joint stiffness was

found to increase with peak velocity and to increase almost linearly with the magnitude of net

joint torque. In Fig 2 we replicated these main observations within our framework. Fig 2A and

2B shows the optimal behavior for movements executed in presence of signal-dependent noise

Fig 2. Simulations of a pointing movement with the forearm (elbow extension of 1 rad). A. Optimal trajectories.
Angular displacement and velocity profiles (mean in thick lines and standard deviation in shaded areas) and net torque
responsible of the joint motion (third column). B. Optimal impedance. Inertia (constant for this single-joint system),
stiffness and damping are depicted. Time-varying joint stiffness and damping, part of the optimal open-loop motor
plan in our model, are responsible of robustness of motor behavior around the mean behavior (without needing on-
line feedback for that purpose). Note an increase of stiffness at the end of the motion, to improve accuracy on target, in
agreement with experimental data. Values can be quantitatively compared to [62]. Time-average values are represented
by horizontal lines. C. Relationship between time-average net torques and time-average stiffnesses for movements of
different speeds. Peak velocity is indicated in rad/s. An approximately linear relationship is observed as in [57]. D.
Corresponding time-varying stiffness profiles for the different movement speeds. In panels A and B, parameters were
as follows: qvar = 104, α = 1, qv = 0.01, tf = 0.75, and I = 0.072. In panels C and D, same parameters but with tf ranging
between 0.25 s and 1.0 s to generate movements of different speeds.

https://doi.org/10.1371/journal.pcbi.1007414.g002
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(proportional to net torque τ). Because the task in [62] involved cyclical forearm movements,

we imposed equal initial and final covariances. We also chose b = 0 since damping was already

modulated together with stiffness in this model such as to get a constant damping ratio as sug-

gested in [57] (damping however seemed harder to identify in general but it tended to fluctuate

around 0.5 Nms/rad in experimental data). We penalized the integral of the square of the con-

trols (effort) plus a covariance term involving position and velocity in the cost function (see Eq

12). We considered multiplicative noise acting in torque space in these simulations (20% of

net torques, i.e. G ¼ GðtÞ ¼ 1

I
0; 0; 0; 0:2t tð ÞÞ>
�

).

In Fig 2C and 2D, we varied movement duration to test the effect of speed on joint stiffness.

Results can be compared to [57, 62, 63]. We found that, indeed, stiffness tends to increase

almost linearly with net torque (which also increases with speed). These values have been com-

pared to phasic and tonic EMG data in experimental works. However, this joint-level descrip-

tion of force and impedance planning does not allow to see the origin of stiffness in terms of

muscle co-contraction. Therefore, we next consider muscle models to further investigate the

co-contraction phenomenon in reaching arm movements.

Muscle-level modeling. Here we consider the musculoskeletal arm model proposed in

[53] (Eq 14) to simulate elbow flexion movements in the horizontal plane (hence with g = 0).

This is a muscle-level description of force and impedance planning. We focus on the experi-

mental results of [64] which showed that subjects can reach faster while preserving accuracy if

asked to co-contract opposing muscles. A signal-dependent noise model was defined here as

in [29] in order to model that co-contraction does not lead to increased variability [16] as it

would be the case for a standard signal-dependent noise model. The noise model was as fol-

lows:

GðuðtÞÞ ¼ ð0 dðju
1
ðtÞ � u

2
ðtÞj1:5 þ 0:01ju

1
ðtÞ þ u

2
ðtÞj1:5ÞÞ> ð20Þ

where d is a factor to set the overall magnitude of this signal-dependent noise (here we fixed

d = 4 in simulations because it yielded good quantitative predictions of the empirical variability

found in such fast reaching movements).

The cost function of the associated deterministic problem (Eq 5) was as follows:

C ¼
Z tf

0

uðtÞ>uðtÞ dtþ traceðQfPf Þ ð21Þ

with Qf = qvardiag(1, 0.1). The term Qf simply penalizes the terminal state covariance and qvar
is a free parameter. We further setm0 = (25˚,0)T andmtarg = (65˚,0)T as the initial and final

mean positions of the reaching task as in [64]. The initial covariance P0 was zero and the final

covariance Pf was left free but minimized because the goal of the task was to reach a target of

width 5˚ (given that the amplitude of the movement was 40˚, the index of difficulty was 4 bits

for this task). As such, this cost function implements an effort-variance compromise as sug-

gested in [64, 65].

Fig 3 shows the results of simulated pointing movements. In Fig 3A, we set tf = 475 ms as in

Missenard’s experiment and qvar = 50. With these settings we reproduced quite well the spon-

taneous behavior of subjects in this experiment, which is representative of what occurs in a

standard Fitts’ like paradigm. For instance, peak velocities (PV) were about 140 deg/s and the

index of co-contraction (IC) was about 20% in experimental data (index of co-contraction was

defined as in [59, 64]). In our simulations we obtained PV of 139.75 deg/s and IC of 22.35%

(see Table 1). Yet, when asked to co-contract to an IC of ~80%, subjects in [64] were able in

practice to perform the task with greater speeds without apparent loss of accuracy. We

replicated this condition in Fig 3B by setting tf = 400 ms as in Missenard’s experiment and
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Fig 3. Simulations of pointing movements following the experiment of [64]. A. Simulation with tf = 475 ms and
qvar = 50. The mean position and velocity (thick black traces) are reported. Shaded areas correspond to standard
deviations. Some individual trajectories are also depicted with thin gray traces. The corresponding optimal open-loop
muscle activations are reported (black for flexor and gray for extensor). Co-contraction is necessary to achieve the
requested accuracy as actually observed in Fitts-like reaching experiments. B. Simulation with tf = 400 ms and qvar =
500. Same information than in panel A. It is seen that with even more co-contraction, an acceptable accuracy can also
be achieved but for faster movements. Note the asymmetry of velocity profiles, with a longer deceleration than
acceleration, which is also typical of Fitts’ instructions [66].

https://doi.org/10.1371/journal.pcbi.1007414.g003

Table 1. Parameters corresponding to the simulated movements of Fig 3. In all cases, initial and final positions were
25˚ and 65˚ (amplitude of 40˚). The target width was 5˚ such that the index of difficulty (ID) was 4 bits. The reference
end-point standard deviation can thus be 2.5˚. The effort is measured as the quadratic cost in u according to Eq 21.

tf (ms) EPstd (deg) PV (deg/s) qvar Effort (×10−2) IC (%)

475 2.51 139.75 50 16.99 22.35

400 2.41 161.56 50 27.36 27.36

400 1.89 178.87 500 94.16 80.15

475 2.82 134.79 1 4.03 <0.1

400 3.35 146.47 1 5.60 <0.1

https://doi.org/10.1371/journal.pcbi.1007414.t001

PLOS COMPUTATIONAL BIOLOGY Stochastic optimal open-loop control theory

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007414 February 28, 2020 14 / 28

https://doi.org/10.1371/journal.pcbi.1007414.g003
https://doi.org/10.1371/journal.pcbi.1007414.t001
https://doi.org/10.1371/journal.pcbi.1007414


qvar = 500. Because of signal-dependent noise, going faster increases noise magnitude and end-

point variance unless co-contraction is used. With these parameters, we obtained a PV of

178.87 deg/s (compared to about 180 deg/s in [64]) and an IC of 80.15%. Even though move-

ments were faster, the positional standard deviation of the endpoint (EPstd) was 1.89 deg –

hence smaller than half the target’s width such that the task could be achieved successfully on

successive trials–. Therefore, there should be no more overshoots or undershoots in this condi-

tion, as was observed in [64]. Table 1 shows that this improvement of speed at comparable

accuracy is highly costly due to a clear co-contraction of agonist/antagonist muscles (see effort

column), especially at the end of the movement (but co-contraction also appears at its begin-

ning). For comparison, for strategies without co-contraction (e.g. obtained by setting a small

weight, e.g. qvar = 1), positional standard deviations of the end-point would be respectively

2.82 deg and 3.35 deg for movements times of 475 ms and 400 ms (see Table 1). This justifies

why a minimal level of co-contraction is indeed required to perform the task accurately

enough (again, with our open-loop control assumption). The fact that a significant co-contrac-

tion appears at the beginning and at the end of the movement agrees well with the literature

[17, 62]. This example confirms that a trade-off between effort, speed, and accuracy may be

prevalent in Fitts-like tasks, i.e. when subjects are instructed to perform the task as fast and as

accurately as possible.

Co-contraction planning in 2-dof motor tasks

Here we consider 2-dof arm reaching tasks and the musculoskeletal model described in [53]

and Eqs 16–18. This model contains 4 single-joint muscles acting around the shoulder and

elbow joints and 2 double-joint muscles. It has been shown to capture the basic stiffness prop-

erties of the human arm and has been investigated to evaluate the equilibrium point hypothesis

originally. Here we used this model to test our SOOC framework with a quite advanced mus-

culoskeletal model and to see whether co-contraction may be an optimal strategy to regulate

the limb’s mechanical impedance in open-loop in certain tasks.

Two-link arm reaching task in a divergent force field. Burdet and colleagues found that

subjects succeeded in performing accurate pointing movements in an unstable environment

by selective muscle co-contraction [16, 18]. In their experiment, participants had to point to a

target placed in front of them with a force field applying perturbations proportional to their

lateral deviation from a straight line. Because the hand would start with random lateral devia-

tion due to motor noise, it was not possible for the subjects to predict whether the arm would

be pushed to the left or to the right during movement execution. The strength of the perturba-

tion force (proportional to the extent of lateral deviation) and delays in sensorimotor loops

would prevent participants from using an optimal closed-loop control strategy that requires

accurate estimation of the system state to function (e.g. [67]). Instead, experimental data

clearly showed that the solution of the participants was to stiffen their limb, in particular via

co-contraction mechanisms and in a feedforward manner (e.g. participants kept co-contract-

ing when the divergent force field was unexpectedly removed) [18, 35, 68].

Here we used the Eqs 17 and 18 to model the arm dynamics but we added the external per-

turbation force applied to the endpoint and had to consider an appropriate cost function to

model the task. More precisely, a term

€qext ¼M�1ðqÞJðqÞ>
Fext

0

 !

ð22Þ

was added to the right-hand side of Eq 16, with J being the Jacobian matrix of the arm and
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Fext = βx being the external force (x is the Cartesian position of the hand along the horizontal

axis and β = 40 Nm−1 in our simulations).

The cost function was designed as

CðuÞ ¼ E½
Z tf

0

Lðm;uÞ dt þ qvar�ðxf Þ� ð23Þ

where Lðm;uÞ ¼ u>uþ 1

2
ð€x2 þ €y2Þ, x€and ÿ being the mean Cartesian accelerations of the end-

point along the x and y axes respectively (i.e. functions ofm and u, which can be easily com-

puted from the forward kinematic function), and ϕ(xf) is a function penalizing the covariance

of the final state xf (qvar is a weighting factor). Hence this cost is a trade-off between minimum

effort/variance and maximum smoothness in Cartesian space (e.g. see [5, 7, 69]). In these sim-

ulations, the smoothness term was needed because the minimum effort solution for this mus-

culoskeletal model led to hand trajectories that were too curved compared to normal human

behavior in the task (even without force field). For the variance term, we penalized the final

positional variance in task space by defining

�ðxf Þ ¼ ½Jðmq;f Þðqf �mq;f Þ�½Jðmq;f Þðqf �mq;f Þ�
> ð24Þ

wheremq,f is the mean of the final position of the process and qf is a 2-D random vector com-

posed of final joint positions extracted from xf.

The expectation of ϕ(xf) can be rewritten as a function of the final meanmf and covariance

Pf as F(mf, Pf) = J(mq,f)Pq,f J(mq,f)
> where Pq,f denotes the 2x2 covariance matrix of joint posi-

tions. Finally, the expected cost function can be rewritten as follows:

CðuÞ ¼
Z tf

0

Lðm; uÞ dt þ qvarFðmf ; Pf Þ: ð25Þ

The latter cost was used in the deterministic optimal control problem that approximates the

solution to the original SOOC problem.

A simple noise model was considered in these simulations:

GðxtÞ ¼
diagð0; 0Þ

M
�1ðqtÞdiagðs1

; s
2
Þ

 !

; ð26Þ

where the parameters σ1 and σ2 were used to set the magnitude of constant additive noise

(which was assumed to act in torque space, hence the inverse of the inertia matrix in the

expression of G).

Results of simulations are reported in Fig 4 and Table 2. In these simulations, we set

tf = 0.75 s according to the data of [16]. The initial arm’s position was located at (0,0.30) in Car-

tesian coordinates and the target was at (0,0.55). Noise magnitude was set to σ1 = σ2 = 0.025 in

Eq 26.

Overall we found that it was possible to perform this unstable reaching task without on-line

estimation of the actual system state by co-contracting pairs of opposing muscles (see Fig 4B).

This finding agrees with [18, 68]. Muscle co-contraction increased when the endpoint variance

was penalized more strongly (but at the cost of a greater effort) and when the divergent force

field had a greater magnitude (see mean endpoint stiffness along the x-axis in Table 2). Co-

contraction also increased when noise magnitude was increased, all other parameters being

equal (Table 2). As a rule of thumb, endpoint stiffness was found to increase with (1) the mag-

nitude of the divergent force field, (2) the weight of the variance cost and (3) the magnitude of

noise, in agreement with experimental observations [17, 61, 70].
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However, while endpoint stiffness increased along the direction of instability, we also found

that it increased in the direction of the movement. As such, the stiffness geometry was not

really shaped according to the direction of the destabilizing force (see Fig 5A). We found this

is actually a limitation of the underlying musculoskeletal model used in these simulations,

which does not allow arbitrary geometries of the endpoint stiffness for the current arm posture

–the orientation of the depicted ellipses was actually the most horizontal that one can get from

this model given the Jacobian matrix at the midpoint of the trajectory–. This was tested by con-

sidering all possible muscle activation vectors u 2 R6

þ and checking that the resultant stiffness

ellipse was never oriented horizontally. To increase the stiffness along the x-axis, the algorithm

thus had to increase the endpoint stiffness as a whole and not as selectively as in the data of

[16, 23] (but see [71] in static tasks). Note that this observation does not preclude alternative

Fig 4. Two-link arm reaching experiment in a divergent force field.A. Endpoint trajectories (paths and velocity) and stiffness (Cartesian stiffness

components Sxx, Syy and Sxy of the matrix S = J−>(q)KJ−1(q) where K ¼ @t

@q
is the joint stiffness) when no penalization of the endpoint variance is

considered in the cost (qvar = 0). Twenty sampled paths of the endpoint are depicted (light gray traces). Red traces represent the theoretical mean
trajectory from the associated DOC problem and thick black traces represent the mean trajectory over 1000 samples. Vertical dotted lines are displayed
to visualize deviations from the straight path (±3cm). The blue circle represents the target (radius of 2.5cm). The green ellipse represents the endpoint
positional covariance. The temporal evolution of the mean endpoint stiffness is also depicted (components Sxx, Syy and Sxy). The six muscle activations
(open-loop control variables) and the muscle tensions are also reported. Muscles with opposed biomechanical functions were paired (emphasized with
the same color, solid lines for flexors and dashed lines for extensors). B. Same information with a weight on the variance cost equal to qvar = 104. A
significant increase of co-contraction of agonist/antagonist muscles can be noticed and the improvement in final accuracy is also clear (green ellipse).
Note that only an open-loop motor command was employed in these simulations (no on-line state feedback control to correct deviations due to noise
and the divergent force field).

https://doi.org/10.1371/journal.pcbi.1007414.g004
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musculoskeletal models from yielding stiffness ellipses elongated in the direction of instability

(e.g. see [72, 73]). Instead of considering alternative muscle models, we investigated whether

the selective tuning of stiffness geometry could be predicted by the SOOC framework by con-

sidering a simpler Cartesian model of the task (following the derivations of Eqs 9–13, but for a

planar mass-point system). In this Cartesian model, the cost was only composed of effort and

endpoint variance terms (no smoothness term was needed because optimal paths were straight

when minimizing effort). Using this Cartesian model, it becomes clear that the optimal end-

point stiffness predicted by the SOOC framework is shaped according to the direction of the

destabilizing force (see Fig 5B). The interest of this Cartesian model is to show that the change

of stiffness geometry in the divergent force field can be explained within the SOOC framework.

The interest of the muscle model was to show that muscle co-contraction may indeed underlie

the increase of endpoint stiffness.

A no intervention principle. Finally, we revisit the minimum intervention principle [9]

as illustrated in a pointing-to-a-line task in [9, 74, 75]. For this kind of tasks, DOCmodels will

fail to explain the empirical structure of endpoint variability [75]. In contrast, SOC models will

capture endpoint variability very well through the minimal intervention principle which states

that deviations from the planned trajectory are corrected only when they interfere with the

goal of the task [9]. Alternatively a terminal optimal feedback controller can also reproduce

this variability but it requires on-line state estimation processes as well [74] (the model re-

plans open-loop trajectories from each estimated initial state and is not stochastically optimal

in the sense that it does not consider variability across repeated trajectories to determine the

control action). Here we show that on-line state estimation through sensory feedback is even

not necessary at all to reproduce that variability in task-irrelevant dimensions is larger than

variability in task-relevant ones (e.g. uncontrolled manifold, [76]) as long as mechanical

impedance is appropriately regulated via feedforward processes like co-contraction (Fig 6).

We considered the same 6-muscle model than in the previous simulation. The simulations

show that the endpoint variance is elongated along the target line (i.e. task-irrelevant dimen-

sion), showing that impedance regulation can lead to a phenomenon similar to a minimal

intervention principle (except that here it should rather be called a no intervention principle as

there is no state feedback at all during movement execution). Conceivably, a testable hypothe-

sis to determine whether this consideration makes sense would be to check the presence of

such task-dependent endpoint distributions in deafferented patients with no vision (but with

initial vision of the arm prior to the movement as in [43] and of the redundant target). It has

Table 2. Influence of model parameters on the simulated optimal movements. The model parameters that were var-
ied are σi, qvar and β. Effort is the integral cost in the control variable u(t). EP std is the final standard deviation of the

endpoint along the x-axis, and �Sxx is the mean endpoint stiffness along the x-axis. Sensitivity of the results to increasing
the magnitude of the force field, increasing noise or increasing qvar is tested. Note that the model predicts an increase
of the lateral endpoint stiffness on average to perform the task accurately in open-loop (~2x factor in these
simulations).

Noise σi qvar β (N/m) Effort (×10−2) EP std (cm) �Sxx (N/m)

0.025 0 0 3.73 0.79 28.02

0.025 0 40 3.98 4.46 28.29

0.025 1e4 0 18.18 0.52 32.20

0.025 1e4 40 120.77 0.89 50.69

0.025 1e5 40 306.28 0.42 60.66

0.05 1e4 40 213.13 1.13 57.03

0.025 1e4 80 356.54 1.21 81.69

https://doi.org/10.1371/journal.pcbi.1007414.t002
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already been shown that, in healthy subjects, this principle still applies when on-line vision is

removed (see [75]).

Discussion

In this study, we have presented a novel optimal control framework to account for the

planning of force and impedance via muscle co-contraction. This framework models motor

planning as the design of optimal open-loop controls for stochastic dynamics. One main impli-

cation is that such open-loop controls will seek to optimally exploit the limb’s impedance

Fig 5. Endpoint stiffness geometry at the midpoint of movement path. A. Case of the 6-muscles model with detailed
results reported in Fig 4. B. Case of a 2-D Cartesian mass-point model. In green, the geometry of the optimal endpoint
stiffness without divergent force field (NF) is represented. In red, the same data is reported when the divergent force
field is on (DF). Solid lines correspond to β = 40 and dotted lines to β = 80 (note that qvar and σi were fixed in these
simulations).

https://doi.org/10.1371/journal.pcbi.1007414.g005
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characteristics to perform the task accurately enough, taking into account the presence of

uncertainty induced by sensorimotor noise. Optimality is considered with respect to a trade-

off between effort and variance costs but other terms may be represented as well (e.g. smooth-

ness) in agreement with the literature. Using several simulations, we have illustrated the rele-

vance and versatility of the framework to explain well-known experimental observations

involving co-contraction and impedance measurements. Below, we discuss the significance

and implication of this framework with respect to existing motor control theories.

Planning of force and impedance via muscle co-contraction

At a computational level, the SOOC framework lies in-between deterministic optimal control

and stochastic optimal control theories (see [1, 4, 11] for reviews). These previous frameworks

have been useful to predict many aspects of sensorimotor control and learning. However, they

usually do not account for the phenomenon of muscle co-contraction in a principled manner.

Yet, co-contraction has been found in many motor tasks and is a general feature of motor con-

trol (e.g. [17, 18, 48, 77]). In SOOC, the crucial ingredients to obtain co-contraction in muscu-

loskeletal systems are threefold: (1) the consideration of open-loop control, (2) the presence of

Fig 6. Top view of arm trajectories for a pointing-to-a-line experiment. The targets are indicated by the solid lines
(blue and red). The green ellipse represents the 90% confidence ellipse of the endpoint distribution. Noise was additive
(σi = 0.1) in these simulations and movement time was tf = 0.75s for the forward motion (blue) and tf = 0.55s for the
leftward motion (red). The variance weight in the cost, qvar, was set to 10

4 and endpoint variance was penalized in a the
direction orthogonal to the target line (via the function n> J(qf)Pq,f J(qf)

> n where n is the normal vector, J is the
Jacobian matrix and Pq,f is the joint-space positional covariance). Note that hard terminal constraints were imposed on
the mean state (mean endpoint position on the target line and zero final mean velocity). The main orientation of the
endpoint confidence ellipses is compatible with experimental observations and shows that co-contraction may be used
to increase accuracy in the task-relevant dimension.

https://doi.org/10.1371/journal.pcbi.1007414.g006
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noise in the dynamics and (3) a cost function including at least effort and variance terms. Each

ingredient has found experimental support in the literature. The feedforward aspect of control

for learned movements has been emphasized in [18, 38], the effects of sensorimotor noise have

been described in [12, 13], and the relevance of effort and variance costs in motor control has

been stressed in several studies [65, 78]. The class of models considered in this study is particu-

larly in the spirit of the minimum variance model [49] but with a couple of notable differences.

In our framework, effort and variance are separated cost elements such that an optimal motor

strategy may involve a large effort without implying a large variance (i.e. co-contraction). In

the classical minimum variance model, variance is indeed the same as effort because a signal-

dependent noise is assumed to affect a linear system. In our approach, relevant predictions

regarding co-contraction and impedance planning can be made only for nonlinear systems

(e.g. bilinear systems) and irrespective of the precise type of noise that is modeled (signal-

dependent, constant noise etc.). Concretely, the controller can reach different levels of end-

point variance by setting different levels of co-contraction whereas the standard minimum var-

iance model would only yield one (optimal) level of variance (at fixed movement time).

Besides variance, effort and energy-like criteria are often minimized in optimal control models

which tend to prevent the relevance of co-contraction. In [79], it was demonstrated mathemat-

ically that co-contraction of opposing muscles is non-optimal with respect to the minimization

of the absolute work of muscle torques in a deterministic model. In other optimal control

models with muscle modeling, co-contraction does not occur neither in deterministic settings

(Fig. 9 in [26]) nor in stochastic settings (Fig. 2 in [28] or Fig. 3a in [29]). Researchers have

nevertheless attempted to explain co-contraction or its contribution to impedance in existing

DOC or SOC frameworks, but this was often an ad-hocmodeling [80, 81]. One difficulty is

that empirical works stressed a relatively complex task-dependency of muscle co-contraction –

as assessed by EMG co-activation– [17, 48, 63, 64, 82]. For instance, co-contraction seems to

depend on noise magnitude [25, 61] and to tune impedance according to the degree of insta-

bility of the task [16, 18, 23, 70, 71]. Finding general principles to automatically predict the

adequate co-contraction or impedance required for the task at hand thus appears necessary. In

[72, 73, 83], an algorithm focusing on the trial-by-trial learning of force and impedance was

developed to acquire stability without superfluous effort. In contrast to this approach, our

framework models learned behaviors with known dynamics (up to some uncertainty modeled

by noise). Furthermore, while the previous learning algorithm requires a reference trajectory

to be defined a priori to apply, the SOOC framework allows predicting the “reference” trajec-

tory as the outcome of optimality. This aspect may be particularly important given that inertia

is also a key component of mechanical impedance for a multi-joint system. Hence, besides vis-

coelasticity, the SOOC framework should be able to exploit kinematic redundancy to plan sta-

ble behaviors with low effort. Using the SOC framework, other authors have also attempted to

predict a limb’s mechanical impedance via muscle co-contraction. In [29], a model based on

an extended signal-dependent noise model (see Eq 20), which explicitly favors co-contraction

by reducing the variance of noise during co-contraction, was proposed. One issue is that for

simpler noise models (e.g. simple constant noise), this model would not command muscle co-

contraction. In SOOC, co-contraction was planned for a variety of noise models. Co-contrac-

tion and stiffness regulation was also considered in another SOCmodel [84], but the simulated

limb’s stiffness was mostly due to the intrinsic stiffness of the muscles in the model (that of

[53]) without clear task dependency (signal-dependent noise was also a critical constraint).

In these SOCmodels, the role of state feedback could actually duplicate the role of co-contrac-

tion –high-level feedback control accounts for a form of impedance but differently from a

feedforward co-contraction, [47, 67]–. In [85], an optimal control model was introduced to

account for the planning of both trajectory and stiffness. However, this model as well as others

PLOS COMPUTATIONAL BIOLOGY Stochastic optimal open-loop control theory

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007414 February 28, 2020 21 / 28

https://doi.org/10.1371/journal.pcbi.1007414


not related to optimal control (e.g. [59, 86, 87]), were derived along the lines of the equilibrium

point theory. While co-contraction is often discussed within equilibrium point theory [14], it

is worth stressing that our approach rather accounts for co-contraction of a group of muscles

within optimal control theory. As such, an important point of departure from equilibrium

point theory is the need for internal models of the arm dynamics (see [31]) in order to set net

joint torques and derive an efficient feedforward strategy for the control force and impedance

in SOOC. The present theory indeed proposes that force and impedance may be planned

simultaneously within descending motor commands. This idea seems coherent with the sev-

eral studies that emphasized that two separate control mechanisms may exist for the control of

force and impedance, the latter being at least partly governed by muscle co-contraction [18,

19, 58, 59]. However, impedance can also be regulated via feedback gains in SOC as mentioned

earlier and, therefore, the conceptual differences between SOOC and SOC should be discussed

further.

Implications as a motor control theory

Our framework partly formulates motor planning as a stochastic optimal open-loop control

problem. One primary outcome of the planning process would then be a feedforward motor

command that optimally predetermines both the mean behaviour and the variability of the

system via force and impedance control. The term “open-loop” may raise questions about

the role of sensory feedback in this framework. Computationally, sensory feedback is only

required to estimate the initial state of the motor apparatus during movement preparation in

SOOC. This contrasts with optimal closed-loop control that critically requires an estimate the

system state to create the motor command throughout movement execution [9, 11]. Indeed, if

an optimal feedback gain can be elaborated at the motor planning stage in SOC, the actual

motor command is only determined once the current state of the motor apparatus has been

properly estimated at the execution stage (e.g. hand or joint position/velocities. . .). An optimal

closed-loop control scheme is thought to involve the primary motor cortex and, therefore, to

require on-line transcortical feedback loops [32–34]. These neural pathways imply relatively

long latencies with muscle responses occurring ~50-100 ms after a mechanical perturbation is

applied to a limb. Because these responses are quite sophisticated and task-dependent, rela-

tively complex cortical processes combining sensory information with predictions from

internal models of the limb’s dynamics and the environment are likely necessary for their for-

mation. Besides these long-latency responses, short-latency responses are also observed<40

ms after a mechanical perturbation. This stretch reflex only involves the spinal circuitry and

has been shown to be relatively fast, simple and stereotypical. Nevertheless, background mus-

cle activity is also known to modify the gain of the stretch reflex likely due to the size-recruit-

ment principle [88]. Co-contraction is therefore a means to increase the apparent mechanical

impedance of a joint by increasing the gains of stretch reflexes in opposing muscles (and not

only by increasing the intrinsic stiffness). Nonlinear effects occurring during co-contraction

have been shown to amplify this increase of the reflex gains beyond what would have been

expected by considering each muscle alone [22]. As we do not exclude the contribution of the

stretch reflex in SOOC, ambiguity may arise here. Indeed, the stretch reflex relies on sensory

information from muscle spindles: hence it does implement a (low-level) feedback control

loop. However, we argue that the functioning of the neuromusculoskeletal system with intact

reflex circuitry may be well accounted for within the SOOC framework and the “open-loop”

control assumption. Indeed, being mainly under the influence of descending motor com-

mands via alpha/gamma motoneurons activity, the short-latency reflex arc plays a crucial role

in the apparent spring-like properties of a muscle –which we model– beyond its intrinsic
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short-range stiffness [21]. We thus consider that these low-level feedback loops are part of a

neuromuscular actuator with variable impedance which is under a (feedforward) control from

higher-level centers. As mentioned earlier, mechanical impedance can also be modified via

transcortical reflex loops relying on pre-determined feedback gains. However, the associated

mechanisms are of a different nature in that they require evolved state estimation processes. It

is noteworthy that the same low-level/high-level dichotomy applies to robotics (as does the

SOOC framework actually). Moreover, experimental estimations of a limb’s impedance during

posture or movement are normally unable to rule out the impact of reflexes on measurements

(which can be as short as ~20 ms for biceps brachii in humans, [89]). In summary, the distinc-

tion between short-latency/low-level spinal loops and long-latency/high-level transcortical

loops parallels the distinction between optimal open-loop and feedback control frameworks in

computational terms. The crucial difference between SOC and SOOC theories thus regards

the involvement or not of high-level state estimation processes in the on-line control mecha-

nisms. One implication of the SOOC theory is that such sophisticated high-level feedback pro-

cesses occurring during movement execution may not necessarily be critical to ensure reliable

motor performance in well-learned motor behaviors (but this achievement may require mus-

cle co-contraction to some extent).

Conclusion

A new theoretical framework to model human movement planning has been presented. It pro-

vides a specific emphasis on the elaboration of optimal feedforward motor commands for the

control of noisy neuromusculoskeletal systems. Interestingly, optimal open-loop strategies

spontaneously exhibit co-contraction to generate robust motor behaviors without relying on

sophisticated feedback mechanisms that requires state estimation processes during movement

execution. In this framework, the magnitude of co-contraction or joint/endpoint stiffness is

kept as small as possible because effort is penalized. Yet, depending on the task constraints

(e.g. instability, accuracy demand) and uncertainty (e.g. internal and/or external noise magni-

tudes), a significant feedforward co-contraction or stiffening of the joints/hand may become

the optimal strategy. This prediction was very consistent as we found it for both joint-level and

muscle-level descriptions of the musculoskeletal dynamics as well as for various noise models.

The SOOC framework may thus complement SOC in the following sense: once a motor plan

is elaborated, locally optimal feedback control strategies may be designed after linearization

around the optimal mean trajectory and open-loop control. One general advantage of plan-

ning force and impedance via co-contraction could be to provide a nominal robustness to the

system, thereby resisting small perturbations without the need for a continuous multi-sensory

integration (e.g. merging of visual and somatosensory information at cortical levels) to opti-

mally estimate the state of the system during movement execution. Adequately tuning muscle

co-contraction (even to small levels) might allow the system to be less sensitive to delays, noise

and task uncertainty (and might improve the reliability of state estimation as well). This theo-

retical framework should be tested more extensively in the future to see whether it constitutes

a viable theory for the neural control of movement but it already provides an interesting con-

ceptual trade-off between purely deterministic approaches and purely stochastic approaches.

As far as motor planning is of concern and the elaboration of feedforward motor commands is

thought to be a significant component of the neural control of movement (see also [90]), the

SOOC theory may constitute a relevant theoretical approach. Finally, we note that the very

same framework could prove useful in human-inspired robotics especially for robots with vari-

able impedance actuators [47, 91].
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15. Demenÿ G. Du rôle mécanique des muscles antagonistes dans les actes de locomotion. Archives de
Physiologie. 1890; 5(2):747.

PLOS COMPUTATIONAL BIOLOGY Stochastic optimal open-loop control theory

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007414 February 28, 2020 24 / 28

https://doi.org/10.1006/jmps.2000.1295
https://doi.org/10.1006/jmps.2000.1295
http://www.ncbi.nlm.nih.gov/pubmed/11401453
https://doi.org/10.1038/nn1309
https://doi.org/10.1038/nn1309
http://www.ncbi.nlm.nih.gov/pubmed/15332089
https://doi.org/10.1016/j.neuron.2011.10.018
https://doi.org/10.1016/j.neuron.2011.10.018
http://www.ncbi.nlm.nih.gov/pubmed/22078508
https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
http://www.ncbi.nlm.nih.gov/pubmed/4020415
https://doi.org/10.1007/bf00204593
https://doi.org/10.1007/bf00204593
http://www.ncbi.nlm.nih.gov/pubmed/2742921
https://doi.org/10.1371/journal.pcbi.1002183
https://doi.org/10.1371/journal.pcbi.1002183
http://www.ncbi.nlm.nih.gov/pubmed/22022242
https://doi.org/10.1523/JNEUROSCI.1921-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/26818497
https://doi.org/10.1038/nn963
http://www.ncbi.nlm.nih.gov/pubmed/12404008
https://doi.org/10.1162/0899766053491887
https://doi.org/10.1162/0899766053491887
http://www.ncbi.nlm.nih.gov/pubmed/15829101
https://doi.org/10.1016/j.tics.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/20005767
https://doi.org/10.1152/jn.00652.2003
http://www.ncbi.nlm.nih.gov/pubmed/14561687
https://doi.org/10.1038/nrn2258
http://www.ncbi.nlm.nih.gov/pubmed/18319728
https://doi.org/10.1152/jn.00084.2018
http://www.ncbi.nlm.nih.gov/pubmed/29589812
https://doi.org/10.1371/journal.pcbi.1007414


16. Burdet E, Osu R, Franklin DW, Milner TE, Kawato M. The central nervous system stabilizes unstable
dynamics by learning optimal impedance. Nature. 2001; 414(6862):446–449. https://doi.org/10.1038/
35106566 PMID: 11719805

17. Gribble PL, Mullin LI, Cothros N, Mattar A. Role of cocontraction in armmovement accuracy. J Neuro-
physiol. 2003; 89(5):2396–2405. https://doi.org/10.1152/jn.01020.2002 PMID: 12611935

18. Franklin DW, Osu R, Burdet E, Kawato M, Milner TE. Adaptation to stable and unstable dynamics
achieved by combined impedance control and inverse dynamics model. J Neurophysiol. 2003;
90:3270–3282. https://doi.org/10.1152/jn.01112.2002 PMID: 14615432

19. Humphrey DR, Reed DJ. Separate cortical systems for control of joint movement and joint stiffness:
reciprocal activation and coactivation of antagonist muscles. Adv Neurol. 1983; 39:347–372. PMID:
6419553

20. Joyce G, Rack P, Westbury D. The mechanical properties of cat soleus muscle during controlled length-
ening and shortening movements. The Journal of physiology. 1969; 204(2):461–474. https://doi.org/10.
1113/jphysiol.1969.sp008924 PMID: 5824647

21. Nichols T, Houk J. Improvement in linearity and regulation of stiffness that results from actions of stretch
reflex. J Neurophysiol. 1976; 39(1):119–142. https://doi.org/10.1152/jn.1976.39.1.119 PMID: 1249597

22. Carter RR, Crago PE, Gorman PH. Nonlinear stretch reflex interaction during cocontraction. J Neuro-
physiol. 1993; 69(3):943–952. https://doi.org/10.1152/jn.1993.69.3.943 PMID: 8385202

23. Franklin DW, Liaw G, Milner TE, Osu R, Burdet E, Kawato M. Endpoint stiffness of the arm is direction-
ally tuned to instability in the environment. J Neurosci. 2007; 27(29):7705–7716. https://doi.org/10.
1523/JNEUROSCI.0968-07.2007 PMID: 17634365

24. Lewis GN, MacKinnon CD, Trumbower R, Perreault EJ. Co-contraction modifies the stretch reflex elic-
ited in muscles shortened by a joint perturbation. Exp Brain Res. 2010; 207(1-2):39–48. https://doi.org/
10.1007/s00221-010-2426-9 PMID: 20878148

25. Soechting JF, Dufresne JR, Lacquaniti F. Time-varying properties of myotatic response in man during
some simple motor tasks. J Neurophysiol. 1981; 46:1226–1243. https://doi.org/10.1152/jn.1981.46.6.
1226 PMID: 7320744

26. Guigon E, Baraduc P, Desmurget M. Computational motor control: redundancy and invariance. J Neu-
rophysiol. 2007; 97(1):331–347. https://doi.org/10.1152/jn.00290.2006 PMID: 17005621

27. Berret B, Darlot C, Jean F, Pozzo T, Papaxanthis C, Gauthier JP. The inactivation principle: mathemati-
cal solutions minimizing the absolute work and biological implications for the planning of armmove-
ments. PLoS Comput Biol. 2008; 4(10):e1000194. https://doi.org/10.1371/journal.pcbi.1000194 PMID:
18949023

28. Li W, Todorov E. Iterative linearization methods for approximately optimal control and estimation of
non-linear stochastic system. Int J Control. 2007; 80(9):1439–1453. https://doi.org/10.1080/
00207170701364913

29. Mitrovic D, Klanke S, Osu R, Kawato M, Vijayakumar S. A computational model of limb impedance con-
trol based on principles of internal model uncertainty. PLoS One. 2010; 5:e13601. https://doi.org/10.
1371/journal.pone.0013601 PMID: 21049061

30. Ueyama Y, Miyashita E. Signal-dependent noise induces muscle co-contraction to achieve required
movement accuracy: a simulation study with an optimal control. Current Bioinformatics. 2013; 8(1):16–
24. https://doi.org/10.2174/157489313804871632

31. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;
3 Suppl:1212–1217. https://doi.org/10.1038/81497 PMID: 11127840

32. Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci.
2004; 5(7):532–546. https://doi.org/10.1038/nrn1427 PMID: 15208695

33. Scott SH. The computational and neural basis of voluntary motor control and planning. Trends in cogni-
tive sciences. 2012; 16:541–549. https://doi.org/10.1016/j.tics.2012.09.008 PMID: 23031541

34. Pruszynski JA, Scott SH. Optimal feedback control and the long-latency stretch response. Exp Brain
Res. 2012; 218(3):341–359. https://doi.org/10.1007/s00221-012-3041-8 PMID: 22370742

35. Franklin DW, Burdet E, Osu R, Kawato M, Milner TE. Functional significance of stiffness in adaptation
of multijoint armmovements to stable and unstable dynamics. Experimental brain research. 2003;
151(2):145–157. https://doi.org/10.1007/s00221-003-1443-3 PMID: 12783150

36. Osu R, Burdet E, Franklin DW, Milner TE, Kawato M. Different mechanisms involved in adaptation to
stable and unstable dynamics. J Neurophysiol. 2003; 90(5):3255–3269. https://doi.org/10.1152/jn.
00073.2003 PMID: 14615431

37. Osu R, Morishige Ki, Miyamoto H, Kawato M. Feedforward impedance control efficiently reducemotor
variability. Neurosci Res. 2009; 65:6–10. https://doi.org/10.1016/j.neures.2009.05.012 PMID:
19523999

PLOS COMPUTATIONAL BIOLOGY Stochastic optimal open-loop control theory

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007414 February 28, 2020 25 / 28

https://doi.org/10.1038/35106566
https://doi.org/10.1038/35106566
http://www.ncbi.nlm.nih.gov/pubmed/11719805
https://doi.org/10.1152/jn.01020.2002
http://www.ncbi.nlm.nih.gov/pubmed/12611935
https://doi.org/10.1152/jn.01112.2002
http://www.ncbi.nlm.nih.gov/pubmed/14615432
http://www.ncbi.nlm.nih.gov/pubmed/6419553
https://doi.org/10.1113/jphysiol.1969.sp008924
https://doi.org/10.1113/jphysiol.1969.sp008924
http://www.ncbi.nlm.nih.gov/pubmed/5824647
https://doi.org/10.1152/jn.1976.39.1.119
http://www.ncbi.nlm.nih.gov/pubmed/1249597
https://doi.org/10.1152/jn.1993.69.3.943
http://www.ncbi.nlm.nih.gov/pubmed/8385202
https://doi.org/10.1523/JNEUROSCI.0968-07.2007
https://doi.org/10.1523/JNEUROSCI.0968-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17634365
https://doi.org/10.1007/s00221-010-2426-9
https://doi.org/10.1007/s00221-010-2426-9
http://www.ncbi.nlm.nih.gov/pubmed/20878148
https://doi.org/10.1152/jn.1981.46.6.1226
https://doi.org/10.1152/jn.1981.46.6.1226
http://www.ncbi.nlm.nih.gov/pubmed/7320744
https://doi.org/10.1152/jn.00290.2006
http://www.ncbi.nlm.nih.gov/pubmed/17005621
https://doi.org/10.1371/journal.pcbi.1000194
http://www.ncbi.nlm.nih.gov/pubmed/18949023
https://doi.org/10.1080/00207170701364913
https://doi.org/10.1080/00207170701364913
https://doi.org/10.1371/journal.pone.0013601
https://doi.org/10.1371/journal.pone.0013601
http://www.ncbi.nlm.nih.gov/pubmed/21049061
https://doi.org/10.2174/157489313804871632
https://doi.org/10.1038/81497
http://www.ncbi.nlm.nih.gov/pubmed/11127840
https://doi.org/10.1038/nrn1427
http://www.ncbi.nlm.nih.gov/pubmed/15208695
https://doi.org/10.1016/j.tics.2012.09.008
http://www.ncbi.nlm.nih.gov/pubmed/23031541
https://doi.org/10.1007/s00221-012-3041-8
http://www.ncbi.nlm.nih.gov/pubmed/22370742
https://doi.org/10.1007/s00221-003-1443-3
http://www.ncbi.nlm.nih.gov/pubmed/12783150
https://doi.org/10.1152/jn.00073.2003
https://doi.org/10.1152/jn.00073.2003
http://www.ncbi.nlm.nih.gov/pubmed/14615431
https://doi.org/10.1016/j.neures.2009.05.012
http://www.ncbi.nlm.nih.gov/pubmed/19523999
https://doi.org/10.1371/journal.pcbi.1007414


38. Franklin DW,Wolpert DM. Computational mechanisms of sensorimotor control. Neuron. 2011; 72
(3):425–442. https://doi.org/10.1016/j.neuron.2011.10.006 PMID: 22078503

39. Polit A, Bizzi E. Processes controlling armmovements in monkeys. Science (New York, NY). 1978;
201:1235–1237. https://doi.org/10.1126/science.99813

40. Polit A, Bizzi E. Characteristics of motor programs underlying armmovements in monkeys. J Neurophy-
siol. 1979; 42:183–194. https://doi.org/10.1152/jn.1979.42.1.183 PMID: 107279

41. Bizzi E, Accornero N, ChappleW, Hogan N. Posture control and trajectory formation during armmove-
ment. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1984; 4:2738–
2744. https://doi.org/10.1523/JNEUROSCI.04-11-02738.1984

42. Hogan N. Planning and execution of multijoint movements. Can J Physiol Pharmacol. 1988; 66:508–
517. https://doi.org/10.1139/y88-080 PMID: 3167678

43. Ghez C, Gordon J, Ghilardi MF. Impairments of reaching movements in patients without proprioception.
II. Effects of visual information on accuracy. J Neurophysiol. 1995; 73:361–372. https://doi.org/10.1152/
jn.1995.73.1.361 PMID: 7714578

44. Nielsen JB. Human Spinal Motor Control. Annu Rev Neurosci. 2016; 39:81–101. https://doi.org/10.
1146/annurev-neuro-070815-013913 PMID: 27023730

45. Nielsen J, Kagamihara Y. The regulation of disynaptic reciprocal Ia inhibition during co-contraction of
antagonistic muscles in man. The Journal of physiology. 1992; 456:373–391. https://doi.org/10.1113/
jphysiol.1992.sp019341 PMID: 1338100

46. Crone C, Nielsen J. Central control of disynaptic reciprocal inhibition in humans. Acta Physiol Scand.
1994; 152:351–363. https://doi.org/10.1111/j.1748-1716.1994.tb09817.x PMID: 7701936

47. Berret B, Jean F. Efficient computation of optimal open-loop controls for stochastic systems; 2019; hal-
02158875. https://doi.org/10.1016/j.automatica.2020.108874

48. Hogan N. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE
Trans AutomControl. 1984; 29(8):681–690. https://doi.org/10.1109/TAC.1984.1103644

49. Harris CM,Wolpert DM. Signal-dependent noise determinesmotor planning. Nature. 1998; 394
(6695):780–784. https://doi.org/10.1038/29528 PMID: 9723616

50. Stengel RF. Optimal Control and Estimation. Dover books on advancedmathematics. Dover Publica-
tions; 1986.

51. Rao AV, Benson DA, Darby CL, Patterson MA, Francolin C, Sanders I, et al. Algorithm 902: GPOPS, A
MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral
method. ACM Trans Math Software. 2010; 37(2):1–39. https://doi.org/10.1145/1731022.1731032

52. Maybeck PS. Stochastic models, estimation, and control. vol. 2. Academic press; 1982.

53. KatayamaM, Kawato M. Virtual trajectory and stiffness ellipse during multijoint armmovement pre-
dicted by neural inverse models. Biol Cybern. 1993; 69:353–362. https://doi.org/10.1007/BF01185407
PMID: 8274536

54. Feldman AG. Once more on the equilibrium-point hypothesis (lambdamodel) for motor control. J Mot
Behav. 1986; 18(1):17–54. https://doi.org/10.1080/00222895.1986.10735369 PMID: 15136283

55. Milner TE, Cloutier C. Compensation for mechanically unstable loading in voluntary wrist movement.
Experimental Brain Research. 1993; 94(3):522–532. https://doi.org/10.1007/bf00230210 PMID:
8359266

56. Weiss P, Hunter I, Kearney R. Human ankle joint stiffness over the full range of muscle activation lev-
els. J Biomech. 1988; 21(7):539–544. https://doi.org/10.1016/0021-9290(88)90217-5 PMID:
3410857

57. Bennett DJ. Torques generated at the human elbow joint in response to constant position errors
imposed during voluntary movements. Exp Brain Res. 1993; 95:488–498. https://doi.org/10.1007/
bf00227142 PMID: 8224075

58. Yamazaki Y, Ohkuwa T, Itoh H, Suzuki M. Reciprocal activation and coactivation in antagonistic mus-
cles during rapid goal-directed movements. Brain Res Bull. 1994; 34:587–593. https://doi.org/10.1016/
0361-9230(94)90144-9 PMID: 7922602

59. Scheidt RA, Ghez C. Separate adaptive mechanisms for controlling trajectory and final position in
reaching. J Neurophysiol. 2007; 98:3600–3613. https://doi.org/10.1152/jn.00121.2007 PMID:
17913996

60. Feldman AG. Functional tuning of the nervous system with control of movement or maintenace of a
steady posture, II: Controllable parameters of the muscles. Biophysics. 1966; 11:565–578.

61. Hasson CJ, Gelina O, WooG. Neural Control Adaptation to Motor Noise Manipulation. Front HumNeu-
rosci. 2016; 10:59. https://doi.org/10.3389/fnhum.2016.00059 PMID: 26973487

PLOS COMPUTATIONAL BIOLOGY Stochastic optimal open-loop control theory

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007414 February 28, 2020 26 / 28

https://doi.org/10.1016/j.neuron.2011.10.006
http://www.ncbi.nlm.nih.gov/pubmed/22078503
https://doi.org/10.1126/science.99813
https://doi.org/10.1152/jn.1979.42.1.183
http://www.ncbi.nlm.nih.gov/pubmed/107279
https://doi.org/10.1523/JNEUROSCI.04-11-02738.1984
https://doi.org/10.1139/y88-080
http://www.ncbi.nlm.nih.gov/pubmed/3167678
https://doi.org/10.1152/jn.1995.73.1.361
https://doi.org/10.1152/jn.1995.73.1.361
http://www.ncbi.nlm.nih.gov/pubmed/7714578
https://doi.org/10.1146/annurev-neuro-070815-013913
https://doi.org/10.1146/annurev-neuro-070815-013913
http://www.ncbi.nlm.nih.gov/pubmed/27023730
https://doi.org/10.1113/jphysiol.1992.sp019341
https://doi.org/10.1113/jphysiol.1992.sp019341
http://www.ncbi.nlm.nih.gov/pubmed/1338100
https://doi.org/10.1111/j.1748-1716.1994.tb09817.x
http://www.ncbi.nlm.nih.gov/pubmed/7701936
https://doi.org/10.1016/j.automatica.2020.108874
https://doi.org/10.1109/TAC.1984.1103644
https://doi.org/10.1038/29528
http://www.ncbi.nlm.nih.gov/pubmed/9723616
https://doi.org/10.1145/1731022.1731032
https://doi.org/10.1007/BF01185407
http://www.ncbi.nlm.nih.gov/pubmed/8274536
https://doi.org/10.1080/00222895.1986.10735369
http://www.ncbi.nlm.nih.gov/pubmed/15136283
https://doi.org/10.1007/bf00230210
http://www.ncbi.nlm.nih.gov/pubmed/8359266
https://doi.org/10.1016/0021-9290(88)90217-5
http://www.ncbi.nlm.nih.gov/pubmed/3410857
https://doi.org/10.1007/bf00227142
https://doi.org/10.1007/bf00227142
http://www.ncbi.nlm.nih.gov/pubmed/8224075
https://doi.org/10.1016/0361-9230(94)90144-9
https://doi.org/10.1016/0361-9230(94)90144-9
http://www.ncbi.nlm.nih.gov/pubmed/7922602
https://doi.org/10.1152/jn.00121.2007
http://www.ncbi.nlm.nih.gov/pubmed/17913996
https://doi.org/10.3389/fnhum.2016.00059
http://www.ncbi.nlm.nih.gov/pubmed/26973487
https://doi.org/10.1371/journal.pcbi.1007414


62. Bennett DJ, Hollerbach JM, Xu Y, Hunter IW. Time-varying stiffness of human elbow joint during cyclic
voluntary movement. Exp Brain Res. 1992; 88:433–442. https://doi.org/10.1007/bf02259118 PMID:
1577114

63. Suzuki M, Shiller DM, Gribble PL, Ostry DJ. Relationship between cocontraction, movement kinematics
and phasic muscle activity in single-joint armmovement. Exp Brain Res. 2001; 140(2):171–181. https://
doi.org/10.1007/s002210100797 PMID: 11521149

64. Missenard O, Fernandez L. Moving faster while preserving accuracy. Neuroscience. 2011; 197:233–
241. https://doi.org/10.1016/j.neuroscience.2011.09.020 PMID: 21946007

65. Wang C, Xiao Y, Burdet E, Gordon J, Schweighofer N. The duration of reaching movement is longer
than predicted by minimum variance. J Neurophysiol. 2016; 116(5):2342–2345. https://doi.org/10.1152/
jn.00148.2016 PMID: 27559137

66. Jean F, Berret B. On the duration of humanmovement: from self-paced to slow/fast reaches up to Fitts’s
law. In: Geometric and Numerical Foundations of Movements. Springer; 2017. p. 43–65.

67. Berret B, Ivaldi S, Nori F, Sandini G. Stochastic optimal control with variable impedance manipulators in
presence of uncertainties and delayed feedback. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems
(IROS) Conf; 2011. p. 4354–4359.

68. Franklin DW, So U, Burdet E, Kawato M. Visual feedback is not necessary for the learning of novel
dynamics. PLoS One. 2007; 2(12):e1336. https://doi.org/10.1371/journal.pone.0001336 PMID:
18092002

69. Wolpert DM, Ghahramani Z, Jordan MI. Are arm trajectories planned in kinematic or dynamic coordi-
nates? An adaptation study. Exp Brain Res. 1995; 103(3):460–470. https://doi.org/10.1007/bf00241505
PMID: 7789452

70. Franklin DW, So U, Kawato M, Milner TE. Impedance control balances stability with metabolically costly
muscle activation. J Neurophysiol. 2004; 92(5):3097–3105. https://doi.org/10.1152/jn.00364.2004
PMID: 15201309

71. Selen LP, Franklin DW,Wolpert DM. Impedance control reduces instability that arises frommotor
noise. J Neurosci. 2009; 29(40):12606–12616. https://doi.org/10.1523/JNEUROSCI.2826-09.2009
PMID: 19812335

72. Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, et al. CNS learns stable, accurate, and
efficient movements using a simple algorithm. Journal of neuroscience. 2008; 28(44):11165–11173.
https://doi.org/10.1523/JNEUROSCI.3099-08.2008 PMID: 18971459

73. Tee KP, Franklin DW, Kawato M, Milner TE, Burdet E. Concurrent adaptation of force and impedance
in the redundant muscle system. Biological cybernetics. 2010; 102(1):31–44. https://doi.org/10.1007/
s00422-009-0348-z PMID: 19936778

74. Guigon E, Baraduc P, Desmurget M. Optimality, stochasticity, and variability in motor behavior. J Com-
put Neurosci. 2008; 24(1):57–68. https://doi.org/10.1007/s10827-007-0041-y PMID: 18202922

75. Berret B, Chiovetto E, Nori F, Pozzo T. Manifold reaching paradigm: how do we handle target redun-
dancy? J Neurophysiol. 2011; 106(4):2086–2102. https://doi.org/10.1152/jn.01063.2010 PMID:
21734107
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