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Abstract—Demand response (DR) can provide reserves in
power systems but a fundamental challenge is that the amount
of capacity available from DR is time-varying and uncertain.
We propose a stochastic optimal power flow (OPF) formulation
that handles uncertain energy from wind and uncertain re-
serves provided by DR. To handle the uncertainty, we formulate
chance constraints and use a scenario based methodology to
solve the stochastic OPF problem. This technique allows us
to provide a-priori guarantees regarding the probability of
constraint satisfaction. Additionally, we devise a strategy for
the reserves, provided either by the generators or the loads,
that could be deployed in real time operation. To evaluate the
effectiveness of our methodology, we carry out a simulation-
based analysis on the IEEE 30-bus network. Our case studies
show that optimizing over the reserves provided by DR, even
though they are uncertain, results in lower total cost compared
to the case where only generation side reserves are taken
into account. We also carry out a Monte Carlo analysis to
empirically estimate the probability of constraint satisfaction
and demonstrate that it is within the theoretical limits.

I. INTRODUCTION

Reserve capacity is procured in electricity markets to

ensure a match in supply and demand at each instant in time

given uncertain consumption, production, and events such

as line outages. To schedule energy and reserves using op-

timal power flow (OPF) formulations, we generally assume

scheduled reserves are perfectly certain, i.e. that they will be

available in real time if we need them. Some formulations

take into account cases in which generators may be unable to

provide scheduled reserves, for example, due to contingen-

cies [1], [2]. However, new reserve resources, such as energy

storage and demand response (DR), introduce different types

of uncertainty than those considered in previous studies.

Research suggests that storage and DR could provide

reserves in power systems [3], [4], [5]; however, the amount

of reserves available may be time-varying and uncertain.

This is especially true for DR in which both the load and the

flexible portion of it may be a function of human behavior,

ambient conditions such as weather, and past DR actions

[6]. Therefore, for many types of loads, reserve capacity is

difficult to estimate in real-time, and even harder to forecast

because its based on other forecasted quantities. Moreover,

it is often necessary to aggregate thousands of loads together

to provide system-level reserves [7], [8] and at these scales

it may be impossible to keep track of the time-varying

capabilities and constraints of each load. Instead, we can use

aggregated system models to approximate reserve capacity

[8]; however, the mismatch between these models and the

real system is another cause of uncertainty [6].

To mitigate reserve uncertainty, a DR aggregator could be

conservative in offering reserves to power systems, making

the reserves ‘practically certain.’ A better option may be to

explicitly take reserve uncertainty into account in our plan-

ning algorithms, which should allow us to leverage more of

the available resource. In this paper, we propose a stochastic

optimal power flow (OPF) approach that allows us to con-

sider uncertain reserves from DR. We model aggregations of

DR resources as time-varying virtual energy storage units,

and therefore must consider intertemporal energy constraints

in the optimization problem. We assume DR could be used

for both day-ahead hourly power scheduling and reserve

scheduling. We formulate the problem as a probabilistic

DC OPF with chance constraints and use a scenario based

methodology [9], [10] to solve it. This approach allows

us to provide probabilistic a-priori guarantees regarding the

satisfaction of the system constraints.

This research builds on past work focused on methods

to handle storage and uncertainty in OPF formulations.

Ref. [11] formulated and proposed solution strategies for an

OPF with distributed storage. The storage power and energy

capacities are modeled as time-invariant, while in our paper

we allow them to be time-varying. Several researchers have

considered the problem of uncertain energy, for example,

from wind power plants [12], [13], [2]. Refs. [14], [15], [16]

use DR as reserves in stochastic OPFs with uncertain wind

energy; however, the DR reserves are assumed certain. Ref.

[17] proposes a formulation that allows uncertain aggrega-

tions of electric water heaters to provide a fixed amount of

reserves. However, to our knowledge, ours is the first paper

that determines the optimal amount of uncertain reserves

within an OPF.

Our main contribution is to formulate a multi-stage day

ahead probabilistic DC OPF that optimizes for uncertain

reserves from DR and certain reserves from conventional

generating units. More specifically, our formulation 1) re-

sults in the optimal reserve capacity offered by generators

and controllable loads, 2) offers a strategy for reserve

deployment in real time operation, 3) optimizes over tertiary

reserve power that will relieve secondary frequency control

reserves and bring the energy state of the controllable

loads back to the scheduled value, and 4) provides a-priori

guarantees that the proposed solution will be reliable with
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a certain confidence, without requiring knowledge of the

underlying distribution of the uncertainty variables.

To evaluate the effectiveness of our methodology, we carry

out a simulation-based analysis on the IEEE 30-bus network

[18]. This allows us to assess the costs associated with three

OPF formulations in which we assume i) deterministic loads,

ii) uncertain loads, and iii) uncertain but controllable loads

that may be used for hourly scheduling and reserves. We also

carry out a Monte Carlo analysis to empirically estimate the

probability of constraint satisfaction.

The rest of the paper is organized as follows. In the next

section, we detail the modeling of DR resources as uncer-

tain reserves and describe the power flow assumptions. In

Section III, we describe the stochastic optimization problem

and discuss the scenario-based methodology we use to solve

the resulting OPF. Section IV provides case studies, and in

Section V we provide concluding remarks and discuss future

research.

II. MODELING

A. Demand Response Resource Modeling

We assume that loads can shift their consumption in

time but that the total amount of energy delivered to the

load over a period of time is fixed. Therefore, we model

aggregations of loads as virtual energy storage units [19].

Actions which decrease consumption relative to the baseline

consumption (i.e. the consumption that would have occurred

without scheduling) empty the storage unit and actions with

increase consumption relative to the baseline consumption

charge the storage unit. Therefore, the energy state S of the

aggregation evolves as

St+1 = St + (PC,t − PT,t)Δτ, (1)

where PC,t is the mean power consumption of the con-

trollable portion of the load at time step t and also the

optimization variable, PT,t is the baseline consumption, and

Δτ is the length of the time step.

Because the amount of controllable load within the system

varies as a function of time, the size of the virtual energy

storage unit is time-varying. Specifically, a unit’s power and

energy capacity are a function of a variety of time-dependent

quantities such as ambient conditions and human behavior.

Therefore, both P and S are constrained by time-varying

quantities

PC,t � PC,t � PC,t, (2)

0 � St � St, (3)

where PC,t+PC,t is the aggregate power capacity and St is

the aggregate energy capacity. Ref. [19] describes a method

of computing these capacities and PT for an aggregation

of residential electric space heaters or air conditioners as

a function of outdoor air temperature Tt. Here, we use

this method to compute PC(Tt), S(Tt) and PT (Tt) for an
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Figure 1. The power and energy capacity of an aggregation of electric
heaters modeled as a virtual storage unit.

aggregation of 1,000 heterogenous electric space heaters, as

shown in Fig. 1. We assume PC(Tt) = 0 for all Tt.

There are many reasons why PC , S, and PT may be

uncertain including model error and forecasting error [6].

Here, we do not consider all sources of uncertainty but

instead focus on just one cause: temperature forecasting

error. Specifically, we assume that the values in Fig. 1 are

accurate for a given outdoor air temperature but that our

forecasts of outdoor air temperature are uncertain. Given

a specific forecast of outdoor air temperature, we can use

Fig. 1 as a look-up table to determine the expected power

and energy capacity of a virtual storage unit for planning;

however, the actual outdoor air temperature will dictate

the actual capacities available in real-time. Note that even

though we only consider this source of uncertainty in this

paper, our OPF formulation works for cases in which we

consider any and all sources of DR uncertainty.

B. Power Flow Modeling

In our framework, we use a DC OPF for day-ahead

scheduling of hourly generator power set points PG, con-

trollable load set points PC , secondary frequency control

(also known as automatic generation control and load fre-

quency control) capacities from both generators RGS and

controllable loads RLS , and intra-hour re-dispatch capacities

(e.g., tertiary control in Europe or intra-hour markets in

the U.S.) from generators RGD. Under the DC power flow

assumption, the power flows across the lines are given by

Pl = APinj , where Pinj ∈ R
Nb is the net power injection

at the buses and A is a constant matrix that depends on

the network admittances. This power flow representation

results from eliminating the bus angles from the standard

power flow equations as shown in [20]. It is an equivalent

representation that allows for simpler manipulations of the

network equations. We assume that both wind power pro-

duction Pw and the controllable portion of the load (both its
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Figure 2. An example wind forecast error (top plot) and the corresponding
actions of the secondary frequency controllers (second and third plot, with
the fourth plot showing the energy state evolution of the loads used for
secondary control) and re-dispatch (last plot), within one hour. The blue
lines show the maximum wind forecast error and responses, which we plan
for within the OPF. The red lines show a realistic wind forecast error and
the responses. The secondary frequency controllers balance high frequency
deviations while the re-dispatch is only able to produce constant outputs in
each interval.

baseline and power/energy capacity, as defined in the last

subsection) are uncertain. We always explicitly handle wind

stochasticity within our probabilistic OPF formulation but

we compare cases in which we do and do not handle load

uncertainty and controllability. Specifically, we investigate

three cases: i) deterministic loads, ii) uncertain loads, and

iii) uncertain but controllable loads that can be used for both

hourly scheduling and reserve provision.

We assume that each hour the intra-hour re-dispatch is ac-

tivated four times, i.e. every fifteen minutes. Each 15-minute

interval, the re-dispatch provides the amount of energy that

would be required to return the controllable loads to the

scheduled energy state (determined by the power setpoint) if

the secondary frequency control signal were zero over that

interval, which is similar to the method proposed by the

California Independent System Operator [21]. Additionally,

in each 15-minute interval, the re-dispatch covers the power

mismatch between the expected generation and the actual

generation. Figure 2 shows the action of the secondary

frequency controllers and the re-dispatch for a given wind

forecast error.

We do not consider security constraints in this paper for

simplicity. However, our framework can be extended to also

capture security constraints following the methodology of

[2]. Therefore, here, secondary frequency control and re-

dispatch are only needed to manage wind forecast errors. We

assume reserve capacities are constant over one hour, and

we size the secondary frequency control reserve capacity to

cover a maximum wind power deviation over a period of

15 minutes. We size the intra-hour re-dispatch capacity to

cover both the energy required by the loads and the wind

power deviations.

III. PROBLEM FORMULATION

A. Optimization problem

In this section, we formulate an OPF which considers

uncertain but controllable loads, i.e. case iii) listed in the

introduction. Note that the other cases we use for comparison

in the case study, i.e. i) deterministic and uncontrollable

loads and ii) uncertain and uncontrollable loads, are special

cases of this formulation. The objective of the optimiza-

tion problem is to determine the minimum cost generation

dispatch, controllable load schedules, and reserve capacities

provided by both generators and reserves.

We consider a power network of NG generating units,

Nw wind power plants, NL loads, Nl lines, and Nb buses.

Each load is comprised of an uncontrollable portion PL,

which is assumed known, and a controllable portion PC ,

which is uncertain as described in Section II-A. We consider

an optimization horizon Nt = 24 with hourly steps (i.e.

Δτ = 1) and introduce the subscript t in our notation to

characterize the value of the corresponding quantities for a

given time instance t = 1, . . . , Nt. For each step t we define

the vector of decision variables to be

xt =[PG,t, PC,t, Rup
GS,t, Rdn

GS,t, Rup
LS,t, Rdn

LS,t,

Rup
GD,t, Rdn

GD,t, Rup,0
GD,t, Rdn,0

GD,t, dupGS,t, ddnGS,t,

dupLS,t, ddnLS,t, dup,0GD,t, ddn,0GD,t, dup,1GD,t, ddn,1GD,t,

dup,2GD,t, ddn,2GD,t]
T ∈ R

15NG+5NL .

The vectors d are distribution vectors that distribute the

generation-load mismatch to the resources that offer re-

serve capacity. The superscripts “up/dn” denote the in-

crease/decrease of the produced or the consumed power

of the generators or the loads, respectively. Hence, the up-

regulating secondary reserves are characterized by the distri-

bution vectors dupGS,t and ddnLS,t since the generators have to

increase power while the loads have to decrease power. The

total reserve capacity for up-regulating secondary reserves,

for a given time step t, is given by Rup
GS,t +Rdn

LS,t. For the

re-dispatch we use three sets of distribution vectors denoted

by the superscripts “0,1,2”, which are associated with 0)

energy mismatches from the previous hour, 1) the intra-hour

wind power mismatch, and 2) intra-hour energy mismatches.

2355



More details on these decision variables will be given in the

following paragraphs.
Let c denote cost. The optimization problem is

min
{xt}Nt

t=1

Nt∑
t=1

(
cT1 PG,t + PT

G,t[c2]PG,t

+ cTGS,upR
up
GS,t + cTGS,dnR

dn
GS,t

)

+ cTLS,upR
up
LS,t + cTLS,dnR

dn
LS,t

)

+ cTGD,upR
up
GD,t + cTGD,dnR

dn
GD,t

)
,

(4)

subject to

Deterministic constraints: All constraints presented be-

low correspond to the forecast values, denoted with super-

script f , of the wind power and temperature.

1) Power constraints: For all t = 1, . . . , Nt,

11×Nt
Pinj,t = 0, (5)

− Pl � APinj,t � Pl, (6)

PG � PG,t � PG, (7)

PC(T
f
t ) � PC,t � PC(T

f
t ), (8)

where

Pinj,t = CGPG,t + CwP
f
w,t − CL(PL,t + PC,t) (9)

and the C matrices map the generator, wind, and

load power vectors to the vector of bus injections.

Constraint (5) guarantees power balance in the net-

work, whereas (6), (7) encode the line and generation

capacity limits, respectively. Constraint (8) imposes

limits on the dispatch of the controllable portion of

the load.

2) Energy Constraints: For all t = 1, . . . , Nt,

0 � St � S(T f
t ). (10)

For all t = 1, . . . , Nt − 1,

0 � St+1 � S(T f
t ), (11)

St+1 = St + (PC,t − PT (T
f
t ))Δτ. (12)

Equation (12) shows the evolution of the energy state.

Constraints (10), (11) are energy state capacity limits.

They restrict the energy content at the beginning and

at the end of hour t to lie within the energy state

capacity limits of the specific hour. Due to the linearity

of (12), requiring Sτ to satisfy the energy state limits

for τ = t, t + 1 ensures that Sτ satisfies the energy

limits for all τ ∈ [t, t+ 1].

Probabilistic constraints: For every t = 1, . . . , Nt, the

following constraints depend on the uncertainties, i.e. the

wind power Pw,t and the outdoor temperature Tt. We split

the constraints into two parts. In part a), the wind power

forecast error is compensated by the secondary frequency

control offered both by the generators and DR for a period

of at most 15 minutes, since re-dispatch occurs every 15

minutes. In part b), the constraints impose limitations on

the operating point after a re-dispatch action is performed.

a) Secondary frequency control constraints:

1) Power constraints: For all t = 1, . . . , Nt,

− Pl � APinj,t � Pl, (13)

PG � PG,t +RGS,t � PG, (14)

PC(Tt) � PC,t +RLS,t � PC(Tt), (15)

−Rdn
GS,t � RGS,t � Rup

GS,t, (16)

−Rdn
LS,t � RLS,t � Rup

LS,t, (17)

Rdn
GS,t, R

up
GS,t, R

dn
LS,t, R

up
LS,t � 0, (18)

11×NG
dupGS,t + 11×NL

ddnLS,t = 1, (19)

11×NG
ddnGS,t + 11×NL

dupLS,t = 1, (20)

where

Pinj,t = CG(PG,t +RGS,t) + CwPw,t

− CL(PL,t + PC,t +RLS,t), (21)

RGS,t = dupGS,t max(−Pm,t, 0)

− ddnGS,t max(Pm,t, 0), (22)

RLS,t = dupLS,t max(Pm,t, 0)

− ddnLS,t max(−Pm,t, 0), (23)

Pm,t =11×Nw(Pw,t − P f
w,t)

−11×NL
(PT (Tt)− PT (T

f
t )). (24)

Constraints (13)-(15) are similar to the deterministic

constraints (6)-(8), with the difference being that due

to the uncertainty, the generation and load schedules

are adjusted by the power correction terms RGS,t

and RLS,t, respectively. With constraints (16)-(17),

we determine the probabilistically worst case values

of the power correction terms (given in (22)-(23)),

which represent the reserves that are penalized in the

objective function.

Following [2], the power correction terms

RGS,t, RLS,t in (22), (23) are defined as piece-

wise linear functions of the total mismatch between

the generation and load. In our case, the mismatch is

defined as the total wind power forecast error plus

the total load forecast error (24). For example, for

a negative wind power error only one of the terms
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Figure 3. Evolution of the energy state of the loads. The solid lines
correspond to the energy state trajectory for the case where the wind power
is equal to its forecast (no reserves are needed in this case). Note that
the energy state is not constant because the controllable load is dispatched
above/below its baseline. The dashed lines show the evolution of the energy
state for 15 minutes given that the maximum possible reserve capacity is
deployed. The red lines show the capacity limits of each hour. In this paper,
we assume that the lower energy bound is zero, but in principle that does
not always have to be the case.

in (22), (23) will be active, providing up-regulating

reserves. The distribution vectors that incorporated

in this part of the formulation are dupGS,t, ddnGS,t,

dupLS,t and ddnLS,t. These vectors denote the fraction

of the mismatch by which the generating units

and the loads should adjust their production and

consumption. Since the total mismatch is distributed

both to the generating units and the loads, the sum

of the elements of the corresponding up-regulating

(respectively down-regulating) distribution vectors

should be one. This is captured in (19), (20).

2) Energy Constraints: For all t = 1, . . . , Nt,

0 � St + (PC,t +RLS,t − PT (Tt))
Δτ

4
� S(Tt),

(25)

0 � St + (PC,t − PT (Tt))
3Δτ

4

+ (PC,t +RLS,t − PT (Tt))
Δτ

4
� S(Tt). (26)

For all t = 1, . . . , Nt − 1,

0 � St + (PC,t − PT (Tt))
3Δτ

4

+ (PC,t +RLS,t − PT (Tt))
Δτ

4
� S(Tt+1). (27)

Constraints (25)-(27) are sufficient conditions that

ensure that the energy state remains within the desired

limits regardless of the time instance within [t, t+ 1]
when reserves are called upon. Due to the linear

structure of the energy state dynamics, it suffices to

satisfy the energy constraints for the first and last

quarter of the hour. This can be also observed by

inspection of Fig. 3. The solid lines correspond to the

energy state trajectory for the case where the wind

power is equal to its forecast (no reserves are needed in

this case). The dashed lines show the evolution of the

energy state for 15 minutes given that the maximum

possible reserve capacity is deployed. The red lines

denote the capacity limits of each hour.

b) Re-dispatch constraints:

1) Power constraints: For all t = 1, . . . , Nt,

− Pl � APinj,t � Pl, (28)

PG � PG,t +RGD,t � PG, (29)

PC(Tt) � PC,t −RLS,t � PC(Tt), (30)

−Rdn
GD,t � RGD,t � Rup,

GD,t (31)

Rdn
GD,t, R

up
GD,t � 0, (32)

11×NG
dup,1GD,t = 1, (33)

11×NG
ddn,1GD,t = 1, (34)

11×NG
dup,2GD,t = 11×NL

ddnLS,t, (35)

11×NG
ddn,2GD,t = 11×NL

dupLS,t, (36)

where

Pinj = CG(PG,t +RGD,t)

− CL(PL,t + PC,t −RLS,t) + CwPw,t, (37)

RGD,t = dup,1GD,t max(−Pm,t, 0)− ddn,1
GD,t max(Pm,t, 0)

+ dup,2GD,t max(−Pm,t, 0)− ddn,2
GD,t max(Pm,t, 0).

(38)

The constraints above ensure that the intra-hour re-

dispatch satisfies both the network constraints and

the load power limits. Note that the load set point

PC,t − RLS,t has an opposite term for the reserves

compared to (15), which implies that the energy state

returns to its scheduled trajectory (solid line in Fig. 3),

thus satisfying the energy limits as well. Recall that the

intra-hour re-dispatch capacity should cover both the

energy required by the loads and the wind power devi-

ations; this is captured in (33)-(36), (38). Specifically,

the terms with the superscript ‘1’ compensate the wind

power error, whereas the terms with the superscript

‘2’ compensate the energy required by the loads for

providing secondary frequency control.

2) Coupling constraints: If at the end of an hour the

energy state of the load has not returned to its sched-

uled value (determined by the power setpoint), the

re-dispatch action of the following hour should cover

this remaining energy in the first quarter. To capture

this, for t = 2, . . . , Nt we impose constraints (29)-

(32), (37) with R0
GD,t+RGS,t in place of RGD,t, and

require

−Rdn
LS,t � RLS,t −RLS,t−1 � Rup

LS,t.

Moreover, we require the following power and energy

constraints

0 � PC,t −RLS,t−1 � PC(Tt), (39)
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0 � St + (PC,t − PT (Tt)

+RLS,t −RLS,t−1)
Δτ

4
� S(Tt), (40)

where

R0
GD,t = dup,0GD,t max(− Pm,t, 0)

− ddn,0GD,t max(Pm,t, 0), (41)

11×NG
dup,0GD,t = 11×NL

ddnLS,t−1, (42)

11×NG
ddn,0GD,t = 11×NL

dupLS,t−1. (43)

To facilitate the analysis of the next section, define

x = {xt}Nt
t=1 to be a ‘stacked’ version of {xt}Nt

t=1 including

all the decision variables, and let δt ∈ R
Nw+1 denote the un-

certainty in step t, which here is the wind power Pw,t ∈ R
Nw

and the temperature Tt. For every t = 2, . . . , Nt, we require

the constraints that are affected either by δt or by both δt
and δt−1 (for example, (39)) to be satisfied with probability

at least 1 − εt, where εt is a given violation level. Under

this requirement, the aforementioned optimization problem

can be formulated as a quadratic program with multiple

chance constraints. Therefore, for every t = 2, . . . , Nt, the

probabilistic constraints can be written in compact notation:

P

(
(δt, δt−1) ∈ R

Nw+1 × R
Nw+1 |

F (δt, δt−1)x+ g(δt) � 0
)
� 1− εt, (44)

where all matrices and vectors are of appropriate dimension.

For t = 1, the chance constraint is similar to (44), with the

difference that F depends only on δ1 and the probability

is with respect to the distribution of δ1 ∈ R
Nw+1. In the

next section, we show how to solve this problem without

introducing assumptions on the probability distribution of

the uncertainty and while providing guarantees regarding the

probability of constraint satisfaction.

B. Solution approach

In [9], the authors introduce the ‘scenario approach’

to address chance constrained optimization problems. In

this approach, the chance constraint is substituted with a

finite number of hard constraints corresponding to different

scenarios of the uncertainty vectors. By using a sufficient

number of scenarios, the approach provides a-priori guaran-

tees that the resulting solution satisfies the chance constraint

with a certain confidence level. Here, we follow an alter-

native scenario-based methodology to deal with the chance

constraint, which was proposed in [10] and extended in [22]

to capture the case of multiple chance constraints.

This method includes two steps. In the first step, for each

t = 1, . . . , Nt, the scenario approach is used to determine,

with a confidence of at least 1 − βt, the minimum volume

set that contains at least 1 − εt probability mass of the

uncertainty. Details on how to determine such a set can

be found in [10], [2]. Here we denote this set by Δt.

To compute this set, the number of scenarios we need to

generate is given by [10]

Nt �
1

εt

e

e− 1

(
ln

1

βt
+ 4(Nw + 1)− 1

)
. (45)

In the second step, we use the probabilistically computed

set Δt and formulate a robust problem where the uncer-

tainty is confined in this set. For each t = 2, . . . , Nt, the

chance constraint (44) is substituted by the following robust

constraint

F (δt, δt−1)x+ g(δt) � 0, for all (δt, δt−1) ∈ Δt. (46)

The interpretation of (46) is that the constraint should be

satisfied for all values of (δt, δt−1) ∈ Δt. For t = 1, the

resulting constraint is similar with the difference that F
depends only on δ1 and we require the constraint to be

satisfied for all δ1 ∈ Δ1. Following [10], [22], any feasible

solution satisfying the robust constraints (46) will be feasible

for each chance constraint (44) with a probability of at least

1− βt. To solve the resulting robust program, the reader is

referred to [23], [10].

IV. CASE STUDIES

A. Data & error scenario generation

Error scenarios are generated under the assumption that

the wind power in-feed and the temperature are independent,

which allows us to use different models for each.

1) Wind data: We use normalized forecasted and actual

hourly wind power data for Germany over the period 2006-

2011. To generate the appropriate number of wind power

scenarios, we use the Markov chain mechanism described

in [24]. Specifically, we discretize the error between the

forecast and the actual data to train a transition probability

matrix, which we can then use to generate the scenarios. In

our formulation, we assume that the wind error can come

at any point during an hour, and persist for the rest of the

hour, as shown in Fig. 2.

2) Temperature data: We generate temperature error sce-

narios using one year of forecasted and actual mean hourly

temperature data from one weather station in Switzerland.

Specifically, we generate 365 24-hour temperature error

vectors and add these vectors to actual 24-hour tempera-

ture realizations to generate 24-hour temperature forecasts.

This approach allows us to consider autocorrelation in the

temperature errors over the course of the day; however, it

does not allow us to take into account that the amount of

error may be a function of the magnitude of the temperature.

We validate our approach using similar data from ten other

weather stations in Switzerland. In Fig. 4, we plot histograms

of the temperature errors in PC , S, and PT , generated with

the data from all eleven weather stations. Note that the errors

associated with PC and S are highly non-Gaussian because

of the shape of the curves in Fig. 1.
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Figure 4. Histograms of the the errors associated with T , PC , S, and
PT . Note the second and third plots are on a log scale.

Table I
COST PARAMETERS

generators 1 2 3 4 5 6
cGS,up 6.00 6.75 7.00 5.25 5.00 5.00
cGD,up 2.40 2.10 1.20 3.90 3.60 3.60

B. Simulation results

The methodology developed in the previous sections is

applied to the IEEE 30-bus network [18], which is modified

to include one wind power generator (i.e. Nw = 1) with

capacity 35MW connected to bus 22. All loads were as-

sumed partially controllable and therefore capable of being

scheduled and providing reserves. Specifically, we assumed

that over the course of a day 10% of the load, on average,

is controllable and so we scaled each hour appropriately.

Values for the generation cost vectors can be found in [18].

Table I provides the values for the up-regulating related cost

vectors. The cost for the reserves provided by the loads is

equal to 1.1 for all loads. The cost vectors for the down-

regulating reserves are the same as the corresponding up-

regulating ones. For our simulations, we used εt = ε = 10%
and βt = β = 10−3 for all t = 1, . . . , Nt. All optimization

problems were solved using the solver CPLEX [25] via the

MATLAB interface YALMIP [26].

Fig. 5 (upper plot) shows for each hour t = 1, . . . , Nt the

maximum positive and negative wind power error computed

from the scenarios, where the number of scenarios was

determined in (45). To compensate a negative wind power

error, up-regulating reserves are required, whereas for a

positive wind power error down-regulating reserves need

to be purchased. As shown in the middle plot of Fig. 5,

these reserves are provided either by the secondary reserves

from generating units, secondary reserves from DR, or by

generator re-dispatch. The total reserve cost for each case,
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Figure 5. Upper plot: Maximum positive (green) and negative (blue)
wind power error. Middle plot: Amount of reserve power provided by
the secondary reserves of the generating units, the secondary reserves of
DR, and by the re-dispatch. Lower plot: Total reserve cost for each case,
calculated as the sum of the corresponding up and down-regulating reserves.

calculated as the sum of the corresponding up and down-

regulating reserves, is shown in the lower plot of Fig. 5.

As shown, the loads, despite their uncertainty, are chosen

preferentially over the generators to provide secondary fre-

quency control because of our cost assumptions. However,

the generators need to provide a substantial amount of re-

dispatch capacity. This division of services makes sense as

generators are better suited to slower changes in their set

points while load aggregations are better suited to fast, zero-

mean deviations.

Fig. 6 (upper plot) shows the forecasted outdoor tem-

perature as well as the temperature scenarios used in the

optimization process. In the middle plot of Fig. 6, we show

the optimal hourly schedule of the controllable portion of the

load as computed by our algorithm, along with the forecasted

consumption computed from the forecasted temperatures.

Since the load’s power capacity changes as a function of

outdoor temperature, we show values corresponding to the
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Figure 6. Upper plot: Scenarios and forecasted values of the outdoor
temperature. Middle plot: Power of the controllable part of the load (solid
blue), its forecast value (dashed black), and upper limits of the load power
for the case where the temperature is equal to its forecast (solid red) and
for the worst case (dashed red), respectively. Lower plot: Evolution of the
load energy state. The interpretation of the individual lines is the same with
those of the middle plot.

case when the temperature is equal to its forecast (solid

red line) and the worse case error scenario (dashed red

line). Note that when the temperature is low, the power

capacity is high and nearly certain. The lower plot of Fig. 6

shows the evolution of the energy state of the load, and the

interpretation of the lines is similar to that of the middle plot.

As shown, the hourly schedule does not significantly deviate

from the forecast; however, the additional power/energy

capacity available can be used for secondary frequency

control.

Fig. 7 shows the total cost of the solution generated by

our approach, calculated as the sum of the production and

reserve costs. For comparison purposes, we show the cost

that would occur if the load was equal to its forecast value

(deterministic) and no load controllability was taken into

account. Additionally, we show the case where the load is
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Figure 7. Total cost, calculated as the sum of the production and reserve
costs, for three cases: 1) no load uncertainty (i.e. deterministic load), no
control; 2) uncertain load, no control; and 3) uncertain but controllable
load.
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Figure 8. Empirical probability of constraint violation and the theoretical
limit.

not controllable, but is assumed to be uncertain (varying

according to the scenarios of the upper plot of Fig. 6).

This solution is higher cost than the deterministic case

because we consider the load uncertainty within the OPF to

ensure that the solution is robust. Note that the cost of the

solution generated by our approach is always lower than the

other values, highlighting the improvement resulting from

incorporating load controllability in the reserve scheduling

process.

To validate the guarantees offered by our approach re-

garding the probability of constraint satisfaction, we carried

out a Monte Carlo analysis. Specifically, we fixed x to

the optimal solution of our optimization problem and for

each t = 1, . . . , Nt we computed the empirical probability

of constraint violation. The latter was calculated as the

fraction of 4,000 evaluation scenarios (different from those

used in the optimization process) where at least one of

the constraints inside the probability in (44) was violated.

As shown in Fig. 8, this empirical estimate is below the

theoretical εt guarantees for all t = 1, . . . , Nt.
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V. CONCLUDING REMARKS

We have demonstrated that uncertain reserves from DR

could be considered in a day-ahead stochastic OPF to reduce

the cost of dispatch. Considering uncertainty helps us be less

conservative in committing DR resources to reserve markets.

Therefore, our approach allows us to more-fully utilize the

available DR resource, while still guaranteeing pre-defined

levels of robustness. Importantly, the proposed scenario

based methodology retains the structure of a deterministic

problem (i.e. it remains a quadratic program) and hence is

computationally tractable, and also amenable to distributed

and decomposition based techniques.
Our results have important implications for the design

of reserve markets. Specifically, we find that it is essential

to have a mechanism to manage the energy state of load

aggregations, which is in line with recent system operator

proposals, for example [21]. We also find that it may be less

important for a resource to be perfectly certain than to know

its uncertainty so that that information can be incorporated

within an OPF. Usually resources must demonstrate that they

can accurately follow control signals to be able to participate

in reserve markets; however, we instead suggest that the

system operator should measure a range of a DR resource’s

abilities in order to understand both its expected response

and error distribution.
Future work will concentrate on integrating N-1 secu-

rity constraints into our framework. Additionally, we plan

to explore distributed algorithms to ensure computational

tractability even for realistically-sized networks. Moreover,

to conduct a more realistic analysis, we aim to extend our

models for generating uncertainty realizations to capture

other sources of uncertainty (e.g., human behavior, model

mismatch) and also the spatial correlation of the forecast

error. We also plan to investigate the trade-offs between

reserve uncertainty and costs.

REFERENCES

[1] F. Bouffard and F. Galiana, “Stochastic security for opera-
tions planning with significant wind power generation,” IEEE
Transactions on Power Systems, vol. 23, no. 2, pp. 306–316,
2008.

[2] M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson,
“A Probabilistic Framework for Reserve Scheduling and N-
1 Security Assessment of Systems with High Wind Power
Penetration,” IEEE Transactions on Power Systems, 2013.

[3] D. Callaway and I. Hiskens, “Achieving controllability of
electric loads,” Proceedings of the IEEE, vol. 99, no. 1, pp.
184–199, 2011.

[4] I. Hiskens and D. Callaway, “Achieving controllability of
plug-in electric vehicles,” in Vehicle Power and Propulsion
Conference, 2009. VPPC ’09. IEEE, 2009, pp. 1215–1220.

[5] A. Gopstein, “Energy storage & the grid – from characteristics
to impact,” Proceedings of the IEEE, vol. 100, no. 2, pp. 311–
316, 2012.
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