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Stochastic Optimization by Simulation: 

Convergence Proofs for the GI/G/1 Queue 

in Steady-state 

Pierre L'Ecuyer * Peter W. Glynn 
De'partement d'I.R.O., Universite' de Montre'al, C.P. 6128, Montre'al, Quebec, Canada, H3C 3J7 

Operations Research Department, Stanford University, Stanford, California 94305 

A pproaches like finite differences with common random numbers, infinitesimal perturbation 
analysis, and the likelihood ratio method have drawn a great deal of attention recently as 

ways of estimating the gradient of a performance measure with respect to continuous parameters 
in a dynamic stochastic system. In this paper, we study the use of such estimators in stochastic 
approximation algorithms, to perform so-called "single-run optimizations" of steady-state sys- 
tems. Under mild conditions, for an objective function that involves the mean system time in 
a GI / G / 1 queue, we prove that many variants of these algorithms converge to the minimizer. 
In most cases, however, the simulation length must be increased from iteration to iteration; 
otherwise the algorithm may converge to the wrong value. One exception is a particular im- 
plementation of infinitesimal perturbation analysis, for which the single-run optimization con- 
verges to the optimum even with a fixed (and small) number of ends of service per iteration. 
As a by-product of our convergence proofs, we obtain some properties of the derivative estimators 
that could be of independent interest. Our analysis exploits the regenerative structure of the 
system, but our derivative estimation and optimization algorithms do not always take advantage 
of that regenerative structure. In a companion paper, we report numerical experiments with an 
M / M /1 queue, which illustrate the basic convergence properties and possible pitfalls of the 
various techniques. 
(Discrete Event Systems; Stochastic Approximation; Gradient Estimation; Optimization; Steady- 
state) 

1. Introduction 

Simulation has traditionally been used to evaluate the 
performance of complex systems, especially when an- 
alytic formulae are not available. Using it to perform 
optimization is much more challenging. Consider a (sto- 
chastic) simulation model parameterized by a vector 0 

of continuous parameters, and suppose one seeks to 
minimize the expected value a(6) of some objective 
function. In principle, if a( 6) is well behaved, one could 
estimate its derivative (or gradient) by simulation and 
use adapted versions of classical nonlinear programming 
algorithms. Recently, the question of how to estimate 

the gradient of a performance measure (defined as a 
mathematical expectation) with respect to continuous 
parameters, by simulation, has attracted a great deal of 
attention. (See, e.g., Glasserman 1991, Glynn 1990, 
L'Ecuyer 1990, Rubinstein and Shapiro 1993, and Suri 
1989.) For steady-state simulations, a single-run iterative 
optimization scheme based on stochastic approximation 
(SA) has been suggested (Meketon 1987, Pflug 1990, 
Suri and Leung 1989). At each iteration, this scheme 
uses an estimate of the gradient of a to modify the cur- 
rent parameter value. These methods could enlarge 
substantially the class of stochastic optimization prob- 
lems that can be solved in practice. 
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In this paper, we investigate the combination of SA 
with different derivative estimation techniques (DETs) 
in the context of a single queue. The general theory of 
SA has been studied extensively (see Kushner and Clark 
1978, Metivier and Priouret 1984, and many references 
cited there), but not so much their combination with 
various DETs for discrete-event systems in the steady- 
state context, as we do here. Preliminary empirical ex- 
periments have been undertaken by Suri and Leung 
(1989) for a M/M/1 queue. These authors looked at 
two SA methods, which they presented as heuristics. 
One was based on infinitesimal perturbation analysis 
(IPA), while the other was an adaptation of the Kiefer- 
Wolfowitz (KW) algorithm, which uses finite differences 
(FD) to estimate the derivative. They did not prove 
convergence. We examine in this paper many DETs, 
including some based on FD, with and without common 
random numbers, IPA, and variants of the likelihood 
ratio (LR) or score function (SF) method. These tech- 
niques can be combined with SA in different ways. For 
example, at iteration n of SA, one can use either a (de- 
terministic) truncated horizon tn, or a fixed number tn 
of regenerative cycles. Also, t,, can increase with n or 
remain constant. We prove a.s. (almost sure) conver- 
gence to the optimizer for many SA/DET variants. 
Within each class of DET (FD, LR, IPA), there are vari- 
ants for which we require t n oo as n -* oo, and others 
for which there is no constraint on tn (e.g., it can be 
constant). For the latter, the DETs are all regenerative 
estimators, with one exception. That exception is IPA 
with the same number of customers at each SA iteration, 
for which we prove weak convergence. 

Chong and Ramadge (1992a, 1993) also analyzed (in 
parallel to us) IPA-based SA algorithms to optimize a 
single queue and proved a.s. convergence to the opti- 
mum, using different proof techniques than ours and 
different assumptions. In their first paper, they studied 
the case of an M / G /1 queue, while in their second, 
they considered a GI / G / 1 queue and an SA algorithm 
which updates the parameter after an arbitrary number 
of customers. That includes in particular the case of one 
customer per SA iteration. In Chong and Ramadge 
(1992b), they extended their analysis and convergence 
proofs to more general regenerative systems. Fu (1990) 
previously analyzed a different variant of SA-IPA al- 
gorithm, for which he proved a.s. convergence. His al- 

gorithm exploited the regenerative structure of the sys- 
tem and the special form of the objective function (1) 
(see ?2.2). His result corresponds to our Proposition 
6(c). Wardi (1988) also suggested and analyzed a dif- 
ferent variant of SA, combined with IPA, for which he 
showed a nonstandard kind of convergence which he 
called convergence in zero upper density. In all those 
papers, only IPA was considered. 

A different approach for stochastic optimization, 
called the stochastic counterpart method, is proposed and 
thoroughly analyzed in Rubinstein and Shapiro (1993). 
The basic idea is to estimate the whole objective function 
as a function of 0 in a parameterized form, using a like- 
lihood ratio technique, and then to optimize that sample 
function by a standard (deterministic) optimization 
method. In this paper, we do not consider that approach. 

In ?2, we consider a GI/ G /1 queue for which the 
decision variable is a parameter of the service time dis- 
tribution. The aim is to minimize a function of the av- 
erage system time per customer. We feel that many im- 
portant questions that would arise in more general 
models, when SA is used to optimize infinite-horizon 
(steady-state) simulations, are well illustrated by this 
simple example. We recall the classical SA algorithm 
and give (in Appendix I) sufficient conditions for its 
convergence to the optimum. Section 3 reviews different 
ways of estimating the derivative (DETs). For a variety 
of SA-DET combinations, we prove convergence to the 
optimum under specific conditions (see Propositions 3- 
7). In the conclusion, we discuss briefly how all this 
can be extended to more general systems and mention 
prospects for further research. A companion paper 
(L'Ecuyer, Giroux, and Glynn 1994) reports numerical 
investigations and discusses the question of convergence 
rates, for which further analysis would be needed. 

All our proofs are relegated to Appendix II. Since 0 

changes constantly between the iterations of SA, some 
convergence properties of the derivative estimators (e.g., 
bounded variance and convergence in expectation to 
the steady-state derivative) must be shown to hold uni- 
formly in 0. As a by-product of our proofs, we obtain 
original results concerning GI / G / 1 queues that could 
be of independent interest. For instance, it follows from 
the renewal-reward theorem (Wolff 1989) that for a 
stable queue, the average sojourn time of the first t 
customers in the queue converges in expectation, as 
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t -- oo, to the infinite-horizon average sojourn time per 
customer. We prove, under appropriate conditions, that 
this convergence is uniform over 0 and s, where s is the 
initial state (taken over some compact set), which cor- 
responds to the waiting time of the first customer, and 
0 lies in a compact set in which the system is (uniformly) 
stable. We also derive a similar uniform convergence 
result for the derivative of the expected average sojourn 
time with respect to 0 and a few additional character- 
izations of this expectation. 

2. Example: A GI/G /1 Queue 
2.1. The Basic Model 
Consider a GI/G/1 queue (Asmussen 1987, Wolff 
1989) with interarrival and service-time distributions A 
and Bo respectively, both with finite expectations and 
variances. The latter depends on a parameter 0 E 0 
= [Omin, Omax] C R. We assume that for each 0 E 0, the 
system is stable. Let w(O) be the average sojourn time 
in the system per customer, in steady-state, at parameter 
level 0. The objective function is: 

a(6) = w(O) + C(0) (1) 

where C: 0 1R is continuously differentiable and an- 
alytically available. We want to minimize a(0) over 0 
= [Omin, 6max]I where Lmin < Omin < Omax < max. Let 6* be 
the optimum. We define 0 and 0 this way to be able to 
do FD derivative estimation at any point of E (see ?3.1 ). 
This is also useful for LR and IPA. Let 00 be an open 
interval that contains 0. 

A GI / G / 1 queue can be described as a discrete-time 
Markov chain as follows. For i 2 1, let Wi, Ls, and W*i 
= Wi + gi be the waiting time, service time, and sojourn 
time for the i th customer, and vi be the time between 
arrivals of the ith and (i + 1 )th customer. For our pur- 
poses, Wi will be the state of the Markov chain at step 
i. The state space is S = [0, oo) and W1 = s is the initial 
state. W1 = 0 corresponds to an initially empty system. 
For i 2 1, one has 

Wi*:= Wi + and Wi+1:= (W - vi)+ (2) 

where x+ means max(x, 0). Since C(0) can be evaluated 
directly, we will estimate only the derivative of w(6) 
and then add C'(0) separately. Here and throughout 
the paper, the "prime" denotes the derivative with re- 
spect to 0. 

We can view the Markov chain {Wi, i = 1, 2,. . .} as 
being defined over the probability space (Q, 1, P,), 
where { Po, 0 E 0, s E S } is a family of probability 
measures defined over (Q, 1). The sample point w E Q 
represents the "randomness" that drives the system, 
and PF, depends (in general) on 0 and s (where W1 = s 
E S is deterministic). Let ES,, denote the corresponding 
mathematical expectation. When the quantities involved 
do not depend on s, we sometimes denote ES,, by ES to 
simplify the notation. For t 2 1, let 

h,(O, s, w) = z W*, (3) 

wt(0, s) = f ht(O, s, w)dPo,s(w) (4) 

Here, h,(O, s, w) represents the total sojourn time in the 
system for the first t customers, and w,(O, s) its expec- 
tation. Let Jt be the c-field generated by (rL, v1, , 
~t, Pt). Then, h,(O, s, w) is J,-measurable. Also, if s = 0 
and if r denotes the number of customers in the first 
busy cycle, then r + 1 is a stopping time with respect 
to {t, t > 1}. Let S = [0, c] be the set of admissible 
initial states, where c is a (perhaps large) constant. It is 
well known from renewal theory that for each fixed 0 
E 0 and s E S, limt C, wtw(0, s)/t = w(0). 

2.2. Variants of the Optimality Equation 
If a is convex and 6* lies inside 0, then the minimization 
problem is equivalent to finding a root of 

a'(O) = w'(6) + C'(0). (5) 

Even if 6* is on the boundary of 0, the minimization 
problem can be solved by a descent method which, at 
each step, computes a'(0) at the current point 0 and 
moves opposite to its sign. Here, we will use a stochastic 
descent method (see ?2.3), which at each iteration 
moves in the direction of an estimate of a'(0). 

Alternative formulae for the direction of descent can 
be derived using a regenerative approach as follows. 
Let s = 0 and let r be the number of customers in the 
first regenerative cycle (busy period). From elementary 
renewal theory one has w (0) = u (0) / (0) where 

u(6) = E0o[ W] , 1(6) = Eo,o[r]. 
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If w'(0) exists, then, from standard calculus, one has 

w(6) =U'(0)1(0) - l'(6)u(6) WIM - ~12(6) 

u'(0) - w(0)l'(6) 

1(6) ~~~~(6) 

One can combine estimators for each of the four quan- 
tities on the right-hand side of (6) to obtain an estimator 
for w '(0). Alternatively, finding a root of (5) is the same 
as finding a root of 

u'(0) - w(0)l'(O) + l(0)C'(O) (7) 

or of 

u'(0)l(0) - l'(O)u(O) + 12(0)C'(O). (8) 

So, instead of using an estimate of (5) in the descent 
method, one use an estimate of (7) or (8). That was 
first suggested by Fu (1990) for (7) and Glynn (1986) 
for (8). The interest of (7-8) is that unbiased estimators 
of them can be obtained based on a few regenerative 
cycles, which is not the case for (5). For example, an 
unbiased estimator of (8) is easily built from an unbiased 
estimator of (1(0), 1'(0), u'(0)) and an independent un- 
biased estimator of (1 (0), u (0)). Such estimators can be 
constructed via the LR method, based on two regen- 
erative cycles (see ?3.3). Similarly, an unbiased esti- 
mator of (7) can be constructed via IPA, based on one 
regenerative cycle, often in spite of the fact that the 
estimators of u'(0) and 1'(0) are individually biased (see 
?3.4 and Heidelberger et al. 1988). 

Equations (5) and (7-8) are specific to the form of 
our objective function (1). For a more general case, let 
a( 6) = (p( 6, w (0)), where Sp is convex and continuously 
differentiable. Then, as in Chong and Ramadge (1992b), 

al (0) = (0, w(0))w'(0) + d (0, w(0)), 
Oaw 06o 

where Osa / 06 and ase / dw denote the partial derivatives 
of Sp w.r.t. its first and second component, respectively. 
With appropriate conditions on Sp, our development for 
the DETs which aim at estimating a'(0) would go 
through for this more general case. Generalization to 
vectors of parameters is straightforward. Of course, 
more complicated nonconvex functions, e.g., with mul- 
tiple local minima, are more difficult to deal with, as in 
the deterministic case. 

Equations (7-8) are more dependent on the form of 
a than (5). For another illustration, let a(6) = D(0)w2 (0) 
+ C(6), where D and C are known differentiable func- 
tions. Here, 

a'(0) = D'(0)w2(0) + 2D(0)w(0)w'(0) + C'(6). 

But in a descent algorithm, one can use instead an un- 
biased estimator of 

1(6)ax'(0) = D'(0)u2(0)1(0) 

+ 2D(6)u(6)[l(6)u'(6) - u(0)l'(0)] 

+ 13(0)C'(0), 

which can be obtained via LR, based on three (inde- 
pendent) regenerative cycles. 

2.3. The Stochastic Approximation Scheme 
We consider a stochastic approximation (SA) algorithm 
of the form 

+ 1 := 1re(fJn y nYn ), (9) 

for n 2 1, where fn is the parameter value at the begin- 
ning of iteration n (01 E 0 is fixed, or random with 
known distribution), Yn is an estimator of either (5), 
(7), or (8), obtained at iteration n, {Yn/ n 2 1} is a 
(deterministic) positive sequence decreasing to 0 such 
that E n??=1 Yn = oo, and irE denotes the projection on the 
set E (i.e., iri-(O) is the point of 0 closest to 0). To obtain 
Yn, in each case, we compute directly C'(On), and esti- 
mate only the remaining terms, by simulating the system 
for one or more "subrun (s)" of finite duration. Specific 
estimators are discussed in ?3. 

Let sn E S denote the state of the system at the be- 
ginning of iteration n. For all the estimators that we 
consider, the distribution of (Yn, sn+l), conditional on 

(On, Sn), is completely specified by n and P,n , and is 
independent of the past iterafions. In other words, { (Yn, 
On+ 1 sn+1), n 2 0 } is a (nonhomogeneous) Markov chain 
(YO is a dummy value). Denote by En_& () the condi- 
tional expectation E ( *I On, Sn), i.e., the expectation con- 
ditional on what is known at the beginning of iteration 
n. Suppose that each Yn is viewed as an estimator of 
(5) and is integrable. Then, En_(Yn) exists and we can 
write 

Yn = a'(6n) + O3n + en where (10) 

O3n = En-l[Yn] - a'(0n) ( 11) 
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represents the (conditional) bias on Y, given (0/, sn), 
while ,, is a random sequence, with En,-(En) = 0 and 
En_l(E2) = var(Yn I On, Sn) . If Y,, is an estimator of (7) or 
(8) instead, then replace a'(On) in (10-11) by l(On) a'(0n) 
or 12(tn) a'(On), respectively. 

2.4. Convergence to the Optimum 
Proposition 1, proved in Appendix I, gives (simplified) 
sufficient conditions for the convergence of (9) to the 
optimum. It treats the case where the (conditional) bias 

Oln goes to zero and the variance of Yn does not increase 
too fast with n. For some of the regenerative methods, 
one has O = 0 for each n. Otherwise, when the DET 
uses the same number of customers at all iterations, O3n 
typically does not go to zero. But sometimes, E0(On) -* 

0 and the algorithm might still converge to the optimum. 
This is treated by Theorem 1 of Appendix I, which en- 
sures weak convergence under appropriate conditions. 

PROPOSITION 1. Suppose that ae is differentiable and 
convex or strictly unimodal over 0. If liMn,> On = 0 a.s. 
and I' 1 Eo(E2),y2 < oo a.s., then limn, 0, an= 0* a.s. 

For convenience in the following sections, in the case 
where Y, is a truncated-horizon estimator of (5), we 
will decompose f3n as f3n = O' + O', where OF iS the bias 
component due to the fact that we simulate over a finite 
horizon, and O' represents the possibility that Yn may 
itself be a biased estimator of the derivative of the finite- 
horizon expected cost. Typically, with FD, flR # 0. If 
we use a deterministic horizon tn at iteration n, then 

1n tn (On, Sn) /tn 
- 

W'(0n) - 

To make sure that the latter converges to zero a.s., we 
will show, under appropriate conditions, that w (0, s) / 
t- w'(0) converges to zero uniformly in (0, s) as t goes 
to infinity. 

2.5. Continuous Differentiability and Uniform 
Convergence 

We want sufficient conditions under which a is convex 
or strictly unimodal, w and each wt(*, s) are differen- 
tiable, and the following uniform convergence results 
hold: 

lim sup Iwt(0, s)/t-w(0)l = 0 and (12) 
t-oci OE6bsES 

lim sup Iw(0, s)/t - w'(0)I = 0. (13) 
t- oX OEE,sES 

In Proposition 11, we establish (12-13) under As- 
sumption A below. We also prove, under Assumptions 
A-C, that wt (0, s) / t is convex and continuously dif- 
ferentiable in 0 for each s and t, and that a is also convex 
and continuously differentiable. Note that these prop- 
erties can be expected to hold only when appropriate 
regularity conditions are imposed on the service time 
distribution Bo. On the other hand, the properties that 
are exploited here are merely sufficient for the validity 
of SA, not necessary. Assumptions A and B are used 
for IPA and LR derivative estimation, respectively (they 
are typical IPA and LR assumptions), while C is used 
to ensure the convexity of a. For example, an exponen- 
tial service time distribution with mean 0 verifies all 
these assumptions; see L'Ecuyer, Giroux, and Glynn 

'def 
(1994) for the details. Define Ui = B0(t). Then, Ui is 
a U( 0, 1) random variable and 

def 

Ai = Bf 1(Uj) - min{ DI Bo() < Ui. 

Define also 

Zi aB -1(ui). 

ASSUMPTION A. (i) There is a distribution B such that 
supoE,o Bf 1(u) < B-1(u)for each u in (0, 1). The queue 
remains stable when the service times are generated ac- 
cording to B. Also, E[ 8] ? K?, where 1 < K? < oo and E 
is the expectation that corresponds to B. 

(ii) For each u E (0, 1), B`1(u) is differentiable in 0. 
There exists a measurable F (0, 1)'-> R such that 

supOE-0la B` (u) < F(u) 

for each u and 

def 

1?<Kr = J(IF( U))8 du <cD. 

ASSUMPTION B. (i) Assumption A (i) holds, and the 
moment generating function associated with B is finite in 
some neighborhood of zero. 

(ii) Let Bo have a density bo, whose support { v ? 0 1 bo( ) 
> 0 } is independent of 0 for 06 E&. 

(iii) Everywhere in 0%, bo( ) is continuously differen- 
tiable with respect to 0, for each v 2 0. 
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(iv) For each 8o E 0 and K > 1, there exists T = (00 
- go, 8o + co) C 60 and 8 & &0 such that 

sup b <t) ?K and E (suP ln bNM))J < 0c 

ASSUMPTION C. C is convex and continuously differ- 
entiable and for each u, Bo 1(u) is convex in 0. 

3. Ways of Estimating the 
Derivative 

One crucial ingredient for the SA algorithm considered 
here is an efficient derivative estimation technique 
(DET). In this section, we survey some possibilities 
and state convergence results regarding their combi- 
nation with SA. All the propositions are proved in 
Appendix II. 

3.1. Finite Differences (FD) 
This method is described, for instance, in Glynn ( 1989) 
and Kushner and Clark (1978), without the projection 
operator. When used in conjunction with FD, the SA 
algorithm (9) is known as the Kiefer-Wolfowitz (KW) 
algorithm. Here, we describe and use central (or sym- 
metric) FD. For other variants, like forward FD, see the 
above references. When 0 is a d -dimensional vector, the 
latter uses only d + 1 instead of 2 d subruns per iteration. 
However, its asymptotic convergence rate is not as good 
(Glynn 1989). Spall (1992) analyzes a different FD 
method for SA, called "simultaneous perturbation," and 
shows that it could be significantly more efficient than 
FD when d is large. 

Take a deterministic positive sequence { cn, n 2 1 } 
that converges to 0. At iteration n, simulate from some 
initial state s - C S at parameter value 

0 n = lr(( On c) - max (On - Cl, 8minm) 

for t, customers. Simulate also (independently) from 
state s+ E S at parameter value 

On = 7r6(fn + Cn) = min(8,l + CSI,/ max) 

for tn customers. Let cv- and cv+ denote the respective 
sample points. A FD estimator of (5) is 

Yn = C'(8n) + , ,s )- t , . (14) 
(On+ - O 

The conditional bias 

= En 1[Y,, - C' (0) - w (0,s1)/t,71 

can itself be decomposed as OR = O' + O', where 

OD Wtn(0n , S7) Wtn(0, Is) O W n(n 5nl) and rn (H,+- an)t7, t7l 

Wt,(0n , S+n) - Wt"(On SO) 

oI + WJ(07 , Sn) - Wt,(0, rsn) (15) 
13n = (an 0 -0)tn 

represent respectively the bias due to finite differences 
and the bias due to the possibly different initial states. 

PROPOSITION 2. Let Assumptions A-B hold, tn 0 0 

and cn -O. Then limn-. On' d a_- 0. 
The term fI3 can be eliminated by picking s - = + 

= sn Otherwise, if I s n- s- I is bounded, the numerator 
in ( 15 ) should be in 0(1 / tn) (asymptotically). In that 
case, to get 0, - 0, take 1 / (tn c) -e 0. Even when 0, 
= 0, taking tn constant may lead to problems, because 
F is usually not zero. As cn -- 0, when w- and c+ are 
distinct ("independent"), the variance of Yn usually in- 
creases to infinity. However, we have: 

PROPOSITION 3. Suppose one uses SA with the esti- 
mator (14). Let Assumption A-C hold, tn, X, c0, --C 0, 
and `t-1C-282 < 00. Assume that /3 0 a.s. as n 

- oo (this can be achieved trivially by taking s7- =s 
= Sn). Then, On tt* a.s. 

Note that in the proofs of Propositions 2 and 3, As- 
sumption A is used to prove (13), while C is used to 
prove the convexity of w ( * ), and B is used only to prove 
the continuous differentiability. These remarks also ap- 
ply to Proposition 6. 

A different approach is to estimate (8) instead of (5) 
using finite differences. A forward FD approximation of 
(8) at 0 = n, adapted from Glynn (1986), is 

U(0+) - U(0,,) 1(0) l(0+) - I(0n) 

f?n r n n 

+ l(0,)l(0,1)C'(0,1) (16) 

_u(0n)l(0n) - (01+)u(00 
-(fWn 

)(n ( (n)+ l(n+)l(0n,)C'(001). (17) 

To estimate (17), simulate for 2tn independent regen- 
erative cycles using parameter value 0n [0 +] for the odd 

MANAGEMENT SCIENCE/VOl. 40, No. 11, November 1994 1567 



L'ECUYER AND GLYNN 
Stochastic Optimization by Simulation 

[even] numbered cycles. Let Tj denote the number of 
customers during the jth cycle and hj denote the total 
system time for those rj customers. Then, an unbiased 
estimator of (17) is 

1t ~ h2jT21-l-h2j-lT2j 
Y 

n j=1 ( 0n - On )+ 
r2r21C'() (18) 

Here, tn oo is not required. For instance, one can use 
tn = 1 for all n. 

PROPOSITION 4. Let Assumptions A-C hold, In=1 

tn cn n< o0, and suppose one uses SA with the estimator 
(18). Then, On -t 0* a.s. 

3.2. Finite Differences with Common Random 
Numbers (FDC) 

One way to reduce the variance in ( 14) is to use common 
random numbers across the subruns at each iteration, 
start all the subruns from the same state: s5 = s+ = Sn, 
and synchronize. More specifically, one views w as rep- 
resenting a sequence of U(0, 1) variates, so that all the 
dependency on (0, s) appears in ht(0, s, ). Take w4 
= wn = wn. Since the subruns are aimed at comparing 
very similar systems, ht,(09j, Sn, W,n) and ht,(0-, 5,, w,,) 

should be highly correlated, especially when cn is small, 
so that considerable variance reductions should be ob- 
tained. Conditions that guarantee variance reductions 
are given in Glasserman and Yao (1992). Proposition 
2 still applies. However, taking tn -O oo is essential. In 
L'Ecuyer, Giroux, and Glynn (1994), we discuss im- 
plementation issues related to FDC and show that if tn 
is kept constant, SA with FDC typically converges to 
the wrong value. 

3.3. A Likelihood Ratio (LR) Approach 
The LR approach (Glynn 1990, L'Ecuyer 1990, Reiman 
and Weiss 1989, and Rubinstein 1989) can be used as 
follows to estimate w'(0, s). Let us view w as repre- 
senting the sequence of interarrival and service times 
for the first t customers, that is, w = , v1, . . .t, A, vt). 
For any s E S, to differentiate the expectation (4) with 
respect to 0, take a fixed 00 E 0 and rewrite: 

wt(0, S) = ht(0, s, w)Lt(0o, 0, s, w)dPoo,(w) (19) 

where 

L#(o, 0 s, = t bo(w ) 
i=1 

is a likelihood ratio. Under appropriate regularity con- 
ditions (see L'Ecuyer 1994), one can differentiate wt by 
differentiating inside the integral: 

w' (0, S) = 4't(6, s, w)dPoo,s(w) where 

it (6, s, w) = h1(0, s, cv)L'(0o, 0, s, co) 

= h,(6, s, w)Lt(6o, 6, s, W)St(0, s, c) (20) 

is the LR estimator, 

SL'(00, 6 s, w) - 

St (6, 5, w) =- - E di, (21) 
L, (00, 6, s, co) i= 

is called the score function, and 

di = a 
In bo( Ai). 

Only one simulation experiment (using P0o,,) is required 
to estimate the derivative. From Proposition 14, under 
Assumption B, (20) is an unbiased estimator of w' (0, 
s) for 0 in some neighborhood of 00. After adding the 
derivative of the deterministic part and taking 00 =On, 

the LR derivative estimator at iteration n of SA becomes 

Yn = C() + i,to(6n, Sn, COn)/tn 

= C'(On) + htn(Sn, Wn)Stn(6n, sn, Wn)/tn. (22) 

Note that the variance of S4(6, s, c) (and of (20) at 
0 = 00) increases with t. This is a significant drawback 
and must be taken into account when making the 
tradeoff between bias and variance. Here, O' = 0 and 

n- 0 as tn O 0. But the variance on Yn then goes to 
infinity also. One remedy, as in FD, is to increase tn 
more slowly. We show in Proposition 17 that under 
Assumption B, the variance of Yn does not increase faster 
than linearly in tn. The conditions of Proposition 1 can 
then be verified with -Yn = yon-' and tn = ta + tbnP for 
0 < p < 1, where ta and tb > 0 are two constants. In the 
finite-horizon case, SA with LR converges at a rate of 
t-1/2 (Glynn 1989) in terms of the total simulation 
length t. But when the variance increases with tn and 
tn increases with n, this is no longer true. 

One can circumvent the bias/variance problem of 
LR by exploiting the regenerative structure (Glynn 1986 
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and 1990, Reiman and Weiss 1989). One approach is 
to combine estimators for each of the four quantities 
on the right-hand side of (6) to construct an estimator 
for w'(0). One can estimate 1(0) and u(0) as usual, and 
u'(0) and l'(0) by: 

tU(0, w) = ( W wi)Sr(O, 0, c) and (23) 

49(0, w) = rSr(O, 0, w), (24) 

respectively. From Proposition 15, under Assumption 
B, these estimators are unbiased. Suppose one simulates 
for r regenerative cycles. Let T-j be the number of de- 
partures during the j th cycle, hj the total system time 
for those rj customers in cycle j, and Sj the score function 
associated with that cycle. Then, an estimator of w'(0) 
is given by 

1Tj E hjSj - =1 hj 1 ii (S25) 

This estimator is biased for finite r. However, we show 
in Proposition 18 that under Assumption B, as r oo, 
(25) has bounded variance and converges in expectation 
to w'(0), uniformly with respect to 0. The corresponding 
estimator of a&(O,) for iteration n, based on t, regen- 
erative cycles, is: 

Yn = C'(On) + tw(tn, On, Wan) (26) 

Now, instead of trying to estimate a&(0n) at each it- 
eration, one can estimate (8). Since (23-24) provide 
unbiased estimators of u'(0) and l'(0), an unbiased es- 
timator of (8) can be obtained from two independent 
regenerative cycles as described in the text that follows 
(8). One can also use more than two cycles and average 
out. Further, estimators of all quantities can be com- 
puted from each cycle and combined in a splitting 
scheme. Take 2t, cycles at iteration n, and let -rj, hj, and 

Sj be defined as for (25). Then, an unbiased estimator 
of (8) at 0 = an is 

1 tn1 

Yn = - z (h2jS2jT2j-1 + h2j1jS2j-lT2j - h2j_1S2jT2j 
n j=1 

- h2jS2j-lT2j-1) + r2j-r2j_lC'(6)) n (27) 

Since this estimator is unbiased, t, can be taken constant 
inn (e.g. t, = 1 for all n). 

The estimators (22), (26), and (27) can be integrated 
into the SA algorithm. The following proposition tells 
us about the a.s. convergence of such a scheme. 

PROPOSITION 5. Let Assumptions A-C hold and E 

n=1 Yn < a 

(a) Suppose one uses SA with the LR estimator (22). 
If snE 9Sfor all n, tn -_ oo , and Zn'= tn yn< 00, then 
6 - 0* a.s. 

(b) If one uses SA with the regenerative LR estimator 
(26) and t,n -0 , then n,n -t 6* a.s. 

(c) If one uses SA with the estimator (27), then 6n 
0* a.s. 

3.4. Infinitesimal Perturbation Analysis (IPA) 
The basic idea of IPA, applied to our context, is to es- 
timate w'(0, s) by the sample derivative 

h'(0, s, c) = b i, (28) 

where c is interpreted as the sequence Ul, U2, 
defined before Assumption A, 

6i= 
a 
OBY(U)= z Zj, (29) 

]=Vi j=Vi 

and vi is the first customer with index ?1 in the 
busy period to which customer i belongs. That is, vi 
= max1 jI1 < j < i and Wj = 0} if that set is non- 
empty, vi = 1 otherwise. For further details and justi- 
fications, see Glasserman (1991) or Suri (1989). Then, 

Y, = C'(60,) + hz(6n, st1, w)/tn, (30) 

which can be computed easily during the simulation. 
The sum (29) is called the IPA accumulator. Observe 
that imposing vi 2 1 means that we consider only the 
service time perturbations of the customers who left 
during the current SA iteration. In other words, (28) 
assumes that the IPA accumulator is reset to zero be- 
tween iterations. The initial state s?, of iteration n can 
be either 0 for all n (always restart from an empty sys- 
tem), or the value of (W* - Vt)+ from the previous it- 
eration (for n > 1 ). 

We can consider another variant of IPA in which the 
IPA accumulator is not reset to zero between iterations. 
In that case, both sn and the initial value an of the IPA 
accumulator are taken from the previous iteration. The 
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value of a, is the value of at from the previous iteration 
if sn > 0, and is 0 otherwise. It must be considered as 
part of the "state." For this IPA variant, (28) must be 
modified to: 

h'(0, s, a, c) = ak* + bi, (31) 

where a is the initial value of the IPA accumulator and 

kt* = min(t, min { i 0 I Wj+ = 0}) (32) 

represents the number of customers in the current it- 
eration who are in the same busy period as the last 
customer of the previous iteration, when W, = s > 0. 

As for LR, we can also construct regenerative IPA 
estimators. With s = 0, the value of (28) for the first 
cycle is 

T i 

h' (0, O, @= E Zj. (33) 
i=1 j=1 

With r cycles, let T-j and hj denote the respective values 
of r and h'(6, 0, w) for the jth cycle. An estimator of 
w'(0) is then 

Ij=l Tj (34) 

At iteration n, take r = t, regenerative cycles and let Tn 
= n Tj. This yields 

j=~ ~ ~ ~~ 

Yn = C'(6n) + t=i (n) + hbi (35) 
j=l n i=l 

Unfortunately, for finite tn, this estimator is biased 
for a&(6n). To better exploit the regenerative structure, 
one can estimate (7) instead of (5), using IPA. This was 
suggested in Fu (1990). From Proposition 11 and (6), 

EO[h'(6, 0, O,)] = l()w'(0) = u'(0) - w(6)l'(), 

so that IPA provides an unbiased estimator of (7) based 
on a single regenerative cycle. Using tn cycles at iteration 
n and averaging out yields the following estimator: 

1 tn 

Yn = - (hj + TjC'(6n)). (36) tn j-1 

As pointed out by Fu (1990), proving a.s. convergence 
of SA to the optimizer is relatively easy with (36) be- 

cause it is unbiased for (7) at 0 = 06, for any t, With 
(30) and (35), it is more difficult. 

Heidelberger et al. (1988) argue that (28) divided by 
t is a consistent estimator of w'(0) for a rather general 
class of GI / G / i queues and give a proof for the 
M/ G / 1 case. To prove convergence of SA using Prop- 
osition 1, what we need is not convergence of (28) di- 
vided by t to w'(0) a.s. (as t - ioo), but convergence in 
expectation, uniformly over 0. In fact, both kinds of 
convergence, as well as variance boundedness, follow 
from Propositions 9-11. Proposition 9 also shows that 
the IPA estimator (28) is unbiased for w'(0, s) under 
Assumption A. This leads to: 

PROPOSITION 6. Let Assumptions A and C hold, and 
oo 

2c n = 1 )/n < 00. 

(a) Suppose one uses SA with the IPA estimator (30). 
If sn E S and a, = 0 for all n, and t,, oo, then 0, t6* 
a.s. 

(b) If one uses SA with the estimator (35), with tn 
oo, then 0, t6* a.s. 

(c) If one uses SA with the estimator (36), then 0, 
0* a.s. 

If a,, is not reset to 0 between iterations, proving Prop- 
osition 6 (a) appears more difficult, but we believe that 
the result still holds. Proposition 6(c) corresponds to 
the result of Fu (1990). 

For this GI / G / i example, IPA has the stronger 
property that even when using a truncated horizon t, 
that is constant with n, if the IPA accumulator a, is not 
reset between iterations and under mild additional as- 
sumptions, SA converges to the optimizer. On the other 
hand, if a, is reset to zero at the beginning of each it- 
eration, then we have the same problem as with FDC. 
By keeping the value of a, across iterations, the estimator 
takes into account the perturbations on the service times 
of the customers who left during previous iterations. It 
is true that the structure of the busy periods, and (in 
general) the individual terms of the sum (28), could 
depend on 0, which changes between iterations. But as 
0, converges to some value, that change becomes neg- 
ligible under appropriate continuity assumptions. (In 
the present GI/ G/1 context, the Zj's are in fact inde- 
pendent of 0, but not the vi's.) With this intuitive rea- 
soning, we should expect SA-IPA to converge to 0* for 
whatever t,. Proposition 7 states that this is effectively 
true under a few (sufficient) conditions. Here, we cannot 
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use Proposition 1 because 13, nfr 0. Instead, we give a 
weak convergence proof by verifying the assumptions of 
the main theorem of Kushner and Shwartz (1984). Us- 
ing different proof techniques, Chong and Ramadge 
(1992a, 1993) have shown a.s. convergence (which is 
stronger) for SA-IPA with constant truncated horizon. 
On the other hand, with the regenerative IPA estimator 
(35), SA does not converge to 0* in general if tn, fr oo. 

PROPOSITION 7. Consider the SA algorithm with IPA, 
under Assumptions A-C, with { 'Y n n 0 } satisfying W4 
of Appendix I, and constant truncated horizon t, = t. Let 
the interarrival time distribution have a bounded density. 
Suppose that Zi can be expressed as Zi = sp(0, Di), where 

ep: > X -R+ R is a function such that sp( *, t) is contin- 
uous for each ? ? 0 (and is not expressed as a function of 
Ui). Suppose also that the IPA accumulator is not reset to 
O between iterations. Then, 06, converges in probability to 
the optimum 0*. 

4. Conclusion 
Through a simple example, we have seen how a deriv- 
ative estimation technique, such as FD, IPA, or LR, can 
be incorporated into a SA algorithm to get a provably 
convergent stochastic optimization method. In the 
companion paper (L'Ecuyer, Giroux, and Glynn 1994), 
we report numerical investigations and point out some 
dangers associated with different kinds of bias. The 
performance of these algorithms when there are many 
parameters to optimize, the incorporation of proper 
variance reduction techniques, the study of convergence 
rates, and comparisons between SA and the stochastic 
counterpart approach (Rubinstein and Shapiro 1993) 
are other interesting subjects for further investigation. 
In principle, IPA and LR can be used to estimate higher- 
order derivatives, but the variance is likely to be high. 
Is it too high to permit the implementation of good 
second-order algorithms based on these estimates? 
Again, further investigation is needed. 

The convergence results of ?3 can be extended to 
more general models than the GI / C/1 queue. Consider 
for example a general discrete-time Markov chain model 
parameterized by 0. Let w, (0, s) / t be the expected av- 
erage cost per step for the first t steps, if the initial state 
is s (we have removed C(6)). Suppose that (12-13) 
hold (which implies that the derivative exists), that w (0) 
is strictly unimodal, and that an unbiased LR or IPA 
derivative estimator for w'(0, s) is available. If the vari- 

ance of the LR estimator is in 0(t), then Proposition 5 
(a) applies, while if the variance of the IPA estimator 
is in 0(1 / t), then Proposition 6(a) applies. Further, if 
the system is regenerative, and if unbiased LR estimators 
are available for 1'(0) and u'(0), then one can construct 
estimators for w'(O,) and l2(6n)w'(6,1) as in (26) and 
(27). If those estimators have bounded variances and 
converge in expectation uniformly in 0, as t, oo, then 
Proposition 5 (b-c) applies. If a FD or FDC estimator is 
used and if w( ( ) and w, ( *, s) are continuously differ- 
entiable (for each s), then Proposition 3 applies. All 
this generalizes straightforwardly to the case where 0 
is a vector of parameters. Derivatives are then replaced 
by gradients.1 
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Appendix I. Sufficient Convergence 
Conditions 

In this appendix, we prove Proposition 1 and give a second set of 
sufficient conditions, which imply weak convergence of the SA al- 
gorithm (9) to 0*. 

PROOF OF PROPOSITION 1. For each n, the sequence { Z Yii, 

2 1 } is a martingale. For each e > 0, from Doob's inequality, we have 

P(sup 
|| ii > 2 < 2 ? ) Y Eo[E?] 

j;, i=n i=n 

for some constant K. This upper bound goes to zero as ii - GC . Hence, 
we obtain condition A2.2.4" of Kushner and Clark (1978), and the 
result then follows from their Theorem 5.3.1. 

Often, d -3 0, but E0[ 3n] -- 0 as n -- oo, and the algorithm converges 
as well to the optimum. This is addressed by the following (weaker) 
result, which follows from the results of Kushner and Shwartz (1984) 
and by adapting the proof of the second part of Theorem 4.2.1 in 
Kushner and Clark (1978) (note that in the last paragraph of the 
latter proof, the max should be replaced by a min). We now restate 
the assumptions of Kushner and Shwartz (1984), with slight adap- 
tations. See the latter reference for further details. 

Wl. Denote {in = (Yn, sn+) E lR X S. Assume that Po, is weakly 
continuous in (0, s), in the sense that Po,s P60,s0 when (0, s) (00, 
s0), and that E [Y,+, I (06 , sn ) = (6, s) ] is continuous in (0, s) for some 
integer c 2 0. Assume that for each fixed 0 E 0, i.e., if -y = 0 for all 
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n, { hn, n > 1 } is a Markov process with unique invariant measure Ph 

and corresponding mathematical expectation Eh. Denote v(O) = E0(Yn). 
Let { Ph, 0 E O} and { hn, n > 1 } be tight (the latter uniformly over 0 

and s; see Kushner and Shwartz 1984). 
W2. For each compact C C R X S, there is an integer nc < GO such 

that for each T > 0, the set of probability measures {P[(O+1j, (n+j-i) 

E On6 = 6, tn 6 E 0, t E C, n ? 1, j? nc, 22 ,+j -yi ' T, C 

compact subset of S } is tight. 
W3. For some constant K > 0, SUpn,l E0[ I Yn 1 1+K] < ??. 

W4. Yn > 0 for all n, liMn_<x, _Yn = 0, 2 n'=1 Z Yn = 00 and Z n 1 17n+1 

lYn I < ?O . 

W5. The function v is nondecreasing in 0 and has a unique root 
at 6* E 0. 

THEOREM 1. Under W 1 -W 5, OJn -) 6* in probability, i.e., for each 
e > 0, liMn_,a P(116n - 0*11 > e) = 0. Also, v(6) is continuous in 0. 

Appendix II. Convergence Proofs 
In this appendix we prove that under our assumptions LR and IPA 
provide unbiased estimators for w'(0, s). We obtain variance bounds 
for these derivative estimators and for their regenerative counterparts, 
which are asymptotically unbiased and converge in quadratic mean, 
uniformly in 0. We also show that w,( *, s) and w( * ) are continuously 
differentiable and that (12)-(13) hold. We then prove Propositions 
3 to 7. 

PROPOSITION 8. Let s E S be the initial state and i- be the number of 
customers served before the system empties out for the first time. Let 
h'(0, s, w) be defined as in (28). UnderA (i), there exists finite constants 
K?, Kr, and Kh, all ? 1, such that 

sup Eo[ 8] < K?; (37) 

sup Eo,[4-8] cK; (38) 

sup Eo,s[(h,(6, s, W))4] C Kh- (39) 

Under A (i-ii), there also exists a finite constant K'h 1 such that 

sup 
E6,s[(h'(6, 

S, w))2] _ K'h (40) 

PROOF. Frm A (i) 8] 'Q8] def PROOF . From A (i), E,[ 8] _E[ = K < cX, which gives (37). 
From Theorem 111.3.1 (i) in Gut (1988, p. 78), one has 

E[_81S = C] defK < X 

Now, let = B -(Ui) and z be the respective values of Li and - 

obtained if Bo is replaced by B while w = (U1, U2, * * * ) remains the 
same. One has Ls 2 ti. But increasing any service time or increasing 
s cannot decrease the number of customers in the first busy cycle. 
Therefore, i- is stochastically dominated by ~, which is itself stochasti- 
cally nondecreasing in s. From basic stochastic ordering principles 
(Wolff 1989), this implies (38). 

For each i, one has Wi _ s + Z :'-' j, so that for each t > 1, 

h = 

ht(O, s, w) =,(Wi + Li) < t s + , j 

Recall that if k is any (integer) power of two, then 

(X + y)k C 2k-1(xk + yk) 

(easy to check by induction on k). Therefore, 

(ht(, s, w))k c t(s + ? < 2 t (s + ( )k) (41) 

This holds in particular for t = r and k = 4. Then, from Theorem 1.5.2 
in Gut (1988, page 22) (used in the third inequality), there is a constant 
K, < oo, independent of 0 and s, such that 

Eo,s[(h,(6, , ))4] 

c 8s4 E,s[i 4] + 8 E,s[ ( ) 

c 8s4 E,s[ 4] + 8 Eo,s[ 8] + 8 E [,s( ( )8] 

' 8S4Eo,s[-4] + 8E,s[r8] + 8K,(Eo,s[r8]Eo,s[ 8])1/2 

def 
c 8(c4K, + K, + K,K,KK) = Kh < ?? 

From (28), for any k > 1, one has 

(h(O, s, w))k < (t z)k. (42) 

Again, since this holds for t = r and k = 2, and using Theorem 1.5.2 
of Gut (1988), there is a constant K2 < oo such that 

Eo,s[(h(0, S, w))2] < E6, [( zi 

' E,s[r4] + K2(E,s[ 4]EE[Z 1])'2 

def 
K, + K2K,Kr = Kh < ??- Z 

PROPOSITION 9. Under Assumption A, for each s, wt(., s) is differ- 
entiable, and for each (0, s) E 0 X S, (28) is an unbiased estimator of 
w' (0, s). 

PROOF. For fixed w, ht(O, s, w) is continuous in each Rj, and therefore 
continuous in 0 from A (ii). It is also differentiable in 0 everywhere 
except when two events (arrival or departure) occur simultaneously, 
which happens at most for a denumerable number of values of 0 for 
almost any (fixed) w. Also, for any fixed 0, this happens with prob- 
ability zero. Using (42) and (37), one obtains, for all 0 E &', 

Eh,s[(htt(6 5, w))2] < t2E[( Zj < t4E [Z2] < t4Kr 

Since every 0 E e has a neighborhood contained in &', the conclusion 
then follows from Theorem 1 in L'Ecuyer (1990). O 

We now show that the mean-square error of ht(O, s, w)/t as an 
estimator of w(0), as well as the mean-square error of h'(0, s, w)/t 
as an estimator of w'(0), are in the order of 1/t, uniformly in (0, s) 
E e X S. As a consequence, the variance and squared bias of these 
estimators also decrease uniformly, linearly in t. The uniform con- 
vergence properties (12)-(13) will follow from that. 
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PROPOSITION 10. Under Assumption A (i), there is a finite constant 
Ke such that for all t 2 1, 

sup E EO,s[( h4) w())] 3) 

Under Assumption A, w(O) is differentiable everywhere in e, and there 
is a finite constant K' such that for all t 2 1, 

su 0(h'(0, s w) 
2 

K''1<- (4 
sesoePe [( t e 

PROOF. We adopt the convention that the jth busy cycle ends 
when the system empties out for the jth time. When s # 0, the first 
busy cycle does not obey the same probability law than the others, 
but all the busy cycles are nevertheless independent. For j 2 1, let Tj 

be the number of customers in the jth busy cycle, hj the total sojourn 
time of those Tj customers, and Aj = h,-W(O)Tj. For j 2 2, one has 

Eo[AJ] = 0. From Proposition 8, w2(O) < Eo[h2] < Kh and 

EOs[AAf] < Eo,s[h? + KhTl] < Kh(1 + KT) 

for all j 2 1. Let 

M(t)+1 

M(t) = sup i 0E Tj < tand A(t)= E Tj . 
j=1 j=1 

Since the Aj's are independent and have zero expectation (for the 
fourth inequality), applying Wald's equation (for the fifth inequality), 
and observing that M(t) < t (for the sixth inequality), one obtains: 

h(o, s, W) O )2] 

15[ t 
( 

2) 

= ( (W i -w (0)))] 

1 . M(t)+l \ A(t) \2 

< t2 E(,s (J=1 Aj) - (W* - w(0))) 

2 .MM(t)+l 2 

< 2 Ea,s 2: Aj + (hm(t)+l )2 + (W(OTM(t) +1) 
2 

2 -M(t)+l M(t)+l 
< Ea,s I AiAj + (h?2 + W2 (O)T?2) 

2 -M(t)+l 
< t2 Ea,s E, (A?j + h?j + W2(0) r?2 

t2 j=1 I I j 

<2 [Es[A2 + h2 + W2 2] 
t 2 (O)r1 

+ Eo,o[M(t)]Eo,o[A2 + h2 + W2(O)T2]] 

2 _ _ _ _ __2_2_2 

< 2 (1 + t)(2Kh(l + KT)) <8Kh( 
+ K,) 

which proves (43), with Ke = 8Kh(l + KT). 
To prove (44), let hj denote the sum of the bi's associated with the 

Tj customers of the jth busy cycle, w ' (0) = Eo[h'2]/Eo[T2], and A 

= V- ()'(6)rj. One has E[A] = 0 for j 2 2 and, from Proposition 
8, 

(7/(0))2 < Eo[(h'2)2] ' K' 

(sinceT 2 1) and 

Eo,,[(A')2] < Eo,,[(h;)2 + K'Tr2] < K'(1 + K,) 

for all j 2 1. Then, from the same reasoning as above, with W* replaced 
by bi, 

E h,s[(h s -w '(f))] 8K'(1 + K,) de K' 

It remains to show that V'(O) = w'(O). Using Proposition 9 for the 
first equality and the expected-value version of the renewal-reward 
Theorem (Wolff 1989) for the second one, one has 

lim (O, s) = lim Eo[h'(0, s, w)] 
t_ 00 t t,_c t 

Furthermore, 

W,(0 S))2 (Eos[ht(O S, w)] 2 E,s [(ht(s, w))2] 

e + (W'3(O))2 < _+ K'h 
t t 

Then, since 0 is compact, w'(., s)/t is integrable over 0. From the 
Fundamental Theorem of Calculus (e.g., Theorem 8.21 in Rudin 1974), 
one has 

Wt(O, S) Wt(knin S) w (4, S) 
+ d4 t t tee t 

Taking the limit as t -* oo, using the dominated convergence theorem 
to interchange the limit with the integral, and then differentiating 
yields 

w'(O) = lim w' (0, s)/t = Z3'(O). a 
t-00o 

PROPOSITION 11. Under Assumption A, (12-13) hold. 

PROOF. Equation (12) follows easily from (43) and the fact that 

wt(o s) () [E ht(O - () )] 

? E-[(hO, s, ?) w(O)) 
< e 

The proof of (13) is similar. a 

PROPOSITION 12. For a given regenerative cycle, let T be the number 

of customers in that cycle and h' (, 0, w) as in (33). Under Assumption 
A, one has 

w (0) _E[(tO)](45) 
PROOF. Ts se sw nEo[ T] 

PROOF. This has been shown in the proof of Proposition 10. Z 
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PROPOSITION 13. UnderAssumptionA, as r- xoo, (34) has bounded 
variance and converges in quadratic mean to w'(O), uniformly with respect 
to 0, for O E e. 

PROOF. Define A} = h - W'(O)Tj. As seen in the proof of Prop- 
osition 10, Eo[AJ = 0, Eo[(A')2] < K'(1 + K,), and EO[AA'] = 0 for 

j * i. Then, 

E___ [ - w'(O)] = Eo[.(hj w'(0)r)] 

_ E@[(r 
- Al)] < - E,[(A')2] < h 

As r goes to infinity, this converges to zero uniformly in 0. This also 
provides a uniform upper bound on the variance of (34). a 

PROPOSITION 14. Consider the truncated horizon LR derivative esti- 
mator (20), under Assumption B. Then, for each 00 E (E, there is a neigh- 
borhood T of 00 such that for all 0 E T and s E S, (20) is an unbiased 
estimator of w'(0, s) with finite variance. Further, each w,( *, s) is con- 
tinuously differentiable over e. 

PROOF. Here, for fixed w, ht(0, s, w) does not depend on 0. Since 
each bo( j) is assumed differentiable in 0, A2 (a) in L'Ecuyer (1994) 
is satisfied. Let K > 1, f0 > 0, and 0 satisfy B (iv). Then, using (41), 

Es [ sup b(- + sup (boU) )2 + (ht(0, s, W))21 1 _-00 I<fo be(r) l@_ o<f be(r) 

< E- sup ( b() df ) ] 

+ K2 + 2t2s2 + 2t2Es[(~ i)2] 

[ 

I-01f 
b( 

~ 
) 
b 

] 

I0- so I<fO ao 

+ K2 + 2t2s2 + 2t4Eb( P2) < 00. 

The conclusion then follows from Proposition 2 of L'Ecuyer (1994) 
(with q = ba). 1 

PROPOSITION 15. UnderAssumptions B (i-iii), u(0), 1(0), and w(0) 
are finite and continuously differentiable in 0, for 0 E e. Also, 6 )(0, w) 
and 4,1(0, w), defined in (23) and (24), are unbiased estimators of u'(0) 
and 1'(0), respectively, for 0 in a small enough neighborhood of 00. 

PROOF. We first prove the second part of the proposition, and for 
that we will use Proposition 3 of L'Ecuyer (1994). For fixed W, T and 
z T - W* do not depend on 0. Therefore, T, z I=, W*, and each ba( i) 
are differentiable in 0 everywhere in & . This implies A2 (a) in L'Ecuyer 
(1994) with t replaced by T. From B (i), there is an s > 0 such that 
for all s < s, E[esl] < oo. Then, from Theorem III.3.2 in Gut (1988, 
p. 81) there is an El > 0 such that E[efl1] < oox. Let 0 < K < e q/8, fo, 
and 0 satisfy B (iii). One has 

n Sup ( ) \ K E<e 
8 

i=1 lo-@ol<eo be(?) 

and by a similar stochastic ordering argument as in the proof of (38), 

E4[K8r] < E[eflr] < E[eflr] < cc. 

From Wald's equation and B (iv), 

41 

Ei sup 
LE =1 10-o1<fo 

b 
]() 

=ErT] Ei sup L'o-ool <fo ))] 

< Ei[T] EIK4 sup In bo(?) < oo. 
I p- ( ii 

< nO boU) 

Then, from (39), all the requirements of A3 in L'Ecuyer (1994) are 
satisfied, with h(0, A) there replaced by either T or IT=j W* (which 
here do not depend on 0 for w fixed), and Ili () = K8. This holds in 
a neighborhood of 0 for each 00 E 0. This implies the result, except 
for the continuous differentiability of w, which follows from (6) and 
the continuous differentiability of u and 1. a 

PROPOSITION 16. Under Assumptions B, sup08? E[d, ] < ??. 

PROOF. Let K > 1. From B (iv), for each 00 E 0, there is an open 
interval T(00) = (O0 - fo, 00 + fo), a 0 E 0, and a constant K(00) < oo 
such that 

EsI sup I-lnb0( ) ) ]<K (0) 
L OET(00) ao 

It follows that 

[ ( )~~b0 
)] 

Eu[do ] d sup Ei In bb ) j 

< KEs[ sup -ln b(0))] < KK(0O). 
OET(fO) lao 

Now, { T(0o), 00 E 0} is a family of open sets that covers 0. Since 0 
is compact, there is a finite subset of that family, say { T(0(1)). 

T(0 (N)) }, that covers 0, and one has 

sup Eo[dId ' max KK( (')) < cc. O 

PROPOSITION 17. Consider the LR estimator (20). Under Assumption 
B, 

,2 (0S, W) 
sEe,su E,s o < cc. Of= 4 s <c, ta. 1t3 

PROOF. Since E0[ i] < oo (Proposition 8), from ?VIII.2 of As- 

mussen ( 1987), since E0,s[(W* )4] < E0,c[(W* )4], and from Proposition 
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16, there exists a constant Kd < oo such that 

sup Eo,,[(W*)4 + di] < Kd. 
s e,S?c,il1 

Recall that E[dj] = 0 and that the dj's are independent. Then, 

E0,s[t'(O, s, w)] = E0[,s( W*)2( dj)] 

t t 1/2 

< t4 sup E0,s[(W*)4] 4 E0 ,s[d dj] 
i=1 j=1 

< [t4 Kdt Kd 1/2 t3 Kd. 

PROPOSITION 18. Suppose that Assumptioni B holds. Then, as r - 

oo, the regenerative LR estimator (25) has bounded varianice and converges 
in quadratic mean to w'(O), uniformly with respect to 0 in ). 

PROOF. From Proposition 8, E4r 8] < K, and E0[(h,(4, 0, W))4] < Kh. 

From Theorem I.5.2 in Gut (1988), there is a constant Ks independent 
of 0, such that 1 < Ks < oo and 

Eo[(S,(O, 0, ))8] = E[( dj)] Ks. 

Let K = max(K,, Kh, Ks). Define Alj = hjSj - w(0)TjSj - W'(0)rT and 

A2j = hj - W(O)Tj. Note that EO[Aij] = EO[A2j] = 0, since w(0) = Eo[hj]/ 
E0[Tj] and w'(0) = (Eo[hjSj] - w(O)Eo[TjSj])/E[rTj] (from Proposition 
15). Also, since EO[Tj] 2 1 (used in the first two lines), one has 

w(0) < Eo[hj] < K114, 

w'(0) < EO[hjS1] - w(0)Eo[TiSj] 

< (Eo[h4])1/4(Eo[S,8])1/8 + K /4(Eo[Tj]Eo[Sj81/8 

< K3/8 + K112 <2K112 

E 1[Asj] < 2EO[h2Sf] + 4w2(O)EO[Tj,Sf] + 4(w'( ))2E0[rT2] 

' 2(Eo[h4]) 1/2 (Eo[S8] ) / 4 

+ 4K1/2(EO[Tj?]Eo[S,?])1/4 + 16K(Eo[ T ])1/4 

' 2K314 + 4K + 16K514 < 22Ks/4 

E 2[Aj] = Eo[(hj - w(O))4] 

< 8EO[h 4] + 8(w(0))4Eo[T4] 

< 8K + 8K*K112 < 16K3'2 

Eo (rI A2)] = - AiA2 < - Eo[A2j] < 16K3/2/r2. 
j=1 ~~i=1lj=1 / 

Keeping in mind that Tj 2 1 and EO[Alj] = 0 for each j, one obtains 

Eo[Qt'(r, 0, w) - W(0)]2 

r r r r 

< 
E[ r E hjSj - w(0) E T,SI - W'(0) E Tj r j=1 j=1 j=1 

+ ( Tj< 
W 

(w() - I hj) E TjSj 

2E[(1 r A)]+2 r E[( ;A)2 r )2] 2 E0(- ?Al1) + 2E0[! A2)( Tj TSj) 

2 16K 3/2 12 
< - E[A 2j] + 2( EO[TIS]) r E0[A21] + 

2 (22K514 + 16K3/4K1/2) < 76K5/ /r. 

As r - oo, this converges to zero uniformly in 0. These inequalities 
also provide a uniform upper bound of 76K51/4/ r on the variance of 

(25). a 

PROPOSITION 19. Under Assumptions A (i) and C, for earh t 2 1 and 
s E S, w(0) and w,(0, s) are convex in 0 over 0. 

PROOF. Since Pi = B-1(Ui) and from (2), each Wi and Wj* are 
convex in 0 (for fixed Ui's). Therefore, for each (s, t), w,(0, s) is 
convex in 0. This implies that w(0) = lim,-,, w,(0, s)/t is also convex 
in 0. From Assumption C, it follows that a(0) is convex. a 

PROPOSITION 20. Suppose that Assumptions A-C hold, that the system 
was originally started from state s = 0, and that the service time of the 
jth customer overall has distribution Bo, with Oj E (the Oj's can be 

different and might even be the values taken by correlated random vari- 
ables, provided that these values are in (). Let vi be deftied as in (28) 
and K' be as in Proposition 8. Then, 

1 k+t i \2 

sup~ 
E 

-?, K'. (46) 

Here, E denotes the expectation associated with the above sequence of 

Oj's and we assume that it is well defined. (Note that here, we do not 
assume that Wk+1 E S. ) 

PROOF. Suppose first that all the service times follow the distri- 
bution B. Then, the queue is stable (Asmussen 1987, Chapter VIII). 
Let T be the number of customers in a regenerative (busy) cycle, let 
bi = F(Uj=v I(Uj), and let us view for the moment 5i as a "cost" as- 
sociated with customer i. The expected "cost" over a regenerative 
cycle is then, using the same argument as in the proof of (40) and 
assuming that s = 0, 

From the renewal-reward theorem (Wolff 1989), one then has 

1im - Ei T] K'h. (47) t, t hLi! 
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We will now show that b5 is stochastically nondecreasing in i. For 
fixed values of Pi, Pi, and vi, vi+l is a nonincreasing function of Wi, 
and it is easily seen that (Wi+1, 5j+j) is a nondecreasing function of 
(Wi, bi ) for any value of Ui+1. Since (Wl, 51) = (0, I(Ul)) while (W2, 

62) 2 (O, r(U2)), it follows that (WI, 51) is stochastically dominated 
by (W2, 62) and, by induction on i, that (Wi, bi ) is stochastically non- 
decreasing in i. Then E[ i2] is nondecreasing in i, and from (47) it 
follows that E[ ] < liM E[ 2 ] = K K'h 

We will complete the proof using stochastic ordering arguments 
similar to those used in the proof of Proposition 8. For fixed Uj, re- 
placing Bo by B for customer j increases Rj and does not affect the 
other service and interarrival times. Clearly, increasing a service time 
can never split a busy period, i.e., can never increase any vi. Therefore, 
T and each bi, generated under Bo or under the assumptions of the 
Proposition, are stochastically dominated by T and b5 generated under 
B . This implies that E[ 65 ] < E[5 ] < Kh, where E is the same as in 
(46). The expectation in (46), which is the second moment of the 
average of bk+l., bk+t, is then bounded by K'. a 

PROOF OF PROPOSITION 2. From Propositions 14 and 15, wt(*, s) / 
t and w( ( ) are continuously differentiable in e for each s E S and t 
2 0. Further, the continuity of w'(0) with respect to 0 is uniform in 0 
over e, because the latter set is compact. Also, from Proposition 11, 
(13) holds. From Taylor's theorem, one has 

D= 
(Wt,(4, S") W- " 0 Sn))/t. 

for On < ?n < A+. Note that as n - oo, one has An+ - 0 -n- 0 and 
therefore 4n - On -O 0 a.s. Then, 

Fn [W't,(M, Sn)ltn 
- W (en)] 

+ [W'(4n) - W'(0n)] + [W'(0n) - Wt(0,n Sn)/tn], 

and each bracketed term converges to zero a.s., uniformly in (0n, sn), 
from (13) and from the uniform continuity of w'. a 

PROOF OF PROPOSITION 3. From Proposition 10, the mean-square 
error of ht(0, s, w)/t is in O(1/t), uniformly in (0, s), so that 

En-Ik[E'], which is the conditional variance of Yn, is in O(t-Ic-2) 

and 1nl En_I[Ef2]_Y2 < 00 a.s. From Proposition 11, liM,, O F = 0, 

and the result then follows from Proposition 1. a 

PROOF OF PROPOSITION 4. From Proposition 10, the rj's and hj's 
have uniformly bounded second moments. Therefore, the condi- 
tional variance of Yn is in O(tn-Icn-2) and, 1n= 1 EnI2]-y2 < 0x. From 
Proposition 15 and since e is compact, u (*) and 1 (*) are continuously 
differentiable, uniformly over e. It is then easy to see, using ( 16) and 
Taylor's theorem, that fn 3-- 0 a.s., where fn here is the difference 
between (16) and (8) evaluated at 0 = On. The result then follows 
from Proposition 1. a 

PROOF OF PROPOSITION 5. From Proposition 14, i/t,n(0n, Sn, Wn) is 

an unbiased estimator of w't,(0n, sn), so that O' = 0. From Proposition 
11, we know that fn = -* 0 a.s. when tn -* 0. From Proposition 
17, there exists a constant Kd < oo such that Eni[En] < Kdtn for all n. 

Therefore, 

00 00 

EEn-l[6d]-y < 1: KdtnY n' < O00 

n=1 n=1 

The first result then follows from Proposition 1. 
For (b), Proposition 18 says that as r -- oo, (25) has bounded 

variance and converges in quadratic mean to w'(0), uniformly in 0. 
This implies uniform convergence in expectation. Then, limn_,M fn = 0 

a.s., the variance of Yn in (26) is uniformly bounded, and Proposition 
1 applies. 

For (c), one has fn = 0. From Proposition 8 and the proof of Prop- 
osition 18, Tj, hj, TjSi, and hjSj have bounded second moments for 
each j, uniformly in An. Therefore, the variance of (27) is bounded 
uniformly in On, and the result follows again from Proposition 1. a 

PROOF OF PROPOSITION 6. From Proposition 9, h'tn(On, sn, Wn) is an 
unbiased estimator of w'(On, sn), so that ' 

= 0. From Proposition 
11, we know that fn = -' * 0 a.s. when tn - 0. From Proposition 
10, the variance of h',"(On, sn, Wn)/t. is bounded uniformly in On and 
tn. The first result then follows from Proposition 1. 

For (b), Proposition 13 says that as r -* oo, (34) has bounded 
variance and converges in quadratic mean to w'(0), uniformly in 0. 
This implies uniform convergence in expectation. Then, limn_.O fn = 0 

a.s., the variance of Yn in (35) is uniformly bounded, and Proposition 
1 applies. 

For (c), fn = 0 for each n. From Proposition 8, Tj and h have 
bounded second moments. So, the variance of (27) is bounded uni- 
formly in On, and the result follows again from Proposition 1. a 

PROOF OF PROPOSITION 7. We will verify Wl to W5 of Appendix 
I, and the result will follow from Theorem 1. For this proof, we will 
redefine differently the state of the Markov chain. Remove the re- 
striction Sn < c and redefine the state at iteration n of SA as Sn = (Xn, 

an), where Xn is the sojourn time of the last customer of iteration n 
- 1 (xi = 0), and an is the value of the IPA accumulator at the beginning 
of iteration n. Here, we assume that the arrival time of the first cus- 
tomer of an iteration is "unknown" (not part of the state) at the 
beginning of the iteration. We do that in order to facilitate the veri- 
fication of the continuity conditions required in Wl. Let s = (x, a) be 
the system state at the beginning of an iteration, k* be defined as in 

(32), 
t i 

A*=ak,*+ zz Zj and 
i=l j=vi 

t 
4 = (AV*, W*, I(k* = t)a + E zj) 

Here, A/* is the value of the IPA estimator (31), while the other two 
components of 4 give the initial state for the next iteration. At iteration 
n , 

(0, x, a) = (On, Xn, an) and 4 = 4n = (An*, Xn+i, an+i). 

Since tn is fixed at t, Po,x,a (4n E * ) does not depend on n. 
To prove the weak continuity, let g: R83 -- oD be continuous and 

bounded in absolute value by a constant K2. We need to show that 
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Ee,x,a[g(4)] is continuous in (0, x, a). One difficulty is that for fixed 

Uj's, the components of 4 are discontinuous in 0. To prove the con- 
tinuity of the expectation, we will use a likelihood ratio approach. Let 
00 E 0, K > 1, fo, and 0 be as in B (iv). Let x0 2 0 and aO 20. Let us 
view w as (vo, P1, . . .v, P,-1, ?,) and assume that w is generated under 

Pi. Now, for 0 - 60I < o, x ?0 and a ? 0, define 

, i 

A(6, x, a, w) = g ak, + E E <(0, Rj), W-, 
i=l j=v; 

I(k, = t)a + 
t 

(p(6, t)) 1b7 ( 

- g a0k*t0 + E E ((06, oj), Wt*0, 
i=l j=v,,o 

I(k*, = t)aO + E p(o i) ) 0 rI t, ~ _bj()~ 

where k0, vi0, and W*,0 are the respective values of k*, vi, and W* 
when x is replaced by x0, while w = (vo, P1, . .., .t-1, t) remains the 
same. Let I(x, x0) = 1 if vi, o vi for at least one i, and I(x, x0) = 0 
otherwise. Note that I(x, x0) = 0 implies that k*0 = k*. Also, 

Pi( I(x, x0) = 1) 

< Pet Vo- xo + (Vj - 0j < I x - xo 
j=1 

I E[ Pi Ivo - xo + zI < Ix - xoI ( 1 ] Z 

< 2tKVlx - xoI, 

where Es integrates over the values of z, and K, is a bound on the 
density of the interarrival time v0. Conditional on I(x, x0) = 0, A(0, 
x, a, w) is continuous in (0, x, a), because g is continuous, W* is 
continuous in x and does not depend on (0, a), bo( P)p(0, P) are con- 
tinuous in 0 for each ?, k*0 = k*, and vi,0 = vi for each i. Further, 
IA(0, x, a, w)I is bounded by 2KgK' and is zero when (0, x, a) 
= (00, x0, ao). Therefore, 

lim I Eo,,a[g(4)] - E6o0x0,a0[g(4)] I 
(O,x,a)- (Oo,Xo,ao) 

lim I E4[A(0, x, a, w)]I 
(O,X,a)- (Oo,XO,aO) 

< lim I E4[A(0, x, a, w)(1 -I(x, x0))] 
(0, X,a)- (00, X0,a0) 

+ E[2KgK'I(X, xo)]I 

< E[ lim IA(0, x, a, w)(1 -I(x, xo))II 
(O,x,a)- (Oo,Xo,ao) 

+ lim 2KgK'2tK Ix-xoI 
(O,x,a)- (Oo,Xo,ao) 

= 0, 

where the dominated convergence theorem has been used to pass the 

limit inside the expectation. This proves the required weak continuity. 
This also implies (as a special case) that E0,x,a[ *] is continuous in 
(0, x, a), which verifies the second requirement of Wl, with c = 0. 

For fixed 0 E e, since the system is stable, { 4,, n 2 1 } is regenerative 
and is a Markov chain with some steady-state distribution P0 (see 
Asmussen 1987, chapter VIII). Regeneration occurs whenever an 
iteration starts with an empty system. From Proposition 20, 

sup,,,, Eo[(i,t* /t,,)2] < K' and sup,,, E0[a'] < K' . This yields W3. By 
similar arguments as in the proof of Proposition 8, one can show that 

supn,j2 Eo[X2] < Kh. Take K = max(Kh, K'h). For any e > 0, one has 

K 2 Eo[(,*I/tn )2] 2 (3K/E)P[(/*1/tn )2 > 3K/E], 

so that 

SUP P[(n* //tn )2 > 3K/E] < E/3. 
nzl 

Similarly, 

sup P[x > 3K/E] < E/3 and 
nzl 

sup P[a > 3K/E] < E/3. 
nt1 

Then, 

sup 
P[max((4t*/tn)2, X2n+1, a2+1) < 3K/E] 1- E. 

nzl 

This reasoning also holds for 0 varying in any manner inside 0. This 
implies the tightness properties required in Wl. 

For W2, let C be a compact subset of Rl X S, c < oo such that C 
C [0, C]3, and let 4n E C. Let i denote the ith customer overall and nt 
+ 1 + Tn* be the index of the first nonwaiting customer from the 
beginning of iteration n + 1. One has T = 0 if iteration n + 1 starts 
with a new busy cycle, and otherwise T * is the number of customers, 
from the beginning of iteration n + 1, who are in the same busy cycle 
as the last customer of iteration n. From the same argument as in the 

proof of Proposition 8, there exists KT c) < 00 such that E=C4(T 1*)2] 

< KT c). Then, from straightforward stochastic ordering, 

E[(Tn* I n] < E =C[(TI)] < KT( c). 

This implies that for all E > 0, 

P[T* > KT(C)/E I ,n] < E- 

Let E > 0, n*(c) = rK,(c)/El, j = (3K/E)1/2, and C = [0, j]3. Let nc 
= 1 + rn*(c)/tl and i 2 nc. For each 0 < j < nc, from the same 
argument as we used above to prove Wl, one has 

P[4n+iE CZTN = IT* 1 - E. 

Then, 

n *(c) 

P[n+i E C I tn] 2: P P[n+i (E (f T j I iln I 
j=O 

n *(c) 

zn P[T inP[n +i E C|T j n nC 

j=O 

2 (1 - E)P[T"* < fl*(c)14n 2 (1 - (2 
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Here, P denotes the probability law associated with the Markov chain 
{ (,, n 2 1 } when 0 varies according to the algorithm and n, can be 
interpreted as a time that we give to the system to stabilize. Roughly, 
if c is larger, the initial state could be larger (e.g., large initial queue 
size), and we will take a larger 1Zc. This implies W2. 

When 6 is fixed, from Proposition 9, bi is an unbiased estimator of 

the derivative of the expected system time of the ith customer (overall). 
Then, An* is unbiased for the gradient of the expected total system 

time of customers nt, (ii + 1)t - 1. When n -- oo, from (13), 
the expectation of ln* / tn + C'(0) thus converges to a'(0). Therefore, 
v(8) = a'(0) and W5 follows. O 
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