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Abstract

Optimal transport (OT) defines a powerful framework to compare probability
distributions in a geometrically faithful way. However, the practical impact of OT
is still limited because of its computational burden. We propose a new class of
stochastic optimization algorithms to cope with large-scale OT problems. These
methods can handle arbitrary distributions (either discrete or continuous) as long
as one is able to draw samples from them, which is the typical setup in high-
dimensional learning problems. This alleviates the need to discretize these densities,
while giving access to provably convergent methods that output the correct distance
without discretization error. These algorithms rely on two main ideas: (a) the
dual OT problem can be re-cast as the maximization of an expectation; (b) the
entropic regularization of the primal OT problem yields a smooth dual optimization
which can be addressed with algorithms that have a provably faster convergence.
We instantiate these ideas in three different setups: (i) when comparing a discrete
distribution to another, we show that incremental stochastic optimization schemes
can beat Sinkhorn’s algorithm, the current state-of-the-art finite dimensional OT
solver; (ii) when comparing a discrete distribution to a continuous density, a semi-
discrete reformulation of the dual program is amenable to averaged stochastic
gradient descent, leading to better performance than approximately solving the
problem by discretization ; (iii) when dealing with two continuous densities, we
propose a stochastic gradient descent over a reproducing kernel Hilbert space
(RKHS). This is currently the only known method to solve this problem, apart
from computing OT on finite samples. We backup these claims on a set of discrete,
semi-discrete and continuous benchmark problems.

1 Introduction

Many problems in computational sciences require to compare probability measures or histograms.
As a set of representative examples, let us quote: bag-of-visual-words comparison in computer
vision [17], color and shape processing in computer graphics [21], bag-of-words for natural language
processing [11] and multi-label classification [9]. In all of these problems, a geometry between the
features (words, visual words, labels) is usually known, and can be leveraged to compare probability
distributions in a geometrically faithful way. This underlying geometry might be for instance the
planar Euclidean domain for 2-D shapes, a perceptual 3D color metric space for image processing
or a high-dimensional semantic embedding for words. Optimal transport (OT) [24] is the canonical
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way to automatically lift this geometry to define a metric for probability distributions. That metric is
known as the Wasserstein or earth mover’s distance. As an illustrative example, OT can use a metric
between words to build a metric between documents that are represented as frequency histograms of
words (see [11] for details). All the above-cited lines of work advocate, among others, that OT is the
natural choice to solve these problems, and that it leads to performance improvement when compared
to geometrically-oblivious distances such as the Euclidean or χ2 distances or the Kullback-Leibler
divergence. However, these advantages come at the price of an enormous computational overhead.
This is especially true because current OT solvers require to sample beforehand these distributions
on a pre-defined set of points, or on a grid. This is both inefficient (in term of storage and speed)
and counter-intuitive. Indeed, most high-dimensional computational scenarios naturally represent
distributions as objects from which one can sample, not as density functions to be discretized.
Our goal is to alleviate these shortcomings. We propose a class of provably convergent stochastic
optimization schemes that can handle both discrete and continuous distributions through sampling.

Previous works. The prevalent way to compute OT distances is by solving the so-called Kantorovitch
problem [10] (see Section 2 for a short primer on the basics of OT formulations), which boils down
to a large-scale linear program when dealing with discrete distributions (i.e., finite weighted sums of
Dirac masses). This linear program can be solved using network flow solvers, which can be further
refined to assignment problems when comparing measures of the same size with uniform weights [3].
Recently, regularized approaches that solve the OT with an entropic penalization [6] have been shown
to be extremely efficient to approximate OT solutions at a very low computational cost. These regu-
larized approaches have supported recent applications of OT to computer graphics [21] and machine
learning [9]. These methods apply the celebrated Sinkhorn algorithm [20], and can be extended
to solve more exotic transportation-related problems such as the computation of barycenters [21].
Their chief computational advantage over competing solvers is that each iteration boils down to
matrix-vector multiplications, which can be easily parallelized, streams extremely well on GPU, and
enjoys linear-time implementation on regular grids or triangulated domains [21].

These methods are however purely discrete and cannot cope with continuous densities. The only
known class of methods that can overcome this limitation are so-called semi-discrete solvers [1], that
can be implemented efficiently using computational geometry primitives [12]. They can compute
distance between a discrete distribution and a continuous density. Nonetheless, they are restricted to
the Euclidean squared cost, and can only be implemented in low dimensions (2-D and 3-D). Solving
these semi-discrete problems efficiently could have a significant impact for applications to density
fitting with an OT loss [2] for machine learning applications, see [13]. Lastly, let us point out that
there is currently no method that can compute OT distances between two continuous densities, which
is thus an open problem we tackle in this article.

Contributions. This paper introduces stochastic optimization methods to compute large-scale optimal
transport in all three possible settings: discrete OT, to compare a discrete vs. another discrete measure;
semi-discrete OT, to compare a discrete vs. a continuous measure; and continous OT, to compare
a continuous vs. another continuous measure. These methods can be used to solve classical OT
problems, but they enjoy faster convergence properties when considering their entropic-regularized
versions. We show that the discrete regularized OT problem can be tackled using incremental
algorithms, and we consider in particular the stochastic averaged gradient (SAG) method [19]. Each
iteration of that algorithm requires N operations (N being the size of the supports of the input
distributions), which makes it scale better in large-scale problems than the state-of-the-art Sinkhorn
algorithm, while still enjoying a convergence rate of O(1/k), k being the number of iterations. We
show that the semi-discrete OT problem can be solved using averaged stochastic gradient descent
(SGD), whose convergence rate is O(1/

√
k). This approach is numerically advantageous over the

brute force approach consisting in sampling first the continuous density to solve next a discrete OT
problem. Lastly, for continuous optimal transport, we propose a novel method which makes use of an
expansion of the dual variables in a reproducing kernel Hilbert space (RKHS). This allows us for
the first time to compute with a converging algorithm OT distances between two arbitrary densities,
under the assumption that the two potentials belong to such an RKHS.

Notations. In the following we consider two metric spaces X and Y . We denote byM1
+(X ) the set

of positive Radon probability measures on X , and C(X ) the space of continuous functions on X . Let
µ ∈M1

+(X ), ν ∈M1
+(Y), we define

Π(µ, ν)
def.
=

{

π ∈M1
+(X × Y) ; ∀(A,B) ⊂ X × Y, π(A× Y) = µ(A), π(X ×B) = ν(B)

}

,
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the set of joint probability measures on X × Y with marginals µ and ν. The Kullback-Leibler
divergence between joint probabilities is defined as

∀(π, ξ) ∈M1
+(X × Y)2, KL(π|ξ) def.

=
∫

X×Y
(

log
(

dπ
dξ (x, y)

)

− 1
)

dξ(x, y),

where we denote dπ
dξ the relative density of π with respect to ξ, and by convention KL(π|ξ) def.

= +∞
if π does not have a density with respect to ξ. The Dirac measure at point x is δx. For a set C,
ιC(x) = 0 if x ∈ C and ιC(x) = +∞ otherwise. The probability simplex of N bins is ΣN =
{

µ ∈ R
N
+ ;

∑

i µi = 1
}

. Element-wise multiplication of vectors is denoted by ⊙ and K⊤ denotes
the transpose of a matrix K. We denote 1N = (1, . . . , 1)⊤ ∈ R

N and 0N = (0, . . . , 0)⊤ ∈ R
N .

2 Optimal Transport: Primal, Dual and Semi-dual Formulations

We consider the optimal transport problem between two measures µ ∈ M1
+(X ) and ν ∈ M1

+(Y),
defined on metric spaces X and Y . No particular assumption is made on the form of µ and ν, we
only assume that they both can be sampled from to be able to apply our algorithms.

Primal, Dual and Semi-dual Formulations. The Kantorovich formulation [10] of OT and its
entropic regularization [6] can be conveniently written in a single convex optimization problem as
follows

∀(µ, ν) ∈M1
+(X )×M1

+(Y), Wε(µ, ν)
def.
= min

π∈Π(µ,ν)

∫

X×Y
c(x, y)dπ(x, y)+εKL(π|µ⊗ν). (Pε)

Here c ∈ C(X × Y) and c(x, y) should be interpreted as the “ground cost” to move a unit of mass
from x to y. This c is typically application-dependent, and reflects some prior knowledge on the
data to process. We refer to the introduction for a list of previous work where various examples (in
imaging, vision, graphics or machine learning) of such costs are given.

When X = Y , ε = 0 and c = dp for p ≥ 1, where d is a distance on X , then W0(µ, ν)
1
p is known as

the p-Wasserstein distance onM1
+(X ). Note that this definition can be used for any type of measure,

both discrete and continuous. When ε > 0, problem (Pε) is strongly convex, so that the optimal π is
unique, and algebraic properties of the KL regularization result in computations that can be tackled
using the Sinkhorn algorithm [6].

For any c ∈ C(X × Y), we define the following constraint set

Uc
def.
= {(u, v) ∈ C(X )× C(Y) ; ∀(x, y) ∈ X × Y, u(x) + v(y) ≤ c(x, y)} ,

and define its indicator function as well as its “smoothed” approximation

ιεUc
(u, v)

def.
=

{

ιUc
(u, v) if ε = 0,

ε
∫

X×Y exp(u(x)+v(y)−c(x,y)
ε

)dµ(x)dν(y) if ε > 0.
(1)

For any v ∈ C(Y), we define its c-transform and its “smoothed” approximation

∀x ∈ X , vc,ε(x)
def.
=







min
y∈Y

c(x, y)− v(y) if ε = 0,

−ε log
(

∫

Y exp( v(y)−c(x,y)
ε

)dν(y)
)

if ε > 0.
(2)

The proposition below describes two dual problems. It is central to our analysis and paves the way
for the application of stochastic optimization methods.

Proposition 2.1 (Dual and semi-dual formulations). For ε ≥ 0, one has

Wε(µ, ν) = max
u∈C(X ),v∈C(Y)

Fε(u, v)
def.
=

∫

X
u(x)dµ(x) +

∫

Y
v(y)dν(y)− ιεUc

(u, v), (Dε)

= max
v∈C(Y)

Hε(v)
def.
=

∫

X
vc,ε(x)dµ(x) +

∫

Y
v(y)dν(y)− ε, (Sε)

where ιεUc
is defined in (1) and vc,ε in (2). Furthermore, u solving (Dε) is recovered from an optimal

v solving (Sε) as u = vc,ε. For ε > 0, the solution π of (Pε) is recovered from any (u, v) solving

(Dε) as dπ(x, y) = exp(u(x)+v(y)−c(x,y)
ε

)dµ(x)dν(y).
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Proof. Problem (Dε) is the convex dual of (Pε), and is derived using Fenchel-Rockafellar’s theorem.
The relation between u and v is obtained by writing the first order optimality condition for v in (Dε).
Plugging this expression back in (Dε) yields (Sε).

Problem (Pε) is called the primal while (Dε) is its associated dual problem. We refer to (Sε) as the
“semi-dual” problem, because in the special case ε = 0, (Sε) boils down to the so-called semi-discrete
OT problem [1]. Both dual problems are concave maximization problems. The optimal dual variables
(u, v)—known as Kantorovitch potentials—are not unique, since for any solution (u, v) of (Dε),
(u+ λ, v − λ) is also a solution for any λ ∈ R. When ε > 0, they can be shown to be unique up to
this scalar translation [6]. We refer to the supplementary material for a discussion (and proofs) of the
convergence of the solutions of (Pε), (Dε) and (Sε) towards those of (P0), (D0) and (S0) as ε→ 0.

A key advantage of (Sε) over (Dε) is that, when ν is a discrete density (but not necessarily µ),
then (Sε) is a finite-dimensional concave maximization problem, which can thus be solved using
stochastic programming techniques, as highlighted in Section 4. By contrast, when both µ and ν are
continuous densities, these dual problems are intrinsically infinite dimensional, and we propose in
Section 5 more advanced techniques based on RKHSs.

Stochastic Optimization Formulations. The fundamental property needed to apply stochastic
programming is that both dual problems (Dε) and (Sε) must be rephrased as maximizing expectations:

∀ε > 0, Fε(u, v) = EX,Y [fε(X,Y, u, v)] and ∀ε ≥ 0, Hε(v) = EX [hε(X, v)] , (3)

where the random variables X and Y are independent and distributed according to µ and ν respec-
tively, and where, for (x, y) ∈ X × Y and (u, v) ∈ C(X )× C(Y),

∀ε > 0, fε(x, y, u, v)
def.
= u(x) + v(y)− ε exp

(u(x) + v(y)− c(x, y)

ε

)

,

∀ε ≥ 0, hε(x, v)
def.
=

∫

Y
v(y)dν(y) + vc,ε(x)− ε.

This reformulation is at the heart of the methods detailed in the remainder of this article. Note that
the dual problem (Dε) cannot be cast as an unconstrained expectation maximization problem when
ε = 0, because of the constraint on the potentials which arises in that case.

When ν is discrete, i.e ν =
∑J

j=1 νjδyj
the potential v is a J-dimensional vector (vj)j={1...J}

and we can compute the gradient of hε. When ε > 0 the gradient reads ∇vhε(v, x) =
ν − π(x) and the hessian is given by ∂2

vhε(v, x) =
1
ε
(π(x)π(x)T − diag(π(x))) where π(x)i =

exp(vi−c(x,yi)
ε

)
(

∑J

j=1 exp(
vj−c(x,yj)

ε
)
)−1

. The eigenvalues of the hessian can be upper bounded

by 1
ε
, which guarantees a lipschitz gradient, and lower bounded by 0 which does not ensure

strong convexity. In the unregularized case, h0 is not smooth and a subgradient is given by
∇vh0(v, x) = ν − π̃(x), where π̃(x)i = χi=j⋆ and j⋆ = argminj∈{1...J} c(x, yj) − vj (when
several elements are in the argmin, we arbitrarily choose one of them to be j⋆). We insist on the
lack of strong convexity of the semi-dual problem, as it impacts the convergence properties of the
stochastic algorithms (stochastic averaged gradient and stochastic gradient descent) described below.

3 Discrete Optimal Transport

We assume in this section that both µ and ν are discrete measures, i.e. finite sums of Diracs, of
the form µ =

∑I

i=1 µiδxi
and ν =

∑J

j=1 νjδyj
, where (xi)i ⊂ X and (yj)j ⊂ Y , and the

histogram vector weights are µ ∈ ΣI and ν ∈ ΣJ . These discrete measures may come from the
evaluation of continuous densities on a grid, counting features in a structured object, or be empirical
measures based on samples. This setting is relevant for several applications, including all known
applications of the earth mover’s distance. We show in this section that our stochastic formulation
can prove extremely efficient to compare measures with a large number of points.

Discrete Optimization and Sinkhorn. In this setup, the primal (Pε), dual (Dε) and semi-dual (Sε)
problems can be rewritten as finite-dimensional optimization problems involving the cost matrix
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c ∈ R
I×J
+ defined by ci,j = c(xi, yj):

Wε(µ, ν) = min
π∈R

I×J
+

{

∑

i,j ci,jπi,j + ε
∑

i,j

(

log
πi,j

µiνj
− 1

)

πi,j ; π1J = µ,π⊤
1I = ν

}

, (P̄ε)

= max
u∈RI ,v∈RJ

∑

i uiµi +
∑

j vjνj − ε
∑

i,j exp
(

ui+vj−ci,j

ε

)

µiνj , (for ε > 0) (D̄ε)

= max
v∈RJ

H̄ε(v) =
∑

i∈I h̄ε(xi,v)µi, where (S̄ε)

h̄ε(x,v) =
∑

j∈J

vjνj +

{

−ε log(∑j∈J exp(
vj−c(x,yj)

ε
)νj)− ε if ε > 0,

minj (c(x, yj)− vj) if ε = 0,
(4)

The state-of-the-art method to solve the discrete regularized OT (i.e. when ε > 0) is Sinkhorn’s
algorithm [6, Alg.1], which has linear convergence rate [8]. It corresponds to a block coordinate
maximization, successively optimizing (D̄ε) with respect to either u or v. Each iteration of this algo-
rithm is however costly, because it requires a matrix-vector multiplication. Indeed, this corresponds
to a “batch” method where all the samples (xi)i and (yj)j are used at each iteration, which has thus
complexity O(N2) where N = max(I, J). We now detail how to alleviate this issue using online
stochastic optimization methods.

Incremental Discrete Optimization when ε > 0. Stochastic gradient descent (SGD), in which an
index k is drawn from distribution µ at each iteration can be used to minimize the finite sum that
appears in in S̄ε. The gradient of that term h̄ε(xk, ·) can be used as a proxy for the full gradient in a
standard gradient ascent step to maximize H̄ε.

Algorithm 1 SAG for Discrete OT
Input: C
Output: v
v← 0J , d← 0J , ∀i,gi ← 0J

for k = 1, 2, . . . do
Sample i ∈ {1, 2, . . . , I} uniform.
d← d− gi

gi ← µi∇vh̄ε(xi,v)
d← d+ gi ; v← v + Cd

end for

When ε > 0, the finite sum appearing in (S̄ε) sug-
gests to use incremental gradient methods—rather than
purely stochastic ones—which are known to converge
faster than SGD. We propose to use the stochastic av-
eraged gradient (SAG) [19]. As SGD, SAG operates at
each iteration by sampling a point xk from µ, to com-
pute the gradient corresponding to that sample for the
current estimate v. Unlike SGD, SAG keeps in memory
a copy of that gradient. Another difference is that SAG
applies a fixed length update, in the direction of the
average of all gradients stored so far, which provides a
better proxy of the gradient corresponding to the entire
sum. This improves the convergence rate to |H̄ε(v

⋆
ε)− H̄ε(vk)| = O(1/k), where v⋆

ε is a minimizer
of H̄ε, at the expense of storing the gradient for each of the I points. This expense can be mitigated
by considering mini-batches instead of individual points. Note that the SAG algorithm is adaptive to
strong-convexity and will be linearly convergent around the optimum. The pseudo-code for SAG
is provided in Algorithm 1, and we defer more details on SGD for Section 4, in which it will be
shown to play a crucial role. Note that the Lipschitz constant of all these terms is upperbounded by
L = maxi µi/ε.

Numerical Illustrations on Bags of Word-Embeddings. Comparing texts using a Wasserstein
distance on their representations as clouds of word embeddings has been recently shown to yield
state-of-the-art accuracy for text classification [11]. The authors of [11] have however highlighted
that this accuracy comes at a large computational cost. We test our stochastic approach to discrete
OT in this scenario, using the complete works of 35 authors (names in supplementary material). We
use Glove word embeddings [14] to represent words, namely X = Y = R

300. We discard all most
frequent 1, 000 words that appear at the top of the file glove.840B.300d provided on the authors’
website. We sample N = 20, 000 words (found within the remaining huge dictionary of relatively
rare words) from each authors’ complete work. Each author is thus represented as a cloud of 20, 000
points in R

300. The cost function c between the word embeddings is the squared-Euclidean distance,
re-scaled so that it has a unit empirical median on 2, 000 points sampled randomly among all vector
embeddings. We set ε to 0.01 (other values are considered in the supplementary material). We
compute all (35× 34/2 = 595) pairwise regularized Wasserstein distances using both the Sinkhorn
algorithm and SAG. Following the recommendations in [19], SAG’s stepsize is tested for 3 different
settings, 1/L, 3/L and 5/L. The convergence of each algorithm is measured by computing the ℓ1
norm of the gradient of the full sum (which also corresponds to the marginal violation of the primal
transport solution that can be recovered with these dual variables[6]), as well as the ℓ2 norm of the
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Figure 1: We compute all 595 pairwise word mover’s distances [11] between 35 very large corpora
of text, each represented as a cloud of I = 20, 000 word embeddings. We compare the Sinkhorn
algorithm with SAG, tuned with different stepsizes. Each pass corresponds to a I × I matrix-vector
product. We used minibatches of size 200 for SAG. Left plot: convergence of the gradient ℓ1 norm
(average and ± standard deviation error bars). A stepsize of 3/L achieves a substantial speed-up
of ≈ 2.5, as illustrated in the boxplots in the center plot. Convergence to v⋆ (the best dual variable
across all variables after 4, 000 passes) in ℓ2 norm is given in the right plot, up to 2, 000 ≈ 211 steps.

deviation to the optimal scaling found after 4, 000 passes for any of the three methods. Results are
presented in Fig. 1 and suggest that SAG can be more than twice faster than Sinkhorn on average
for all tolerance thresholds. Note that SAG retains exactly the same parallel properties as Sinkhorn:
all of these computations can be streamlined on GPUs. We used 4 Tesla K80 cards to compute both
SAG and Sinkhorn results. For each computation, all 4, 000 passes take less than 3 minutes (far less
are needed if the goal is only to approximate the Wasserstein distance itself, as proposed in [11]).

4 Semi-Discrete Optimal Transport

In this section, we assume that µ is an arbitrary measure (in particular, it needs not to be discrete) and
that ν =

∑J

j=1 νjδyj
is a discrete measure. This corresponds to the semi-discrete OT problem [1, 12].

The semi-dual problem (Sε) is then a finite-dimensional maximization problem, written in expectation
form as Wε(µ, ν) = max

v∈RJ
EX

[

h̄ε(X,v)
]

where X ∼ µ and h̄ε is defined in (4).

Algorithm 2 Averaged SGD for
Semi-Discrete OT
Input: C
Output: v
ṽ← 0J , v← ṽ
for k = 1, 2, . . . do

Sample xk from µ
ṽ← ṽ + C√

k
∇vh̄ε(xk, ṽ)

v← 1
k
ṽ + k−1

k
v

end for

Stochastic Semi-discrete Optimization. Since the expectation
is taken over an arbitrary measure, neither Sinkhorn algorithm nor
incremental algorithms such as SAG can be used. An alternative

is to approximate µ by an empirical measure µ̂N
def.
= 1

N

∑N

i=1 δxi

where (xi)i=1,...,N are i.i.d samples from µ, and computing
Wε(µ̂N , ν) using the discrete methods (Sinkhorn or SAG) de-
tailed in Section 3. However this introduces a discretization noise
in the solution as the discrete problem is now different from the
original one and thus has a different solution. Averaged SGD
on the other hand does not require µ to be discrete and is thus
perfectly adapted to this semi-discrete setting. The algorithm
is detailed in Algorithm 2 (the expression for ∇h̄ε being given
in Equation 4). The convergence rate is O(1/

√
k) thanks to

averaging ṽk [15].

Numerical Illustrations. Simulations are performed in X = Y = R
3. Here µ is a Gaussian mixture

(continuous density) and ν = 1
J

∑J

j=1 δyj
with J = 10 and (xj)j are i.i.d. samples from another

gaussian mixture. Each mixture is composed of three gaussians whose means are drawn randomly in
[0, 1]3, and their correlation matrices are constructed as Σ = 0.01(RT +R) + 3I3 where R is 3× 3
with random entries in [0, 1]. In the following, we denote v⋆

ε a solution of (Sε), which is approximated
by running SGD for 107 iterations, 100 times more than those plotted, to ensure reliable convergence
curves. Both plots are averaged over 50 runs, lighter lines show the variability in a single run.
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(a) SGD (b) SGD vs. SAG
Figure 2: (a) Plot of ‖vk − v⋆

0‖2 / ‖v⋆
0‖2 as a function of k, for SGD and different values of ε

(ε = 0 being un-regularized). (b) Plot of ‖vk − v⋆
ε‖2 / ‖v⋆

ε‖2 as a function of k, for SGD and SAG
with different number N of samples, for regularized OT using ε = 10−2.

Figure 2 (a) shows the evolution of ‖vk − v⋆
0‖2 / ‖v⋆

0‖2 as a function of k. It highlights the influence
of the regularization parameters ε on the iterates of SGD. While the regularized iterates converge
faster, they do not converge to the correct unregularized solution. This figure also illustrates the
convergence theorem of solution of (Sε) toward those (S0) when ε→ 0, which can be found in the
supplementary material. Figure 2 (b) shows the evolution of ‖vk − v⋆

ε‖2 / ‖v⋆
ε‖2 as a function of

k, for a fixed regularization parameter value ε = 10−2. It compares SGD to SAG using different
numbers N of samples for the empirical measures µ̂N . While SGD converges to the true solution of
the semi-discrete problem, the solution computed by SAG is biased because of the approximation
error which comes from the discretization of µ. This error decreases when the sample size N is
increased, as the approximation of µ by µ̂N becomes more accurate.

5 Continuous optimal transport using RKHS

In the case where neither µ nor ν are discrete, problem (Sε) is infinite-dimensional, so it cannot be
solved directly using SGD. We propose in this section to solve the initial dual problem (Dε), using
expansions of the dual variables in two reproducing kernel Hilbert spaces (RKHS). Choosing dual
variables (or test functions) in a RKHS is the fundamental assumption underlying the Maximum
Mean Discrepancy (MMD)[22]. It is thus tempting to draw parallels between the approach in this
section and the MMD. The two methods do not, however, share much beyond using RKHSs. Indeed,
unlike the MMD, problem (Dε) involves two different dual (test) functions u and v, one for each
measure; these are furthermore linked through a regularizer ιεUc

. Recall finally that contrarily to the
semi-discrete setting, we can only solve the regularized problem here (i.e. ε > 0), since (Dε) cannot
be cast as an expectation maximization problem when ε = 0.

Stochastic Continuous Optimization. We consider two RKHS H and G defined on X and on Y ,
with kernels κ and ℓ, associated with norms ‖ · ‖H and ‖ · ‖G . Recall the two main properties of
RKHS: (a) if u ∈ H, then u(x) = 〈u, κ(·, x)〉H and (b) κ(x, x′) = 〈κ(·, x), κ(·, x′)〉H.

The dual problem (Dε) is conveniently re-written in (3) as the maximization of the expectation of
fε(X,Y, u, v) with respect to the random variables (X,Y ) ∼ µ⊗ ν. The SGD algorithm applied to
this problem reads, starting with u0 = 0 and v0 = 0,

(uk, vk)
def.
= (uk−1, vk−1) +

C√
k
∇fε(xk, yk, uk−1, vk−1) ∈ H × G, (5)

where (xk, yk) are i.i.d. samples from µ⊗ ν. The following proposition shows that these (uk, vk)
iterates can be expressed as finite sums of kernel functions, with a simple recursion formula.
Proposition 5.1. The iterates (uk, vk) defined in (5) satisfy

(uk, vk)
def.
=

k
∑

i=1

αi(κ(·, xi), ℓ(·, yi)), where αi
def.
= ΠBr

(

C√
i

(

1− e
ui−1(xi)+vi−1(yi)−c(xi,yi)

ε

)

)

, (6)

where (xi, yi)i=1...k are i.i.d samples from µ⊗ ν and ΠBr
is the projection on the centered ball of

radius r. If the solutions of (Dε) are in the H × G and if r is large enough, the iterates (uk,vk)
converge to a solution of (Dε).

The proof of proposition 5.1 can be found in the supplementary material.
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(a) setting (b) convergence of uk (c) plots of uk

Figure 3: (a) Plot of dµ
dx and dν

dx . (b) Plot of ‖uk − û⋆‖2 / ‖û⋆‖2 as a function of k with SGD in the
RKHS, for regularized OT using ε = 10−1. (c) Plot of the iterates uk for k = 103, 104, 105 and the
proxy for the true potential û⋆, evaluated on a grid where µ has non negligible mass.

Algorithm 3 Kernel SGD for continuous OT
Input: C, kernels κ and ℓ
Output: (αk, xk, yk)k=1,...

for k = 1, 2, . . . do
Sample xk from µ
Sample yk from ν

uk−1(xk)
def.
=

∑k−1
i=1 αiκ(xk, xi)

vk−1(yk)
def.
=

∑k−1
i=1 αiℓ(yk, yi)

αk
def.
= C√

k

(

1− e
uk−1(xk)+vk−1(yk)−c(xk,yk)

ε

)

end for

Algorithm 3 describes our kernel SGD approach,
in which both potentials u and v are approxi-
mated by a linear combination of kernel func-
tions. The main cost lies in the computation of
the terms uk−1(xk) and vk−1(yk) which imply
a quadratic complexity O(k2). Several methods
exist to alleviate the running time complexity
of kernel algorithms, e.g. random Fourier fea-
tures [16] or incremental incomplete Cholesky
decomposition [25].

Kernels that are associated with dense RHKS
are called universal [23] and can approach any arbitrary potential. In Euclidean spaces X = Y = R

d,
where d > 0, a natural choice of universal kernel is the kernel defined by κ(x, x′) = exp(−‖x −
x′‖2/σ2). Tuning its bandwidth σ is crucial to obtain a good convergence of the algorithm.

Finally, let us note that, while entropy regularization of the primal problem (Pε) was instrumental
to be able to apply semi-discrete methods in Sections 3 and 4, this is not the case here. Indeed,
since the kernel SGD algorithm is applied to the dual (Dε), it is possible to replace KL(π|µ ⊗ ν)
appearing in (Pε) by other regularizing divergences. A typical example would be a χ2 divergence
∫

X×Y(
dπ

dµdν (x, y))
2dµ(x)dν(y) (with positivity constraints on π).

Numerical Illustrations. We consider optimal transport in 1D between a Gaussian µ and a Gaussian
mixture ν whose densities are represented in Figure 3 (a). Since there is no existing benchmark for
continuous transport, we use the solution of the semi-discrete problem Wε(µ, ν̂N ) with N = 103

computed with SGD as a proxy for the solution and we denote it by û⋆. We focus on the convergence
of the potential u, as it is continuous in both problems contrarily to v. Figure 3 (b) represents the plot
of ‖uk − û⋆‖2/‖û⋆‖2 where u is the evaluation of u on a sample (xi)i=1...N ′ drawn from µ. This
gives more emphasis to the norm on points where µ has more mass. The convergence is rather slow
but still noticeable. The iterates uk are plotted on a grid for different values of k in Figure 3 (c), to
emphasize the convergence to the proxy û⋆. We can see that the iterates computed with the RKHS
converge faster where µ has more mass, which is actually where the value of u has the greatest impact
in Fε (u being integrated against µ).

Conclusion

We have shown in this work that the computations behind (regularized) optimal transport can be
considerably alleviated, or simply enabled, using a stochastic optimization approach. In the discrete
case, we have shown that incremental gradient methods can surpass the Sinkhorn algorithm in
terms of efficiency, taken for granted that the (constant) stepsize has been correctly selected, which
should be possible in practical applications. We have also proposed the first known methods that can
address the challenging semi-discrete and continuous cases. All of these three settings can open new
perspectives for the application of OT to high-dimensional problems.

Acknowledgements GP was supported by the European Research Council (ERC SIGMA-Vision); AG by
Région Ile-de-France; MC by JSPS grant 26700002.
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