
Stochastic Optimization for PCA and PLS

Raman Arora, Andrew Cotter, Karen Livescu and Nathan Srebro

Toyota Technological Institute at Chicago

6045 S. Kenwood Ave.

Chicago, Illinois 60637

Email: {arora,cotter,klivescu,nati}@ttic.edu

Abstract—We study PCA, PLS, and CCA as stochastic opti-
mization problems, of optimizing a population objective based
on a sample. We suggest several stochastic approximation (SA)
methods for PCA and PLS, and investigate their empirical
performance.

I. INTRODUCTION

In this paper we consider the Principal Component Anal-

ysis (PCA), Partial Least Squares (PLS), and Canonical Cor-

relation Analysis (CCA) problems as stochastic optimization

problems, of optimizing an objective functional of an un-

known distribution based on i.i.d. draws from the distribution.

In PCA, we consider an unknown source distribution D
over R

d and would like to find the k-dimensional subspace

maximizing the (uncentered) variance of D inside the sub-

space. For PLS and CCA we consider covariances and corre-

lations of a joint distribution over a pair of vectors; this will

be formalized in Section IV. In all cases, our true objective

refers to D itself, and we can never actually calculate it,

instead estimating the objective based on i.i.d. samples. We

focus on the “data-laden” regime, where we have access

to effectively as many samples as we would like, and the

bottleneck is the required runtime to process these samples.

That is, we focus on the runtime required to achieve a good

objective value.

The straightforward approach is “Sample Average Approx-

imation” (SAA), where we collect a sample of data points,

and then optimize an empirical version of the objective on the

sample using standard deterministic techniques (in this case

linear algebra). In the case of uncentered PCA, this amounts

to computing the empirical second-moment matrix of the

sample, and then seeking the best rank-k approximation to

it, e.g. by computing the leading components of its eigende-

composition. The success of this approach is measured not

by how well we approximate the empirical second-moment

matrix, but rather how well the subspace we obtain captures

the unknown source distribution (i.e. the population second-

moment matrix).

The alternative, which we advocate here, is a “Stochastic

Approximation” (SA) approach. A SA algorithm is an itera-

tive algorithm, where in each iteration a single sampled point

is used to perform an update, as in Stochastic Gradient De-

scent (SGD, the classic stochastic approximation algorithm).

In the context of PCA this means iteratively using vectors

sampled from D to update the subspace being considered.

Stochastic approximation has been shown to be computa-

tionally preferable to statistical average approximation (i.e. to

“batch” methods) both theoretically and empirically for learn-

ing [1, 2] and more broadly for stochastic optimization [3].

Accordingly, SA approaches, mostly variants of SGD, are

often the methods of choice for many learning problems,

especially when very large data sets are available [4, 5, 6].

Our goal is to formalize PCA and PLS as stochastic

optimization problems, study the runtime needed to achieve

an accuracy goal on the population objective, and investigate

different SA approaches. We also consider CCA as a stochas-

tic optimization problem, and discuss why it is not amenable

to the same type of stochastic optimization approaches as

we use for PCA and PLS. In particular, we present three

SA approaches to PCA—a stochastic power method related

to the popular generalized Hebbian algorithm [7], a novel

truncated incremental SVD approach, and an adaptation of an

online method by Warmuth and Kuzmin [8]. We then adapt

the methods to PLS and study their empirical behavior for

both PCA and PLS, as well as compare them to the SAA

(empirical optimization) approaches to these problems.

II. STOCHASTIC OPTIMIZATION FOR PCA

We consider PCA as a problem of finding the maximal

(uncentered) variance k-dimensional subspace with respect

to a distribution over x ∈ Rd. Parameterizing the subspace

through a matrix U ∈ R
d×k with columns spanning it, we

consider the following specification of PCA:

maximize
U

:Ex

[
tr(UT xxT U)

]
(1)

subject to :UT U � I,

where the expectation is taken with respect to the distribution

of interest. Note that at the optimum, all eigenvalues of

U would be equal to one, and the columns of U would

be orthonormal, but in order to obtain a convex constraint

without changing the optimum, we consider all U with

eigenvalues at most one to be feasible.

The situation we consider here, which we argue is the

typical situation in practice, is where we do not have direct

knowledge of the distribution over x ∈ R
d and so cannot

exactly calculate the (population) objective specified in Prob-

lem 1, let alone optimize it. Instead, we only have access to

i.i.d. samples from this distribution—these can be thought of

as “training samples”. The regime we consider in this paper

is where we have an essentially unlimited supply of training

examples, and would like to obtain an ǫ-suboptimal solution

in the least possible runtime.



One possible approach to optimizing Problem 1 is

through Sample Average Approximation (SAA): we collect

T i.i.d. samples x1, . . . , xT and solve the empirical version

of Problem 1, where the expectation is replaced with its em-

pirical (sample average) approximation 1
T

∑

i tr(UT xix
T
i U).

This can be done by calculating the sample second-moment

matrix Σ̂ = 1
T

∑T
t=1 xtx

T
t , and taking U to have columns

equal to the top k eigenvectors of Σ̂.

Let us consider the computational cost of the SAA ap-

proach: The eigendecomposition of Σ̂ can be computed in

time O(d3) using the algebraic QR algorithm, or via iterative

methods [9, 10]. But the more significant cost is calculating Σ̂
itself, which requires O(Td2) time and O(d2) memory. Now,

even if the empirical problem is solved exactly, recall that we

are interested in the population objective of Problem 1, and

so using a finite sample T we obtain only an approximate

solution. The runtime of the SAA approach is then O(Tǫd
2)

where Tǫ is the number of samples required to ensure the

empirical minimizer is ǫ-suboptimal.

Recently, Tropp has developed a number of generalizations

of familiar probabilistic inequalities to the matrix setting. His

matrix Hoeffding bound [11, Theorem 1.3] can be used to

show that with probability 1 − δ:

Tǫ = O

(
M2k2

ǫ2
log

(
d

δ

))

, (2)

where
∥
∥xxT − Σ

∥
∥

2
≤ M (this is the spectral norm) with

probability 1. Although we believe that this bound could

be improved (particularly its k-dependence), it provides a

natural baseline for evaluating the rate of convergence of

other approaches for solving Problem 1.

An alternative is a Stochastic Approximation (SA) ap-

proach, where samples xi are considered sequentially, and

only a simple computation, perhaps linear in the size of U
(i.e. in dk), is performed at each iteration in order to update

U . Even if such an approach might require more samples to

obtain an ǫ-suboptimal solution, the hope is that the shorter

runtime-per-sample will result in lower total runtime being

required to obtain a solution of the same quality.

In the next section, we consider three stochastic approxi-

mation approaches to PCA. In Section VII, we will empir-

ically compare both the number of samples and the overall

runtime required to obtain a good solution to Problem 1,

both with the SA approaches and with the SAA approach

discussed above. As we will see, although the number of

samples required by the SA approaches is higher, the com-

putational cost is substantially lower.

III. PCA ALGORITHMS

In this Section we present three stochastic approximation

approaches to Problem 1. In Section III-A we present the

stochastic power method as a stochastic gradient descent

approach, and discuss how it could be implemented more effi-

ciently while still maintaining the same sequence of updates.

In Section III-B we derive a novel truncated incremental

approach, which relies on recent work on incremental SVD.

Finally, in Section III-C we consider an efficient implemen-

tation of Warmuth and Kuzmin’s online PCA algorithm [8]

as another alternative.

A. Stochastic Power Method and Variants

For convex optimization problems, stochastic gradient de-

scent is a simple and often highly efficient optimization

technique. The PCA objective function is convex, as is the

constraint (as in Equation 1), but as the goal is maximization

of this objective, the formulation of Equation 1 is not convex

as an optimization problem. However, gradient descent is still

a viable algorithm. If Σ were known exactly, then the gradient

of the PCA objective function tr(UT ΣU) with respect to U
would be 2ΣU , leading one to consider updates of the form

U (t+1) = Porth

(
U (t) + ηtΣU (t)

)
, where Porth (U) performs a

projection with respect to the spectral norm of UUT onto the

set of d×d matrices with k eigenvalues equal to 1 and the rest

0 (calling this a “projection” is a slight abuse of terminology,

since it is UUT which is projected, not U itself).

If one analytically performs an exact line search in order to

determine the best positive η, then one finds that the optimal

step size is essentially infinite, yielding the update U (t+1) =
Porth

(
ΣU (t)

)
—this is the power method. As an alternative

to performing an exact line search along the direction of the

overall gradient, one could instead notice that E
[
xxT

]
= Σ,

and take a step in the stochastic gradient direction:

U (t+1) = Porth

(

U (t) + ηtxtx
T
t U (t)

)

. (3)

Notice that, whereas calculating ΣU would require O(kd2)
operations, finding xxT U requires only O(kd). The renor-

malization step represented by Porth (which can be performed

in O(k2d) operations using, e.g., the Gram-Schmidt proce-

dure) does not affect the correctness of the solution—even if

we do not perform it at all, each iterate will span the same

subspace as it would have otherwise. To see this, suppose

that we do renormalize U (t) after each iteration. We may

then write U (t) = Q(t)R(t) with Q(t) having orthonormal

columns and R(t) being a nonsingular k × k matrix (this is

not necessarily a QR factorization, although it may be, if one

renormalizes using Gram-Schmidt). The matrix Q(t) is then

the renormalized version of U (t). With this representation of

renormalization, the 1-step SGD update of Equation 3 is:

U (t+1) =Q(t) + ηtxtx
T
t Q(t),

U (t+1)R(t) =U (t) + ηtxtx
T
t U (t).

From this equation, it is easy to prove by induction on

t that if V (t) is the sequence of iterates which would

result if renormalization was not performed, then V (t) =
Q(t)R(t)R(t−1) · · ·R(1). Because R(t)R(t−1) · · ·R(1) is a

product of nonsingular matrices, it is nonsingular, showing

that V (t) and Q(t) span the same subspace.

As a result of this observation, renormalization may be

performed for purely numerical reasons, and only very in-

frequently. Hence, the computational cost of renormalization

may be ignored, showing that performing T iterations of SGD

costs only O(Tkd) operations and O (kd) memory, both of



which are better by a factor of d/k than merely calculating

the empirical second-moment matrix over T samples (costing

O(Td2) operations and O
(
d2
)

memory). For small k and

large d, this represents an enormous potential performance

difference over non-stochastic linear algebra-based methods.

Although not presented as instances of SGD, there are a

number of algorithms in the literature that perform precisely

the above SGD update, differing only in how they renor-

malize. For example, Oja and Karhunen [12] perform Gram-

Schmidt orthonormalization after every iteration, while the

popular generalized Hebbian algorithm [7], which was later

generalized to the kernel PCA setting by Kim et al. [13],

performs a partial renormalization. Both of these algorithms

converge with probability 1 (under certain conditions on the

distribution of x and step sizes ηt). However, the rate of

convergence is not known.

B. Incremental PCA

Another approach to PCA in the stochastic setting is

inspired by an incremental algorithm for finding the singular

value decomposition (SVD) [14], although the linear algebra

used by our approach is more similar to the technique of

Bunch et al. [15]. The problem of incremental SVD has

been studied recently in many areas, with application to face

recognition [16], scalable recommender systems [17], time-

series segmentation [18], and data imputation [14].

Whereas Brand [14] is interested in the SVD of a data

matrix X = [x1, x2, . . . , xT ], we are interested in the eigen-

decomposition of the matrix of second moments E[xxT ].
Like Brand, we consider the setting where the examples are

processed one at a time, resulting in a rank-one update to

the unnormalized empirical second-moment matrix at each

iteration. The update we propose can be expressed as:

C(t) = Prank-k

(

C(t−1) + xtx
T
t

)

. (4)

The projection Prank-k projects its argument onto the set of

rank-k matrices with respect to the spectral norm. This can

be accomplished by setting all but the k largest eigenvalues

to 0.

The update of Equation 4 can be performed efficiently.

Suppose that C(t−1) is a rank-ℓ approximation to the matrix
∑t−1

s=1 xsx
T
s with its eigendecomposition being C(t−1) =

USUT , where U ∈ R
d×ℓ and UT U = I . Given a new

observation, xt, define x̂ = UT xt as the coefficients of

the projection of xt onto the columns of U , and x⊥ =
xt −UUT xt as its orthogonal component. Then the updated

matrix C̃(t) = C(t−1) + xtx
T
t of Equation 4 can be written

as:

[

U
x⊥

‖x⊥‖2

]




S + x̂ x̂T ‖x⊥‖2 x̂

‖x⊥‖2 x̂T ‖x⊥‖2
2





︸ ︷︷ ︸

Q∈R(ℓ+1)×(ℓ+1)

[
UT

xT
⊥

/‖x⊥‖2

]

.

Notice that we have named the middle matrix in the above

expression Q. The eigendecomposition of Q = U ′S′U ′T may

be found in O
(
k3
)

time, and the eigendecomposition of C̃(t)

is Ũ S̃ŨT , where:

Ũ =

[

U
x⊥

‖x⊥‖2

]

U ′, S̃ = S′.

If the rank of C̃(t) grows beyond k, then we truncate S̃ and

Ũ to retain the top k eigenvalues and eigenvectors, resulting

in the iterate C(t).

One advantage of the incremental approach is its low

space complexity of O(kd), compared to O(d2) for classical

approaches to PCA. The dominant computation in our update

is the matrix multiplication defining Ũ , which has a cost

of O(k2d) operations, leading to an overall runtime of

O(Tk2d), which is worse by a factor of k than the SGD

approach of Section III-A, but is better by a factor of d/k2

than the cost of calculating the empirical second-moment

matrix (under the assumption that k ≪ d). The incremental

approach has another advantage over SGD: it is parameter-

free, whereas the use of SGD may require tuning of the step-

size parameter ηt.

There do exist situations in which this algorithm fails

to converge. For example, if the data are drawn from the

distribution which samples (3, 0) with probability 1/3 and

(0, 2) with probability 2/3, and we use the incremental

algorithm to search for a 1-dimensional maximal subspace,

then it will converge to (1, 0) with probability 5/9, despite

the fact that the maximal eigenvector is (0, 1). This example

relies on the data being orthogonal (a situation which is

unlikely to arise in practice), but does illustrate that the

convergence properties of the incremental approach are not

well-understood.

C. Online PCA

Warmuth and Kuzmin [8] introduced an online algorithm

for solving the PCA problem. A full derivation of their

algorithm is beyond the scope of this paper, but we will

give a high-level overview of their algorithm, and describe

a novel technique for improving its computational efficiency

dramatically.

As we have seen, one may formulate PCA as the opti-

mization problem of finding a U ∈ R
d×k with orthonormal

columns maximizing Ex

[
tr(UT xxT U)

]
. Equivalently, one

could seek not a matrix U of k column vectors spanning

the maximal subspace, but instead a matrix U ′ of d − k
columns spanning the minimal subspace. From this matrix,

the orthogonal complement (U ) could easily be derived. We

could go further, and seek instead a projection matrix M
onto the d−k dimensional minimal subspace (we may think

of M as satisfying M = U ′U ′T = I − UUT ). Because

M is a rank d − k projection matrix, it must have have

exactly d− k eigenvalues equal to 1, and k equal to 0—this

will be a constraint which is imposed during optimization.

Unfortunately, this is not a convex constraint, but if we relax

it by taking the convex hull, then the result is a convex



optimization problem:

minimize
M

:Ex

[
tr(MxxT )

]
(5)

subject to :M � 0, ‖M‖2 ≤ 1

d − k
, tr(M) = 1.

Here, ‖·‖2 is the spectral norm, and we have scaled M by

1/(d − k). This is precisely the PCA formulation proposed

by Warmuth and Kuzmin [8]. Their update rule (which is

targeted towards the online setting, rather than the easier

stochastic setting which we consider) is an instance of the

Mirror Descent algorithm [19], with distance generating

function Ψ(M) = tr lnM (the von Neumann entropy) and

the Frobenius inner product and norm:

M (t+1) = PRE

(

exp
(

lnM (t) − ηtxtx
T
t

))

. (6)

These are matrix logarithms and exponentials. The projection

PRE onto the constraints is performed with respect to the

quantum relative entropy, which turns out to be a straight-

forward operation: let k′ be the largest number such that

setting the largest d − k′ eigenvalues of M to 1/(d − k),
and scaling the remaining k′ eigenvalues so as to satisfy the

normalization constraint tr(M) = 1, results in all eigenvalues

of M being bounded above by 1/(d− k). Then perform this

capping-and-scaling. Please see Warmuth and Kuzmin [8] for

details.

Of the stochastic algorithms that we consider, only War-

muth and Kuzmin’s enjoys a satisfactory convergence guar-

antee. Using a certain constant step size ηt = η, assuming

that ‖xt‖2 ≤ 1 uniformly, and for any M∗ satisfying the

constraints of Problem 5, Warmuth and Kuzmin [8, Equa-

tion 5.1] gives that after performing T iterations, where T
satisfies:

T ≥ O

((
(d − k) tr (M∗Σ) + ǫ

ǫ

)
k log d

k

ǫ

)

,

the iterates M (t) will satisfy:

E

[

1

T

T∑

t=1

tr
(

(d − k) M (t)Σ
)
]

− tr ((d − k) M∗Σ) ≤ ǫ,

(7)

where M∗ is the optimum of Problem 5, and both M∗ and

M (t) are scaled by d− k to compensate for the fact that the

objective of Problem 5 was scaled by 1/(d − k) relative to

the original PCA objective.

Equation 7 is not directly comparable to the SAA bound of

Equation 2, due to its dependence on M∗. In the “optimistic”

setting in which the d − k dimensional minimal subspace

contains total variance on the order of ǫ, the first term of

Equation III-C is of order 1, and this bound is superior to

Equation 2 by a factor of k/ǫ. The bounds are comparable

when this d−k dimensional subspace contains total variance

of order k, and in more “pessimistic” settings the bound on

the SAA algorithm is superior.

The biggest drawback of Warmuth and Kuzmin’s algorithm

is computational cost. As written, performing a single itera-

tion (Equation 6) requires two full-rank eigendecompositions:

one for the matrix logarithm, and another for the exponential

and projection. As was pointed out by Tsuda et al. [20],

one may reduce this cost by maintaining an up-to-date

eigendecomposition of M throughout a run of the algorithm.

Each update to this eigendecomposition will take the form

of either a rank-one update (when we add ηtxtx
T
t ) or a

simple operation on the eigenvalues (the matrix logarithm

and exponential, as well as the projection).

This optimization only partially addresses the algorithm’s

performance shortcomings, since M is still a full-rank d× d
matrix. There is one more significant property of M which

remains to be exploited: the projection step will set many

of the eigenvalues of M to be exactly 1/(d − k). Let k′ be

the number of eigenvalues which are less than 1/(d − k),
so that M has d − k′ repeated eigenvalues. Using the same

technique as the incremental PCA algorithm of Section III-B,

one may find the eigendecomposition of M +ηxxT given an

eigendecomposition of M in O
(

k′2d
)

time. Furthermore,

the eigenvectors corresponding to these repeated eigenvalues

need not be stored, reducing the memory cost to O (k′d).
Of course, these results depend crucially on the value of k′,

which varies from iteration to iteration, and could potentially

be as small as k+1 or as large as d−1. In practice, however,

this change leads to significant savings.

One final issue with Warmuth and Kuzmin’s algorithm

is that it solves not the true PCA objective, but instead a

relaxation of it. The eigenvalues of the state matrices M (t)

are nonnegative and sum to 1, which suggests finding a

minimal subspace of rank d− k via sampling, and taking its

orthogonal component to be our rank-k maximal subspace.

Indeed, this is precisely the solution suggested by Warmuth

and Kuzmin. In our experiments (Section VII), we use the

less-“correct” but simpler (and empirically superior) approach

of taking the eigenvectors corresponding to the minimal k
eigenvalues of M (T ). We use only the last iterate M (T ),

not the average over all iterates, as would be suggested by

Equation 7.

IV. STOCHASTIC OPTIMIZATION FOR PLS

Many machine learning problems benefit from multiple

“views” of the data, possibly from different measurement

modalities. In such multi-view learning problems, a common

representation of the two views is provided by the shared

semantic space. A common approach to extracting this space

is through canonical correlation analysis (CCA), which finds

pairs of maximally correlated projections of the data in the

two views. CCA has been successfully applied to various

tasks in speech [21, 22, 23, 24, 25, 26], natural language

processing [27], and computer vision [28, 29]. A closely

related technique is Partial Least Squares (PLS), which finds

pairs of maximally covarying projections of the data in the

two views. We begin by considering PLS, and return to CCA

in Section VI.

In order to formulate PLS as a stochastic optimization

problem, consider a joint distribution over pairs of vectors

x ∈ R
dx and y ∈ R

dy . A k-dimensional PLS solution can

be parameterized by a pair of matrices U ∈ R
dx×k and



V ∈ R
dy×k, where the corresponding columns of U and

V represent corresponding covarying directions. The PLS

problem can now be expressed as:

maximize
U,V

:Ex,y

[
tr
(
UT xyT V

)]
(8)

subject to :UT U = I, V T V = I.

The columns of U and V are singular vectors of ΣXY . Like

the PCA objective and most other learning problems, PLS is

an optimization of an expectation subject to fixed constraints,

and is therefore amenable to a stochastic approximation

approach.

V. PLS ALGORITHMS

We now show how the SA methods presented in Section III

can be modified to solve the (uncentered) PLS Problem 8.

A. SGD for PLS

It is fairly straightforward to extend the SGD algorithm

of Section III-A to PLS. The difference is that we now

observe a pair of examples xt, yt at each iteration, with

E[xyT ] = ΣXY , and seek to maximize tr
(
UT ΣXY V

)
, which

has gradients ΣXY V with respect to U and ΣT
XY U with

respect to V . This suggests the following stochastic gradient

update:

U (t+1) =Porth

(

U (t) + ηtxty
T
t V (t)

)

,

V (t+1) =Porth

(

V (t) + ηtytx
T
t U (t)

)

,

where, as in Section III-A, the projection Porth orthonormal-

izes the columns of its argument, and needs to be performed

only infrequently, for purely numerical reasons.

The space complexity of the resulting algorithm is the sum

of the sizes of U and V : O (k (dx + dy)). Neglecting the cost

of the projection, the computational cost is dominated by the

matrix-vector multiplications of the update equation, costing

O (k (dx + dy)) per iteration, for a total of O (Tk (dx + dy)).
As before, these are superior to the O (dxdy) space complex-

ity and O (Tdxdy) computational cost of calculating ĈXY .

B. Incremental PLS

As in Section III-B, one may perform an incremen-

tal PLS update by maintaining a rank-k estimate C
(t−1)
XY

of the SVD of the empirical cross-second-moment matrix
∑t−1

s=1 xsy
T
s , and performing a rank-one update and pro-

jection after observing each sample pair xt, yt, according

to C
(t)
XY = Prank-k

(

C
(t−1)
XY + xty

T
t

)

, where Prank-k projects

onto the set of rank-k matrices with respect to the spectral

norm.

The efficient implementation of this update follows broadly

the same lines as that for PCA. Supposing that C
(t−1)
XY has

the rank-ℓ SVD USV T , we define:

x̂ = UT xt, x⊥ = xt − UUT xt,

ŷ = V T yt, y⊥ = yt − V V T yt,

The matrix C̃
(t)
XY = C

(t−1)
XY + xty

T
t can then be written as:

[

U
x⊥

‖x⊥‖

]




S + x̂ ŷT ‖y⊥‖ x̂

‖x⊥‖ ŷT ‖x⊥‖ ‖y⊥‖





︸ ︷︷ ︸

Q∈R(ℓ+1)×(ℓ+1)

[
V T

yT
⊥

/‖y⊥‖

]

.

Finding the SVD of C̃
(t)
XY requires an “inner” SVD on the

smaller matrix Q, with a computational cost of O(ℓ3). Given

the SVD Q = U ′S′V ′T , the SVD of C̃
(t)
XY is Ũ S̃Ṽ T , where:

Ũ =

[

U
x⊥

‖x⊥‖

]

U ′, S̃ = S′, Ṽ =

[

V
y⊥
‖y⊥‖

]

V ′.

Once more, we ensure that the rank of C
(t)
XY does not exceed

k by taking only the top k singular values and vectors of

C̃
(t)
XY .

This algorithm has the same space complexity as SGD:

O (k (dx + dy)). The computational cost is dominated by

the matrix multiplications defining Ũ and Ṽ , costing

O
(
k2 (dx + dy)

)
operations, which is a factor of k worse

than SGD, but still better, for sufficiently small k, than that

of calculating the empirical cross-second-moment matrix.

C. Online PLS

Adapting the online algorithm of Warmuth and Kuzmin

[8] to work on the PLS objective is less straightforward than

it is for either SGD or the incremental algorithm, since it

works in the matrix log domain, and therefore depends on

symmetry. We may, however, symmetrize the PLS objective

by making use of a self-adjoint dilation [11] of the matrix

ΣXY :

Γ =

[
0 ΣXY

ΣY X 0

]

= Ex,y

[
0 xyT

yxT 0

]

.

Provided that ΣXY has no repeated nonzero singular values,

the nonzero eigenvalues of this matrix will be the singular

values of ΣXY and their negations, with the corresponding

matrix of eigenvectors being (up to sign differences):

W =
1√
2

[
U U
V −V

]

,

where U and V are the left and right singular vectors of ΣXY ,

respectively. Hence, if we let Wk ∈ R
(dx+dy)×k be a matrix

with the top k ≤ dx, dy eigenvectors of Γ in its columns,

then
√

2 times the first dx rows of Wk will be the top k left

singular vectors of ΣXY , and likewise
√

2 times the last dy

rows of Wk will be the top k right singular vectors of ΣXY .

This suggests that we modify Equation 5 to be:

minimize
M

:Ex,y

[

tr

(

M

[
0 xyT

yxT 0

])]

subject to :M � 0, ‖M‖2 ≤ 1

d − k
, tr (M) = 1,

which leads us to change the update of Equation 6 to:

M (t+1) = PRE

(

exp
(

lnM (t) − ηtZt

))

,



where:

Zt =

[
0 xty

T
t

ytx
T
t 0

]

=
1

2

[
xt

yt

] [
xt

yt

]T

− 1

2

[
xt

−yt

] [
xt

−yt

]T

.

Notice that Zt is a rank-2 matrix. The analysis of Warmuth

and Kuzmin no longer applies to this modification of their al-

gorithm, since Γ and Zt have negative eigenvalues. However,

the interpretation of the algorithm as exponentiated stochastic

gradient descent is unchanged. The implementation of the

algorithm is almost identical: the only difference is that a

rank-2 update is performed at every iteration, instead of rank-

1.

As we did in Section III-C, we find a rank-k maximal

subspace by taking the eigenvectors corresponding to the

k minimal eigenvalues of M (T ). There is one additional

wrinkle, however: although the top dx and bottom dy rows

of the matrix containing the optimal k eigenvectors of Γ
immediately give a SVD of ΣXY , for suboptimal solutions

it may not be the case that the resulting U and V will

have orthogonal columns. In our experiments, we resolve

this by the simple expedient of taking the orthonormalized

U
(
UT U

)−1/2
and V

(
V T V

)−1/2
as our approximate singu-

lar vectors.

VI. STOCHASTIC OPTIMIZATION FOR CCA

We now return to the question of formulating CCA as a

stochastic optimization problem. We again consider a joint

distribution over pairs of vectors x ∈ R
dx and y ∈ R

dy .

As in PLS, a k-dimensional CCA solution is parameterized

by a pair of matrices U ∈ R
dx×k and V ∈ R

dy×k,

where the corresponding columns of U and V now represent

corresponding correlated directions. The CCA problem can

be expressed as:

maximize
U,V

:Ex,y

[
tr
(
UT xyT V

)]
(9)

subject to :Ex

[
UT xxT U

]
= I, Ey

[
V T yyT V

]
= I.

It is straightforward to show [28] that the CCA optimum

can be obtained from a generalized eigenvalue problem,

where the uk are eigenvectors of Σ−1
XXΣXY Σ−1

Y Y ΣY X with

corresponding vk = Σ−1
Y Y ΣY Xuk, where ΣXY is the cross-

second-moment matrix between X and Y and ΣXX ,ΣY Y

are the matrices of second moments of X and Y .

This suggests the immediate SAA approach where the

matrices ΣXX , ΣXY and ΣY Y are replaced with their

empirical (sample based) approximations, and the generalized

eigenvalue problem is solved. This approach is applicable to

both CCA and PLS, and is frequently applied to both.

A more careful look at the CCA problem 9 reveals that

this is a difficult stochastic optimization problem, and that

many stochastic approximation approaches might not be valid

here. The difficulty stems from the fact that unlike the PCA

and PLS problems, and many other stochastic optimization

problems encountered in learning, the constraints also involve

the unknown distribution. That is, not only can we not

evaluate the objective value precisely, but we also cannot

know which matrices are feasible. In order to appreciate this

difficulty, consider the simple k = 1 case, in which we seek

the two most correlated directions u and v. The normalization

constraints can be removed and instead we can normalize u
and v in the objective by dividing by the square roots of

the second moments of the directions u and v, obtaining the

following population objective:

ρ(uT x, vT y) =
Ex,y

[
uT xyT v

]

√

Ex [uT xxT u]
√

Ey [vT yyT v]
. (10)

This is now an unconstrained optimization problem, but the

objective is no longer an expectation, but rather a ratio of

expectations. This creates a difficult situation and departs sig-

nificantly from the typical stochastic approximation scenario.

For example, it is not at all clear how to obtain unbiased

estimates of the gradient of Equation 10.

In this regard the PLS problem seems much more amenable

to stochastic approximation approaches—it is, like the PCA

objective and most other learning problems, an optimization

of an expectation subject to fixed constraints. We thus focus

on PLS, rather than CCA, in this initial study.

We note that CCA is equivalent to PLS after a normal-

ization by the matrices ΣXX and ΣY Y , i.e. to PLS on

the transformed x̃ = Σ
−1/2
XX x and ỹ = Σ

−1/2
Y Y y. Thus, in

applications where it is feasible to normalize the data in this

way (i.e., ΣXX and ΣY Y are identity matrices, are known,

or have a dominant diagonal that can be relatively easily

estimated), CCA can be reduced to PLS by normalization.

VII. EXPERIMENTAL RESULTS

In this section we compare the performance of the algo-

rithms of Sections III and V in terms of progress made on the

objective as a function of iteration number and CPU runtime.

For PCA experiments we use the MNIST dataset, con-

sisting of 70, 000 binary images of handwritten digits. For

PLS experiments, we use the Wisconsin X-Ray Micro-Beam

(XRMB) data, consisting of acoustic and articulatory mea-

surements of English speech [30]. We use roughly 225, 000
examples from four speakers (JW11, JW13, JW24, JW30).

All experiments include pre-normalization, consisting of

mean-centering the feature vectors and then dividing each

coordinate by its standard deviation times the square root of

the length of the feature vector.

Our implementations are written in Matlab. In order to

ensure a fair comparison with the parameter-free incremental

algorithm, we deliberately made little effort to find optimal

step sizes for SGD and Warmuth and Kuzmin’s algorithms,

choosing ηt = 1/
√

t uniformly for all experiments. All

algorithms were run for only one “pass” over the training

data, resulting in some algorithms being far from convergence

at termination, but ensuring that all training samples were

drawn independently from the population.

Our experiments compare performance in terms of the

objective function value. Because we cannot evaluate the

true population objective for Problems 1 and 8, we instead

approximate them by evaluating on a held-out testing sample



(a) k = 1 (b) k = 4 (c) k = 8

10
0

10
1

10
2

10
3

10
40

1

2

Iteration

O
bj

ec
tiv

e

10
0

10
1

10
2

10
3

10
40

2

4

6

Iteration

O
bj

ec
tiv

e

10
0

10
1

10
2

10
3

10
40

5

10

Iteration

O
bj

ec
tiv

e

10
−3

10
−2

10
−1

10
0

10
10

1

2

Runtime (in seconds)

O
bj

ec
tiv

e

10
−3

10
−2

10
−1

10
0

10
10

2

4

6

Runtime (in seconds)

O
bj

ec
tiv

e

 

 

Incremental PCA
SGD PCA
Online PCA
Batch PCA
Max Objective

10
−3

10
−2

10
−1

10
0

10
10

5

10

Runtime (in seconds)

O
bj

ec
tiv

e

Fig. 1. Comparison of the incremental, SGD and online algorithms for stochastic PCA optimization on the MNIST dataset, in terms of
the objective value as a function of iteration (top row) and as a function of CPU runtime (bottom row). The “Batch” curve is for the
Sample Average Approximation (SAA) approach.

(a) k = 1 (b) k = 4 (c) k = 8

10
0

10
1

10
2

10
3

10
4

10
50

0.01

0.02

Iteration

O
bj

ec
tiv

e

10
0

10
1

10
2

10
3

10
4

10
50

0.02

0.04

0.06

Iteration

O
bj

ec
tiv

e

10
0

10
1

10
2

10
3

10
4

10
50

0.05

0.1

Iteration

O
bj

ec
tiv

e

10
−2

10
−1

10
0

10
1

10
20

0.01

0.02

Runtime (in seconds)

O
bj

ec
tiv

e

 

 

Incremental PLS
SGD PLS
Online PLS
Batch PLS
Max Objective

10
−2

10
−1

10
0

10
1

10
2

10
30

0.02

0.04

0.06

Runtime (in seconds)

O
bj

ec
tiv

e

10
−2

10
−1

10
0

10
1

10
2

10
30

0.05

0.1

Runtime (in seconds)

O
bj

ec
tiv

e

Fig. 2. Comparison of the incremental, SGD and online algorithms for stochastic PLS optimization on the XRMB dataset, in terms of
the objective value as a function of iteration (top) and as a function of CPU runtime (bottom).

(half of the dataset, with the other half being used for

training). All results are averaged over 50 random train/test

splits.

Figures 1 and 2 show the PCA and PLS objectives, re-

spectively, as a function of the number of samples processed

(iterations) as well as CPU runtime, for ranks k = 1, 4 and

8. As expected, SGD is the fastest, but also makes the least

progress, per iteration. The online algorithm makes better

progress per iteration on PLS but performs poorly in terms of

runtime. Amongst the stochastic algorithms, the incremental

algorithm is consistently the best in terms of both runtime

and progress-per-iteration, and generally attains an objective

close to the optimum faster than the batch algorithm.

VIII. CONCLUSIONS AND DISCUSSION

We believe that in data-driven applications, the stochastic

optimization view is often the correct view of PCA, PLS, and

CCA, rather than a more conventional empirical optimization

or linear-algebra view. In this paper we have taken our first

steps at formalizing these problems as problems of optimizing

a population objective and studying it as such, and we hope

this will be the seed of future work with this view in

mind. We have not been able to provide any quantitative

theoretical guarantee on the performance of the stochastic

power method or the truncated incremental method, and thus

cannot analytically compare them with the SAA approach.

The difficulty of providing such guarantees is highlighted by



the lack of guarantees for the variants of the stochastic power

method mentioned in Section III-A. Nevertheless, we hope

to progress toward such a theoretical understanding. Beyond

PCA and PLS, another outstanding challenge is obtaining a

good stochastic optimization method for CCA—as discussed

in Section VI, the stochastic constraints make this problem

much more challenging, and we do not have a satisfying

solution to the problem at this stage.

With that said, the stochastic optimization view allows us

to see the advantages of a SA approach over the standard

SAA (empirical optimization) approach, and we have demon-

strated this advantage empirically for both PCA and PLS. In

particular, for PCA:

• We have presented a novel truncated incremental ap-

proach (Section III-B)

• We have presented a novel method for obtaining the

iterates of Warmuth and Kuzmin [8], which is orders of

magnitude faster and more memory efficient, and is thus

practical in large-scale applications (Section III-C).

• We have pointed out that a renormalization at every

iteration of the stochastic power method is redundant

and yields the same iterates, in terms of the subspace

spanned (Section III-A), thus allowing for a faster im-

plementation.

We have also extended these methods to PLS, describing, we

believe for the first time, SA approaches for this problem.

We also report on an empirical comparison of the three SA

approaches, as well as SAA, for PCA and for PLS. For

PCA, both the stochastic power method and the truncated

incremental approach outperform the SAA approach, with

each method preferable in a different regime.

REFERENCES

[1] L. Bottou and O. Bousquet, “The tradeoffs of large scale
learning,” in NIPS’07, 2007, pp. 161–168.

[2] S. Shalev-Shwartz and N. Srebro, “SVM optimization: Inverse
dependence on training set size,” in ICML’08, 2008, pp. 928–
935.

[3] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Ro-
bust stochastic approximation approach to stochastic program-
ming,” SIAM Journal on Optimization, vol. 19, no. 4, pp.
1574–1609, January 2009.

[4] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal
Estimated sub-GrAdient SOlver for SVM,” in ICML’07, 2007,
pp. 807–814.

[5] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L.
Bartlett, “Exponentiated gradient algorithms for conditional
random fields and max-margin markov networks,” J. Mach.
Learn. Res., vol. 9, pp. 1775–1822, Jun. 2008.

[6] S. Shalev-Shwartz and A. Tewari, “Stochastic methods for
l1 regularized loss minimization,” in Proceedings of the 26th
Annual International Conference on Machine Learning, ser.
ICML’09. New York, NY, USA: ACM, 2009, pp. 929–936.

[7] T. D. Sanger, “Optimal unsupervised learning in a single-layer
linear feedforward neural network,” Neural Networks, vol. 12,
pp. 459–473, 1989.

[8] M. K. Warmuth and D. Kuzmin, “Randomized PCA algorithms
with regret bounds that are logarithmic in the dimension,” in
NIPS’06, 2006.

[9] M. Gu, “Single- and multiple-vector iterations,” in Templates
for the solution of algebraic eigenvalue problems: a practical
guide, Bai, Zhaojun, Demmel, James, Dongarra, Jack, Ruhe,

Axel, and van der Vorst, Henk, Eds. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 2000, ch. 4.3.

[10] A. Ruhe, “Lanczos method,” in Templates for the solution
of algebraic eigenvalue problems: a practical guide, Bai,
Zhaojun, Demmel, James, Dongarra, Jack, Ruhe, Axel, and van
der Vorst, Henk, Eds. Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2000, ch. 4.4.

[11] J. A. Tropp, “User-friendly tail bounds for sums of random
matrices,” Foundations of Computational Math., Aug 2011.

[12] E. Oja and J. Karhunen, “On stochastic approximation of the
eigenvectors and eigenvalues of the expectation of a random
matrix,” Journal of Mathematical Analysis and Applications,
vol. 106, pp. 69–84, 1985.

[13] K. I. Kim, M. O. Franz, and B. Schölkopf, “Iterative ker-
nel principal component analysis for image modeling,” IEEE
Trans. PAMI, vol. 27, no. 9, pp. 1351–1366, 2005.

[14] M. Brand, “Incremental singular value decomposition of un-
certain data with missing values,” in ECCV, 2002.

[15] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-
one modification of the symmetric eigenproblem,” Numerische
Mathematik, vol. 31, no. 1, pp. 31–48, 1978.

[16] T.-J. Chin, K. Schindler, and D. Suter, “Incremental kernel
SVD for face recognition with image sets,” in Proc. 7th Intl.
Conf. Automatic Face and Gesture Recog. (FG06), 2002.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Incremental
singular value decomposition algorithms for highly scalable
recommender systems,” in Fifth International Conference on
Computer and Information Science, 2002.

[18] Y. N. Rao and J. C. Principe, “A fast on-line generalized
eigendecomposition algorithm for time series segmentation,”
IEEE Transactions on Signal Processing, 2000.

[19] A. Beck and M. Teboulle, “Mirror descent and nonlinear
projected subgradient methods for convex optimization,” Op-
erations Research Letters, vol. 31, no. 3, pp. 167–175, 2003.

[20] K. Tsuda, G. Rätsch, and M. K. Warmuth, “Matrix expo-
nentiated gradient updates for on-line learning and bregman
projection,” J. Mach. Learn. Res., pp. 995–1018, Dec. 2005.

[21] K. Choukri, G. Chollet, and Y. Grenier, “Spectral transfor-
mations through canonical correlation analysis for speaker
adptation in ASR,” in ICASSP, 1986.

[22] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan,
“Multi-view clustering via canonical correlation analysis,” in
ICML’09, 2009.

[23] K. Livescu and M. Stoehr, “Multi-view learning of acoustic
features for speaker recognition,” in ASRU, 2009.

[24] F. Rudzicz, “Adaptive kernel canonical correlation analysis for
estimation of task dynamics from acoustics,” in ICASSP, 2010.

[25] S. Bharadwaj, R. Arora, K. Livescu, and M. Hasegawa-
Johnson, “Multiview acoustic feature learning using articu-
latory measurements,” in Intl. Workshop on Stat. Machine
Learning for Speech Recognition (IWSML), 2012.

[26] R. Arora and K. Livescu, “Kernel CCA for multi-view learning
of acoustic features using articulatory measurements,” in Symp.
on Machine Learning in Speech and Language Processing
(MLSLP), 2012.

[27] A. Haghighi, P. Liang, T. Berg-Kirkpatrick, and D. Klein,
“Learning bilingual lexicons from monolingual corpora,” in
ACL, 2008.

[28] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical
correlation analysis: An overview with application to learning
methods,” Neural Computation, vol. 16, no. 12, pp. 2639–
2664, 2004.

[29] M. B. Blaschko and C. H. Lampert, “Correlational spectral
clustering,” in CVPR, 2008.

[30] J. R. Westbury, X-ray microbeam speech production database
user’s handbook, Waisman Center on Mental Retardation &
Human Development, University of Wisconsin, Madison, WI,
USA, June 1994.


	Introduction
	Stochastic Optimization for PCA
	PCA Algorithms
	Stochastic Power Method and Variants
	Incremental PCA
	Online PCA

	Stochastic optimization for PLS
	PLS Algorithms
	SGD for PLS
	Incremental PLS
	Online PLS

	Stochastic optimization for CCA
	Experimental Results
	Conclusions and Discussion

