
Stochastic Optimization of Bipedal Walking using
Gyro Feedback and Phase Resetting

Felix Faber and Sven Behnke
Computer Science Institute

University of Freiburg, Germany
{faber | behnke}@informatik.uni-freiburg.de

Abstract— We present a method to optimize the walking
pattern of a humanoid robot for forward speed using suitable
metaheuristics. Our starting point is a hand-tuned open-loop gait
that we enhance with two feedback control mechanisms. First,
we employ a P-controller that regulates the foot angle in order to
reduce angular velocity of the robot’s body. Second, we introduce
a phase resetting mechanism that starts the next step at the
moment of foot contact. Using a physics-based simulation, we
demonstrate that such feedback control is essential for achieving
fast and robust locomotion.

For the optimization of open-loop parameters and parameters
of the feedback mechanisms, we compare Policy Gradient Rein-
forcement Learning (PGRL) and Particle Swarm Optimization
(PSO). To make optimization more data-efficient, we extend
PGRL by an adaptive step size and a sequential sampling
procedure. Our experiments show that the proposed extensions
increase the performance of PGRL significantly.

We selected the extended PGRL algorithm to optimize the
gait of a real robot. After optimization, the robot is able to walk
significantly faster.

I. INTRODUCTION

Enabling a humanoid robot to walk fast and stable is non-
trivial. Such robots are highly complex, non-linear dynamical
systems that are hard to control. Sensor noise, imprecise
actuators, and external disturbances further complicate control.

Among the most successful approaches to biped locomotion
are trajectory tracking methods that are based on precomputed
trajectories of the legs or the Zero Moment Point (ZMP) [1].
The joint trajectories are generated offline, for example, by
solving the dynamic equations of motion. During the walking
process, precise controllers are used for following the pre-
computed trajectories. Trajectory tracking, however, requires
a precise model of the robot. At the same time, solving the
dynamical equations of motion can be computationally very
demanding if a robot has many degrees of freedom (DOF). The
approach presented here does not require an accurate model
of the robot and has a low computational complexity.

A completely different approach is that of passive dynamic
walkers (PDW). They use the inherent machine dynamics for
walking and most of them walk without actuation or control.
McGeer [2] first introduced the notion of PDW and showed
that unactuated and uncontrolled planar walking down a slope
is possible. The main interest of the approach is the evolution
of periodic gaits, without considering starting or stopping,
while agility and responsiveness of motion, as required by
a versatile robot such as ours, play a minor role.

In addition, biologically inspired methods have evolved in
which central pattern generators (CPG) [3] generate joint
trajectories by using nonlinear oscillators. CPG-driven lo-
comotion has been successfully applied in cases where a
complete dynamical model of the robot is not available or
too complex to be useful [4], [5]. The disadvantage of CPG-
driven methods is that it is not trivial to determine appropriate
parameter settings for the oscillators in order to achieve a
stable gait. Our approach is similar to CPG methods in that
joint trajectories are generated and adapted online.

Although CPG-based methods do not use a model, stochas-
tic optimization of their parameters is possible. This has been
demonstrated, e.g., with the Aibo quadrupeds [6]–[8]. In order
to reject disturbances, sensory feedback is essential. Conse-
quently, several successful attempts to incorporate sensory
feedback have been reported, e.g. [9], [10].

In this paper, we propose extending an open-loop gait engine
with two feedback mechanisms: gyro feedback that stabilizes
the trunk and phase resetting at foot contact that entrains
the CPG with the natural dynamics of the robot-environment
system. The parameters of these feedback mechanisms are
included in a stochastic optimization procedure. We evaluate
the suitability of two state-of-the-art metaheuristics for our
task and propose extensions that make them more data-
efficient. This includes a sequential sampling procedure, an
adaptive step size, and automatic restarting.

After reviewing some of the related work, we present the
humanoid robot Jupp used for the experiments and its open-
loop gait engine in Sec. III and IV, respectively. The proposed
feedback mechanisms are detailed in Sec. V. The optimization
problem is defined in Sec. VI and Sec. VII presents the PGRL
and PSO metaheuristics together with the proposed extensions.
The heuristics and their extensions are evaluated in a physics-
based simulation, as described in Sec. VIII. Sec. IX reports
the results of transferring stochastic gait optimization to the
real robot.

II. RELATED WORK

Stochastic gait optimization has been successfully demon-
strated for the Aibo quadruped, e.g. by Kohl and Stone [6] who
proposed Policy Gradient Reinforcement Learning (PGRL).
They approximate the gradient of the objective function by
sampling in the vicinity of a parameter vector. In contrast to

our approach, the authors did not make use of sensory feed-
back. Röfer [11] used the readings of acceleration sensors to
judge stability of Aibo gaits during evolutionary optimization.
However, the acceleration sensors were not used to adapt the
gait online.

Geng et al. [10] successfully used PGRL for gait optimiza-
tion of a planar biped. While their approach optimizes only
two gait parameters, we include many more parameters in
the optimization. This is possible because of the data-efficient
sequential sampling procedure.

Hemker et al. [9] applied a sequential surrogate approach to
optimize the speed of their humanoid robot. In contrast to our
approach, the authors did not optimize feedback parameters.
The gait also does not include a phase resetting mechanism.

Kosse [12] optimized the gait of a KHR-1 humanoid robot
for forward speed using evolutionary strategies. His gait is
completely open-loop.

Nakanishi et al. [4] proposed phase resetting to adapt
the CPG-frequency of a planar biped. They reset the CPG-
oscillators when the foot hits the ground. The approach learns
open-loop gait parameters from demonstration, but does not
include feedback parameters in the learning process.

Aoi and Tsuchiya [5] also incorporated a phase-resetting
mechanism. The authors did not optimize the gait parameters
and did not make use of gyroscope feedback.

III. KIDSIZE HUMANOID ROBOT JUPP

The robot used for our experiments is Jupp, a 19 DOF
soccer robot from team NimbRo. Jupp is 60cm tall and weights
only 2.3kg. Each leg has a 3 DOF hip, a knee, and a 2 DOF
ankle joint. A pitch joint allows for bending the trunk, just
above the hip. The arms have 2 DOF shoulders and an elbow
joint. All joints are driven by RC-servo motors.

Most parts of the skeleton are made of rectangular alu-
minum tubes. The arms and the feet are made of carbon
composite. A Pocket PC, located in the upper trunk of the
robot, is the main computer. It generates target positions for all
joints at a rate of 83Hz. Jupp is equipped with two gyroscopes
(ADXRS, ± 150/300 ◦/s) that are located in the robot’s trunk.
Two force sensing resistors (FSR) are attached to each heel.
They are used to measure foot contact with the ground. See
[13] for more hardware details.

IV. OPEN-LOOP GAIT ENGINE

The starting point for our work is a clock-driven, open-loop
gait developed by Behnke [13]. The gait is driven by a central
clock −π ≤ φTrunk < π that determines the step frequency ψ.
Each leg derives its gait phase φLeg by shifting the trunk phase:
φLeg = φTrunk +Λπ

2 . The leg sign Λ is Λ = −1 for the left leg
and Λ = 1 for the right leg. To abstract from the individual
joints, we implemented a kinematic interface that allows for
changing leg extension γ, leg angle θLeg = (θr

Leg, θ
p
Leg, θ

y
Leg),

and foot angle θFoot = (θr
Foot, θ

p
Foot). Superscripts r, p, and y

indicate the roll, pitch, and yaw direction, respectively.
Each leg generates sinusoidal trajectories for this inter-

face from its phase φLeg. Although the original gait is
omnidirectional, we consider here only walking in forward
direction. The key ingredients of the open-loop gait are:
shifting the weight from one leg to the other, shortening
the leg not needed for support, and leg motion in walking
direction. The gait speed and direction can be varied while
the robot is walking by adjusting the leg swing amplitude
aSwing = (ar

Swing, a
p
Swing, a

y
Swing). The robot starts walking by

first fading in the lateral weight shift until it is stepping on
the spot and then fading in aSwing. The open-loop gait engine
has a set of parameters that have been adapted to the robot.
Many of them have an intuitive interpretation.

V. FEEDBACK CONTROL

Jupp reached a top speed of 22.5 cm/s using the hand-tuned
open-loop gait. In order to achieve higher speeds, we augment
the open-loop gait with two feedback control mechanisms
using readings from the two gyroscopes and the FSRs.

A. Gyroscope Feedback

If the angular velocities measured by the gyroscopes ωr/p
Gyro

become too large, the robot is likely to loose balance. In
order to induce torque in the opposite direction to the possible
fall, we use a P-controller to modify the foot angles θr/p

Foot to
θ

r/p
FootGyro. We want the angular velocity of the upper body to

be zero. Thus, the gyroscope P-controllers with gains Kr/p

are
θr
FootGyro = θr

Foot + Λ ·Kr · ωr
Gyro and

θp
FootGyro = θp

Foot +Kp · ωp
Gyro.

B. Phase Reset

For fast and stable walking, it is essential that the frequency
of the central pattern generator inside the robot and the natural
frequency of the robot-environment system are tuned to each
other. While it is possible to find a fixed step frequency that
is on average tuned to the system, disturbances require the
online-adaptation of the step duration.

In order to achieve an entrainment between the internal
clock and the robot-environment system, we reset the trunk
phase φTrunk after the foot hits the ground. When contact of
the foot with the ground is sensed by the FSRs at time tFC,
the difference between the current trunk phase and the nominal
start of the next step ΦReset is calculated:

∆Reset = ΦReset − φTrunk at t = tFC.

Fig. 1. Phase Resetting: After the foot hits the ground at tFootContact, the
trunk phase φTrunk changes by ∆Reset, distributed over a time TTrans.

In order to avoid discontinuities in the joint trajectories, the
required phase change ∆Reset is distributed over a transient
time TTrans. Let φOld be the continued course of φTrunk if it
was not reset and φTarget = φTrunk + ∆Reset be the course of
the phase after an immediate jump of ∆Reset. As illustrated in
Fig. 1, φTrunk linearly fades from φOld to φTarget:

φTrunk = φOld + (t− tFC)∆Reset

TTrans
if tFC < t < tFC + TTrans.

As the phases of all other body parts are derived from the
trunk phase, they reset as well. While our resetting mechanism
changes the timing of the walking motion, the trajectory
generation procedure is not changed.

VI. STOCHASTIC OPTIMIZATION

Both, the open-loop gait engine and the proposed feedback
mechanisms have parameters that need to be adjusted to
produce fast and stable walking patterns. As we do not have
a good model of the robot, we follow a model-free approach.

A fitness function f(x), f : RN → R, expresses our opti-
mization goals: speed and robustness. This function evaluates
a parameter vector x = (x1, x2, . . . , xN) through a walking
experiment, which is called a trial. The robot starts from a
standing position and walks for a certain distance dexp while
using the gait parameters x. The quality of the gait is judged
using the time needed to reach the desired distance. In case
the gait is unstable and the robot falls, the distance traveled
is used. Because we prefer slower robust gaits over faster
unstable ones, we formulate the fitness function in a way that
any fall-free trial receives a higher score than a fall.

The speed v of the robot is divided by a maximum
speed vmax, which will not be exceeded. In case the robot
falls, this relative speed is multiplied with the relative distance
traveled (d/dexp). Otherwise, the robot receives an extra bonus
of +1 for stability:

f(d, v) =

{
v

vmax
· d

dexp
if d < dexp

v
vmax

+ 1 else.

The optimization problem is now to find the parameter
vector x∗ with the highest fitness:

x∗ = arg max
x

f(x).

The optimization procedure faces several difficulties. First,
f is not a deterministic function, but the fitness of a trial is
a random variable that depends on disturbances encountered.
Evaluating the same parameter vector twice might result in
completely different fitness values, e.g. if the robot falls in
one trial and walks stable in the other. To reduce the variance
of the fitness, we evaluate each parameter vector three times,
if not stated otherwise. Another difficulty is that the fitness
function is not necessarily smooth. Slight parameter changes
can make a stable gait pattern fall. Hence, common gradient
descent methods can not be applied for optimizing f . Finally,
the individual parameters are highly dependent on each other,
which makes it impossible to tune them individually, and the
mapping from parameters to the fitness is quite non-linear.
Various metaheuristics have been proposed in the literature to
tackle such difficult optimization problems.

VII. METAHEURISTICS

We evaluated two state-of-the-art metaheuristics for suit-
ability to our task: Policy Gradient Reinforcement Learning
(PGRL), introduced by Kohl and Stone [6], and Particle
Swarm Optmiziation (PSO) by Kennedy and Eberhart [14].
Both metaheuristics have been successfully applied to similar
optimization problems in the past [6], [15].

A. Policy Gradient Reinforcement Learning

In PGRL, each parameter vector is considered as an open-
loop policy that can be executed by the robot. The algorithm
randomly generates B test policies {x1,x2, . . . ,xB} around
policy xπ , which is to be improved. The parameters xi

j of the
test policies xi are set randomly to either xπ

j − ε, to xπ
j , or to

xπ
j + ε, for all 1 ≤ i ≤ B and 1 ≤ j ≤ N . The disturbance ε

is a small constant value.
The test policies xi are executed. The obtained fitness

samples are grouped into three categories for each dimension
j: S−j , S0

j and S+
j , depending on whether the jth parameter

of xi is modified by −ε, 0, or +ε. For each set, the average
fitness z−j , z0

j and z+
j is computed and an adjustment vector

a = (a1, a2, . . . , aN) is constructed as follows:

aj =
{

0 if z0
j > z+

j and z0
j > z−j ,

z+
j − z

−
j otherwise.

The adjustment a is normalized to a scalar step-size η and
added to xπ:

xπ ← xπ + η
a
|a|
.

PGRL continues to test the vicinity of the adjusted policy xπ

for possible improvements in the next iteration.

Extensions to the PGRL Algorithm
1) Adaptive Step Size: To implement a coarse-to-fine

search, we adapt the step size η. We start with a step size
ηmax. After g steps, we decrease η linearly to ηmin:

η =

{
ηmax if s < g

ηmax − (s−g)·(ηmax−ηmin)
S−g else.

Here, s counts the number of fitness function evaluations and S
denotes the maximum allowed number of function evaluations.

2) Sequential Sampling: Instead of sampling the fitness
function for each test policy xi three times (through three
walking trials), we apply an approach proposed by Branke
and Schmidt [16] that does not fix the number of samples in
advance. Instead, samples are generated one at a time until
a certain level of confidence for the fitness is achieved, or a
maximum number of samples M have been generated. The
target level of confidence is determined by comparing the
fitness of a test policy xi to that of the policy xπ , which
is to be improved. If the fitnesses of the two policies are very
different, only few samples suffice for estimating the direction
of the gradient of the fitness function. For policies with similar
fitness values more samples are required to guarantee a certain
level of confidence. The sequential sampling procedure is
summarized in Algorithm 1.

Algorithm 1 Sequential Sampling Procedure
Input: Average policy fitness zπ , test policy xi, threshold
for fitness difference ν, max. no. of samplings M
Output: Average fitness zi of policy xi, number of sam-
plings used m

zi ← fitness obtained by sampling policy xi once
d← |zi − zπ|
for m = 1 to M − 1 do

if |d| > ν then
return (zi,m)

else
zi ← fitness obtained by sampling xi one more time
zi ← (zi ·m+ zi)/(m+ 1)
d← |zi − zπ|

end if
end for
return (zi,m)

B. Particle Swarm Optimization
Particle Swarm Optimization (PSO) works on a set (swarm)

of parameter vectors (particles) xi. Each particle has a velocity
vi = (vi

1, v
i
2, . . . , v

i
N). The velocity indicates how much the

value of the corresponding parameter changes and thus the
position of the particle, in the next iteration of the algorithm.
It is altered according to the best point in parameter space
a particle has visited so far, pi = (pi

1, p
i
2, . . . , p

i
N), and the

global best point PSO has found so far, pg:

vi
j ← w · vi

j + c1 · χ1 · (pi
j − xi

j) + c2 · χ2 · (pg
j − x

i
j).

Here, parameters w, c1 and c2 influence the balance between
local and global exploration. The weights χ1/2 add stochas-
ticity to the search. They are drawn uniformly from [0, 1].

The positions of the particles are updated accordingly:

xi ← xi + vi.

Extension to PSO

To test for convergence of the algorithm, we sum up the
distances of all J particles to the current global best position:

qPSO =
J∑

j=1

|xj − pg|.

When qPSO is smaller than a threshold τPSO, the algorithm
has converged and only small improvements can be expected
by continuing the search. We then restart the algorithm by
generating a new set of randomly generated particles.

VIII. EXPERIMENTS IN A PHYSICS-BASED SIMULATION

The simulator used in this work is based on the Open
Dynamics Engine (ODE), a library for simulating rigid body
dynamics [17]. For the simulation experiments the experimen-
tal distance is set to dexp = 4.5m. One trial is complete when
the robot has walked this distance in any direction1 or if it
falls beforehand.

In order to be able to transfer the optimization procedure
to the real robot, we limit the number of trials (evaluations
of the fitness function) to 1000. We call 1000 trials an
episode. A configuration for the learning problem includes a
metaheuristic, parameters of the metaheuristic (e.g. step size,
number of start individuals), and a parameter set subject to
optimization.

When comparing different configurations, we do not only
consider the overall best (fittest) parameter vector encountered
during an episode. To obtain a better characterization of the
optimization performance, we obtain a distribution of 1000
fitness values as follows: We evaluate each configuration 10
times. From each of the 10 episodes, we take the 10 best
individuals. We then evaluate these 100 individuals 10 times.
We compare the resulting distributions using notched box plots
which can be viewed as a visualization of a t-test.

Because the number of evaluations of the fitness function is
limited both in simulation and in the real-world experiments,
not all parameters of the gait can be optimized simultaneously.
To avoid the curse of dimensionality, we select nine open-loop
trajectory generation parameters and four feedback parameters
that we consider to be relevant candidates for optimization. For
an overview of the parameters, see Table I. In order to avoid
scaling problems, the ranges of parameter values considered
for optimization are normalized to the interval [0, 1].

1In the real-world experiments presented in Section IX, we use a more
restrictive goal formulation.

TABLE I
OPTIMIZED PARAMETERS

Open-Loop Parameters
∗ ψ step frequency
∗ aSwing swing amplitude of the leg in forward direction
∗ aShift amplitude for lateral weight shifting
∗ λFootSwing partial balance of the leg swing with the foot angle
∗ λFootPitch general tilt of the robot in sagittal direction
∗ aFootPitch oscillates the robot in sagittal direction with every step
ρFootPitch phase shift of the aFootPitch oscillation
λLegSpread offset to the lateral leg angle
aArms amplitude of the arm movement

Feedback Control Parameters
∗ Kr gain of lateral gyro feedback
∗ Kp gain of sagittal gyro feedback
∗ ΦReset nominal trunk phase for phase resetting
TTrans transition time for phase resetting

∗ Parameters used for the real-world experiment

RandomSearch PGRL 1 PGRL 2 PSO 1 PSO 2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

F
itn

es
s

Configuration

Fig. 2. Comparing metaheuristics. See text for configuration descriptions.

A. Comparing PGRL and PSO Metaheuristics

In this section, we compare two metaheuristics and their
variants in order to find the most adequate one for our task. We
use a uniform random search as baseline. All metaheuristics
optimize the parameter set
P1 = {ψ, aRobot, aShift, λFootPitch,K

r,Kp,ΦReset, TTrans}.

The hand-tuned parameters xinit are used to initialize PGRL.
We evaluate two different configurations of extended PGRL.

Both configurations use a threshold for selecting additional
samples in the sequential sampling procedure of ν = 0.015
and generate B = 10 test policies with a disturbance of ε =
0.015. The step size of the first configuration (PGRL 1) falls
from ηmax = 0.7 to ηmin = 0.1 after g = 100 steps. The
second configuration (PGRL 2) uses ηmin = 0.3.

We evaluate two configurations of the PSO. The first PSO
configuration (PSO 1) works on J = 10 particles. Both, c1 and
c2 are set to 1. The second configuration (PSO 2) works on
J = 20 particles with c1 = c2 = 0.5. For both configurations,
a restart threshold τPSO = 0.3 and a weight momentum of
w = 0.3 are used.

The box plots for comparing these six configurations are
depicted in Figure 2. All tested metaheuristics perform better
than the random search.

 none SS SS,AS PR PR,SS PR,SS,AS

0.4

0.6

0.8

1

1.2

1.4

1.6

F
itn

es
s

Configuration

Fig. 3. Relevance of phase resetting (PR), sequential sampling (SS), and an
adaptive step size (AS).

When comparing the two PGRL variants, the configuration
with the larger target step size ηmin = 0.3 (PGRL 2) outper-
forms the one with the smaller step size ηmin = 0.1 (PGRL
1), indicating that ηmin = 0.1 is chosen too small. The PSO
configurations find both a best individual with a very high
fitness (1.61 and 1.6). PSO 2 performs better than PSO 1.

The results of the PSO configurations should be taken with
a grain of salt: When the PSO has converged, the particles are
concentrated within a small region of the search space. Thus,
taking the 10 best individuals from one episode comes close
to taking the same (best) individual ten times. As PGRL does
not suffer from this problem and PGRL 2 performed nearly
as good as the best PSO configuration, we decided to use
PGRL 2 in further simulation experiments and for the real-
world experiment.

B. Relevance of phase resetting, sequential sampling and an
adaptive step size

To show the relevance of phase resetting, sequential sam-
pling and an adaptive step size, we compare six different
configurations. The first two configurations neither use se-
quential sampling nor an adaptive step size. The second two
configurations make use of sequential sampling, but do not
adapt the step size. The third two configurations use both,
sequential sampling and an adaptive step size. One of the two
configurations always uses phase resetting and the other one
doesn’t.

Box plots for all six configurations are shown in Fig. 3.
The configurations using phase resetting (PR) outperform the
configurations without phase resetting in all three cases. This
indicates that the phase reset mechanism is essential to achieve
fast and robust locomotion.

It can also be seen that configurations using sequential
sampling (SS) outperform configurations without it and that
configurations using additionally an adaptive step size (AS)
outperform corresponding configurations without it. This in-
dicates that both, sequential sampling and an adaptive step size
improve the PGRL algorithm and lead to better results.

C. Parameter Selection

In the previous experiments, the parameters of set P1 were
optimized. However, P1 might not be the optimal choice of
parameters. In order to find other relevant parameters and to
exclude irrelevant ones, we conduct additional experiments in
the same evaluation framework.

We test the parameters λFootSwing, aFootPitch, ρFootPitch,
λLegSpread and aArms by adding one parameter at the time to P1.
We evaluate these extended parameter sets using PGRL 2 and
compare them to P1. To test whether P1 contains dispensable
parameters, we construct reduced sets by excluding one of six
candidate parameters. The parameters ψ and aSwing are not
removed, because they are clearly relevant.

The results of the experiments indicate that aFootPitch and
λFootSwing should be included in the optimization and that
TTrans is not relevant. Consequently, we use a modified pa-
rameter set for the real-world experiment. The parameters are
marked by an ∗ in Table I.

IX. REAL-WORLD EXPERIMENT

After evaluating metaheuristics, extensions to them, and
parameter sets in simulation, we selected the most promising
configuration for optimizing the gait of our humanoid robot
Jupp. Fig. 4 illustrates the experimental setup. The robot starts
a trial standing on one side of a RoboCup KidSize field, which
is covered by carpet. A trial consists of walking across the
field. This corresponds to dexp = 3m.

The robot is controlled by a standard PC, visible on the left
side of the figure. Joint targets are transferred to the robot via
an RS-232 serial cable. The robot reports back the readings of
the FSRs and the gyros. Although Jupp’s Pocket PC is not used
for control during optimization, the robot carries it, because
its weight significantly influences the robot dynamics.

We measure position and speed of the robot with the help of
a laser range scanner [18], shown right. To ensure that some
laser beams are reflected, we attach a white piece of paper on
the robot’s back. A trial finishes when the robot has walked
the experimental distance, if it falls beforehand, or if it leaves
the area of the laser range scanner.

The fitness function for the real-world experiments is more
restrictive, compared to the simulation experiments: In order
to reward straight walks, the robot position is projected or-
thogonally onto the line representing an ideal straight walk.
The distance walked d is measured on this line.

During trials, the experimenter carries in one hand a lace
connected to Jupp’s shoulders to protect the robot when it
falls. In the other hand the experimenter carries a joystick
to send control commands to the PC. As a starting point for
optimization, we use hand-tuned parameters that enable the
robot reach a top speed of 21.3cm/s. This is close to the top
speed Jupp has reached so far (22.5cm/s) using a hand-tuned
open-loop gait. The initial fitness is 1.36.

The result of the real-world experiment is depicted in Fig. 5.
The figure shows the sampled fitness values from all trials that
did not end prematurely. The clear trend towards higher fitness
values indicates that the stochastic optimization procedure

Fig. 4. Experimental setup. The robot starts at the field border and walks
across the field. A white sheet is attached to its back to facilitate position
tracking with a laser-range scanner (right). An external PC (left) controls the
robot and executes the optimization procedure.

0 200 400 600 800 1000
1.3

1.35

1.4

1.45

1.5

1.55

No. of fitness function evaluations

F
itn

es
s

Fig. 5. Evolution of the fitness during the real-world experiment. All trials
that did not end prematurely are depicted.

could be transfered successfully to the real robot. After 1000
fitness function evaluations, the best stable parameter vector
found has a fitness of 1.52. With these parameters, Jupp walks
the experimental distance in 11.5s. The measured top-speed of
this gait is 34.0cm/s. The achieved speed is a gain of almost
60% compared to the start of the optimization and a 51% gain
compared to the former top speed of Jupp. A video of Jupp
walking at 34.0cm/s can be seen at http://www.nimbro.net/

movies/jupp/Jupp_Walking_Large_Steps.wmv

Table II summarizes initial and final values of the optimized
parameters. When analyzing the parameter changes, one can
see that the speed gain was mainly the result of increasing
the swing amplitude aSwing, which results in a larger step
length. Interestingly, the step frequency ψ remains close to its
initial value. This indicates that there exists a natural frequency
at which the robot’s body oscillates in both, the sagittal and
lateral direction while walking. This frequency, or a multiple
of it, has to be met by the step frequency in order to walk
in a stable way. One can also see that the gyro feedback gain
Kp did not have an optimal initial value. This underlines the
relevance of optimizing feedback parameters.

TABLE II
PARAMETER VALUES BEFORE AND AFTER OPTIMIZATION

Parameter Range Initial value Final value
ψ 0.66Hz–0.93Hz 0.80Hz 0.81Hz

aRobot [1.0, 3.0] 1.3 2.22
aShift [0.075, 0.175] 0.013 0.0133

λFootSwing [0.15, 0.35] 0.25 0.25
λFootPitch [0.02, 0.08] 0.05 0.044
aFootPitch [0.0, 0.02] 0.01 0.008
Kr [0.4, 1.0] 0.49 0.48
Kp [0, 0.5] 0.2 0.29

ΦReset [−0.35π, 0.35π] 0.0π −0.01π

X. CONCLUSION

In this paper, we presented a stochastic optimization ap-
proach to optimize the walking pattern of a humanoid robot
for forward movement. We started from an open-loop gait and
enhanced it with a gyroscope P-controller and phase resetting.

We optimized both open-loop trajectory generation parame-
ters and feedback parameters of the gait using two metaheuris-
tics. We evaluated a policy gradient reinforcement learning
approach and Particle Swarm Optimization for their applica-
bility to our task. To improve data-efficiency, we extended
the standard version of PSO by a restarting mechanism and
we extended PGRL by an adaptive step size and a sequential
sampling procedure.

The experiments carried out in a physics-based simulation
environment suggested that PGRL is the most reliable al-
gorithm for our task. Furthermore, the results indicated that
our extensions to the PGRL improve the performance of the
algorithm significantly. We also found clear evidence that the
phase resetting mechanism is essential for achieving fast and
robust locomotion.

We selected the extended PGRL algorithm to optimize the
gait of our humanoid robot Jupp. The optimization procedure
found a parameter configuration that enables the robot to walk
at a speed of 34cm/s. This improves the former top speed
achieved using a hand-tuned gait by more than 50%.

It is not easy to compare different approaches in humanoid
robotics as no competitive standard platform like the Sony
Aibos for quadrupeds exists. A robot similar to Jupp is Bruno
from TU Darmstadt [9]. The 55cm tall robot reaches a speed of
40cm/s and is considered to be one of the fastest humanoids
of it’s size class. Please note that Bruno does not use RC-
servos, but intelligent Dynamixel actuators, which produce
more than three times the knee torque, compared to Jupp. At
the University of Dortmund, Kosse [12] has optimized the gait
of a Kondo KHR-1 robot (34cm), which reached a top speed
of 22cm/s. Another robot of similar size is the Sony Qrio [19].
It is 58cm tall and can jog at a speed of 23cm/s. In comparison
to Jupp, it is a significantly more expensive machine that uses
proprietary intelligent servo actuators.

The experiments show that although Jupp has been used for
quite some time now and its joints have significant backlash,
after the proposed stochastic optimization of its gait param-
eters, it can compete with the fastest humanoid robots in its
size class.

In future work, we would like to explore more options to
improve the data-efficiency of the optimization procedure. One
idea would be to employ Gaussian process optimization that
showed promising results for the Aibo dogs [20]. Another
direction of research would be to include more advanced
feedback strategies in order to further improve walking stabil-
ity. Promising strategies have been demonstrated, e.g., by the
Honda Asimo robot that accelerates the gait when it detects a
disturbance that would lead to toppling forward [21]. Finally,
in order to make it possible to use the optimized gait for
soccer, we intend to extend the stochastic optimization to
omnidirectional walking.

ACKNOWLEDGMENT

This work is funded by the DFG under grant BE 2556/2-2.

REFERENCES

[1] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five years
of its life,” Int. Journal of Humanoid Robotics, pp. 131–147, 2003.

[2] T. McGeer, “Passive dynamic walking,” International Journal of
Robotics and Research, vol. 9(2), pp. 62–68, 1990.

[3] G. Endo, J. Morimoto, J. Nakanishi, and G. Cheng, “An empirical
exploration of a neural oscillator for biped locomotion control,” in Proc.
of ICRA, 2004, pp. 3036–3042.

[4] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “An empirical exploration of phase resetting for robust
biped locomotion with dynamical movement primitives,” in Proc. of
IROS, 2004, pp. 919–924.

[5] S. Aoi and K. Tsuchiya, “Locomotion control of a biped robot using
nonlinear oscillators,” Autonomous Robots, 19(3), pp. 219–232, 2005.

[6] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in Proc. of ICRA, 2004, pp. 2619–2624.

[7] M. S. Kim and W. Uther, “Automatic gait optimisation for quadruped
robots,” in Australasian Conf. on Robotics and Automation, 2003.

[8] M. J. Quinlan, S. K. Chalup, and R. H. Middleton, “Techniques for
improving vision and locomotion on the Sony Aibo robot,” in Proc. of
Australasian Conf. on Robotics and Automation, 2003.

[9] T. Hemker, H. Sakamoto, M. Stelzer, and O. v. Stryk, “Hardware-in-the-
loop optimization of the walking speed of a humanoid robot,” in Proc.
of CLAWAR, 2006, pp. 614–623.

[10] T. Geng, B. Porr, and F. Wörgötter, “Fast biped walking with a sensor-
driven neuronal controller and real-time online learning,” Int. Journal of
Robotics Research, vol. 25, Issue 3, pp. 243–2590, 2006.

[11] T. Röfer, “Evolutionary gait-optimization using a fitness function based
on proprioception,” in RoboCup 2004. Springer, 2005, pp. 310–322.

[12] R. Kosse, “Planung und Implementierung eines evolutionären Ansatzes
zur Steuerung eines zweibeinigen Roboters,” Univ. of Dortmund, 2006.

[13] S. Behnke, “Online trajectory generation for omnidirectional biped
walking,” in Proc. of ICRA, 2006, pp. 1597–1603.

[14] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
of Int. Conf. on Neural Networks, 1995, pp. 1942–1948.

[15] X. Zhang, L. Yu, Y. Zheng, and Y. Shen, “Two-stage adaptive PMD
compensation,” Optics Communications, vol. 231, pp. 233–242, 2003.

[16] J. Branke and C. Schmidt, “Sequential sampling in noisy environments,”
in Parallel Problem Solving from Nature. Springer, 2004, pp. 202–211.

[17] R. Smith, “Open dymanics engine,” in http://www.ode.org.
[18] J. Stückler, “Optimierung der Laufmuster eines Humanoiden Roboters

durch Reinforcement-Lernen,” Study thesis, Univ. of Freiburg, 2006.
[19] Y. Kuroki, M. Fujita, T. Ishida, and K. N. und J. Yamaguchi, “A small

biped entertainment robot exploring attractive applications,” in Proc. of
ICRA, 2003, pp. 471–476.

[20] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans, “Automatic gait
optimization with gaussian process regression,” in Proc. of IJCAI, 2007.

[21] Honda Inc., “The Honda Asimo humanoid robot,” 2003.

