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Stochastic Optimization Problems with 

Nondifferentiable Cost Functionals 1 

D, P. BERTSEKAS 2 

Communicated by P. Varayia 

A b s t r a c t ,  In this paper, we examine a class of stochastic optimiza- 

tion problems characterized by nondifferentiability of the objective 

function. It is shown that, in many cases, the expected value of 

the objective function is differentiable and, thus, the resulting 

optimization problem can be solved by using classical analytical or 

numerical methods. The results are subsequently applied to the 

solution of a problem of economic resource allocation. 

1. I n t r o d u c t i o n  

In this paper, we examine some questions which are important for 

the solution of a certain class of stochastic optimization problems. This 

class of problems is characterized by a cost functional of the form 

F(x) = E{f(x, oJ)}, (1) 

where the vector x belongs to the n-dimensional Euclidean space R ~, 

~o is an uncertain quantity-element of a probability space, and E{.} 

denotes the expectation operation. 

The problem of minimizing the cost functional F of Eq. (1) subject 

to constraints on the vector x can be viewed, of course, as a deterministic 

optimization problem. In the case where the function f ( . ,  co) is a 

differentiable function of x for each co, it can be shown under quite 

general assumptions that the gradient of the function F exists for each 

x and is given by 

VF(x) = E{Vf(x, m)}. (2) 
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Thus, for this case, the well-known gradient-based analytical methods 

(such as the Kuhn-Tucker  theorem), and numerical methods (such as 

steepest descent, conjugate gradient, methods of feasible directions, etc.) 
can be used effectively for the solution of the optimization problem for 

a quite general class of constraints on x. 
The purpose of this paper is to consider optimization problems with 

a cost functional of the form (1) where the function f ( . ,  co) is nondif- 

ferentiable for some values of co and to examine the differentiability 
properties of the function F under these circumstances. It is shown 
that, in many cases, the function F is differentiable even when the 

function f ( - ,  co) is nondifferentiable for some co, and an explicit charac- 

terization is given for the gradient of F. In these cases, the classical 
methodology of optimization theory for differentiable cost functionals 

can be used for the solution. 
Stochastic optimization problems where the function f ( . ,  co) is 

nondifferentiable have not been considered in the literature, to the 
author's knowledge, although their deterministic counterparts have 

received considerable attention recently (Refs. 1-10). Such problems 
arise often in practice, particularly in economic applications. A typical 

case is examined in this paper in some detail as an illustration of the use 

of the results obtained. 
In Section 2, we develop the main theoretical results of this paper 

for the case where the function f ( - ,  ~o) is a reat-vaIued convex function. 
It is shown, under quite general assumptions, that the function F of 

Eq. (1) is real-valued and convex with a directional derivative at a point 

x ~ R n with respect to a vector y ~ R ~ given by 

F'(~; y) = ~{f'(x, o,; y)}. (3) 

The equivalent equation which characterizes the subdifferential 

(Ref. 11) aF(x) of the convex function F at a point x in terms of the 

subdifferential af(x, w) of the function f ( - ,  co) at the point x is 

~F(x) = E{?f(x, co)}, (4) 

where the integral E{af(x, co)} of the set-valued function af(x, .) is 
appropriately interpreted in what follows. Equation (4) is a direct 

generalization of Eq. (2), since the subdifferentials aF(x), af(x, co) are 
sets consisting of single points, the gradients VF(x), Vf(x, co), whenever 
the functionsF and f ( - ,  co) are differentiable at the point x for all values of 
co. We also derive necessary and sufficient conditions for the function F 

to be differentiable at a point in terms of the given probability measure, 
and we demonstrate that, in many cases, likely to be encountered in 

8o9/I2/2-8 
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practice, the function F is in fact differentiable, and an explicit equation 

is given for the calculation of its gradient. As a result, methods which are 

valid for the solution of optimization problems with differentiable cost 

functionals can be directly applied in these cases. The  specific application 

that  we consider, the problem of production planning to meet a stochastic 

demand, falls in this category, under  quite general assumptions on the 

probability measure characterizing the uncertainty. This problem is 

examined in some detail in Section 3. 

2. Main Results 

The  questions that we shaIi consider in this section are related to 

the problem of minimizing, subject to some constraints, the function 

F: R ~ --> R given by 

F(x) = E{f(x, co)} = ( f(x,  co) dP(ro), (5) a~ 

where x e R ~ (n-dimensional Euclidean space), co is an element of a 

probability space (£2, ~ ,  P), f :  R n ×  f2 -+  R is a given real-valued 

function, and E{.} denotes the expectation operation. The  set $-2 is 

arbitrary, ~ is a a-algebra of subsets of Q, and P is a probability measure 

defined on ~-. In  the applications considered in this paper, as well as in 

most practical situations, the set $2 is the Euclidean space R m, the 

e-algebra o~ consists of the Borel sets of R m, and the probability measure 

P is characterized by a probability distribution defined on R m. 

Concerning the function f ,  we assume that f ( - ,  oJ) is a real-valued 

convex function of x for each oJ ~ f2 and that f ( x ,  .) is a P-integrable 

function of co for each x ~ R ~, i.e., we assume that E{[f (x ,  co)l} < 0o 

for each x ~ R ~*. Under  the above assumptions, the function F of Eq. (5) 

is well defined as a real-valued function on R% 

Our primary concern in this section is to investigate the differen- 

tiability properties of the function F, particularly in the case where the 

function f ( . ,  co) is not necessarily everywhere differentiable for some 

values of oJ. First, let us establish the convexity of the function F. 

L e m m a  2.1. The  function F: R n -~  R of Eq. (5) is convex. 

P r o o f .  By using the convexity of f ( . ,  ~), we have, 
Xl , X2 E R n, 0 ~ a ~.~ 1, m ~ f2, 

f lax  1 + (1 -- a) xa, m] ~< af(xl ,  co) + (1 -- a)f(x~, oJ), 

for any 
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from which it follows that 

E{f [ax  1 + (1 - -  a)  x~ ,  col) ~-~ a E { f ( x l ,  co)) 4- (1 - -  a) E{ f ( x2 ,  w)). 

We now have 

F[ax I + ( l  - -  a)x2] ~-  E{f[ax l  + (t - -  a)x~, col} 

<~ aE{ f (x l  , oJ)} + (1 - -  a) E{ f ( x2 ,  @) 

= aF(xl) 4- (1 -- a)F(x2). 

It  is known (Ref. 11) that any convex function g: R ~ - ~  R is 

continuous and its directional derivative at a point x with respect to a 

vector y,  defined by  

t x g ( ; y )  = Ji~+ {[g(x 4- Ay) -- g(x)]/A}, (6) 

exists for any x , y  e R ~. Furthermore,  for any x e R ~, g ' (x;  .) is a 

continuous convex real-valued function of y. It  can be shown also 

(Ref. I1) that, for any given x e R ~ and any sequence {Am. } such that 

A~ --~ 0, A~, >/;~n+~ >~ "'" > 0, we have 

*X [g(x 4- a . y )  - -  g(x)]/A. >~ [g(x 4- A.+,y) - -  g(x)]/a.+~ >~ ... >~ g ( ; y )  (7) 

and, of course, 

, t x tim[g(~ t a .y )  - g (x ) ] / ;~  = g ( ; y ) .  (8) 

By applying Eq. (8) to the convex function f ( - ,  co), we have that 

f ' ( x ,  co; y )  is a measurable function of co for every x, y e R ~, since it is 

the pointwise limit of a sequence of measurable functions. Furthermore,  

we have the following proposition. 

Proposition 2,1. The  directional derivative of the convex 

function F is given for any x, y ~ R n by the equation 

j ~ ,  . F' (x ;y )  = E{ f ' ( x ,  ~,,;y)} = f (x, oo,y)dP(co). (9) 

P r o o f .  We have, by  Eqs. (5), (8), 

F'(~; y) = l img[F(~ + A~y) --  F(x)]/~,~) 

. . . .  lira ( { [ f ( x  + a~y, ~,) - f(x, ~,)]/a~} gP(~). 0o) 
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Consider now the sequence of functions 

f~(~o) = [ f (x  -k a,~y, co) - - f ( x ,  co)]/a~, n /> 1. 

Clearly, f~(co) are integrable functions, since f ( x ,  ") is an integrable 

function of co for each x e R ~. Furthermore, we have 

!im f~(oo) = i f (x ,  o4 y) 

for each co ~ Z9 and 

A(oJ) >~ A÷~(oa) >~ ." > i f(x ,  co; y) 

for all n by (7). Therefore, by the monotone convergence theorem 

(Refs. 12-14), we have 

~olim Jo. [ fn(m) dP(co) = f, f'(,:, o,; y) dP(o,) 

and, substituting in (10), we obtain 

F'(x; y) = f ( , o4 y) dP(~o) = E{f ' (x ,  ~o;y)}. 

The expression (9) for the directional derivative of the function F 

can be used to obtain an expression for the subdifferential of F. For any 

real-valued convex function g: R '~ -+ R,  the subdifferential o fg  at a point x 

is defined as the set 

ag(x) = {x* I g(z) > g(x) + ( z  - x, . . 5 ,  w ~ R~}. (11) 

It can be shown (Ref. 11) that the set Og(x) is nonempty, convex, and 

compact, and its support function is the directional derivative g'(x; y)  

given by 

g'(x; y) = max (x*, y}, (12) 
x*e0g(x) 

where (. ,  .) denotes the usual inner product in R *~. The subdifferential 

Og(x) generalizes the notion of the ordinary gradient. I fg  is differentiable 

at a point x, then Og(x) consists of a single point, the gradient Vg(x). 
The properties of subdifferentials are discussed in great detail in Ref. 11. 

Consider now, for any x e R% co e D, the subdifferential Of(x, co). For 

any fixed x, the mapping which assigns to co e D the compact set Of(x, co) 

is a set-valued mapping; in fact, it is a measurable set-valued mapping 

according to the terminology of Ref. 15 (see Ref. 15, Corollary 4.6). 

Measurable set-valued mappings have received considerable attention in 
the mathematical literature (see Ref. 15-17 and the references quoted 
therein). For example, the integral of some measurable set-valued 
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mappings has been considered in Refs. 16-17. Here, we define for a 

fixed x ~ R ~ the integral of the mapping co -+ af(x, oa) as the subset  of R ~ 

Ef~f(x, ~o)} = f~ ~f(x, w) dP(oJ) 

== lx*~ R~ l x * = f rax*(oo) dP(oo), x*(-): measurable, x*(oJ) ~ ~f(x, m)a.e.I, 

(13) 

where the initials a.e. denote almost everywhere.  Notice that, by Eq. (12), 

for each ~o ~ O, y ~ R n, we have 

[(x*(~o), Y)t ~ max{f '(x, o~; y), f '(x, co; --y)} (14) 

whenever  x*(oJ) e af(x, oJ). As a result, since the functions f ' ( x ,  ~o; y), 
f ' ( x ,  ~o; --y)  are integrable for each x, y e R *~, we have that the function 

x*(-): 52 -~  R n is integrable whenever  it is measurable and x*(o)) e af(x, oJ) 
a.e., in the sense that each coordinate of x*(-) is an integrable function. 

Therefore,  the set E{Of(x, ~o)} of Eq. (13) is well defined. Furthermore,  

E{af(x, ~o)} is nonempty  by  Corollary 1.1 of Ref. 15. ~re now have the 

following proposition. 

P r o p o s i t i o n  2.2. The  subdifferential of the function F at a 

point x is given by  

~F(x) = e{~y(x, ~)}, (15) 

where the set E{~f(x, ~o)} is defined in Eq. (13). 

P r o o f .  Let  y be any fixed vector in R ~. Since the mapping 

oJ-+ ~f(x, co) is measurable and f ( x ,  oo) = (y ,  x)  is a normal convex 

integrand (according to the terminology of Ref. 15), it follows from 

Corollary 4.3 of Ref. 15 that there exists a measurable function 2"(.),  

with 2"(~o) ~ ~f(x, a~) for all o) ~ O, such that 

f ' (x,  oo;y) = max (y ,  x*(co)) = (y ,  ~*(oJ)). 
x*(eo)~af(x,o~) 

This  fact, together with Proposit ion 2.1 and Eq. (12), implies that 

max (y ,  x*) = ( f ' ( x ,  oo; y) dP(oo) 
x*~OF(x) Jo 

= ~ max (y,  x*(o))) dP(oJ) 
Ja x*(~o)~Of(x,o)) 

x*('): ine~surab le  

= max (y ,  x*), Vy ~ R% 
x*~E{Of(x,w)}---- 
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Therefore,  we have (Ref. 11) 

OF(x) = closure [E{8f(x, co)}], 

since the set OF(x) is convex and compact and the set E{Sf(x, co)} is 

convex by the convexity of Of(x, co) for each co ~ £2. Thus,  in order to 

prove that OF(x) = E{Sf(x, co)}, is it sufficient to prove that E{Sf(x, co)} 
is a closed set. 

Let  x~* -+  x* be a convergent sequence in R ~, with x~* e E{~f(x, ~)} 
for all n. Then,  there exists a sequence of integrable functions xn*(-), 

with x~*(co) ~ Of(x, co) a.e. and such that x~* = f~ x~*(o~) dP(co). These 

functions (or more accurately their equivalence classes) can be viewed 

as elements of the space LI~(g?, o~, p )  of P-integrable functions z: D --~ R ~ 
with the norm 

II z II = ( {I z~(~)l + ... + I z,( ,o)l} dP(o~), 
"t7 

where z 1 ,..., zn are the n coordinate functions of z. Fur thermore,  the 

sequence {xn*(.)} belongs to the subset C of Lln(f2, ~-, P)  characterized 
• by the property 

z(.) e C iff z(oJ) e 8f(x, oJ) a.e.. 

By using Eq. (14), it is easy to verify the assumption of Theorem IV.8.9 

of Ref. 13 and conclude that C is a weakly sequentially compact subset of 

Ll~(/2, ~ ' ,  P). Therefore,  the sequence {x~*(.)} contains a subsequence 
{x~*lc } which converges weakly to a function x*(.) in L1~(£2, ~-, P). 

Fur thermore ,  

x* -- ~oolim x~* = ~o~lim fe x~*(co) dP(o)) = fn x*(oJ) dP(oo). 

We shall show that x*(co)e Of(x, co) a.e., and hence x*e  E{Of(x, w)}. 
Since {x*(.)} converges to x*(.) weakly, some sequence of convex 
combinations of x~*(.) converges strongly to x*(.) (see Ref. 13, Corollary 
V.3.14). Let  {z~(-)} be this sequence. We have zn(w ) ~ Of(x, co) a.e. for 
all n by the convexity of Of(x, co). Since the sequence {z~(.)} converges 
strongly to x*(.), it also converges in measure, and therefore a sub- 

sequence {z~(.)} converges to x*(.) almost everywhere (Refs. 12, 14). 
Since Zn~(W ) e 0f(x, co) a.e., we conclude that x*(oJ) e ~f(x, w) a.e. 

Therefore,  x* = J's~ x*(co) dP(oJ) a E{Of(x, co)}, and the set E{~f(x, co)} is 
closed. 

We turn  now our attention to deriving necessary and sufficient 
conditions for the function F to be differentiable at a point. It  is clear 
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from Proposit ion 2.2 that a sufficient condition for the function F to be 

differentiable at a point x is that the gradient Vf(x,  co) exists for every 

co e Y2, except for a subset  of £2 with probabili ty zero. The  following 

proposition shows that in fact this condition is also necessary. 
Loosely speaking, one can interpret this proposition by saying that, 

whenever  the set of points of discontinuity of the gradient Vf(x,  co) has 

probability" zero, these discontinuities are averaged out. 

P r o p o s i t i o n  2,3. For every x e R ~, the set 

Do,(x) = {oJ e ~Q If(.,  ~o) is nondifferentiable at x} (16) 

is measurable,  i.e., Do,(x)~ Y .  Furthermore,  F is differentiable at the 

point x iff P[Do,(x)] = 0. In this case, we have 

where 

VF(x) = fa-Do,(.)Vf(x, co) dP(oJ), (17) 

It) -- Do~(x)] = {co e (2 ] co ¢ D,o(x)}. 

Proof .  We have (Ref. 11) 

D~,(x) = {o~ ~ If'(x, oo;y) +f ' ( x ,  o); --y) > 0 for somey e R  n} 

= {co e D t max[/'(x, co;y) +f ' ( x ,  co; --y)] > 0}. 
' I l y l I = l - - -  - 

Since [f ' (x,  co; y) + f ' ( x ,  co; --y)]  is a continuous function o f y  for any 

fixed x ~ R n, co ~ .Q, we have 

D,o(x) == {oo I max[if(x, co;y) + f  (x, co, --y)] > 0} 
Itylj=l - -  - 

-- {co I sup[if(x, eo;yn) +f ' (x ,  co; --Yn)] > 0}, 
n 

(is) 

where {y,~} is a countable set, dense in {y lilY 11 = 1}. But the function 

s u p s [ f  '(x, .; Yn) + f ' ( x ,  -; --yn)] is a measurable function of co, since it 

is the pointwise sup remum of measurable functions. Therefore,  from 
(18), we have that Do~(x) is measurable. 

Assume now that F is differentiable at a point x e R% Then,  for 
every y e R '~, we have 

.I a ' x  F'(x;y) +F'(x; --y) = [ f  ( , co;y) +if(x ,  a); --y)] dP(oJ) = O. 
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Since 

f ' ( x ,w;y )  + f ' ( x ,  o~;--y) >~ 0, VoJ ~0 ,  

we conclude that, for each y ~ R ~, the set 

t x D,o(x,y) = {co e£2 [if(x, w;y) + f  ( , w; --y) > O} 

has measure zero, i.e., 

P[D,o(x, y)] = O, Vy ~ R", 

Now we have 

D~(x) = {w e g2 i sup[f'(x , w; y,)  -~f '(x,  w; --Y,0] > 0} 

= (.) {oJ e .(2 [if(x, oJ; y~) + i f ( x ,  w; --y.)  > O} = U D,~(x, Us). 
n 

Hence, 

and 

P[D~(x)] <~ ~, P[Do~(x, Yi)] = O, 
i = l  

P[D~(x)] = O. 

The fact that P[Do~(x)] = 0 implies that  F is differentiable at the 

point x follows directly from Proposition 2.2. Equation (17) is an obvious 

consequence of Proposition 2.2. 

From Proposition 2.3, we can conclude that, whenever we have 

P[D~(x)] = 0 for every x ~ R n, the func t ionF  is everywhere differentiable; 

therefore, for the solution of the problem of minimizing the function F 

subject to constraints, we can use classical analytical or numerical 

methods. Furthermore,  Eq. (17) gives an explicit characterization of the 

gradient of F. The  calculation of this gradient requires a numerical 

integration which, for most cases, presents no more difficulty than the 

integration which would be required if the function f ( - ,  oJ) were every- 

where differentiable for each ~o ~ t2. The  condition P[D~(x)] = 0 is 

satisfied in many practical situations for large classes of probability 

measures. The  following lemma can be useful in some cases for verifying 

the condition P[D~(x)] = O. The  proof of this lemma appears in Ref. 11, 

Theorems 25.4 and 25.5. 

L e m m a  2.2. I f  g: R n -+ R is a convex function, the set of points 

where g is nondifferentiable is a countable union of closed sets and has 

gebesgue measure zero. 
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Lemma 2.2 can be used to prove differentiability in severat speciai 

cases of cost functionals. As an example, we prove the following proposi- 

tion which will be useful in Section 3. 

Proposition 2.4. Let f :  R ~ - ~  R be a convex function, and 

consider the function 

F(x) ~ E { f ( x  --  co)), 

where co belongs to the probability space (R n, B~,  P), where B~ is the 

e-algebra of Borel sets of R ~ and P is a probability measure on B~ which 

is absolutely continuous with respect to Lebesgue measure restricted on 

B~.  Then, if E { ! f ( x - - o ~ ) l  } < oo for all x a R  ~, the function F is 

everywhere differentiable. 

P r o o f .  For a fixed vector x a R ~, the set D~(x)  is a translation of 

the set D of points wheref i s  nondifferentiable. Therefore, by Lemma 2.2, 

Do~(x) is a Borel set with Lebesgue measure zero. By the absolute con- 

tinuity of P,  we have that P[D~(x)] ":= 0 for all x a R ~. By using 

Proposition 2.3, the result follows. 
It should be noted that the Proposition 2.4 can form the basis for 

developing an algorithm for the numerical solution of convex (or concave) 

deterministic optimization problems with nondifferentiable cost func- 

tionals subject to constraints. The nondifferentiable cost functional f (x )  

is approximated by the differentiable cost functionalF(x) = E { f ( x  - -  co)}, 

where o~ belongs to a probability space with a probability measure which 

is absolutely continuous with respect to Lebesgue measure. For example, 

the probability distribution of ~o can be selected to be uniform over 

an n-dimensional cube vdth nonempty interior. The approximate 

problem can be solved using standard techniques, and its solution can 

approximate the solution of the original problem as closely as desired by 

a suitable choice of the probability distribution of co. This procedure is 

beset by the fact that a numerical integration must be performed for 

evaluating both the gradient and the value of the function F, and its 

practical applicability remains a subject for further investigation. 

However, in view of the limited existing methodology for solving 

numerically optimization problems with nondifferentiable cost func- 

tionats (Refs. 3, 4), it may prove useful in some practical cases and 
particularly in those cases where the number of variables with respect to 

which the cost functional is nondifferentiable is small. 

Proposition 2.4 is also useful for the solution of the following 

stochastic optimal control problem. Consider the linear system 

xk+l = Akxk + Bkuk + w~ , k = O, I,..., N -- 1, 
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where x k ~ R n is the state vector, u k ~ R m is the control vector, w k ~ R ~ 

is an input disturbance vector, and the matrices A k , B k and the initial 

condition x 0 are given. The  vectors w o , w I ,..., WN_I are random vectors 

with given joint  probability distribution. I t  is required to find a control 

sequence U o , U l , . . . , u N _  1 which minimizes, subject to constraints 

u~ ~ Uk C R m, k ~- 0, 1,..., N --  1, the cost functional 

J(uo , Ul ,...,/gN-1) = E  I ~i=1 [fi(xi) + gi-l(ui-1)] I, 

where f i :  R~--+ R are given convex functions and g i - l :  R m - - ~  R are 

given functions. Le t  us define the vectors Ye by the equation 

y ~ = x ~ - - c o ~ ,  k : 0 , 1  ..... N, 

co~ = Ak-1  ... A lwo -{ . . . .  + A~_lwk_ 2 + gOld_l, k ~- 1,..., N ,  

CO o = 0 .  

Then,  Yk satisfies the state equation 

yk+l = A~Yk  + B~uk , k = O, 1,..., N - -  1. 

Yo : go,  

and the cost functional is written as 

N 

J(uo , ua ,..., UN-1) = E [Fi(yi) + gi-l(ui-1)], 
i= l  

F,(y , )  = E { f , ( y i  + o~,)}. 

Thus,  the problem has been converted to a deterministic optimal control 

problem. For the solution of this problem, one can use classical methods 

whenever the functions F l  are differentiable. By Proposition 2.4, this 

will occur whenever the given probability distribution is such that the 

resulting probability measure for each of we is absolutely continuous 

with respect to Lebesgue measure, even when the functions f i  are non- 

differentiable at some points. 
Finally, we would like to mention the clear fact that  all the results of 

this section can be generalized to the case where the space (~2, ~-, P )  

is any positive measure space rather than a probability space. 

3. P r o b l e m  of  Product ion Planning to Meet a Stochastic 

D e m a n d  

Stochastic optimization problems with a cost functional charac- 

terized by nondifferentiability occur frequently in economics in resource 
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allocation problems where the return or profit rate is discontinuous with 

respect to resource allocated. The  problem that we describe in this 

section is a typical example of this situation. 

Consider a firm which is planning to produce x i ,  i = 1,..., n, 

quantities of n products to meet a demand ~o i , i = 1 .... , n, where oJ i 

are random variables with given joint probability distribution and 

expected values 05 i . The  production is subject to constraints, resulting 

from limited resources, which we shall denote by 

gj(x 1 .... , x , j  ~ O, j = 1, 2,..., m. (19) 

Assume that the firm will make a profit ai per unit  of product i sold and 

will incur a loss b i per unit  of product  i which will remain unsold. Then,  

it can be easily seen that  the expected value of the profit of the firm is 

E{profit} = ai@ q- E ~, f~(xi - -  coi) , (20) 
i = l  i = 1  

where the funct ionsj~,  i = 1,..., n, are defined by 

f,(=)= }--b,= 
( aiz for z <~ O. 

The  problem is to find the quantities x~ ,..., x~ which maximize the 

expected profit, subject to the production constraints (19). 

Let  us denote by x e R ~ the n-tuple [x~ ,..., Xn] and by o, a R ~ the 

n-tuple [% ,..., ~%], and consider the convex function f :  R ~ -+ R given by 

f ( z )  = - - ~  f i(zi) .  (21) 
i = l  

Then,  maximizing the expected profit (20) is equivalent to minimizing 

F(x)  = E { f ( x  - -  co)}, (22) 

subject to the production constraints (19). It can be seen that the 

f u n c t i o n f i s  nondifferentiable and that the cost funct ionalF  is of the form 

considered in Proposition 2.4. By using the results of the proposition, 

we obtain that, if the probability distribution of oJ is such that  the 

resulting probability measure on the Borel sets of R ~ is absolutely 

continuous with respect to Lebesgue measure, then the function F is, in 

fact, differentiable. This  is equivalent to requiring that the random 

variables % ,..., e% have a joint  probability density function p(c% ,..., o~) 

which is such that 

f N p (  oJn) d %  doo~ = 0 ~...~ 
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for every Borel set N with measure zero. In a practical situation, one 

can always modify the given probability measure to satisfy this condition, 

while approximating the function F arbitrarily closely. The gradient 

of the function F at any point x is given by 

VF(x) .... f~( , )  Vf(x -- ¢o) dP(o)), 

where D~(x) is the subset of R ~ 

O~(x) = {~o e R .  I , ~  ~ x~ ,..., ~ ~ x . ) .  (23) 

It  should be noted that the condition that the probability measure be 

absolutely continuous with respect to Lebesgue measure is only sufficient 

for the differentiability of the function F of Eq. (22). By Proposition 2.3, 

a necessary and sufficient condition for differentiability of F at x is that 

P[/J~(x)] = 1. 

4. Conc lus ions  

In this paper, we have examined the differentiability properties of 

functionals of the form 

F(x) = E{f(x, co)}, 

where x ~ R n, w is an element of a probability space, and f is a convex 

but  not necessarily differentiable function of x for some ~o. Such 

functionals arise often in connection with stochastic optimization 

problems, and their differentiability properties are vital to the solution of 

these problems. Necessary and sufficient conditions were given for the 

function F to be differentiable even when the function f is not. It was 

demonstrated that, for a large class of optimization problems, these 

conditions are satisfied; therefore, for such problems, classical solution 

methods can be used. 
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