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Abstract

We investigate stochastic comparisons between exponential family distributions and their
mixtures with respect to the usual stochastic order, the hazard rate order, the reversed
hazard rate order, and the likelihood ratio order. A general theorem based on the notion
of relative log-concavity is shown to unify various specific results for the Poisson,
binomial, negative binomial, and gamma distributions in recent literature. By expressing
a convolution of gamma distributions with arbitrary scale and shape parameters as a
scale mixture of gamma distributions, we obtain comparison theorems concerning such
convolutions that generalize some known results. Analogous results on convolutions of
negative binomial distributions are also discussed.
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1. Stochastic orders and some general observations

The study of stochastic orders has received attention in diverse areas including economics,
operations research, reliability, and statistics (e.g. survival analysis). For book-length treatments
of both theory and applications, see Shaked and Shanthikumar (1994), (2007). This paper is
mainly concerned with four orders, namely, the usual stochastic order (denoted by ‘≤st’), the
hazard rate order (denoted by ‘≤hr’), the reversed hazard rate order (denoted by ‘≤rh’), and the
likelihood ratio order (denoted by ‘≤lr’). We recall the familiar definitions.

Definition 1. Let X and Y be continuous random variables on R with probability density
functions (PDFs) or discrete random variables on Z with probability mass functions (PMFs)
f (x) and g(x), respectively. Denote their respective cumulative distribution functions (CDFs)
by F(x) and G(x).

• X is said to be smaller than Y in the usual stochastic order (written X ≤st Y ) if F̄ (x) ≤
Ḡ(x) for all x, where F̄ (x) = 1 − F(x) and Ḡ(x) = 1 − G(x).

• X is said to be smaller than Y in the hazard rate order (written X ≤hr Y ) if f (x)/F̄ (x) ≥
g(x)/Ḡ(x) for all x.

• X is said to be smaller than Y in the reversed hazard rate order (written X ≤rh Y ) if
f (x)/F (x) ≤ g(x)/G(x) for all x.

Received 4 April 2008; revision received 27 January 2009.
∗ Postal address: Department of Statistics, University of California, Irvine, CA 92697-1250, USA.
Email address: yamingy@uci.edu

244

https://doi.org/10.1239/jap/1238592127 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592127


Stochastic orders 245

• X is said to be smaller than Y in the likelihood ratio order (written X ≤lr Y ) if the
likelihood ratio f (x)/g(x) is a monotone decreasing function on the set {x : f (x) > 0
or g(x) > 0}. By convention, a/0 = ∞ whenever a > 0.

As is well known, X ≤lr Y implies that X ≤hr Y and X ≤rh Y , either of which in turn implies
that X ≤st Y . Further basic properties of these orders can be found in Shaked and Shanthikumar
(1994).

Despite their importance, it can be nontrivial to verify the relations ‘≤st’, ‘≤hr’, ‘≤rh’, or
‘≤lr’, e.g. when the relevant distributions are not in closed form. This work provides some
simple conditions that unify and generalize many results for specific distributions in recent
literature. The following relative log-concavity order, introduced in Whitt (1985) (see also Yu
(2008)), plays a critical role in the development.

Definition 2. Let X and Y be continuous or discrete random variables with PDFs or, respec-
tively, PMFs f (x) and g(x), respectively. We say that X is log-concave relative to Y (written
X ≤lc Y ) if

1. the support of X, supp(X) = {x : f (x) > 0}, and the support of Y , supp(Y ) =
{x : g(x) > 0}, are both intervals on R (Z);

2. supp(X) ⊂ supp(Y );

3. log(f (x)/g(x)) is a concave function on supp(X).

The order ‘≤lc’ provides a way of deriving conditions that imply the four ground-level
orders ‘≤st’, ‘≤hr’, ‘≤rh’, and ‘≤lr’. This is analogous to gaining an understanding of the
monotonicity properties of a function by studying its second derivative. We summarize some
general observations below.

Theorem 1. Let the random variables X and Y have PDFs f (x) and g(x), respectively, both
supported on (0, ∞). Assume that the log density ratio l(x) = log(f (x)/g(x)) is continuous
and, moreover, concave, i.e. X ≤lc Y . Then,

1. X ≤st Y and X ≤hr Y are equivalent, and each holds if and only if limx↓0 l(x) ≥ 0;

2. assuming that l(x) is continuously differentiable, X ≤lr Y and X ≤rh Y are equivalent,
and each holds if and only if limx↓0 l′(x) ≤ 0.

Proof. 1. Let A = {x : l(x) ≥ 0} = {x : f (x) ≥ g(x), x > 0}. Because l(x) is concave, A

is an interval. We first show that X ≤st Y is equivalent to limx↓0 l(x) ≥ 0. If limx↓0 l(x) ≥ 0
then it is easy to see that the left endpoint of A is 0. That is, f (x)−g(x) changes sign at most once
from + to − as x increases from 0 to ∞; it follows that F(x) − G(x) = ∫ x

0 (f (u) − g(u)) du

does not change sign at all, i.e. F(x) ≥ G(x) for all x, and that X ≤st Y , by definition.
Conversely, if X ≤st Y then

∫ x

0 (f (u) − g(u)) du ≥ 0 for all x, forcing the left endpoint of A

to 0, which implies that limx↓0 l(x) ≥ 0. Note that this limit exists by the concavity of l(x).
Concerning the hazard rate order, we only need to show that

X ≤st Y �⇒ X ≤hr Y,

since the implication
X ≤hr Y �⇒ X ≤st Y

is well known. By definition, if X ≤st Y then F̄ (x) ≤ Ḡ(x) for all x. Given x0 > 0, if
f (x0) ≥ g(x0) then f (x0)/F̄ (x0) ≥ g(x0)/Ḡ(x0). Otherwise, f (x0) < g(x0), i.e. x0 /∈ A.
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As before, since X ≤st Y , the left endpoint of A must be 0. Hence, l(x) < 0 for all x ≥ x0. If
there exist some x2 > x1 ≥ x0 such that l(x2) > l(x1) then, by the concavity of l(x), for all
x ≤ x1, we have

l(x) ≤ l(x1) + (x − x1)
l(x2) − l(x1)

x2 − x1
< 0,

i.e. l(x) < 0 for all x, a contradiction. Thus, l(x) (or f (x)/g(x)) decreases on [x0, ∞), and,
consequently,

f (x0)

F̄ (x0)
= f (x0)∫ ∞

x0
f (u) du

≥ f (x0)∫ ∞
x0

g(u)f (x0)/g(x0) du
= g(x0)

Ḡ(x0)
.

That is, the hazard rate of X is always greater than or equal to that of Y .

2. Note that l′(x) decreases in x since l(x) is concave; therefore, to ensure a monotone density
ratio, or l′(x) ≤ 0 for all x, we need only limx↓0 l′(x) ≤ 0. That is,

X ≤lr Y ⇐⇒ lim
x↓0

l′(x) ≤ 0.

Concerning the reversed hazard rate order, we only need to show that

X ≤rh Y �⇒ X ≤lr Y,

since the implication
X ≤lr Y �⇒ X ≤rh Y

is known. Assume the contrary, i.e. X ≤rh Y but X �≤lr Y . Then, by the discussion above,
limx↓0 l′(x) > 0, and, by continuity, there exists ε > 0 such that l′(x) > 0 for all x ∈ (0, ε].
That is, f (x)/g(x) strictly increases on x ∈ (0, ε]. Thus,

f (ε)

F (ε)
= f (ε)∫ ε

0 f (u) du
>

f (ε)∫ ε

0 g(u)f (ε)/g(ε) du
= g(ε)

G(ε)
,

which contradicts the definition of X ≤rh Y .

A discrete version of Theorem 1 is stated as follows.

Theorem 2. Let the random variables X and Y have PMFs f (x) and g(x), respectively, both
supported on the same Z+ = {0, 1, . . . } (or {0, 1, . . . , n} for some n > 0). Assume that
X ≤lc Y . Then

1. X ≤st Y and X ≤hr Y are equivalent, and each holds if and only if f (0)/g(0) ≥ 1;

2. X ≤lr Y and X ≤rh Y are equivalent, and each holds if and only if f (1)/g(1) ≤
f (0)/g(0).

Basically, if X ≤lc Y then X ≤st Y, X ≤hr Y, X ≤rh Y , and X ≤lr Y are all determined by
the behavior of Pr(X = x)/ Pr(Y = x) near the left endpoint x = 0.

Example 1. Let Y ∼ Bin(n, p), p ∈ (0, 1), and let X = ∑n
i=1 Bi , where the Bi are indepen-

dent Bernoulli random variables, i.e. Pr(Bi = 1) = 1 − Pr(Bi = 0) = pi, i = 1, . . . , n. In the
context of software testing, Boland et al. (2002) considered comparisons between X and Y with
respect to several stochastic orders. We note that Theorem 2 gives an alternative, somewhat
faster, derivation of some of their results. Our starting point is the well-known relation X ≤lc Y ,
which is equivalent to Newton’s inequalities (see Hardy et al. (1964, p. 52)). Thus, Theorem 2
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and simple calculations yield

1. X ≤st Y (X ≤hr Y ) if and only if p ≥ 1 − (
∏n

i=1(1 − pi))
1/n;

2. X ≤lr Y (X ≤rh Y ) if and only if p ≥ 1 − n/(
∑n

i=1(1 − pi)
−1).

If we let X′ = n − X and Y ′ = n − Y , then, obviously, X′ ≤lc Y ′ and

X′ ≤st Y ′ ⇐⇒ Y ≤st X, X′ ≤hr Y ′ ⇐⇒ Y ≤rh X,

X′ ≤lr Y ′ ⇐⇒ Y ≤lr X, X′ ≤rh Y ′ ⇐⇒ Y ≤hr X.

Applying Theorem 2 to X′ and Y ′, we obtain

1. Y ≤st X (Y ≤rh X) if and only if p ≤ (
∏n

i=1 pi)
1/n;

2. Y ≤lr X (Y ≤hr X) if and only if p ≤ n/(
∑n

i=1 p−1
i ).

Our result,

X ≤hr Y ⇐⇒ p ≥ 1 −
(∏

(1 − pi)
)1/n

, (1)

corrects a slight oversight in Boland et al. (2002, Theorem 1(iv)(b)). Basically, Boland et
al. (2002) found the correct criterion for Y ′ ≤hr X′ and claimed that the same criterion holds
for X ≤hr Y . However, Y ′ ≤hr X′ is equivalent to X ≤rh Y , not X ≤hr Y . This explains the
discrepancy between (1) and Theorem 1(iv)(b) of Boland et al. (2002).

Theorems 1 and 2 are particularly useful for comparing exponential family distributions
with their mixtures, as will be illustrated in Section 2, where various specific results concerning
Poisson, binomial, negative binomial, and gamma distributions are unified and generalized. In
Section 3 we apply the results of Section 2 to convolutions of gamma distributions, which are
useful in modeling, for example, the lifetime of a redundant standby system without repairing
(see Bon and Păltănea (1999)). It is shown that, if S = ∑n

i=1 βiSi , where Si ∼ gamma(αi, 1)

independently, αi, βi > 0, and T = β
∑n

i=1 Si, β > 0, then

T ≤st S ⇐⇒ T ≤hr S ⇐⇒ β ≤
( n∏

i=1

β
αi

i

)1/α+
,

where α+ = ∑n
i=1 αi . Moreover,

T ≤lr S ⇐⇒ T ≤rh S ⇐⇒ β ≤ α+
( n∑

i=1

αi

βi

)−1

.

In Section 4, convolutions of negative binomial distributions are considered and results analo-
gous to those of Section 3 are obtained.

2. Comparing exponential family distributions with their mixtures

Consider the density of an exponential family,

f (x; θ) = f0(x)eb(θ)xh(θ), (2)

where θ is a parameter, and, for simplicity, assume that the support of f (x; θ) is the interval
(0, ∞) (regardless of the value of θ ). Let g(x) = ∫

f (x; t) dµ(t) be the mixture of f (x; θ)
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with respect to a probability distribution µ on θ . Shaked (1980) considered the comparison
between g(x) and f (x; θ) with a fixed θ , focusing on the case when the two distributions have
the same mean. Our comparisons here are in terms of ‘≤st’, ‘≤hr’, ‘≤rh’, and ‘≤lr’. As noted
in Whitt (1985),

log

(
g(x)

f (x; θ)

)
= log

(∫
e(b(t)−b(θ))xh(t)

h(θ)
dµ(t)

)

is a convex function of x, i.e. l(x) = log(f (x; θ)/g(x)) is concave. (This holds because
log-convexity is closed under mixture.) We may compute

lim
x↓0

l(x) = − log

(∫
h(t)

h(θ)
dµ(t)

)

and

lim
x↓0

l′(x) =
∫
(b(θ) − b(t))h(t) dµ(t)∫

h(t) dµ(t)
,

provided that the interchange of limit (differentiation) and integration is valid. Thus, if the
random variables X and Y have densities f (x; θ) and g(x), respectively, then, by Theorem 1,

1. X ≤st Y (X ≤hr Y ) if and only if
∫

h(t) dµ(t) ≤ h(θ); (3)

2. X ≤lr Y (X ≤rh Y ) if and only if

b(θ) ≤
∫

b(t)h(t) dµ(t)∫
h(t) dµ(t)

. (4)

If f (x; θ) is a discrete PMF on Z+ then, by Theorem 2,

1. X ≤st Y (X ≤hr Y ) if and only if
∫

h(t) dµ(t) ≤ h(θ); (5)

2. X ≤lr Y (X ≤rh Y ) if and only if

eb(θ) ≤
∫

h(t)eb(t) dµ(t)∫
h(t) dµ(t)

. (6)

Let us illustrate (5) and (6) with some discrete examples. In Examples 2 and 3, below, certain
results given in Misra et al. (2003) are recovered concerning the comparisons of Poisson and
binomial distributions with their mixtures; in Example 4 we consider the negative binomial and
recover analogous results given in Alamatsaz and Abbasi (2008). In addition to ‘≤st’ and ‘≤lr’
studied in Misra et al. (2003) and Alamatsaz and Abbasi (2008), comparisons in terms of ‘≤hr’
and ‘≤rh’ are also included.

Example 2. Let X have a Poisson distribution Po(λ), λ > 0, whose PMF is

f (x; λ) = 1

x!λ
xe−λ, x = 0, 1, . . . ,
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or, in the form of (2),

f (x; λ) = 1

x!exb(λ)h(λ)

with b(λ) = log(λ) and h(λ) = e−λ. Suppose that Y is a mixture of Po(t) with respect to a
distribution µ(t) on t ∈ (0, ∞). Then, by (5) and (6), we have

1. X ≤st Y (X ≤hr Y ) if and only if

∫
e−t dµ(t) ≤ e−λ;

2. X ≤lr Y (X ≤rh Y ) if and only if

λ ≤
∫

te−t dµ(t)∫
e−t dµ(t)

.

Example 3. Let X have a binomial distribution with parameters (n, p), where 0 < p < 1 and
n is a positive integer. The PMF of X is

f (x; p) =
(

n

x

)
px(1 − p)n−x, x = 0, . . . , n,

or, in the form of (2),

f (x; p) =
(

n

x

)
exb(p)h(p)

with b(p) = log(p/(1 − p)) and h(p) = (1 − p)n. Suppose that Y is a mixture of Bin(n, t)
with respect to a distribution µ(t) on t ∈ (0, 1). Then, after simple algebra, (5) and (6) give

1. X ≤st Y (X ≤hr Y ) if and only if

∫
(1 − t)n dµ(t) ≤ (1 − p)n;

2. X ≤lr Y (X ≤rh Y ) if and only if

p ≤
∫

t (1 − t)n−1 dµ(t)∫
(1 − t)n−1 dµ(t)

.

By considering X′ = n − X and Y ′ = n − Y , we obtain

1. Y ≤st X (Y ≤rh X) if and only if

∫
tn dµ(t) ≤ pn;

2. Y ≤lr X (Y ≤hr X) if and only if

p ≥
∫

tn dµ(t)∫
tn−1 dµ(t)

.
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Example 4. Let X have a negative binomial distribution, denoted by NB(k, p), where k (not
necessarily an integer) is positive and 0 < p < 1. The PMF of X is

f (x; p) =
(

k + x − 1

x

)
pk(1 − p)x, x = 0, 1, . . . ,

or, in the form of (2),

f (x; p) =
(

k + x − 1

x

)
exb(p)h(p)

with b(p) = log(1 − p) and h(p) = pk . Suppose that Y is a mixture of NB(k, t) with respect
to a distribution µ(t) on t ∈ (0, 1). Then (5) and (6) give

1. X ≤st Y (X ≤hr Y ) if and only if ∫
tk dµ(t) ≤ pk; (7)

2. X ≤lr Y (X ≤rh Y ) if and only if

p ≥
∫

tk+1 dµ(t)∫
tk dµ(t)

. (8)

Let us illustrate (3) and (4) with a continuous example.

Example 5. Let X have a gamma distribution, gamma(α, β), α > 0, β > 0, which is
parameterized so that the PDF is

f (x; β) = �(α)−1β−αxα−1e−x/β, x > 0,

or, in the form of (2),
f (x; β) = �(α)−1xα−1exb(β)h(β)

with b(β) = −β−1 and h(β) = β−α . Suppose that Y is a mixture of gamma(α, t) with respect
to a distribution µ(t) on t ∈ (0, ∞). Then (3) and (4) give

1. X ≤st Y (X ≤hr Y ) if and only if∫
t−α dµ(t) ≤ β−α; (9)

2. X ≤lr Y (X ≤rh Y ) if and only if

β

∫
t−α−1 dµ(t) ≤

∫
t−α dµ(t) < ∞. (10)

Note that, unlike previous examples, this is a continuous case and the regularity conditions
(interchange of limit (differentiation) and integration) required in the derivation of (9) and (10)
need to be verified. For example, to establish (9), we note that

lim
x↓0

f (x; β)∫
f (x; t) dµ(t)

= lim
x↓0

β−αe−x/β∫
t−αe−x/t dµ(t)

= β−α

limx↓0
∫

t−αe−x/t dµ(t)

= β−α∫
t−α dµ(t)

,

where we appeal to the monotone convergence theorem for the last equality.
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3. Convolutions of gamma distributions

Example 5 in Section 2 enables us to compare a sum of independent gamma random variables
with a particular gamma variate. To achieve this, we exploit a connection between such a
convolution of gamma distributions and a mixture of gamma distributions. Specifically, let
S = ∑n

i=1 βiSi, where Si ∼ gamma(αi, 1) independently and βi > 0, i = 1, . . . , n. Let
T ∼ gamma(

∑n
i=1 αi, β), β > 0. We are interested in conditions onβ that ensure thatT ≤st S,

T ≤hr S, T ≤rh S, or T ≤lr S. Relevant works on this problem include Boland et al. (1994),
Bon and Păltănea (1999), Kochar and Ma (1999), Korwar (2002), and Khaledi and Kochar
(2004). In particular, using majorization techniques (see Marshall and Olkin (1979)), Boland
et al. (1994) showed that, in the case where αi = 1, i.e. when S is a sum of independent
exponential variables with possibly different scales, we have

β ≤ n∑n
i=1 β−1

i

�⇒ T ≤lr S.

Bon and Păltănea (1999) extended this to (still with αi = 1)

T ≤st S ⇐⇒ T ≤hr S ⇐⇒ β ≤
( n∏

i=1

βi

)1/n

, (11)

T ≤lr S ⇐⇒ β ≤ n∑n
i=1 β−1

i

. (12)

The results of Korwar (2002) and Khaledi and Kochar (2004) imply that the ‘⇐’ parts of (11)
and (12) hold when all the αi are equal and their common value α ≥ 1. As an application of the
calculations in Sections 1 and 2, we give a further extension for general αi > 0. Such results are
of interest in reliability theory as they provide convenient bounds (for example) on the hazard
rate function of S through the simpler hazard rate function of T (see Bon and Păltănea (1999)).

Theorem 3. Assume that αi > 0, and let α+ = ∑n
i=1 αi . Then

1. T ≤st S (T ≤hr S) if and only if β ≤ (
∏n

i=1 β
αi

i )1/α+ ;

2. T ≤lr S (T ≤rh S) if and only if β ≤ α+/(
∑n

i=1 αi/βi).

Proof. Let T0 = ∑n
i=1 Si . According to a classical property of the gamma distribution,

(S1/T0, . . . , Sn/T0) is independent of T0; consequently, S/T0 = ∑
βiSi/T0 is independent

of T0. Denote the distribution of S/T0 by µ. Then S = (S/T0)T0 has the distribution of a
mixture of gamma(α+, γ ) with respect to µ(γ ) on γ ∈ (0, ∞), whereas T ∼ gamma(α+, β).
Thus, the results of Example 5, i.e. (9) and (10), are directly applicable. We only need to
calculate ∫

γ −α+ dµ(γ ) = E

[(
S

T0

)−α+]

and ∫
γ −α+−1 dµ(γ ) = E

[(
S

T0

)−α+−1]
.
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It can be shown that

E

[(
S

T0

)−α+]
=

n∏
i=1

β
−αi

i (13)

and E

[(
S

T0

)−α+−1]
=

∑n
i=1 αi/βi

α+

n∏
i=1

β
−αi

i . (14)

The claim then follows from (9) and (10). Equation (13) dates back to Mauldon (1959), and the
following derivation, which we include for completeness, can be found in Letac et al. (2001).
For t1, . . . , tn ∈ (−∞, 1), we have, by independence,

E
[
exp

(∑
tiSi

)]
=

n∏
i=1

E[exp(tiSi)] =
n∏

i=1

(1 − ti )
−αi .

On the other hand,

E
[
exp

(∑
tiSi

)]
= E

[
E

[
exp

(∑
tiSi

) ∣∣∣∣
∑ tiSi

T0

]]

= E

[(
1 −

∑ tiSi

T0

)−α+]
.

Thus,

E

[(
1 −

∑ tiSi

T0

)−α+]
=

n∏
i=1

(1 − ti )
−αi .

Equation (13) is obtained by substituting (1 − βi) for ti , i = 1, . . . , n. Moreover, (14) is
obtained by differentiating both sides of (13) with respect to βi and then adding the results for
i = 1, . . . , n.

Actually, Khaledi and Kochar (2004) also compared variables of the form of S (assuming
that the αi are equal and that their common value α ≥ 1) in terms of the dispersive order
(denoted by ‘≤disp’). We mention a result comparing T and S in terms of ‘≤disp’ for general
αi > 0. Let us recall the definitions of ‘≤disp’ and the related star order (denoted by ‘≤∗’).

Definition 3. Let X and Y be absolutely continuous random variables supported on (0, ∞)

with CDFs F and G, respectively, and denote by F−1 and G−1 the inverse functions of F and
G, respectively.

• We say that X is smaller than Y in the dispersive order (written X ≤disp Y ) if

F−1(b) − F−1(a) ≤ G−1(b) − G−1(a), 0 < a < b < 1.

• We say that X is smaller than Y in the star order (written X ≤∗ Y ) if G−1F(x)/x is an
increasing function of x, x > 0.

Theorem 4. We have

T ≤disp S ⇐⇒ T ≤st S.
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Proof. The ‘⇒’ part follows from the definitions (see Theorem 3.B.13 of Shaked and
Shanthikumar (2007)). To prove the ‘⇐’ part, first we show that T ≤∗ S. The claim that
T ≤disp S then follows from T ≤st S and T ≤∗ S (see Ahmed et al. (1986) and Shaked and
Shanthikumar (2007, p. 215)). Denote the density functions of T and S by f (x) and g(x),
respectively. One sufficient condition for T ≤∗ S is that, for all a > 0, af (ax)−g(x) changes
sign at most twice as x increases from 0 to ∞, the sign sequence being −, +, − in the case
of two changes. This is easily verified by noting that, based on the analysis in Section 2,
log(af (ax)/g(x)) is concave in x.

4. Convolutions of negative binomial distributions

This section contains results for sums of independent negative binomial random variables.
The development somewhat parallels that of Section 3.

Let N = ∑n
i=1 Ni, where Ni ∼ NB(ki, pi) independently, ki > 0, and pi ∈ (0, 1), i =

1, . . . , n. Let M ∼ NB(
∑n

i=1 ki, p), p ∈ (0, 1). For the special case where ki = 1, Boland et
al. (1994) compared variables of the form of N , i.e. sums of independent geometric variables
with possibly different parameters, with respect to the likelihood ratio order. We have the
following result comparing M and N for general ki > 0 (not necessarily integers). Theorem 5
should be compared with Example 1 in Section 1.

Theorem 5. Let k+ = ∑n
i=1 ki . Then

1. M ≤st N (M ≤hr N ) if and only if p ≥ (
∏n

i=1 p
ki

i )1/k+ ;

2. M ≤lr N (M ≤rh N ) if and only if p ≥ ∑n
i=1 kipi/k+.

Proof. The negative binomial NB(k, t) is a mixture of Po(λ(1 − t)/t), where the mixing
distribution is λ ∼ gamma(k, 1). It follows that the distribution of N = ∑n

i=1 Ni is given by

N | (λ1, . . . , λn) ∼ Po

( n∑
i=1

λi(1 − pi)

pi

)
,

λi ∼ gamma(ki, 1) independently.

In this setup, let L = ∑n
i=1 λi(1 − pi)/pi and λ+ = ∑n

i=1 λi . As in Section 3, L = (L/λ+)λ+
is a scale mixture gamma(k+, γ ), where the distribution of γ is that of L/λ+. It is clear that N

can be expressed as a mixture of negative binomial variates:

N | γ ∼ NB(k+, (1 + γ )−1),

where again γ has the distribution of L/λ+. We may apply the results of Example 4 in Section 2,
namely (7) and (8). However, as pointed out by an anonymous reviewer, it is simpler to appeal
to Theorem 2 directly. By the mixture representation of N above we have M ≤lc N . A quick
calculation yields

Pr(M = 0)

Pr(N = 0)
= pk+∏n

i=1 p
ki

i

and
Pr(M = 1)

Pr(N = 1)
= k+pk+(1 − p)

(
∏n

i=1 p
ki

i )
∑n

i=1 ki(1 − pi)
.

The claims then follow from Theorem 2.
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