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ABSTRACT 

The last decade has seen the success of stochastic parameterizations in short-term, medium-

range and seasonal ensembles: operational weather centers now routinely use stochastic 

parameterization schemes to better represent model inadequacy and improve the 

quantification of forecast uncertainty. Developed initially for numerical weather prediction, 

the inclusion of stochastic parameterizations not only provides more skillful estimates of 

uncertainty, but it is also extremely promising for reducing longstanding climate biases and is 

relevant for determining the climate response to forcings such as e.g., an increase of CO2. 

This article highlights recent developments from different research groups which show that 

the stochastic representation of unresolved processes in the atmosphere, oceans, land surface 

and cryosphere of comprehensive weather and climate models (a) gives rise to more reliable 

probabilistic forecasts of weather and climate and (b) reduces systematic model bias. 

We make a case that the use of mathematically stringent methods for derivation of stochastic 

dynamic equations will lead to substantial improvements in our ability to accurately simulate 

weather and climate at all scales. Recent work in mathematics, statistical mechanics and 

turbulence is reviewed, its relevance for the climate problem demonstrated, and future 

research directions outlined.
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CAPSULE (20-30 words) 

Stochastic parameterizations - empirically derived, or based on rigorous mathematical and 

statistical concepts - have great potential to increase the predictive capability of next generation 

weather and climate models.
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The need for stochastic parameterizations 

Numerical weather and climate modeling is based on the discretization of the continuous 

equations of motion. Such models can be characterized in terms of their dynamical core, which 

describes the resolved scales of motion, and the physical parameterizations, which provide 

estimates of the grid-scale effect of processes, that cannot be resolved. This general approach 

has been hugely successful in that skillful predictions of weather and climate are now routinely 

made (e.g. Bauer et al. 2015). However, it has become apparent through the verification of these 

predictions that current state-of the art models still exhibit persistent and systematic 

shortcomings due to an inadequate representation of unresolved processes.  

Despite the continuing increase of computing power, which allows numerical weather and 

climate prediction models to be run with ever higher resolution, the multi-scale nature s of 

geophysical fluids means that many important physical processes (e.g. tropical convection, 

gravity wave drag, micro-physical processes) are still not resolved.  

Moreover, for climate simulations, a decision must be made as to whether computational 

resources should be used to increase the representation of subgrid physical processes or to build 

a comprehensive Earth-System Model, by including additional climate components such as e.g., 

the cryosphere, chemistry and biosphere. In addition, the decision must be made about whether 

computational resources should go towards increased horizontal, vertical and temporal 

resolution or additional ensemble members.  

Additional challenges are posed by intrinsically coupled phenomena like the Madden-Julian 

Oscillation (MJO) and tropical cyclones. These – in origin tropical processes - are multi-scale 
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processes that need to resolve small-scale processes such as convection in addition to capturing 

the large-scale ocean response and feedback. Many of the Coupled Model Intercomparison 

Project phase 5 (CMIP5) climate models still do not properly simulate the MJO and 

convectively coupled waves	
  (Hung	
  et	
  al.,	
  2013). 

Rigorous mathematical methods exist for dealing with the construction of parameterizations – 

usually referred to as the operation of coarse graining and performed through the method of 

homogenization (Papanicolaou and Kohler 1974; Gardiner 1985; Arnold, 1992) - when there is 

a vast time scale separation between the portion of the system we are interested in describing 

and the fast processes we want to represent in a simplified manner. Note that, typically, a 

relationship can be found between spatial and temporal scales of variability, with fast processes 

associated to small scales and slow processes associated to large scales, so that separating 

physical processes by timescales often results in decomposing small scale features from large 

scale phenomena. 

Mathematical approaches to stochastic modeling rely on the assumption that a physical 

system can be expressed in terms of variables of interest, and variables which one does not 

want to explicitly resolve. The goal is then to derive an effective equation for the slow 

predictable processes and to represent the effect of the now unresolved variables as random 

noise term. Such a thinking underlies the pioneering study of Hasselmann (1976), who split 

the coupled ocean-atmosphere system into a slow ocean and fast weather fluctuation 

components and subsequently derived an effective equation for the ocean circulation only. 

One finds that the impact of the fast variables on the dynamics of the slow variables boils 

down to a deterministic correction – a mean field effect sometimes referred to as noise-
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induced drift or rectification – plus a stochastic component, which is a white random noise 

in the limit of infinite time scale separation. The advantage of such a rigorous approach is 

that all parameterizations are valid for increasing spatial resolutions (“scale-aware 

parameterizations”), which is an important aspect in developing seamless and multi-

resolution prediction models. 

The time scale separation does not necessarily require a gap in the power spectrum of the 

coupled process, however, it assumes that the decorrelation time of the fluctuating processes is 

sufficiently smaller than the decorrelation time of the slow processes (e.g., Gardiner, 1985). An 

example for a simple red noise model that has time scale separation in this sense, but not a gap 

in the power spectrum is e.g., discussed in DelSole (2000). 

The condition of scale separation is unfortunately not met in typical geophysical fluid dynamics 

applications. Statistical mechanics – and in particular the Mori-Zwanzig theory (see e.g. 

Zwanzig 2001) – says that when the time scale separation between the fast and slow processes 

is not too large, the picture of the parameterization as being constructed as the sum of a suitably 

defined deterministic plus random corrections has to be amended to take memory effects into 

account (Wouters and Lucarini (2012, 2013), Chekroun et al. 2015a, 2015b). As a result, a great 

challenge is posed by the representation of partially resolved processes. For example, climate 

models and even many weather models split the fundamental process of convection into a 

resolved (large-scale) and parameterized component (e.g. Arakawa, 2004). The range of scales 

on which a physical process is only partially resolved is often called the “gray zone” (e.g., 

Gerard, 2007).  The equilibrium assumption no longer holds (e.g., Yano and Plant, 2012a,b) and 

the subgrid-scale parameterization takes a prognostic form rather than being diagnostic, as 

explicitly shown by Yano (2014) for mass-flux formulation. As the next generation of 
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numerical models attempts to seamlessly predict weather as well as climate, there is an 

increasing need to develop parameterizations that adapt automatically to different spatial scales 

(“scale-aware parameterizations”).  

Reviews of rigorous mathematical approaches to stochastic parameterizations that are accessible 

to wide audiences are available (Penland 2003a,b, Majda et al., 2008, Franzke et al. 2015). 

Different from these articles, the focus here is to report on successful applications of stochastic 

parameterizations to pressing questions in the atmospheric sciences. 

Stochastic parameterization schemes are now routinely used by operational weather and climate 

centers to make ensemble predictions from short-range to seasonal time scales (e.g., Texeira et 

al., 2008, Berner et al. 2009, Palmer et al. 2009, Palmer, 2012, Sanchez et al. 2015, Suselj et. al. 

2013, 2014, Weisheimer et al. 2014). The most common stochastic parameterization schemes 

employed are the stochastically perturbed parameterization tendencies (Buizza et al., 1999; 

Palmer et al., 2009; Berner et al. 2015, Weisheimer et al. 2014) and the stochastic kinetic-

energy backscatter scheme (Shutts, 2005; Berner et al., 2008, 2009, 2011, 2015; Tennant et al. 

2011, Romine et al., 2015). In these applications, underdispersive ensemble systems tend to 

produce over-confident and, thus, unreliable forecasts. Stochastic perturbations increase the 

diversity between ensemble members, which results in a more reliable and thus skillful 

ensemble system. Since the stochastic schemes are designed to mimic processes that are either 

unresolved or altogether unrepresented, they are often referred to as model-error schemes. 

Alternative approaches that fall under this category, but are not stochastic, are e.g. multi-physics 

schemes, which use different physical parameterization packages for each ensemble member. 

Previous reviews of stochastic approaches applied to atmospheric and oceanic models are 
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available e.g., in Palmer 2001; Palmer and Williams 2008, Williams et al. 2013. This body of 

work identifies the assessment of the benefits of stochastic closure schemes compared to their 

more conventional deterministic counterparts as a key outstanding challenge in the area of 

mathematics applied to the climate system. Palmer (2012) argues that well-designed stochastic 

climate ensembles are better suited to estimate the true uncertainty in climate predictions than 

current ad hoc poor-man ensembles, produced by combining forecasts from different climate 

centers. 

A fundamental argument, that has been often overlooked, is that merits of stochastic 

parameterization go far beyond providing uncertainty estimations for weather and climate 

predictions, but are also needed for better representing the mean state (e.g., Sardeshmukh et al., 

2001; Palmer, 2001, Penland 2003a,b; Berner et al. 2012, Weisheimer et al. 2014) and regime 

transitions (e.g., Williams et al. 2003, 2004; Birner and Williams 2008, Christensen et al. 

2015a) via inherent non-linear processes. This is especially relevant for climate predictions, 

which have long-standing mean state errors, such as e.g., a double intra-tropical convergence 

zone (e.g., Lin et al, 2007), and erroneous stratocumulus cloud covers, which play a crucial role 

in the climate response to external forcing. Insofar as stochastic parameterizations can change 

the mean state, they have the potential to affect the response to changes in the external forcing 

(e.g., Seiffert and von Storch, 2008). Results from a more mathematic perspective consider, 

how the invariant measure of a deterministic dynamical system is affected by stochastic forcing 

(Lucarini, 2012) and how climate response can be framed as a problem of non-equilibrium 

statistical mechanics (Lucarini and Sarno 2011, Lucarini et al. 2014a). The impact of stochastic 

parameterization on the tail behavior of the resulting probability density has only very recently 

been considered (Sardeshmukh and Sura 2009, Sura 2011, Franzke 2012, Sardeshmukh et al. 
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2015, Tagle et al. 2015).  

The essential fact that a white-noise forcing with zero mean can lead to a non-linear or rectified 

response and change the mean state is shown in Figure 1a-d. Assume the nonlinear climate 

system can be simplified as a double-well potential. If the noise is sufficiently small and under 

appropriate initial conditions, the system will stay in the deeper potential well and the 

associated probability density function of states will have a single maximum. As the amplitude 

of the noise increases, the system can undergo a noise-induced transition and reach the 

secondary potential well (e.g., Horsthemeke and Lefever, 1984). The resulting probability 

density function (PDF) will exhibit two local maxima, signifying two different climate regimes, 

rather than a single maximum, as in the small-noise scenario. Note, that the stochastic forcing 

not only increases the variance, but also the mean.  But even a linear system characterized	
  by	
  a	
  

single	
  potential	
  can	
  change	
  the	
  mean	
  if	
  forced	
  by	
  multiplicative	
  or	
  state-­‐dependent	
  white	
  

noise	
  (Figure 1e-h).	
  	
  Noise	
  is	
  multiplicative,	
  if	
  its	
  amplitude	
  is	
  a	
  function	
  of	
  the	
  state,	
  which	
  

is	
  denoted	
  by	
  the	
  red	
  errors	
  of	
  different	
  length	
  in	
  Figure 1g.	
  	
  The	
  noise-­‐induced	
  drift	
  

changes	
  the	
  mean	
  state	
  and	
  can	
  produce	
  non-­‐Gaussian	
  PDFs	
  (e.g.	
  Berner,	
  2005,	
  Berner	
  et	
  

al.	
  2005,	
  Sura	
  et	
  al.	
  2005)	
  

Here, we argue, that stochastic parameterizations are equally essential for: 

• the estimation of the uncertainty of weather and climate predictions, 

• a reduction in systematic model errors, 

• triggering noise-induced regime transitions, 

• capturing the linear or non-linear response to changes in the external forcing, 
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and should be applied in a systematic and consistent fashion, not only to weather, but also to 

climate simulations. 

The paper is organized as follows: First we give examples of the successful routine use of 

stochastic parameterizations in weather and climate models. We then discuss recent 

developments in the field, where uncertainty is introduced within particular physical 

parameterizations based on expert knowledge. Subsequently, mathematical rigorous approaches 

to the parameterization problem are introduced and applications to weather and climate 

reviewed. 

2 Representing Uncertainty in Comprehensive Climate and Weather Models 

2.1 Adding uncertainty a posteriori: the stochastically perturbed parameterization tendency 

schemes and the stochastic kinetic-energy backscatter scheme 

Stochastic parameterizations are based on the notion that – especially with increasing numerical 

resolution – the method of averaging (Arnold, 2001; Monahan and Culina 2011) is no longer 

valid and the subgrid-scale variability should be sampled rather than represented by the 

equilibrium mean.. In addition, certain subgrid-scale processes interact with larger scales, and 

due to the truncation, these interactions, with possibly large-scale impacts, are no longer 

represented. 

The former is addressed by the stochastically perturbed parameterization tendency (SPPT) 

scheme, which multiplies the net tendencies of the physical process parameterizations 

(convection, radiation, cloud physics, turbulence and gravity wave drag) at each gridpoint and 

time step with multiplicative noise. One essential feature is that the noise is correlated in space 
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and time. SPPT has a beneficial impact on medium range, seasonal and climate forecasts 

(Buizza et al., 1999; Palmer et al., 2009; Weisheimer et al. 2014; Christensen et al, 2015b; 

Dawson and Palmer, 2015), and Watson et al (2015) showed that the multiplicative SPPT 

scheme is consistent with observations of tropical convection as a function of the large-scale 

state.  

The stochastic kinetic-energy backscatter scheme (SKEBS) aims to represent model uncertainty 

arising from unresolved subgrid-scale processes and their interactions with larger scales by 

introducing random perturbations to the streamfunction and potential temperature tendencies, 

i.e. the scheme re-injects a small fraction of the dissipated energy into the resolved scales, that 

then interacts with the resolved-scale flow. Originally developed in the context of Large-Eddy-

Simulations (Mason and Thomson, 1992), and applied to models of intermediate complexity 

(Frederiksen and Davies, 1997), it was adapted by Shutts (2005) for Numerical Weather 

Prediction (NWP). Its beneficial impact on weather and climate forecasts are reported e.g., in 

Berner et al. (2008, 2009, 2011, 2012, 2015), Bowler et al. (2008, 2009); Palmer et al. (2009); 

Doblas- Reyes et al. (2009); Charron et al. (2010); Hacker et al. (2011); Tennant et al. (2011); 

Weisheimer et al. (2011,2014). A variant of SKEBS perturbs convective processes only (Shutts, 

2015, Sanchez et al. 2015). 

While these schemes are motivated by physical reasoning and the scheme parameters are 

informed by e.g. coarse-graining high-resolution output (Shutts and Palmer, 2007; Shutts and 

Callado Pallarès, 2014), the amplitude of the perturbations is often determined empirically by 

choosing a value that satisfactorily reduces the underdispersion. Obviously such an approach is 

only possible for forecast ranges where verification is possible, such as for short-term, medium-

range and seasonal forecasts. A common criticism of this approach is that the improved skill is 
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solely the result of an increase in reliability. However, Berner et al. (2015) found that the merits 

of model-error representations, stochastic or not, go beyond increasing reliability through 

increased spread and can account for structural model uncertainty.  

In the following examples, we demonstrate that stochastic parameterization is able to 

improve the mean state representation as well as the variability. First, we present recent 

results from the seasonal forecasting system at ECMWF (System 4).  Hindcast ensembles 

providing 7-month forecasts for the years 1981-2010 were started 4 times a year, both with 

and without stochastic perturbations (Weisheimer et al. 2014). The SPPT scheme helped to 

reduce excessively strong convective activity especially over the Maritime Continent and 

the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation 

(OLR), cloud cover, precipitation and near-surface winds (Figure 2). Positive impact of the 

stochastic schemes was also found for the statistics of the MJO, the dominant mode of sub-

seasonal tropical variability, showing an increase in the frequencies and amplitudes of MJO 

events (Figure 3). A reduction of excessive amplitudes in westward propagating 

convectively coupled waves in simulations with an earlier model version and SKEBS was 

previously reported in Berner et al. 2012.  

Another example for the complex response of the climate system is evident in the spectra 

of sea surface temperatures in the El Nino 3.4 region. Compared to HadISST observations, 

climate simulations with the Climate Earth System Model (CESM) run for a period of 135 

years at a resolution of 1° (ca 100km) have three times more power for oscillations with 

periods between 2 to 4 years (Figure 4). In simulations with SPPT, the temperature 

variability in this frequency range is greatly reduced, leading to a much better agreement 
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between the simulated and observed spectra (Christensen, Berner, Coleman and Palmer, 

manuscript in preparation). 

Along with the improvements of the model climate in the tropics, the stochastic 

perturbations also benefit the forecast performance on seasonal timescales. With the 

stochastic schemes, the forecast errors of tropical Pacific SSTs are reduced, while increases 

in the ensemble spread lead to a more reliable ensemble system. This has been reported for 

forecasts with earlier versions of the ECMWF system (Berner at al., 2008; Dobles-Reyes et 

al. 2009; Palmer at al. 2009) and confirmed in recent integrations with System 4 

(Weisheimer et al. 2014) and in the EC-Earth v3.0.1 Earth system model (Batté and 

Doblas-Reyes, 2015).  For example, the perturbations from the SPPT scheme increase the 

ensemble spread in Nino 3.4 area sea-surface temperatures in a 5-member ensemble with 

the EC-Earth model (Figure 5). For a horizontal resolution of ca. 60km (T255) for the 

atmospheric and ca. 100km for the ocean component, SPPT leads to a significant decrease 

in the ensemble mean error.  

A number of studies have found evidence for stochasticity leading to noise-induced 

transitions in mid-latitude circulation regimes, especially over the Pacific-North America 

region (Jung et al. 2005, Berner et al. 2012, Dawson et al. 2015, Weisheimer et al. 2014). 

These results support the idea that stochastic parameterizations might be relevant also for 

improving the representation and the predictive skill on low-frequency variability features.  

 	
  

2.2 Perturbed parameter approaches 

Parameterizations of subgrid-scale processes contain closure assumptions, and related 

parameters with inherent uncertainties. Although increasing model resolution gradually 
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pushes these assumptions further down the spectrum of motions, it is realistic to assume 

that some form of closure will be present in simulation models into the foreseeable future.  

Parameter uncertainty can be pinpointed in ensemble prediction systems by so-called 

perturbed parameter schemes (e.g. Bowler et al., 2008), i.e. perturb the closure parameter(s) 

with a fixed value. For instance, Reynolds et al. (2011) included parameter perturbations to 

boundary-layer and convection schemes, and noted a positive impact on tropical ensemble 

spread and Brier scores in a global forecasting system.  Several studies find multi-

parameter approaches less beneficial than other model-error schemes, for both mesoscale 

prediction systems (Hacker et al., 2011, Berner et al., 2011) and monthly and seasonal 

forecasts of near-surface temperature (Weisheimer, et al., 2011). Another limitation of this 

approach is that the parameter uncertainty estimates are subjective, and information about 

parameter interdependencies is not included. 

Nevertheless, reductions in mean forecast error due to a unified stochastic parameterization 

of boundary layers and shallow convection were significant enough that a stochastic "eddy-

diffusivity/ mass-flux" parameterization was implemented in the operational Navy Global 

Environmental Model (NAVGEM) in 2013 (Suselj et al. 2014).  Improvement in the 

representation of convectively driven boundary layers and coupling between boundary 

layers and cumulus regions was achieved by parameterizing vertical fluxes as a sum of an 

eddy-diffusivity part (Louis 1979) with a stochastic mass-flux scheme. 

Recently, Christensen et al. (2015b) constructed fixed and stochastically varying perturbed 

parameter schemes for representing uncertainty in four convection closure parameters. The 

parameter perturbations were based on an objective covariance estimate of parameter 

uncertainty (Järvinen et al. 2012; Ollinaho et al, 2013). The spread of ensemble forecasts was 
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improved using the two schemes, with a larger impact observed for the fixed perturbed 

parameter scheme. A reduction in bias was observed for some variables (e.g. U850), and there 

was a significant improvement in forecast skill compared to the operational system (Figure 6). 

However, the ensembles remained underdispersive, indicating that the perturbed parameter 

schemes did not capture all uncertainty in the convection scheme. Indeed, for forecast variables 

that are particularly sensitive to convection, the SPPT scheme outperformed the perturbed 

parameter approaches. 

A number of studies propose the use of stochastic approaches for the parameterization of 

gravity waves (GWs), since the GW field produced by convection, mountains or fronts is only 

predictable in a statistical sense (e.g., Eckermann, 2011, Doyle et al. 2011). Field campaigns 

reveal that the GW field is very intermittent and often dominated by well-defined GW packets. 

These properties are well simulated by stochastic parameterization schemes for non-orographic 

GW of Lott et al. (2012), Lott and Guez (2013) and de la Cámara and Lott (2015), which 

stochastically sample the GW spectrum. Recently, de la Cámara et al. (2014) showed that the 

free parameters of this scheme can be constrained by the probability density function of the 

observed GW momentum flux. 

The effect of perturbing the surface heat fluxes that couple atmosphere and land models, and in 

particular the variability associated with land surface heterogeneity in vegetation is investigated 

e.g. in Langan et al. (2014). Vegetation heterogeneity within a grid-box is represented as 

fractional areas of different plant functional types (PFTs) in land models. Although surface heat 

flux bulk formulations are applied to each PFT separately, conventional parameterization of 

grid-box land-atmosphere surface fluxes simply computes the area-weighted average of surface 

heat fluxes over the different PFTs within the grid box. The new stochastic parameterization 
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(Langan et al. 2014) retains this subgrid-scale variability among PFTs by sampling the 

contribution of each PFT to the grid box representative value from a two-parameter multivariate 

Dirichlet distribution at each model time-step, rather than using the constant area weights. With 

this stochastic parameterization ensemble simulations with a single column model version of the 

Community Earth System Model (CESM) reveal greater variability in grid-box surface heat 

fluxes and an increase in the variability of convective precipitation as well as larger extreme 

values (Figure 7). 

Physical parameters of land surface models often have very large uncertainties and are not well 

constrained by observations. A recent study by MacLeod et al. (2015) introduced parameter 

perturbations to two key soil parameters, the hydraulic conductivity and the van-Genuchten α, 

and compared their impact with stochastic perturbations of the soil moisture tendencies in 

seasonal forecasts with the ECMWF coupled model. Both the perturbed parameter approach 

and the stochastic tendency perturbations improved the forecasts of extreme air temperature for 

the European heat wave of 2003, through better representation of negative soil moisture 

anomalies and upward sensible heat flux. This demonstrates the potential and also the need to 

include explicit formulations of uncertainties in land surface models. 

A component of the coupled atmosphere-ocean system that may be particularly suited for 

stochastic parameterization is the air-sea fluxes across the sea surface. These air-sea fluxes of 

energy and momentum vary on a vast range of space and time scales, including scales that are 

too small or fast to be resolved explicitly by global climate models. For example, subgrid 

convective clouds in the atmosphere will cause subgrid fluctuations at the air-sea interface, in 

both the downward fresh water flux (through precipitation) and the downward short-wave solar 
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radiation. 

Williams (2012) demonstrates in an important case a general aspect mentioned before, namely 

how stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate, even 

though the time-mean fluctuation is zero. The mechanism is studied in climate simulations with 

a comprehensive coupled general circulation model and involves changes to the oceanic mixed-

layer depth, sea-surface temperature, atmospheric Hadley circulation, and fresh water flux. The 

impact of the stochastic perturbations on the climatological mean net upward water flux 

(evaporation minus precipitation) is displayed in Figure 8. In addition to the changes to the 

time-mean climate, El Nino Southern Oscillation (ENSO) variability was significantly 

increased. These findings suggest that the lack of representation of subgrid variability in air-sea 

fluxes may contribute to some of the biases exhibited by contemporary coupled climate models.  

Non-zero effects of fluctuating air-sea fluxes can result from non-linear responses to 

fluctuations of opposite signs.  Beena and von Storch (2009) discussed such a response to a 

fluctuating buoyancy flux. In regions where the ocean is mostly stable, an extremely large 

positive buoyancy flux anomaly will sustain the existing stratification. On the contrary, an 

extremely large negative buoyancy anomaly can make the water column unstable, thereby 

triggering convective events that significantly alter the existing stratification.   

Juricke et al. (2013) and Juricke and Jung (2014) recently investigated the sensitivity of an 

ocean-sea ice model and a coupled ocean-sea ice/atmosphere model to variations in the ice 

strength parameter. Sea ice rheology is a highly non-linear parameterized process of great 

importance for modeling sea ice drift and is sensitive to the amplitude of the ice strength 

parameter. As this parameter is not observable and is generally taken to be constant in time and 
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space, large uncertainties remain in the choice of its value. Varying this parameter stochastically 

results in changes to the mean sea ice distribution as well as sea ice spread. In a coupled model, 

Juricke	
  et	
  al.	
  (2014)	
  compare	
  the ensemble spread generated by atmospheric initial 

perturbations only to that generated by additional stochastic ice strength perturbations. 

Especially in the first few weeks of the forecast, incorporation of stochastic ice strength 

perturbations leads to considerably more sea ice spread in the central Arctic (Figure 9), which 

better reflects the forecast uncertainty. 

Li and von Storch (2013) demonstrate the necessity of stochastic perturbations in ocean models 

and for ocean-atmosphere interactions. This study investigates the validity of stochastically 

representing mesoscale eddies in the ocean. Differently from the atmospheric case, oceanic 

mesoscale eddies in state-of-the art ocean models are normally not resolved, because of the 

small oceanic Rossby deformation radius. So far, the main effort has been on the 

parameterization of the mean effect of these eddies, e.g. via the Gent-McWilliams scheme (Gent 

and McWilliams, 1990). To see whether it is justified to replace the classical eddy 

parameterization by a stochastic parameterization that takes fluctuations into account, Li and 

von Storch (2013) quantified the total eddy forcing, defined as the divergence of eddy flux, in 

a simulation performed with a 1/10-degree ocean model. The magnitude of the fluctuating 

component of this forcing is about one order of magnitude larger than the mean component of 

this forcing (Figure 10) suggesting that classical eddy parameterization based on the mean field 

should indeed be replaced by a parameterization that takes fluctuating fluxes into account. 

Future work will aim at a stochastic parameterization of the fluctuating subgrid-scale eddies. 

3. Systematic mathematical and statistical physics approaches 
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This section introduces systematic mathematical and statistical approaches to the 

parameterization problem and reports on recent work on the application of these rigorous 

methods to the weather and climate system. 

3.1. The Stochastic Primitive Equations 

Although the motions of the atmosphere and ocean are described by the Navier-Stokes 

equations, large-scale numerical models use the deterministic primitive equations (i.e. 

apply the hydrostatic approximation) in their dynamical core. An important advance is thus 

the derivation of stochastic primitive equations during the last decade: at first for two-

dimensional flows (Ewald et al. 2007; Glatt-Holtz and Ziane 2008; Glatt-Holtz and Temam 

2011) and recently for the full three-dimensional setting (Debussche et al. 2012).  

While it is important to have rigorous underpinnings of the stochastic primitive equations, 

it is also important to understand that stochastic systems require numerical schemes 

fundamentally different from the ones available to solve deterministic systems. The reason 

for this is the irregularity of the paths of stochastic processes, which leads to integration 

methods different from the Lebesgue-integrals for deterministic systems (see Gardiner 

2009 for an accessible text book). The two most commonly used stochastic integral types 

are the Itô-integral (Itô, 1951) and the Stratonovich-integral (Stratonovich, 1966). Which of 

the two integration types is appropriate depends on the stochastic properties of the physical 

system.  

Starting in the 1970s a solid framework of numerical methods for stochastic ordinary 

differential equations was developed (Rümelin 1982; Kloeden and Platen 1992; Milstein 

1995; Kloeden 2002). However, the development of high-order numerical schemes for 

stochastic partial differential equations remains an elusive task. Recently, there has been a 
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breakthrough by Jentzen and Kloeden (2009); and by Weniger (2014) who proved the 

strong convergence of a Galerkin approximation for the three-dimensional stochastic 

primitive equations. With stochastic parameterizations becoming very common in weather 

and climate simulations, a revision of the deterministic numerical schemes should be 

undertaken to ensure the convergence of the numerical solutions for stochastic models. 

3.2. Mathematically rigorous representation of unresolved degrees of freedom 

Numerical weather and climate modeling can be seen as a model reduction problem. Because 

we cannot numerically solve the full continuous equations we have to truncate the equations at 

some scale and then treat the unresolved processes in some smart way. A systematic approach 

for the derivation of reduced order models from first principles is by adiabatic elimination 

(Gardiner 2009) or the stochastic mode reduction (Majda et al. 1999, 2008, Franzke et al. 

2015). Proposed by Wong and Zakai (1965), Khas'minskii (1966), Kurtz (1973), Papanicolaou 

and Kohler (1974) and Papanicolaou (1976), method was expanded and successfully applied to 

a hierarchy of climate models by Majda et al. (1999, 2001, 2003, 2008), Franzke et al. (2005) 

and Franzke and Majda (2006).  

In the stochastic mode reduction, the state vector is decomposed into slow and fast components, 

assuming timescale separation in the decorrelation time of these processes. Furthermore, it is 

assumed that the nonlinear self-interaction of the fast modes can be represented by a stochastic 

process. Under these assumptions an effective equation for the slow modes can be derived 

analytically (Majda et al. 2001). The stochastic mode reduction has been demonstrated to 

successfully model regime-behavior and low-frequency variability in conceptual models of the 

atmosphere (Majda et al., 2003), the barotropic vorticity equation on the sphere with realistic 
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topography (Franzke et al. 2005) and a quasigeostrophic three-layer model on the sphere with 

realistic orography (Franzke and Majda, 2006). Geostrophically balanced models like those 

inevitably lead to a stochastic parameterization where all resolved degrees of freedom are 

coupled directly. For more comprehensive models this would put insurmountable demands to 

computer memory. Dolaptchiev et al. (2013 a,b), however, have successfully applied the 

stochastic mode reduction locally in the turbulent Burgers equations, potentially allowing the 

use of this method in full-scale climate models. 

The stochastic mode reduction technique is rigorously valid only in the limit of large time-scale 

separation, though Dozier	
  and Tappert (1978a,b), Majda et al. (2003, 2008), Franzke et al 

(2005) and Franzke and Majda (2006) showed empirically that the stochastic mode reduction 

can also work in situations with only moderate or no time scale separation. However, this poses 

limitations when constructing scale-aware parameterizations, where typically no separation 

exists (Sardeshmukh and Penland, 2015, Yano 2015, Yano et al. 2015). A potential solution to 

this problem was proposed by Wouters and Lucarini (2012, 2013) who analyzed a general two-

level system (resolved and unresolved processes). Without making any assumption on the time 

scale separation between the two levels, but assuming instead the presence of weak coupling, 

Wouters and Lucarini found an explicit formulation for the parameterization of the impact of 

the unresolved variables, Y, on the resolved variables of interest, X. The first order term 

describes the mean field effect and corresponds to the deterministic parameterization (Figure 

11a). The second order expansion includes two terms, one (Figure 11b).describing the impact of 

the fluctuations of the Y variables and leads to a rather general form of stochastic 

parameterization, the second term (Figure 11c). related to the memory effects and introducing 

non-Markovian properties to the dynamics. In the limit of infinite time scale separation between 
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the two levels, the memory term can be neglected and the stochastic parameterization can be 

represented as a white noise forcing (as in the stochastic mode reduction). 

The question of which stochastic process is best suited to describe the nonlinear interactions of 

the unresolved processes is an open question. While methods for Gaussian diffusion processes 

are well known (Oppenheim 1975, Gardiner 2009) it may be the case that other formulations 

like Lévy processes are better suited to describe the underlying physics (Penland and Ewald 

2008, Penland and Sardeshmukh 2012; Hein et al. 2010; Gairing and Imkeller 2012, 2013; 

Thompson et al. 2015).). 

3. 3 Adaptation of Concepts from Statistical Mechanics to Weather and Climate 

A novel subgrid parameterization approach involves the adaptation of concepts from statistical 

mechanics to represent the subgrid-fluctuations. This is especially attractive for variable-

resolution grids, since the statistics automatically adapt to the grid-resolution. Starting from the 

Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the 

fluctuations in an ensemble of deep convective clouds. . Based on this theory, a stochastic 

parameterization of deep convection was developed to represent fluctuations of the subgrid 

convective mass flux about statistical equilibrium (Plant and Craig, 2008). To set a path towards 

the parameterization of fluctuations in a shallow convective cloud ensemble, the formalism of 

Craig and Cohen (2006) is generalized by introducing the influence of memory carried by the 

individual clouds on the ensemble statistics (Sakradzija et al., 2015). In a stationary shallow-

convective cloud field, the cloud mass flux distribution deviates from an exponential 

distribution due to the correlation between the cloud mass fluxes and cloud lifetimes. This 

introduces a memory effect, which is more pronounced in a shallow convective ensemble 

because of the vast diversity in the shallow cloud life cycles (Sakradzija et al., 2015). Thus, the 
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observed shallow convective variability can be reproduced across the different model scales 

using a formulation similar to Plant and Craig (2008) if the individual cloud memory is 

accounted for through the cloud-base mass flux distribution and by modeling the cloud life-

cycles explicitly (Figure 12). This is an interesting example of the impact of the lack of time 

scale separation between the various dynamical processes in creating memory effects, discussed 

in general terms in Wouters and Lucarini (2012, 2013). 

3.4 Discrete Processes and Data-driven methods 

A recently introduced approach for stochastic convection parameterization represents the 

convective state (or the convective area fraction) of a model column as a discrete stochastic 

process. Only a few distinct convective states are possible, and the random transitions from 

one state to another as time evolves are modeled as a Markov chain. For example, 

Khouider et al. (2010) distinguish between 4 convective states or cloud states (clear sky, 

congestus, deep convection or stratiform), and Dorrestijn et al. (2013a) include an 

additional fifth state (shallow). The horizontal spatial domain of an atmosphere model is 

covered with a high-resolution lattice (with typical lattice spacing of 100m to 1000m), and 

on each lattice node lives a copy of this discrete stochastic process for the convective state  

(Figure 13). By averaging over blocks of lattice nodes, convective area fractions and 

related quantities can be obtained for spatial domains of arbitrary size. These fractions 

evolve randomly, and can be used as a basis for stochastic convection parameterization. 

Alternatively, such discrete stochastic processes can be used at a larger spatial scale, so that 

the discrete state represents convection over a much larger spatial domain, see e.g. 

Dorrestijn et al. (2013b) and Gottwald et al. (2015).  
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The probabilities for transitions between the convective states can be obtained in different 

ways. Dorrestijn et al. (2013a, b, 2015) and Gottwald et al. (2015) rely on statistical 

inference, following a procedure proposed by Crommelin and Vanden-Eijnden (2008). 

They use various datasets from convection-resolving Large Eddy Simulation or from 

observations. Khouider et al. (2010) and Frenkel et al. (2012) use physical insight to 

formulate transition probabilities for the Markov chain model. Although the restriction to a 

few convective states may seem crude, the resulting patterns and temporal behavior of the 

area fractions can be quite realistic. Furthermore, the formulation on a high-resolution 

lattice (or microlattice) makes it possible to compute convective fractions for varying area 

sizes, so that a parameterization based on these fractions can be scale-adaptive. 

3.5 Fluctuation-dissipation theorem 

Another statistical physics approach is offered by the fluctuation-dissipation theorem (FDT, 

Kubo 1966; Deker and Haake 1975, Hänggi and Thomas 1977; Risken 1984). Roughly 

speaking, in a large class of physical situations, the FDT relates the natural fluctuations of a 

system to its response to external forcing (Gritsun and Branstator 2007, Gritsun et al. 2008, 

Ragone et al. 2014). The FDT can be used to predict the response of objectively tuned 

parameters of subgrid-scale parameterizations. Achatz et al. (2013) have shown that this 

technique yields a better response with regard to the climate mean and variance than either 

a low-order model without changed parameters or the direct application of the FDT to 

predict these responses (Figure 14). 

While FDT-based approaches have indeed had a certain degree of success in climate studies, a 

word of caution is necessary. One needs to underline that the FDT does not apply rigorously to 
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an idealized non-equilibrium chaotic deterministic systems, because of the geometrical 

strangeness of the attractor, see Ruelle (2009). Nonetheless, prediction of climate response is 

still a treatable problem of statistical mechanics using a more general formulation of response 

theory (Lucarini and Sarno, 2011, Wouters and Lucarini 2013, Lucarini et al. 2014a, and 

Ragone et al. 2015). It is worth mentioning that including stochastic perturbations to the system 

leads to a smoothing of the invariant measure, which, in turn, makes the applicability of the 

FDT rigorously correct.  

Further, in an intrinsically multiscale system like the climate, as discussed above,  noise is 

unavoidably present as a result of the unresolved energy coupling and  exchange processes 

occurring at very small temporal and spatial scales. Therefore, one expects that at all 

practical levels the invariant measure is indeed smooth  (see textbooks by Gaspard 1998, 

Dorfman 1999, and references therein; see also Wouters and Lucarini 2013), and the 

application of stochastic Navier-Stokes equations (Landau and Lifschitz 1959; García and 

Penland 1991; Español 1998) seems well justified.  

Seiffert and von Storch (2008) study the response of the climate system to CO2-forcing in 

the presence of small-scale fluctuations. This study demonstrated that the strength of the 

global warming due to a CO2-doubling depends on the representation of small-scale 

fluctuations and can be altered by up to 15% near the surface and up to 25% in the upper 

troposphere (Figure 15). Applying a stochastic model to their simulations, they found that 

the small-scale fluctuations change the temperature response via a statistical damping 

that acts as a restoring force. In addition, the small-scale fluctuations can affect feedback 

and interaction processes that are directly coupled to a CO2 increase, thereby altering the 

CO2-related radiative forcing (Seiffert and von Storch, 2010). 
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3.6 Renormalized closure parameterizations 

A systematic approach to the self-consistent modeling of subgrid processes are 

renormalized closure parameterizations (Frederiksen and Davies 1997), which can be scale-

aware (Frederiksen et al. 1996). Implementation of this approach into an atmospheric GCM 

resulted in significantly improved circulation and energy spectra (Frederiksen et al. 2003). 

Improved subgrid-scale parameterizations based on renormalized closure ideas were 

formulated and tested by Frederiksen (1999, 2012a,b), O’Kane and Frederiksen (2008), and 

Zidikheri and Frederiksen (2009, 2010a,b). Frederiksen and Kepert (2006) then used the 

functional form of these closure approaches to develop a zero-parameter stochastic 

modeling approach, where the drain, backscatter and net eddy viscosities are determined 

from the subgrid statistics of higher resolution reference simulations. This is in contrast to 

typical approaches in which heuristic subgrid parameterizations are developed based on 

some physical hypothesis on the behavior of subgrid turbulence.	
  

Recently, Kitsios et al. (2012, 2013) used the approach of Frederiksen and Kepert (2006) to 

determine the eddy viscosities from a series of reference atmospheric and oceanic 

simulations. The isotropized version of the subgrid eddy viscosities where then 

characterized by a set of scaling laws. Large Eddy Simulations with subgrid models 

defined by these scaling laws were able to reproduce the statistics of the high resolution 

reference simulations across all resolved scales (Figure 16). These scaling laws further 

enable the subgrid parameterizations to be utilized more widely as they remove the need to 

generate the subgrid coefficients from a reference simulation.	
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Concluding Remarks 

In this article, we attempt to narrow the gap between the fields of geo-sciences models and 

applied mathematics in the development of stochastic parameterizations: on the one hand geo-

scientists are often unaware of mathematically rigorous results that can aid in the development 

of physically relevant parameterizations; on the other hand mathematicians often do not know 

about open issues in scientific applications that might be mathematically tractable.  

Over the last decade or two, increasing evidence has pointed to the potential of this approach, 

albeit applied in an ad hoc manner and tuned to specific applications. This is apparent in the 

choices made at operational weather centers, where stochastic parameterization schemes are 

now routinely used to represent model inadequacy better and improve probabilistic forecast 

skill. Here, we revisit recent work that demonstrates that stochastic parameterization are not 

only essential for the estimation of the uncertainty in weather forecasts, but are also necessary 

for accurate climate and climate change projections. Stochastic parameterizations have the 

potential to reduce systematic model errors, trigger noise-induced regime transitions, and 

modify the linear or non-linear response to changes in the external forcing, 

Ideally, stochastic parameterizations should be developed alongside the physical 

parameterization and dynamical core development and not tuned to yield a particular model 

performance, as is current practice. This approach is hampered by the fact that parameters 

in climate and weather are typically adjusted (“tuned”) to yield the best mean state and/or 

the best variability. This can result in compensating model-errors, which pose a big 

challenge to model development in general, and stochastic parameterizations in particular. 

A stochastic parameterization might improve the model from a process perspective, but its 
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decreased systematic error no longer compensates other model errors, resulting in an 

overall larger bias (Palmer and Weisheimer, 2011; Berner et al., 2012). Clearly, such 

structural uncertainties need to be addressed in order to improve the predictive skills of our 

models.	
  

One exciting area that promises to deal with this issue is data assimilation, where the use of 

stochastic methods is already an active field of research. Stochastic methods have been 

shown to increase the spread in ensemble data assimilation, leading to a better match 

between observations and model forecasts and improved analyses (Isaksen et al. 2007, 

Mitchell and Gottwald, 2012, Ha et al. 2015, Romine at al. 2015). A cutting-edge frontier is 

the use of order moments and memory effects in Kalman filter data assimilation schemes 

(O’Kane and Frederiksen, 2012). 

Mathematically rigorous approaches decompose the system-at-hand into slow and fast 

components. They focus on the accurate simulation of the large, predictable scales, while only 

the statistical properties of the small, unpredictable scales need to be captured. One finds that 

the impact of the fast variables on the dynamics of the slow variables boils down to a 

deterministic correction plus a stochastic component, which is a white random noise in the limit 

of infinite time scale separation (Arnold, 1992). This immediately points to the fact that the 

classical parameterization approach, which is only based upon averaged properties, is 

insufficient. Understanding the deterministic correction term in physical terms will shed light on 

the impact of stochastic parameterizations on systematic model errors and, hopefully, 

compensating model errors. 

Recent findings from such rigorous derivations suggest that when the time scales of the 
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processes we need to parameterize are not very different from those of the explicitly resolved 

dynamics – if we are in a grey zone - memory terms can become important (e.g., Wouters and 

Lucarini 2012, 2013; Chekroun et al. 2015a, 2015b). This is especially relevant for developing 

scale-aware parameterizations, where it is difficult to control the time scale separation as 

resolution is altered  

The concepts underlying the mathematical systematic approach give raise to recent proposals 

regarding numerical approaches for multi-scale systems. Vanden-Eijnden et al. (2003) and 

Palmer (2014) argue that due to limited computational and energy power resources, only 

predictable scales should be solved accurately, while the smaller, unpredictable scales can be 

approximated on the fly. 

It is our conviction, that basing stochastic parameterizations on sound mathematical and 

statistical concepts will lead to substantial improvements in our understanding of the Earth 

system as well as increased predictive capability in next generation weather and climate 

models. 
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FIGURES 

 
 

Figure 1: System characterized by a,c) double-potential or e,g) single-potential well and 
their associated probability density functions (PDFs).  If the noise is sufficiently small (a) 
and under appropriate initial conditions, the system will stay in the deeper potential well  
and the associated probability density function of states will have a single maximum (b). 
As the amplitude of the noise increases, the system can undergo a noise-transition and 
reach the secondary minimum in the potential (c) leading to a shifted mean and increased 
variance in the associated probability density function (d). A linear system characterized 
by a single potential well and forced by additive white noise (e) will have a unimodal 
PDF. However, when forced by mutliplicative  (state-dependent) white noise (g), the PDF 
can have multliple modes and a shifted mean (h). 
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Figure 2: Top of the atmosphere net longwave radiation (outgoing longwave radiation; OLR) in 
W m−2 in DJF. Left: stochphysOFF−ERA-Interim reanalysis, middle: System 4−reanalysis, right: 
System 4 – stochphysOFF. Significant differences at the 95% confidence level based on a two-
sided t-test are hatched. From Weisheimer et al. (2014).  
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Figure 3: Relative frequencies of MJO events in each of the eight MJO phases. From 
Weisheimer et al. (2014). 
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Figure 4: Power spectra of  sea surface temperatures in El Nino 3.4 region in 135 year long 
simulations with the Community Earth System Model.  Compared to HadISST  
observations (blue), the simulation has three times more power for oscillations with periods 
between 2 to 4 years (left). When the simulation is repeated with the stochastic 
parameterization SPPT, the temperature  variability in this range is reduced, leading to a 
better agreement  between the simulated and observed  spectra (right). 
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Figure 5: Niño 3.4 SST root mean square error (lines) and ensemble spread (dots) 
according to forecast time in EC-Earth 3 seasonal re-forecast experiments initialized in 
May 1993-2009 with standard (SR) or high resolution (HR) atmosphere and ocean 
components, with and without activating a 3-scale SPPT perturbation method in the 
atmosphere. 
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Figure 6: Forecast diagnostics as a function of time for the operational (black), fixed 
perturbed parameter (blue) and stochastically varying perturbed parameter (red) ensemble 
forecasts. Top: Forecast bias for (a) T850 and (b) U850 shown as a fraction of the bias for 
the operational system: BIAS /BIASoper. Bottom: Root mean square ensemble spread 
(dashed lines) and root mean square error (solid lines) for (c) T850 and (d) U850. 
Diagnostics are averaged over the region 10S-20N, 60-180E. Figure adapted from 
Christensen et al. (2015b). 
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Figure 7:  The right tail of the probability density function of summer season hourly 
precipitation from a 50-member ensemble of one year single column model simulations 
with stochastic (blue) and conventional parameterizations (black) and fifteen years of 
observations (green) over a model grid box encompassing the US Department of 
Energy’s (DOE) Atmospheric Radiation Measurement (ARM) program’s site in Lamont, 
Oklahoma. The large-scale forcing for the single column model simulations are 
generated from a present day CESM simulation at a spatial resolution of about 2.8°x2.8°. 
From Langan et al. (2014). 
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Figure 8: Maps of the century‐mean net upward water flux (mm/day) at the sea 
surface in (a) CTL. (b) Difference from CTL for an experiments, where the net 
fresh water flux across the air–sea interface is stochastically perturbed before 
being passsed to the ocean. c) Difference from CTL for an experiment, where the 
net heat flux across the air–sea interface is stochastically perturbed before being 
passsed to the ocean. From Williams (2012). 
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Figure 9: Difference in mean standard deviation of sea ice thickness forecasts (meters) 
between ensembles generated by stochastic ice strength as well as atmospheric initial 
perturbations (STOINI) and ensembles generated solely by atmospheric initial 
perturbations (INI), averaged for days (left) 1 to 10, (middle) 11 to 30, and (right) 31 to 90 
after initialization at 00 UTC on 1 January. Stippled areas indicate differences statistically 
significant at the 5% level, using a two-tailed F test. Note the different contour intervals. 
From Juricke et al. (2014). 
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Figure 10: Top: Amplitude of fluctuations of the eddy forcing as measured by the standard 
deviation of divergence of eddy flux in a 1/10 degree OGCM. Bottom: Mean eddy forcing 
measured by the magnitude of the mean divergence of eddy heat flux in the same 
OCGCM.The amplitude of the fluctuations is about one order of magnitude larger than the 
mean eddy forcing. From Li and von Storch (2013). 
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Figure 11: Diagrammatic representation of the three terms contributing to the 
parameterization of the effect of the fast variables Y onto the dynamics of the slow 
variables X. a) First order contribution: average impact of the Y on the X variables.; 
corresponds to the deterministic mean field parameterization. b) Second order contribution: 
impact of the fluctuations of the Y on the X variables; corresponds to the stochastic 
parameterization. C) Secord order contribution: impact of the X variables on the X 
variables at a later time, mediated by the dynamics of the Y variables; corresponds to the 
memory effect. 
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Figure 12: Histograms of the subgrid cloud-base mass flux, resulting from the 
stochastic shallow cumulus cloud scheme (STOCH) and coarse-grained large-eddy 
simulation (LES), are compared for three horizontal grid resolutions of 1.6 km, 3.2 
km and 12.8 km. The stochastic scheme simulates a compound random process 
with the cloud number sampled from the Poisson distribution, while the individual 
cloud mass flux is sampled from a two-component mixed Weibull distribution. The 
histograms match closely and are scale-aware, which is an inherent property of the 
stochastic scheme, similar as in Plant and Craig (2008). From Sakradzija et al. 
(2015). 
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Figure 13: Snapshot of the spatial field of convective states obtained from Large Eddy 
Simulation data. The distinction between the various convective states was based on cloud 
top height and rainwater content. From Dorrestijn et al. (2013a). 	  
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Figure 14: (Top left) The mean streamfunction variance of a barotropic-vorticity-equation 
model on the sphere, (bottom left) its response to an anomalous vorticity forcing at latitude 
45N and longitude 210E, projected onto 90 EOFs, the simulation of this response (top 
middle) by a 90-EOF climate model with unmodified SGS parameterization (relative error 
0.527), (bottom middle) by a climate model with SGS parameterization corrected a 
posteriori by investigation of the perturbed atmosphere, (top right) by a climate model with 
SGS parameterization corrected by FDT (relative error 0.342), and (bottom right) the direct 
estimation of the streamfunction-variance response by FDT (relative error 2.47). From 
Achatz et al. (2013). 
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Figure 15: Climate responses of global mean temperature to a CO2 doubling (2x CO2 
minus 1x CO2) obtained from the ECHAM5/MPIOM-experiments with different 
representations of small-scale fluctuations: 'diffus' refers to experiments in which the 
strength of horizontal diffusion is varied; 'noise' refers to experiments in which white noise 
is added to small scales of the atmospheric model ECHAM5. From Seiffert and von Storch 
(2008). 
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Figure 16: Top: Comparison of the upper level kinetic energy spectra of a two level 
benchmark simulation (dashed line) with associated LES (solid line) at various resolutions 
for: atmospheric isotropic stochastic (isoS) LES (top spectra); atmospheric isotropic 
deterministic (isoD) LES (second spectra); atmospheric deterministic scaling law (lawD) 
LES (third spectra); oceanic stochastic scaling law (lawS) LES (forth spectra); and oceanic 
deterministic scaling law LES (bottoms spectra).Top spectra has the correct kinetic energy, 
with the others shifted down for clarity. From Kitsios et al. (2014). 
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