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STOCHASTIC PARTICLE APPROXIMATION OF THE
KELLER–SEGEL EQUATION AND TWO-DIMENSIONAL

GENERALIZATION OF BESSEL PROCESSES

BY NICOLAS FOURNIER AND BENJAMIN JOURDAIN

UPMC and Université Paris-Est

We are interested in the two-dimensional Keller–Segel partial differential
equation. This equation is a model for chemotaxis (and for Newtonian grav-
itational interaction). When the total mass of the initial density is one, it is
known to exhibit blow-up in finite time as soon as the sensitivity χ of bacte-
ria to the chemo-attractant is larger than 8π . We investigate its approximation
by a system of N two-dimensional Brownian particles interacting through a
singular attractive kernel in the drift term.

In the very subcritical case χ < 2π , the diffusion strongly dominates this
singular drift: we obtain existence for the particle system and prove that its
flow of empirical measures converges, as N → ∞ and up to extraction of a
subsequence, to a weak solution of the Keller–Segel equation.

We also show that for any N ≥ 2 and any value of χ > 0, pairs of parti-
cles do collide with positive probability: the singularity of the drift is indeed
visited. Nevertheless, when χ < 2πN , it is possible to control the drift and
obtain existence of the particle system until the first time when at least three
particles collide. We check that this time is a.s. infinite, so that global exis-
tence holds for the particle system, if and only if χ ≤ 8π(N − 2)/(N − 1).

Finally, we remark that in the system with N = 2 particles, the difference
between the two positions provides a natural two-dimensional generalization
of Bessel processes, which we study in details.
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1. Introduction and results.

1.1. The model. The Keller–Segel equation, introduced by Patlak [34] and
Keller and Segel [24], is a model for chemotaxis. It describes the collective motion
of cells which are attracted by a chemical substance and are able to emit it. In its
simplest form, it is a conservative drift/diffusion equation for the density ft (x) ≥ 0
of cells (particles) with position x ∈R2 at time t ≥ 0 coupled with an elliptic equa-
tion for the chemo-attractant concentration. By making the chemo-attractant con-
centration explicit in terms of the cell density, one obtains the following closed
equation:

(1) ∂tft (x) + χdivx

(
(K � ft )(x)ft (x)

)= �xft(x),

where χ > 0 is the sensitivity of cells to the chemo-attractant and where

(2) K(x) = −x

2π |x|2 .

In the whole paper, we adopt the convention that K(0) = 0. Let us mention that
(1) also describes the time-evolution of the particles density in an infinite system
of planar Brownian particles subject to Newtonian gravitational interaction. Then
χ is interpreted as the intensity of the interaction (or, if the latter is fixed, as the
inverse of the diffusion coefficient).

This equation preserves mass and ft (x)/
∫
R2f0(y) dy solves the same equation

with χ replaced by χ
∫
R2f0(y) dy. We thus may assume without loss of generality

that
∫
R2f0(x) dx = 1.

As is well known, we have formally d
dt

∫
R2 xft (x) dx = 0 and

d
dt

∫
R2 |x|2ft (x) dx = 4 − χ/(2π). Consequently, introducing Vt := ∫

R2 |x −∫
R2 yft (y) dy|2ft (x) dx, it holds that d

dt
Vt = 4 − χ/(2π). Since Vt is nonnega-

tive, some kind of blow-up necessarily occurs before time 2πV0/(χ − 8π) when
χ is larger than the critical value 8π .

Concerning the well-posedness theory, let us mention Jäger and Luckhaus [19],
Blanchet, Dolbeault and Perthame [1], Dolbeault and Schmeiser [6], Carrillo,
Lisini and Mainini [3] and Egaña and Mischler [7]. In particular, the existence
of solutions is verified in [19] (for sufficiently smooth initial conditions), these
solutions being local (in time) if χ > 0 is large and global if χ > 0 is small. The
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uniqueness of bounded solutions was proved in [3] using the quadratic Wasserstein
distance. The existence of a unique strong (in some precise sense) solution when
χ < 8π is shown in [1] (existence) and [7] (uniqueness), still for reasonable initial
conditions. The main tool is the free energy and its relation with its time derivative.
By passing to the limit in a sequence of regularized Keller–Segel equations where
the kernel K is replaced by a bounded kernel and by introducing defect measures
to take into account blow-up, the existence of generalized weak solutions to (1) is
checked in [6], even when χ ≥ 8π . The blow-up phenomenon has been investi-
gated by Herrero and Velazquez [16, 41, 42]. We refer to Horstmann [17, 18] and
Perthame [35] for review papers on this model.

1.2. Weak solutions. We denote by P(R2) the set of probability measures
on R2 and we set P1(R

2) = {f ∈ P(R2) : m1(f ) < ∞}, where m1(f ) =∫
R2 |x|f (dx). We will use the following notion of weak solutions.

DEFINITION 1. Let χ > 0 and T ∈ (0,∞] be fixed. We say that a measurable
family (ft )t∈[0,T ) of probability measures on R2 is a weak solution to (1) on [0, T )

if the following conditions hold true:

(a) for all t ∈ [0, T ),
∫ t

0
∫
R2
∫
R2 |x − y|−1fs(dy)fs(dx) ds < ∞;

(b) for all φ ∈ C2
b(R2), all t ∈ [0, T ),∫

R2
φ(x)ft (dx) =

∫
R2

φ(x)f0(dx) +
∫ t

0

∫
R2

�φ(x)fs(dx) ds

+ χ

∫ t

0

∫
R2

∫
R2

K(x − y) · ∇φ(x)fs(dy)fs(dx) ds.

Of course, (a) implies that everything makes sense in (b). Performing a sym-
metrization in the last term leads to another weak formulation of (1) which re-
quires less stringent integrability conditions, but which is not suitable in view of
the following probabilistic interpretation.

1.3. The associated trajectories. We now introduce a natural probabilistic in-
terpretation of the Keller–Segel equation.

DEFINITION 2. Let χ > 0 and T ∈ (0,∞] be fixed. We say that a R2-valued
continuous process (Xt)t∈[0,T ) adapted to some filtration (Ft )t∈[0,T ) solves the
nonlinear SDE (3) on [0, T ) if, for ft := L(Xt), it holds that:

(a)
∫ t

0
∫
R2
∫
R2 |x − y|−1fs(dy)fs(dx) ds < ∞ for all t ∈ [0, T );

(b) there is a 2-dimensional (Ft )t∈[0,T )-Brownian motion (Bt )t∈[0,T ) such that
for all t ∈ [0, T )

(3) Xt = X0 + √
2Bt + χ

∫ t

0
(K � fs)(Xs) ds.
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The main idea is that (Xt)t∈[0,T ) represents the time-evolution of the position
of a typical cell, in an infinite system of cells undergoing the dynamics prescribed
by the Keller–Segel equation. The following remark immediately follows from the
Itô formula.

REMARK 3. Let χ > 0 be fixed. For (Xt)t∈[0,T ) solving the nonlinear SDE
(3), the family (ft = L(Xt))t∈[0,T ) is a weak solution to the Keller–Segel equa-
tion (1).

1.4. The particle system. We next consider a natural discretization of the non-
linear SDE: we consider N ≥ 2 particles (cells) with positions X

1,N
t , . . . ,X

N,N
t

solving [recall that K(0) = 0]

(4) X
i,N
t = X

i,N
0 + √

2Bi
t + χ

N

N∑
j=1

∫ t

0
K
(
Xi,N

s − Xj,N
s

)
ds.

More precisely, a solution on [0, T ) is a continuous (R2)N -valued
process (X

i,N
t )i=1,...,N,t∈[0,T ) adapted to some filtration (Ft )t∈[0,T ) if∫ t

0
∑N

i=1 |∑N
j=1 K(Xi,N

s − X
j,N
s )|ds < ∞ a.s. for all t ∈ [0, T ) and if there is

a 2N -dimensional (Ft )t∈[0,T )-Brownian motion (B1
t , . . . ,BN

t )t≥0 such that (4)
holds true for all t ∈ [0, T ) and all i = 1, . . . ,N . In the whole paper, we assume
that the initial condition (X

i,N
0 )i=1,...,N is exchangeable. This is not a limitation

since for a fixed value of N , one can always reduce to this case by using an inde-
pendent uniform random permutation and exchangeability is needed when consid-
ering limits as N → ∞.

Of course, such a particle system is not clearly well defined, due to the singular-
ity of K . Moreover, the singularity is visited, as shown by the following statement.

PROPOSITION 4. For any N ≥ 2, any χ > 0, any exchangeable initial condi-
tion (X

i,N
0 )i=1,...,N , any t0 > 0 and any solution (if it exists) (X

i,N
t )i=1,...,N,t∈[0,t0]

to (4),

P
(∃s ∈ [0, t0],∃1 ≤ i < j ≤ N : Xi,N

s = Xj,N
s

)
> 0.

However, we expect that if independence initially holds, then particles are al-
most independent (for N large) and look like N copies of the solution to the non-
linear SDE, at least in the subcritical case χ ∈ (0,8π) or locally in time in the
supercritical case χ ≥ 8π . This problem seems important, both from a physical
point of view, as a step to the rigorous derivation of the Keller–Segel equation, and
from a numerical point of view.

We will not use it in the present paper, but let us mention that the formal in-
variant measure of (4) has a density μN with respect to the Lebesgue measure on
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(R2)N given by

μN(x1, . . . , xN) = ∏
1≤k<�≤N

|xk − x�|−χ/(2πN).

For any fixed N ≥ 2, this invariant measure is locally finite if and only if χ < 8π .

1.5. Main results. We denote by Psym,1((R
2)N) the set of exchangeable prob-

ability measures on (R2)N with a finite moment of order 1. In other words, the law
FN of a (R2)N -valued random variable (X1, . . . ,XN) belongs to Psym,1((R

2)N)

if the family (X1, . . . ,XN) is exchangeable and if E[|X1|] < ∞.
We first check that the particle system (4) exists when χ is (very) subcritical.

THEOREM 5. Let N ≥ 2, χ ∈ (0,2πN/(N − 1)) and FN
0 ∈ Psym,1((R

2)N).

There exists a solution (X
i,N
t )t∈[0,∞),i=1,...,N to (4) such that L((X

i,N
0 )i=1,...,N ) =

FN
0 . Furthermore, the family {(Xi,N

t )t∈[0,∞), i = 1, . . . ,N} is exchangeable and
for any α ∈ ((N − 1)χ/(2πN),1), any T > 0,

E

[∫ T

0

∣∣X1,N
s − X2,N

s

∣∣α−2
ds

]
≤ (2

√
2E[(1 + |X1,N

0 |2)1/2] + 4
√

2T )α

α(2α − (N − 1)χ/(πN))
.(5)

We could prove a similar (but slightly different) formula with α ≥ 1. However,
since our goal is to control E[|K(X1,N

s − X2,N
s )|] (with some margin), only the

case where α − 2 < −1 will be interesting.
As already mentioned, such a result is not obvious, since K is singular and since

its singularity is visited. The main point is to observe that (5) a priori holds true for
some α < 1. This will imply that that E[|K(X1,N

s − X2,N
s )|] should be controlled

(with some margin since α − 2 < −1). This will be sufficient to prove existence
by compactness. The formal computation is as follows: by the Itô formula, for
α ∈ (0,1),

d
∣∣X1,N

t − X
2,N
t

∣∣α
= √

2α
∣∣X1,N

t − X
2,N
t

∣∣α−2(
X

1,N
t − X

2,N
t

) · (dB1
t − dB2

t

)
+ 2α2∣∣X1,N

t − X
2,N
t

∣∣α−2
dt − αχ

πN

∣∣X1,N
t − X

2,N
t

∣∣α−2
dt(6)

+ αχ

2πN

∣∣X1,N
t − X

2,N
t

∣∣α−2(
X

1,N
t − X

2,N
t

)

·
N∑

i=3

(
X

i,N
t − X

1,N
t

|Xi,N
t − X

1,N
t |2 + X

2,N
t − X

i,N
t

|X2,N
t − X

i,N
t |2

)
dt.

The second term in the right-hand side is the Itô correction due to diffusion,
the third term is the contribution of the interaction between the particles 1 and
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2 and the last term is the contribution of the interactions with between parti-
cles 1,2 and the rest of the system. By exchangeability and Hölder’s inequality,
the expectation of the last term in the right-hand side is greater than −[α(N −
2)χ/(πN)]E[|X1,N

t − X
2,N
t |α−2]. The assumption χ < 2πN/(N − 1) ensures us

that the Itô correction dominates the drift contribution. More precisely, choosing
α ∈ (χ(N −1)/(2πN),1), integrating in time and taking expectations, one obtains

α

(
2α − χ(N − 1)

πN

)∫ t

0
E
[∣∣X1,N

s − X2,N
s

∣∣α−2]
ds ≤ E

[∣∣X1,N
t − X

2,N
t

∣∣α].
The right-hand side is easily bounded, uniformly in N , using the oddness of K ,
whence (5). A similar computation was performed by Osada in [33], Lemma 3.2,
for systems of stochastic vortices. Notice that in dimension d ≥ 3, where K(x) =
− cdx

|x|d for some positive constant cd , a similar computation shows that the drift
contribution always dominates the Itô correction due to the diffusion so that the
situation is simpler although more singular: no phase transition concerning the
values of the sensitivity parameter χ is expected.

Next, we show some tightness/consistency as N → ∞ in the (very) subcritical
case χ < 2π . Such a result follows quite easily from the the bound (5), which
is uniform in N (when χ < 2π ). We endow C([0,∞),R2) with the topology of
uniform convergence on compact time intervals, and P(C([0,∞),R2)) with the
associated weak convergence topology. Finally, we endow C([0,∞),P(R2)) with
the topology of uniform convergence on compact time intervals associated with
the weak convergence topology in P(R2).

THEOREM 6. Let χ ∈ (0,2π) be fixed. For each N ≥ 2, consider FN
0 ∈

Psym,1((R
2)N) and the particle system (X

i,N
t )t∈[0,∞),i=1,...,N with initial law FN

0
built in Theorem 5, as well as the empirical measure μN = N−1∑N

1 δ
(X

i,N
t )t∈[0,∞)

,

which a.s. belongs to P(C([0,∞),R2)). For each t ≥ 0, we also set μN
t =

N−1∑N
1 δ

X
i,N
t

, which a.s. belongs to P(R2). We assume that supN≥2 E[|X1,N
0 |] <

∞ and that μN
0 goes weakly to f0 ∈ P1(R

2) in probability as N → ∞:

(i) The sequence {μN,N ≥ 2} is tight in P(C([0,∞),R2)).
(ii) Any (possibly random) weak limit point μ of (μN)N≥2 is a.s. the law of a

solution to the nonlinear SDE (3) with initial law f0.
(iii) In particular, we can find a subsequence Nk such that (μ

Nk
t )t≥0 goes in law,

as k → ∞, in C([0,∞),P(R2)), to some (μt )t≥0, which is a.s. a weak solution to
(1) starting from μ0 = f0.

In particular, for f0 ∈ P1(R
2), FN

0 = f ⊗N
0 satisfies all the assumptions of this

theorem. We are quite satisfied, since this result seems to be the first result con-
cerning the convergence of the true particle system (without cutoff) to the Keller–
Segel equation. However, there are two main limitations. First, this result should
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more or less always hold true in the subcritical case χ ∈ (0,8π). Second, we are
not able to prove the convergence, we have only compactness/consistency. This is
due to the fact that we are not able to prove that our limit point (μt )t≥0 a.s. be-
longs to the class of weak solutions in which uniqueness is known to hold true.
Thanks to Egaña and Mischler [7], it would suffice to show that (μt )t≥0 satisfies
the free energy dissipation inequality, which is slightly stronger than the require-
ment (μt )t≥0 ∈ ⋂

p≥1 L1
loc([0,∞),Lp(R2)) a.s. We believe this is a very difficult

problem.
We next prove that, when χ < 2πN , the particle system always exists until 3

particles encounter. In view of (6), this is not surprising. Indeed, the assumption
χ < 2πN ensures us that the Itô correction still dominates the contribution of the
interaction between the particles 1 and 2. Moreover, it is not very hard to control
the last term of (6) until a 3-particle collision occurs.

THEOREM 7. Let χ > 0, N > max{2, χ/(2π)} be fixed, as well as FN
0 ∈

Psym,1((R
2)N) such that

(7) FN
0
({

(x1, . . . , xN) ∈ (
R2)N : xi �= xj ,∀i �= j

})= 1.

There exists a solution (X
i,N
t )t∈[0,τN ),i=1,...,N to (4), with initial law FN

0 , where

τN = sup
�≥1

inf
{
t ≥ 0 : ∃i, j, k pairwise different such that

∣∣Xi,N
t − X

j,N
t

∣∣+ ∣∣Xj,N
t − X

k,N
t

∣∣+ ∣∣Xk,N
t − X

i,N
t

∣∣≤ 1/�
}
.

The family {(Xi,N
t )t∈[0,τN ), i = 1, . . . ,N} is exchangeable and for any α ∈

(χ/(2πN),1),

a.s., for all t ∈ [0, τN),
∫ t

0

∣∣X1,N
s − X2,N

s

∣∣α−2
ds < ∞.(8)

Finally, it holds that (i) τN = ∞ a.s. if χ ≤ 8π(N − 2)/(N − 1) and (ii) τN < ∞
a.s. if χ > 8π(N − 2)/(N − 1).

This result thus in particular shows the global existence for the particle system
in the subcritical case χ < 8π for all N large enough. This result seems to be new,
as well as our method to check it, which is quite specific to the model, and may be
considered as the main result of the paper and the most difficult.

As we will see in Lemma 16, for any I ⊂ {1, . . . ,N}, the process RI
t =

2−1∑
i∈I |Xi,N

t − X̄I
t |2, where X̄I

t = |I |−1∑
i∈I X

i,N
t , behaves like the square of

a Bessel process of dimension (|I | − 1)(2 − (χ |I |)/(4πN)), when neglecting the
contribution of the interaction with the other particles. Similar computations for
I = {1, . . . ,N} were performed by Haškovec and Schmeiser [13], page 139 and
Fatkullin [8], page 89. The condition χ ≤ 8π(N − 2)/(N − 1) implies that for all
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|I | = 3, . . . ,N , the dimension (|I | − 1)(2 − (χ |I |)/(4πN)) is greater than 2, so
that RI

t never reaches 0: there are no collisions involving more than two particles.
Of course, the situation is actually much more complicated, since we have to jus-
tify that for all I , we can indeed neglect the contribution of the interaction with the
other particles.

REMARK 8. When χ ∈ (0,8π), we thus show that, for N large enough,
triplets of particles a.s. never encounter. To extend the tightness/consistency re-
sult of Theorem 6 to some χ ∈ [2π,8π), we believe that a uniform (in N ) ver-
sion of this fact might be sufficient. For example, one would have to check that
τ �
N = inf{t > 0 : |X1,N

t − X
2,N
t | + |X2,N

t − X
3,N
t | + |X1,N

t − X
3,N
t | ≤ 1/�} goes

a.s. to infinity as � → ∞, uniformly in N .

Finally, we study the case N = 2 of two particles. The difference Dt = X
1,2
t −

X
2,2
t formally solves the two-dimensional SDE

(9) Dt = D0 + 2Wt − χ

2π

∫ t

0

Ds

|Ds |2 ds.

This can be seen as a natural two-dimensional generalization of a Bessel process
of dimension (2 − χ/(4π)). Indeed, one can check that (|Dt |/2)t≥0 is a Bessel
process of dimension (2 − χ/(4π)) and the dynamics is radially symmetric. We
study in details (9) in Section 6. To summarize, we prove the following:

(i) If χ ∈ (0,4π), then (9) has a unique (in law) solution, which a.s. reaches the
origin but then instantaneously escapes from this point.

(ii) When χ ≥ 4π , the formulation (9) becomes meaningless because τ = inf{t ≥
0 : Dt = 0} is a.s. finite and

∫ τ+h
τ |Ds |−1 ds = ∞ a.s. The situation is similar

to classical Bessel processes with dimension δ ∈ (0,1]: they do not satisfy a
classical SDE but their square does. Here also, we introduce an alternative
rigorous formulation.
(a) For χ ∈ [4π,8π), we prove the existence of a unique (in law) solution to

this new formulation. This solution also a.s. reaches the origin but then
instantaneously escapes this point.

(b) If finally χ ≥ 8π , we prove the existence of a pathwise unique solution to
this new formulation, frozen when it reaches the origin (and it a.s. does).

We also prove, in all these cases, that the obtained process is the limit in law of the
solution to a regularized version of (9), as the regularization parameter tends to 0.

1.6. References. Concerning our existence (and uniqueness when N = 2) re-
sults for the particle system (4), let us mention that classical results about SDEs
with singular drift do not apply because in the present case the drift is so singular
that collisions do occur. This is not surprising, since general results would presum-
ably apply to all values of χ , whereas we observe a phase transition. Existence by
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a Girsanov transformation would require (at least) that
∫ t

0 |B1
s − B2

s |−2 ds < ∞
a.s., which is not the case. The methods of Röckner and Krylov [26] require some
integrability of the drift coefficient that (4) never satisfies. Let us however mention
that (9) is borderline.

In a very recent paper [4], Cattiaux and Pédèches used Dirichlet forms (see
Fukushima [11]) to prove the weak existence and uniqueness for (4) when N ≥ 4
and χ < 8π(N − 2)/(N − 1). However, when applying [11], one obtains abstract
results, and some work is required to get the weak existence and uniqueness for (4).
The arguments of [4] rely on some results of the present paper, namely the ab-
sence of triple collisions [when N ≥ 4 and χ < 8π(N − 2)/(N − 1)] and the weak
uniqueness when N = 2. Cattiaux and Pédèches also prove and use that two binary
collisions never occur at the same time.

Let us mention that we of course have tried to prove the pathwise uniqueness
for the particle system (4), in particular when N = 2, without success. We have no
intuition on its plausibility.

Approximating a large particle system by a partial differential equation (for
deriving the PDE) or a partial differential equation by a large particle system (to
compute numerically the solution of the PDE) is now a classical topic, called prop-
agation of chaos. This notion was introduced by Kac [22] as a step to the rigorous
justification of the Boltzmann equation. When the interaction is regular, the sit-
uation is now well understood, some important contributions are due to McKean
[28], Sznitman [40], Méléard [29], Mischler and Mouhot [30], etc. The main idea
is that one can generally prove true quantified convergence when the interaction
is Lipschitz continuous and tightness/consistency (and true unquantified conver-
gence if the PDE is known to have a unique solution) when the coefficients are
only continuous. Of course, each PDE is specific and these are only formal rules.

The case of singular interactions is much more complicated. In dimension one,
let us mention the works of Bossy–Talay [2] and Jourdain [20] which concern
the viscous Burgers’ equation and more general scalar conservation laws (where
particles interact through the Heaviside function) and of Cepa–Lépingle [5] on the
very singular Dyson model.

A model closely related to the one studied in the present paper is the 2d-
vortex model, that approximates the vorticity formulation of the 2d-incompressible
Navier–Stokes equation. The PDE is the same as (1) and the particle system is the
same as (4), replacing everywhere the kernel K [see (2)], by the Biot and Savart
kernel x⊥/(2π |x|2). This kernel is as singular as K , but the interaction is of course
not attractive, so that the situation is simpler. In particular, there is no blow-up for
the PDE and Osada [31] has shown that particles never collide so that the par-
ticle system is well-posed. Osada [32, 33] has also proved the (true but unquan-
tified) convergence of the particle system to the solution of the PDE when χ is
sufficiently small (in our notation), and this limitation has been recently removed
in [10]. The method developed in [10] relies on a control of the Fisher information
of the law of the particle system provided by the dissipation of its entropy. It has
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been applied to a subcritical Keller–Segel equation by Godinho–Quininao [12],
where K is replaced by −x/(2π |x|1+α) with some α ∈ (0,1) and to the Landau
equation for moderately soft potentials in [9]. Let us finally mention the propa-
gation of chaos results for some particle systems with deterministic dynamics by
Marchioro–Pulvirenti [27] (for the 2d-Euler equation) by Hauray–Jabin [15] (for
some singular Vlasov equations) and by Jourdain–Reygner [21] (for diagonal hy-
perbolic systems).

In the above mentioned works, some true convergence is derived. Here, we
obtain only a tightness/consistency result, but the singularity is really strong
and attractive. Concerning the Keller–Segel equation, we are not aware of pa-
pers dealing with the convergence of the true particle system without any cut-
off. Stevens [38] studies a physically more convincing particle system with two
kinds of particles (for bacteria and chemo-attractant particles). She proves the
convergence of this particle system when the kernel K is regularized. In [13],
Haškovec and Schmeiser also prove some results for a regularized kernel of the
form Kε(x) = −x/[2π |x|(|x| + ε)]. Finally, Godinho–Quininao [12] study the
case where K is replaced by −x/(2π |x|1+α) for some α ∈ (0,1).

1.7. Plan of the paper. In the next section, we prove (5) for a regularized parti-
cle system. This is the main tool for the proofs of Theorem 5 [existence for the par-
ticle system when χ ∈ (0,2π)] and Theorem 6 [tightness/consistency as N → ∞
when χ ∈ (0,2π)] given in Section 3, as well as for checking Theorem 7 [local
or global existence for the particle system in the general case] in Section 4. We
establish Proposition 4 [positive probability of collisions] in Section 5. Section 6
is devoted to a detailed study of the case N = 2 and in particular to the natu-
ral two-dimensional generalization (9) of Bessel processes. Finally, we quickly
and formally discuss in Section 7 how to build a relevant N -particle system when
χ ≥ 8π(N − 2)/(N − 1) and we explain why it seems to be a difficult problem.

2. A regularized particle system. Let χ > 0, N ≥ 2 and an exchangeable
initial condition (X

i,N
0 )i=1,...,N such that E[|X1,N

0 |] < ∞ be fixed. We consider a
family (Bi

t )t≥0, i = 1, . . . ,N of independent 2-dimensional Brownian motions, in-
dependent of the initial condition. For ε ∈ (0,1), we define the regularized version
Kε of K as

Kε(x) = −x

2π(|x|2 + ε2)
.(10)

This kernel is globally Lipschitz continuous, so that the particle system

(11) X
i,N,ε
t = X

i,N
0 + √

2Bi
t + χ

N

N∑
j=1

∫ t

0
Kε

(
Xi,N,ε

s − Xj,N,ε
s

)
ds
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is strongly and uniquely well defined. These particles are furthermore clearly ex-
changeable. The following estimates are crucial for our study.

PROPOSITION 9. (i) For all t ≥ 0, all ε ∈ (0,1), E[(1 + |X1,N,ε
t |2)1/2] ≤

E[(1 + |X1,N
0 |2)1/2] + 2t .

(ii) For all α ∈ (0,1), all T > 0, all ε ∈ (0,1), all η ∈ (0, ε],(
2α − χ

πN

)
E

[∫ T

0

(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)α/2−1
ds

]

≤ (2
√

2E[(1 + |X1,N
0 |2)1/2] + 4

√
2T )α

α

+ (N − 2)χ

πN
E

[∫ T

0

(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)(α−1)/2

× (∣∣X1,N,ε
s − X3,N,ε

s

∣∣2 + ε2)−1/2
ds

]
.

PROOF. We start with point (i). Using the Itô formula [with φ(x) = (1 +
|x|2)1/2 whence ∇φ(x) = (1 + |x|2)−1/2x and �φ(x) = (1 + |x|2)−3/2(2 + |x|2)]
and taking expectations, we find

E
[(

1 + ∣∣X1,N,ε
t

∣∣2)1/2]
= E

[(
1 + ∣∣X1,N

0

∣∣2)1/2]
+E

[∫ t

0

2 + |X1,N,ε
s |2

(1 + |X1,N,ε
s |2)3/2

ds

]

+ χ

N

∑
j �=1

E

[∫ t

0

X1,N,ε
s

(1 + |X1,N,ε
s |2)1/2

· Kε

(
X1,N,ε

s − Xj,N,ε
s

)
ds

]
.

By exchangeability and oddness of Kε , for j ∈ {2, . . . ,N},

E

[∫ t

0

X1,N,ε
s

(1 + |X1,N,ε
s |2)1/2

· Kε

(
X1,N,ε

s − Xj,N,ε
s

)
ds

]

= 1

2
E

[∫ t

0

(
X1,N,ε

s

(1 + |X1,N,ε
s |2)1/2

− X
j,N,ε
s

(1 + |Xj,N,ε
s |2)1/2

)

.Kε

(
X1,N,ε

s − Xj,N,ε
s

)
ds

]
.

This last expectation is nonpositive since for x, y ∈ R2, the inequality |x|4 +|y|4 ≥
2|x|2|y|2 implies (|x|2(1 +|y|2)1/2 +|y|2(1 +|x|2)1/2)2 ≥ (|x||y|((1 +|y|2)1/2 +
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(1 + |x|2)1/2))2, whence (x(1 + |y|2)1/2 − y(1 + |x|2)1/2) · (x − y) ≥ 0 and thus
(x(1 + |x|2)−1/2 − y(1 + |y|2)−1/2) · (x − y) ≥ 0. Hence,

E
[(

1 + ∣∣X1,N,ε
t

∣∣2)1/2]
≤ E

[(
1 + ∣∣X1,N

0

∣∣2)1/2]+E

[∫ t

0

2 + |X1,N,ε
s |2

(1 + |X1,N,ε
s |2)3/2

ds

]

≤ E
[(

1 + ∣∣X1,N
0

∣∣2)1/2]+ 2t,

as desired. To prove point (ii), we fix α ∈ (0,1) and start from

X
1,N,ε
t − X

2,N,ε
t = X

1,N
0 − X

2,N
0 + √

2
(
B1

t − B2
t

)+ χR12
t + χS12

t ,

where R12
t = N−1∑N

j=3
∫ t

0 [Kε(X
1,N,ε
s − X

j,N,ε
s ) − Kε(X

2,N,ε
s − X

j,N,ε
s )]ds and

where S12
t = 2N−1 ∫ t

0 Kε(X
1,N,ε
s − X2,N,ε

s ) ds. We next fix η ∈ (0, ε], introduce
φη(x) = (|x|2 + η2)α/2 and use the Itô formula to write

E
[
φη

(
X

1,N,ε
T − X

2,N,ε
T

)]
= E

[
φη

(
X

1,N
0 − X

2,N
0

)]
+E

[∫ T

0
2�φη

(
X1,N,ε

s − X2,N,ε
s

)
ds

]

+ χE

[∫ T

0
∇φη

(
X1,N,ε

s − X2,N,ε
s

) · (dR12
s + dS12

s

)]
.

Since η ∈ (0,1), we have φη(x−y) ≤ [√2((1+|x|2)1/2 +(1+|y|2)1/2)]α , whence
E[φη(X

1,N,ε
T − X

2,N,ε
T )] ≤ (2

√
2E[(1 + |X1,N

0 |2)1/2] + 4
√

2T )α by (i). Since fur-

thermore E[φη(X
1,N
0 − X

2,N
0 )] ≥ 0,

E

[∫ T

0
2�φη

(
X1,N,ε

s − X2,N,ε
s

)
ds

]

≤ (
2
√

2E
[(

1 + ∣∣X1,N
0

∣∣2)1/2]+ 4
√

2T
)α(12)

− χE

[∫ T

0
∇φη

(
X1,N,ε

s − X2,N,ε
s

) · (dR12
s + dS12

s

)]
.

Using exchangeability and recalling the definition of R12
t ,

−E

[∫ T

0
∇φη

(
X1,N,ε

s − X2,N,ε
s

) · dR12
s

]

≤ 2(N − 2)

N
E

[∫ T

0

∣∣∇φη

(
X1,N,ε

s − X2,N,ε
s

)∣∣∣∣Kε

(
X1,N,ε

s − X3,N,ε
s

)∣∣ds

]
.
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But ∇φη(x) = α(|x|2 + η2)α/2−1x, whence |∇φη(x)| ≤ α(|x|2 + η2)α/2−1/2. Fur-
thermore, |Kε(x)| ≤ (|x|2 + ε2)−1/2/(2π). Hence,

−E

[∫ T

0
∇φη

(
X1,N,ε

s − X2,N,ε
s

) · dR12
s

]

≤ (N − 2)α

πN
E

[∫ T

0

(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)α/2−1/2(13)

× (∣∣X1,N,ε
s − X3,N,ε

s

∣∣2 + ε2)−1/2
ds

]
.

Recalling the definition of S12
t and using that |Kε(x)| ≤ (|x|2 + η2)−1/2/(2π),

−E

[∫ T

0
∇φη

(
X1,N,ε

s − X2,N,ε
s

) · dS12
s

]
(14)

≤ α

πN
E

[∫ T

0

(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)α/2−1
ds

]
.

Finally, we observe that �φη(x) = α(|x|2 + η2)α/2−2(α|x|2 + 2η2) ≥ α2(|x|2 +
η2)α/2−1. Inserting this into (12) and using (13) and (14), we find

2α2E

[∫ T

0

(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)α/2−1
ds

]

≤ (
2
√

2E
[(

1 + ∣∣X1,N
0

∣∣2)1/2]+ 4
√

2T
)α

+ αχ

πN
E

[∫ T

0

(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)α/2−1
ds

]
(15)

+ (N − 2)αχ

πN
E

[∫ T

0

(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)(α−1)/2

× (∣∣X1,N,ε
s − X3,N,ε

s

∣∣2 + ε2)−1/2
ds

]
.

The conclusion immediately follows. �

3. Tightness and consistency in the (very) subcritical case. The aim of this
section is to prove Theorems 5 and 6. First, we deduce from Proposition 9 an
estimate saying that in some sense, particles do not meet too much, uniformly in
N ≥ 2 and ε ∈ (0,1) when χ < 2π .

COROLLARY 10. For each N ≥ 2, each χ ∈ (0,2πN/(N − 1)) and each
ε ∈ (0,1), consider the unique solution (X

i,N,ε
t )t≥0,i=1,...,N to (11) with some

exchangeable initial condition (X
i,N
0 )i=1,...,N such that E[|X1,N

0 |] < ∞. For all
T > 0 and all α ∈ (χ(N − 1)/(2πN),1),

E

[∫ T

0

∣∣X1,N,ε
s − X2,N,ε

s

∣∣α−2
ds

]
≤ (2

√
2E[(1 + |X1,N

0 |2)1/2] + 4
√

2T )α

α(2α − (N − 1)χ/(πN))
.
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PROOF. We thus fix α ∈ (χ(N − 1)/(2πN),1). By Hölder’s inequality and
exchangeability, we have, for any η ∈ (0, ε],

E
[(∣∣X1,N,ε

s − X2,N,ε
s

∣∣2 + η2)(α−1)/2(∣∣X1,N,ε
s − X3,N,ε

s

∣∣2 + ε2)−1/2]
≤ E

[(∣∣X1,N,ε
s − X2,N,ε

s

∣∣2 + η2)α/2−1]
.

Applying Proposition 9(ii), we thus find(
2α − (N − 1)χ

πN

)∫ T

0
E
[(∣∣X1,N,ε

s − X2,N,ε
s

∣∣2 + η2)α/2−1]
ds

≤ (2
√

2E[(1 + |X1,N
0 |2)1/2] + 4

√
2T )α

α
.

It suffices to let η ↘ 0 to complete the proof. �

Such an estimate easily implies tightness.

LEMMA 11. For each N ≥ 2, each ε ∈ (0,1), consider the unique solu-
tion (X

i,N,ε
t )t∈[0,∞),i=1,...,N to (11) with some exchangeable initial condition

(X
i,N
0 )i=1,...,N such that E[|X1,N

0 |] < ∞:

(i) For N ≥ 2 fixed, if χ < 2πN/(N − 1), the family {(X1,N,ε
t )t≥0, ε ∈ (0,1)}

is tight in C([0,∞),R2).
(ii) If χ < 2π and if supN≥2 E[|X1,N

0 |] < ∞, the family {(X1,N,ε
t )t≥0,N ≥

2, ε ∈ (0,1)} is tight in C([0,∞),R2).

PROOF. We first prove (ii), and thus suppose that χ < 2π . Since C([0,∞),R2)

is endowed with the topology of the uniform convergence on compact time inter-
vals, it suffices to prove that for all T > 0, {(X1,N,ε

t )t∈[0,T ],N ≥ 2, ε ∈ (0,1)}
is tight in C([0, T ],R2). Let thus T > 0 be fixed and recall that X

1,N,ε
t =

X
1,N
0 + √

2B1
t + J

1,N,ε
t , where

J
1,N,ε
t := χ

N

N∑
j=2

∫ t

0
Kε

(
X1,N,ε

s − Xj,N,ε
s

)
ds.

Since {X1,N
0 ,N ≥ 2} is tight by assumption and since the law of (B1

t )t∈[0,T ]
does not depend on N ≥ 2 nor on ε > 0, it suffices to prove that the family
{(J 1,N,ε

t )t∈[0,T ],N ≥ 2, ε ∈ (0,1)}, is tight in C([0, T ],R2). To do so, we fix
α ∈ (χ/(2π),1), and we use Hölder’s inequality to write, for 0 ≤ s < t ≤ T ,∣∣J 1,N,ε

t − J 1,N,ε
s

∣∣
≤ χ

2πN

N∑
j=2

∫ t

s

∣∣X1,N,ε
u − Xj,N,ε

u

∣∣−1
du
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≤ |t − s|(1−α)/(2−α) χ

2πN

N∑
j=2

(∫ t

s

∣∣X1,N,ε
u − Xj,N,ε

u

∣∣α−2
du

)1/(2−α)

≤ Z
N,ε
T |t − s|β,

where β = (1 − α)/(2 − α) > 0 and where Z
N,ε
T := (χ/(2πN))

∑N
j=2[1 +∫ T

0 |X1,N,ε
u −X

j,N,ε
u |α−2 du]. Indeed, x1/(2−α) ≤ 1 + x because α ∈ (0,1). But we

immediately deduce from Corollary 10 and exchangeability that
supε∈(0,1),N≥2 E[ZN,ε

T ] < ∞, so that there is a constant CT , not depending on

ε ∈ (0,1) nor on N ≥ 2 such that for all A > 0, P(Z
N,ε
T > A) ≤ CT /A. Since

J
1,N,ε
0 = 0 a.s., we conclude that for all A > 0, for all N ≥ 2, all ε ∈ (0,1),

P[(J 1,N,ε
t )t∈[0,T ] /∈ KA] ≤ CT /A, where KA is the set of all functions γ : [0, T ] �→

R2 such that γ (0) = 0 and for all 0 ≤ s < t ≤ T , |γ (t) − γ (s)| ≤ A|t − s|β . The
Ascoli theorem ensures us that KA is a compact subset of C([0, T ],R2) for all
A > 0. Since limA→∞ supN≥2,ε∈(0,1) P[(J 1,N,ε

t )t∈[0,T ] /∈ KA] = 0, the proof of (ii)
is complete.

The proof of (i) is exactly the same: the only difference is that N is fixed so that
we can choose α ∈ (χ(N − 1)/(2πN),1). �

We now prove the existence of the particle system without cutoff in the very
subcritical case.

PROOF OF THEOREM 5. We divide the proof in three steps. Recall that N ≥ 2
is fixed, as well as FN

0 ∈ Psym,1((R
2)N), and that χ < 2πN/(N − 1).

Step 1. For each ε ∈ (0,1), we consider the unique solution
(X

i,N,ε
t )t∈[0,∞),i=1,...,N to (11) (with initial law FN

0 ). By Lemma 11(i), we

know that the family {(X1,N,ε
t )t≥0, ε ∈ (0,1)} is tight in C([0,∞),R2). By ex-

changeability, we of course deduce that {(X1,N,ε
t , . . . ,X

N,N,ε
t )t≥0, ε ∈ (0,1)} is

tight in C([0,∞), (R2)N) and consequently that {((X1,N,ε
t ,B1

t ), . . . , (X
N,N,ε
t ,

BN
t ))t≥0, ε ∈ (0,1)} is tight in C([0,∞), (R2 ×R2)N) [this last assertion only uses

that the law of (B1
t , . . . ,BN

t )t≥0 does not depend on ε]. It is thus possible to find
a decreasing sequence εk ↘ 0 such that the family ((X

1,N,εk
t ,B1

t ), . . . , (X
N,N,εk
t ,

BN
t ))t≥0 converges in law in C([0,∞), (R2 × R2)N) as k → ∞. By the Sko-

rokhod representation theorem, we can realize this convergence almost surely. All
this shows that we can find, for each k ≥ 1, a solution (X̃

1,N,εk
t , . . . , X̃

N,N,εk
t )t≥0

to (11), associated to some Brownian motions (B̃
1,N,εk
t , . . . , B̃

N,N,εk
t )t≥0, in such

a way that the sequence ((X̃
1,N,εk
t , B̃

1,N,εk
t ), . . . , (X̃

N,N,εk
t , B̃

N,N,εk
t ))t≥0 a.s. goes

to some ((X
1,N
t ,B1

t ), . . . , (X
N,N
t ,BN

t ))t≥0 in C([0,∞), (R2 ×R2)N) as k → ∞.
Let us observe at once that the family {(Xi,N

t )t≥0, i = 1, . . . ,N} is exchangeable
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and that, by Corollary 10, for all T > 0 and α ∈ (χ(N − 1)/(2πN),1),

sup
k

E

[∫ T

0

∣∣X̃1,N,εk
s − X̃2,N,εk

s

∣∣α−2
ds

]
(16)

≤ (2
√

2E[(1 + |X1,N
0 |2)1/2] + 4

√
2T )α

α(2α − (N − 1)χ/(πN))
.

By the Fatou lemma, we deduce that

(17) E

[∫ T

0

∣∣X1,N
s − X2,N

s

∣∣α−2
ds

]
≤ (2

√
2E[(1 + |X1,N

0 |2)1/2] + 4
√

2T )α

α(2α − (N − 1)χ/(πN))
.

Step 2. We introduce Ft = σ((Xi,N
s ,Bi

s)i=1,...,N,s∈[0,t]). Of course,
(X

i,N
t )i=1,...,N,t≥0 is (Ft )t≥0-adapted. The family (X

i,N
0 )i=1,...,N is FN

0 -distributed

because this is the case of (X
i,N,εk

0 )i=1,...,N for all k ≥ 1 and (Bi
s)i=1,...,N,s∈[0,t]

is obviously a 2N -dimensional Brownian motion [because this is the case of
(B

i,N,εk
s )i=1,...,N,s≥0 for all k ≥ 1]. We now show that (Bi

s)i=1,...,N,s∈[0,t] is
a 2N -dimensional (Ft )t≥0-Brownian motion. Let thus t > 0 and consider φ :
C([0,∞), (R2)N) �→ R and ψ : C([0, t], (R2 ×R2)N) �→ R, both continuous and
bounded. We have to check that

E
[
ψ
((

Xi,N
s ,Bi

s

)
i=1,...,N,s∈[0,t]

)
φ
((

Bi
t+s − Bi

t

)
i=1,...,N,s≥0

)]
= E

[
ψ
((

Xi,N
s ,Bi,N

s

)
i=1,...,N,s∈[0,t]

)]
E
[
φ
((

Bi
t+s − Bi

t

)
i=1,...,N,s≥0

)]
.

This immediately follows from the fact that, for all k ≥ 1,

E
[
ψ
((

X̃i,N,εk
s , B̃i,N,εk

s

)
i=1,...,N,s∈[0,t]

)
φ
((

B̃
i,N,εk
t+s − B̃

i,N,εk
t

)
i=1,...,N,s≥0

)]
= E

[
ψ
((

X̃i,N,εk
s , B̃i,N,εk

s

)
i=1,...,N,s∈[0,t]

)]
×E

[
φ
((

B̃
i,N,εk
t+s − B̃

i,N,εk
t

)
i=1,...,N,s≥0

)]
,

which holds true because (X̃
i,N,εk
t )i=1,...,N,t≥0 is a strong solution to (11) and is

thus adapted to the filtration Fk
t = σ((Xi

0,B
i,N,εk
s )i=1,...,N,s≥0).

Step 3. It only remains to check that for each i ∈ {1, . . . ,N}, each t ≥ 0,
X

i,N
t = X

i,N
0 + √

2Bi
t + (χ/N)

∑N
j=1

∫ t
0 K(Xi,N

s − X
j,N
s ) ds. We of course start

from the identity X̃
i,N,εk
t = X̃

i,N,εk

0 + √
2B̃

i,N,εk
t + (χ/N)

∑N
j=1

∫ t
0 Kεk

(X̃
i,N,εk
s −

X̃
j,N,εk
s ) ds and pass to the limit as k → ∞, for example, in probability. The only

difficulty is to prove that J
ij
k (t) tends to J ij (t), where

J
ij
k (t) =

∫ t

0
Kεk

(
X̃i,N,εk

s − X̃j,N,εk
s

)
ds and J ij (t) =

∫ t

0
K
(
Xi,N

s − Xj,N
s

)
ds.
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Observe that J ij (t) is well defined by (17). We introduce, for η ∈ (0,1),

J
ij
k,η(t) =

∫ t

0
Kη

(
X̃i,N,εk

s − X̃j,N,εk
s

)
ds and J ij

η (t) =
∫ t

0
Kη

(
Xi,N

s − Xj,N
s

)
ds.

For α ∈ (0,1) and k sufficiently large so that εk < η, we have

(18)
∣∣Kη(x) − Kεk

(x)
∣∣+ ∣∣Kη(x) − K(x)

∣∣≤ η2

π |x|(|x|2 + η2)
≤ η1−α|x|α−2

π
.

We thus deduce from (16)–(17) that, for α ∈ (χ(N − 1)/(2πN),1), there exists
Cα,t < +∞ such that

E
[∣∣J ij (t) − J ij

η (t)
∣∣]+ lim sup

k

E
[∣∣J ij

k (t) − J
ij
k,η(t)

∣∣]≤ Cα,tη
1−α.

Next, since Kη is continuous and bounded and since (X̃
i,N,εk
s )s≥0 goes a.s. to

(Xi,N
s )s≥0, it holds that J

ij
k,η(t) → J

ij
η (t) a.s. and in L1 for each η > 0. Writing

E
[∣∣J ij (t) − J

ij
k (t)

∣∣]≤ E
[∣∣J ij (t) − J ij

η (t)
∣∣]+E

[∣∣J ij
η (t) − J

ij
k,η(t)

∣∣]
+E

[∣∣J ij
k,η(t) − J

ij
k (t)

∣∣],
we conclude that lim supk→∞E[|J ij (t) − J

ij
k (t)|] ≤ Cα,tη

1−α . Since η ∈ (0,1)

can be chosen arbitrarily small, we deduce that indeed, J
ij
k (t) tends to J ij (t) in L1

as k → ∞. �

Following some ideas of [10], Proposition 6.1, we now give the following.

PROOF OF THEOREM 6. For each N ≥ 2, we consider the particle system
(X

i,N
t )t∈[0,∞),i=1,...,N built in Theorem 5, with initial condition FN

0 . We set μN =
N−1∑N

1 δ
(X

i,N
t )t∈[0,∞)

, which a.s. belongs to P(C([0,∞),R2)). For each t ≥ 0,

we also set μN
t = N−1∑N

1 δ
X

i,N
t

, which a.s. belongs to P(R2). Recall that we

assume that supN≥2 E[|X1,N
0 |] < ∞ and that μN

0 goes weakly to f0 ∈ P1(R
2) in

probability as N → ∞.
Step 1. For each N ≥ 2, (X

i,N
t )t∈[0,∞),i=1,...,N has been obtained as a limit

point (in law), of (X
i,N,ε
t )t∈[0,∞),i=1,...,N as ε → 0. By Lemma 11(ii), the family

{(X1,N
t )t≥0,N ≥ 2} is thus tight in C([0,∞),R2). As is well known (see Sznit-

man [40], Proposition 2.2), this implies that the family {μN,N ≥ 2} is tight in
P(C([0,∞),R2)) (because for each N ≥ 2, the system is exchangeable). This
proves point (i).

Step 2. We now consider a (not relabelled for notational simplicity) subsequence
of μN going in law to some μ and show that μ a.s. belongs to S := {L((Xt)t≥0) :
(Xt)t≥0 solution to the nonlinear SDE (3) with initial law f0}, recall Definition 2.
This will prove point (ii).

Step 2.1. Consider the identity map γ = (γt )t≥0 : C([0,∞),R2) �→ C([0,∞),

R2). Using the classical theory of martingale problems, we realize that Q ∈
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P(C([0,∞),R2)) belongs to S as soon as, setting Qt = Q ◦ γ −1
t ∈ P(R2) for

each t ≥ 0:

(a) Q0 = f0;
(b)

∫ T
0
∫
R2
∫
R2 |x − y|−1Qs(dy)Qs(dx) ds < ∞ for all T > 0;

(c) for all 0 < t1 < · · · < tk < s < t , all ϕ1, . . . , ϕk ∈ Cb(R
2), all ϕ ∈ C2

b(R2),

F(Q) :=
∫ ∫

Q(dz)Q(dz̃)ϕ1(zt1) · · ·ϕk(ztk )

×
[
ϕ(zt ) − ϕ(zs) − χ

∫ t

s
K(zu − z̃u) · ∇ϕ(zu) du −

∫ t

s
�ϕ(zu) du

]

= 0.

Indeed, let (Xt)t≥0 be Q-distributed, so that L(Xt) = Qt for all t ≥ 0. Then (a)
says that X0 is f0-distributed, (b) is nothing but the requirement (a) of Definition 2,
and (c) tells us that for all ϕ ∈ C2

b(R2),

ϕ(Xt) − ϕ(Xs) − χ

∫ t

0

∫
K(Xs − z̃s) · ∇ϕ(Xs)Q(dz̃) ds −

∫ t

0
�ϕ(Xs) ds

is a martingale in the (completed) filtration (Ft )t≥0 generated by (Xt)t≥0. This
classically implies the existence of a 2-dimensional (Ft )t≥0-Brownian motion
(Bt )t≥0 such that Xt = X0 +√

2Bt +χ
∫ t

0
∫

K(Xs − z̃s)Qs(dz̃) ds = X0 +√
2Bt +

χ
∫ t

0 (K � Qs)(Xs) ds for all t ≥ 0. See Stroock–Varadhan [39], Section 4.5, for
much general statements, but unfortunately assuming that the drift is bounded.
However, this is not a tedious problem and the condition (b) is actually sufficient:
one easily checks (using some C2

b approximating functions) that we can apply (c)
to the functions ϕ(x) = xi and ϕ(x) = xixj , with i, j ∈ {1,2}, from which one
easily checks that Bt = [Xt − X0 − χ

∫ t
0 (K � Qs)(Xs) ds]/√2 is a continuous

(Ft )t≥0-local martingale with quadratic variation matrix I2t , and thus a Brownian
motion by the Lévy theorem.

We now prove that μ a.s. satisfies these three points. For each t ≥ 0, we set
μt = μ ◦ γ −1

t .
Step 2.2. Since μN

0 goes to f0 by assumption, we have μ0 = f0 a.s., that is, μ

a.s. satisfies (a).
Step 2.3. Using Corollary 10 and exchangeability, we see that for any α ∈

(χ/(2π),1), any T > 0, there is a finite constant Cα,T such that for all m > 0,
all N ≥ 2,

E

[∫ T

0

∫
R2

∫
R2

(
m ∧ |x − y|α−2)μN

s (dy)μN
s (dx) ds

]

≤ mT

N
+ 1

N2

∑
i �=j

E

[∫ T

0

∣∣Xi,N
s − Xj,N

s

∣∣α−2
ds

]

≤ mT

N
+ Cα,T .
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Since μN goes in law to μ, the LHS converges to E[∫ T
0
∫
R2
∫
R2(m ∧ |x −

y|α−2)μs(dy)μs(dx) ds] as N → ∞. Letting m increase to infinity and using the
monotone convergence theorem, we find that

E

[∫ T

0

∫
R2

∫
R2

|x − y|α−2μs(dy)μs(dx) ds

]
≤ Cα,T .

Since α < 1, this of course implies that μ a.s. satisfies (b).
Step 2.4. From now on, we consider some fixed F : P(C([0,∞),R2)) �→ R as

in point (c) and we check that F(μ) = 0 a.s.
Step 2.4.1. Here, we prove that for all N ≥ 2,

(19) E
[(
F
(
μN ))2]≤ CF

N
.

To this end, we recall that ϕ ∈ C2
b(R2) is fixed and we apply the Itô formula to (4):

ON
i (t) := ϕ

(
X

i,N
t

)− χ

N

N∑
j=1

∫ t

0
∇ϕ

(
Xi,N

s

) · K(
Xi,N

s − Xj,N
s

)
ds

−
∫ t

0
�ϕ

(
Xi,N

s

)
ds

= ϕ
(
X

i,N
0

)+ √
2
∫ t

0
∇ϕ

(
Xi,N

s

) · dBi
s .

By the definition of F [recall that K(0) = 0 by convention],

F
(
μN )= 1

N

N∑
i=1

ϕ1
(
X

i,N
t1

) · · ·ϕk

(
X

i,N
tk

)[
ON

i (t) − ON
i (s)

]

=
√

2

N

N∑
i=1

ϕ1
(
X

i,N
t1

) · · ·ϕk

(
X

i,N
tk

) ∫ t

s
∇ϕ

(
Xi,N

u

) · dBi
u.

Then (19) follows from some classical stochastic calculus argument, using that
0 < t1 < · · · < tk < s < t , that ϕ1, . . . , ϕk,∇ϕ are bounded and that the Brownian
motions B1, . . . ,BN are independent.

Step 2.4.2. Next, we introduce, for η ∈ (0,1), Fη defined as F with K replaced
by the smooth and bounded kernel Kη, recall (10). Then one easily checks that
Q �→ Fη(Q) is continuous and bounded from P(C([0,∞),R2)) to R. Since μN

goes in law to μ, we deduce that for, any η ∈ (0,1),

E
[∣∣Fη(μ)

∣∣]= lim
N

E
[∣∣Fη

(
μN )∣∣].

Step 2.4.3. We now prove that for all N ≥ 2, all η ∈ (0,1), all α ∈ (χ/(2π),1),

E
[∣∣F(μ) −Fη(μ)

∣∣]+ sup
N≥2

E
[∣∣F(μN )−Fη

(
μN )∣∣]≤ Cα,Fη1−α.
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Using that all the functions (including the derivatives) involved in F are bounded
and that we have |Kη(x) − K(x)| ≤ η1−α|x|α−21{x �=0}/π by (18), we get the exis-
tence of a finite constant CF such that
∣∣F(Q) −Fη(Q)

∣∣≤ CFη1−α
∫ ∫ ∫ t

0
|zu − z̃u|α−21{zu �=z̃u} duQ(dz̃)Q(dz)

= CFη1−α
∫ t

0

∫
R2

∫
R2

|x − y|α−21{x �=y}Qu(dy)Qu(dx) du.

The conclusion then follows from Step 2.3 combined with the estimate

E

[∫ T

0

∫
R2

∫
R2

|x − y|α−21{x �=y}μN
s (dy)μN

s (dx) ds

]

≤ 1

N2

∑
i �=j

E

[∫ T

0

∣∣Xi,N
s − Xj,N

s

∣∣α−2
ds

]
≤ Cα,T

deduced from Corollary 10 and exchangeability.
Step 2.4.4. For any η ∈ (0,1), we write

E
[∣∣F(μ)

∣∣]≤ E
[∣∣F(μ) −Fη(μ)

∣∣]+ lim sup
N

∣∣E[∣∣Fη(μ)
∣∣]−E

[∣∣Fη

(
μN )∣∣]∣∣

+ lim sup
N

E
[∣∣Fη

(
μN )−F

(
μN )∣∣]+ lim sup

N

E
[∣∣F(μN )∣∣].

By Steps 2.4.1 and 2.4.2, the fourth and second terms on the right-hand side are
zero. We thus deduce from Step 2.4.3 that E[|F(μ)|] ≤ Cα,Fη1−α . Since η ∈ (0,1)

can be chosen arbitrarily small, we conclude that E[|F(μ)|] = 0, whence F(μ) =
0 a.s. as desired.

Step 3. It only remains to check point (iii). Consider the (not relabelled) subse-
quence μN going to μ in P(C([0,∞),R2)) as in Step 2. This implies that (μN

t )t≥0
goes to (μt )t≥0 in C([0,∞),P(R2)). By Step 2, μ is a.s. the law of a solution to
the nonlinear SDE (3). As seen in Remark 3, this implies that a.s., (μt )t≥0 is a
weak solution to the Keller–Segel equation (1). �

4. (Local) existence for the particle system in the general case. The aim of
this section is to prove Theorem 7. We thus fix χ > 0. Although the goal of the
section is to prove some results for N fixed, we give uniform (in N ) results as often
as possible. We introduce the domain, for N ≥ 2 and � ≥ 1,

DN
� := {

(x1, . . . , xN) ∈ (
R2)N : |xi − xj | + |xj − xk| + |xk − xi | > 1/�

for all i, j, k pairwise different
}
,

and we consider the Lipschitz continuous function �N
� : (R2)N �→ [0,1] defined

by

�N
� (x1, . . . , xN) = 0 ∨

(
2� min

i,j,k distinct

{|xi − xj | + |xj − xk| + |xk − xi |}− 1
)

∧ 1,



PARTICLE APPROXIMATION OF THE KELLER–SEGEL EQUATION 2827

which satisfies 1DN
�

≤ �N
� ≤ 1DN

2�
. As usual, the initial condition (X

i,N
0 )i=1,...,N

is exchangeable, satisfies E[|X1,N
0 |] < ∞ and is independent of the i.i.d. 2-

dimensional Brownian motions (Bi
t )t≥0, i = 1, . . . ,N . For ε ∈ (0,1) and � ≥ 1,

the particle system

X
i,N,ε,�
t = X

i,N
0 + √

2Bi
t

(20)

+ χ

N

N∑
j=1

∫ t

0
Kε

(
Xi,N,ε,�

s − Xj,N,ε,�
s

)
�N

�

((
Xk,N,ε,�

s

)
k=1,...,N

)
ds

is strongly well-posed, since Kε and �N
� are bounded and Lipschitz continuous.

For a fixed � ≥ 1, we can show as in Corollary 10 that particles do not meet too
often.

LEMMA 12. Fix χ > 0 and consider, for each N ≥ 2, ε ∈ (0,1) and � ≥ 1,
the unique solution (X

i,N,ε,�
t )t≥0,i=1,...,N to (20) with some exchangeable initial

condition (X
i,N
0 )i=1,...,N such that supN≥2 E[|X1,N

0 |] < ∞:

(i) For all t ≥ 0, all � > 0, all ε ∈ (0,1),

E
[(

1 + ∣∣X1,N,ε,�
t

∣∣2)1/2]≤ E
[(

1 + ∣∣X1,N
0

∣∣2)1/2]+ 2t.

(ii) For all T > 0, all α ∈ (0,1), all � > 0, there is a constant CT,α,� (depend-
ing also on χ and on supN≥2 E[(1 + |X1,N

0 |2)1/2]) such that for all ε ∈ (0,1), all
N > χ/(2απ),

E

[∫ T

0

∣∣X1,N,ε,�
s − X2,N,ε,�

s

∣∣α−2
ds

]
≤ 1 + CT,α,�

(
2α − χ

πN

)(α−2)/(1−α)

.

PROOF. First, (i) can be checked exactly as Proposition 9(i), using only that
�N

� is nonnegative and does not break the exchangeability. We now prove (ii) and
thus fix α ∈ (0,1). Proceeding exactly as in the proof of Proposition 9(ii) [see
(15)], we find that for all η ∈ (0, ε],

2α2I
N,ε,�
η,α,T ≤ Aα,T + χα

πN
J

N,ε,�
η,α,T + (N − 2)χα

πN
K

N,ε,�
η,α,T ,

where Aα,T = (2
√

2 supN≥2 E[(1 + |X1,N
0 |2)1/2] + 4

√
2T )α and where

I
N,ε,�
η,α,T = E

[∫ T

0

(∣∣X1,N,ε,�
s − X2,N,ε,�

s

∣∣2 + η2)α/2−1
ds

]
,

J
N,ε,�
η,α,T = E

[∫ T

0

(∣∣X1,N,ε,�
s − X2,N,ε,�

s

∣∣2 + η2)α/2−1
�N

�

((
Xk,N,ε,�

s

)
k=1,...,N

)
ds

]
,
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K
N,ε,�
η,α,T = E

[∫ T

0

(∣∣X1,N,ε,�
s − X2,N,ε,�

s

∣∣2 + η2)(α−1)/2

× (∣∣X1,N,ε,�
s − X3,N,ε,�

s

∣∣2 + ε2)−1/2 × �N
�

((
Xk,N,ε,�

s

)
k=1,...,N

)
ds

]
.

Since �N
� ≤ 1, we obviously have J

N,ε,�
η,α,T ≤ I

N,ε,�
η,α,T . We next note that for u, v > 0,

u(α−1)/2v−1/2 ≤ (1+u−1/2)(1+v−1/2) ≤ (1+max{u, v}−1/2)(1+u−1/2 +v−1/2)

and that, for x = (x1, . . . , xN) ∈ (R2)N , �N
� (x) > 0 implies that x ∈ DN

2�, whence
|x1 − x2| + |x1 − x3| + |x2 − x3| ≥ 1/(2�), and thus max{|x1 − x2|, |x1 − x3|} ≥
1/(8�). Consequently, since η ∈ (0, ε],(|x1 − x2|2 + η2)(α−1)/2(|x1 − x3|2 + ε2)−1/2

�N
� (x)

≤ [
1 + max

{
η2 + |x1 − x2|2, η2 + |x1 − x3|2}−1/2]

× [
1 + (

η2 + |x1 − x2|2)−1 + (
η2 + |x1 − x3|2)−1]1{x∈DN

2�}

≤ (1 + 8�)
[
1 + (|x1 − x2|2 + η2)−1/2 + (|x1 − x3|2 + η2)−1/2]

.

This implies that

K
N,ε,�
η,α,T ≤ (1 + 8�)E

[∫ T

0

(
1 + (∣∣X1,N,ε,�

s − X2,N,ε,�
s

∣∣2 + η2)−1/2

+ (∣∣X1,N,ε,�
s − X3,N,ε,�

s

∣∣2 + η2)−1/2)
ds

]

≤ (1 + 8�)T + 2(1 + 8�)E

[∫ T

0

(∣∣X1,N,ε,�
s − X2,N,ε,�

s

∣∣2 + η2)−1/2
ds

]

≤ (1 + 8�)T + 2(1 + 8�)T (1−α)/(2−α)[IN,ε,�
η,α,T

]1/(2−α)

by the Hölder inequality. All in all, we have checked that(
2α − χ

πN

)
I

N,ε,�
η,α,T ≤ Bα,T ,� + Cα,T ,�

[
I

N,ε,�
η,α,T

]1/(2−α)
,

where Bα,T ,� = Aα,T /α+(1+8�)T χ/π and Cα,T ,� = 2(1+8�)T (1−α)/(2−α)χ/π .
Separating the cases I

N,ε,�
η,α,T ≤ 1 and I

N,ε,�
η,α,T > 1, we easily conclude that

I
N,ε,�
η,α,T ≤ 1 + (Bα,T ,� + Cα,T ,�)

(2−α)/(1−α)

(
2α − χ

πN

)(α−2)/(1−α)

.

It finally suffices to let η ↘ 0 to complete the proof. �

We now deduce some compactness, still for � fixed.

LEMMA 13. Fix χ > 0 and consider, for each N ≥ 2, ε ∈ (0,1) and � ≥ 1, the
unique solution (X

i,N,ε,�
t )t≥0,i=1,...,N to (20) with some exchangeable initial con-

dition (X
i,N
0 )i=1,...,N such that supN≥2 E[|X1,N

0 |] < ∞. For all � ≥ 1, the family
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{(X1,N,ε,�
t )t≥0,N > max{2, χ/(2π)}, ε ∈ (0,1)} is tight in C([0,∞),R2).

PROOF. We fix � ≥ 1 and T > 0. As in the proof of Lemma 11, the only diffi-
culty is to prove that the family {(J 1,N,ε,�

t )t∈[0,T ],i=1,...,N ,N ≥ N0, ε ∈ (0,1) > 0}
is tight in C([0, T ],R2), where N0 = �max{2, χ/(2π)}� + 1 and

J
1,N,ε,�
t = χ

N

N∑
j=1

∫ t

0
Kε

(
Xi,N,ε,�

s − Xj,N,ε,�
s

)
�N

�

((
Xk,N,ε,�

s

)
k=1,...,N

)
ds.

We consider α ∈ (0,1) such that 2α − χ/(πN0) > 0, so that, by Lemma 12,

(21) sup
N≥N0,ε∈(0,1)

E

[∫ T

0

∣∣X1,N,ε,�
s − X2,N,ε,�

s

∣∣α−2
ds

]
< ∞.

Using that |�N
� | ≤ 1, we check as in the proof of Lemma 11 that for all 0 ≤ s <

t ≤ T , we have |J 1,N,ε,�
t − J 1,N,ε,�

s | ≤ Z
N,ε,�
T |t − s|β , where β = (1 − α)/(2 − α)

and where

Z
N,ε,�
T = χ

2πN

N∑
j=2

[
1 +

∫ T

0

∣∣X1,N,ε,�
s − Xj,N,ε,�

s

∣∣α−2
ds

]
.

But (21) and exchangeability imply that supN≥N0,ε∈(0,1)E[ZN,ε,�
T ] < ∞. We con-

clude exactly as in the proof of Lemma 11. �

We now make ε tend to 0 in the particle system (20), simultaneously for all
� ≥ 1.

LEMMA 14. Let χ > 0, N > max{2, χ/(2π)} and FN
0 ∈ Psym,1((R

2)N)

be fixed. There exists, on some probability space endowed with some filtration
(Ft )t≥0, a FN

0 -distributed F0-measurable random variable (X
i,N
0 )i=1,...,N , a 2N -

dimensional (Ft )t≥0-Brownian motion (Bi
t )i=1,...,N,t≥0 and, for each � ≥ 1, an

(Ft )t≥0-adapted solution to
(22)

X
i,N,�
t = X

i,N
0 + √

2Bi
t + χ

N

N∑
j=1

∫ t

0
K
(
Xi,N,�

s − Xj,N,�
s

)
�N

�

((
Xk,N,�

s

)
k=1,...,N

)
ds.

The family {(Xi,N,�
t )t≥0,�≥1 i = 1, . . . ,N} is furthermore exchangeable. Moreover,

for all � ≥ 1, all t > 0, we have E[(1 + |X1,N,�
t |2)1/2] ≤ E[(1 + |X1,N

0 |2)1/2] + 2t

and, for all α ∈ (χ/(2πN),1),

E

[∫ t

0

∣∣X1,N,�
s − X2,N,�

s

∣∣α−2
ds

]
< ∞.

Finally, we have the following compatibility property: for all �′ ≥ � ≥ 1, a.s.,
(X

i,N,�
t )i=1,...,N = (X

i,N,�′
t )i=1,...,N for all t ∈ [0, τ �

N), where

τ �
N = inf

{
t ≥ 0 : (Xi,N,�

t

)
i=1,...,N /∈ DN

�

}
.
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PROOF. We thus fix χ > 0, N > max{2, χ/(2π)} and FN
0 ∈ Psym,1((R

2)N)

and divide the proof in several steps.
Step 1. We know from Lemma 13 that for each � ≥ 1, the family

{(X1,N,ε,�
t )t≥0, ε ∈ (0,1)} (all built with the same initial law FN

0 ) is tight in

C([0,∞),R2). By exchangeability, {(Xi,N,ε,�
t )t≥0,i=1,...,N , ε ∈ (0,1)} is thus tight

in C([0,∞), (R2)N), still for each � ≥ 1. Hence, for all η > 0, we can find a
compact subset K�

η of C([0,∞), (R2)N) such that

sup
ε∈(0,1)

P
((

X
i,N,ε,�
t

)
t≥0,i=1,...,N /∈ K�

η

)≤ η2−�.

We now introduce Kη := ∏
�≥1 K�

η, which is a compact subset of [C([0,∞),

(R2)N)]N (endowed with the product topology) by Tychonoff’s theorem. It holds
that

sup
ε∈(0,1)

P
(((

X
i,N,ε,�
t

)
t≥0,i=1,...,N

)
�≥1 /∈Kη

)

≤ ∑
�≥1

sup
ε∈(0,1)

P
((

X
i,N,ε,�
t

)
t≥0,i=1,...,N /∈ K�

η

)≤ η.

Consequently, the family {((Xi,N,ε,�
t )t≥0,i=1,...,N )�≥1, ε ∈ (0,1)} is tight in

[C([0,∞), (R2)N)]N. Finally, we conclude that the family{(((
X

i,N,ε,�
t

)
t≥0,i=1,...,N

)
�≥1,

(
Bi

t

)
t≥0,i=1,...,N

)
, ε ∈ (0,1)

}
is tight in [C([0,∞), (R2)N)]N × C([0,∞), (R2)N).

Step 2. We now use the Skorokhod representation theorem: we can find a se-
quence εk ↘ 0 and a sequence (((X̃

i,N,εk,�
t )t≥0,i=1,...,N )�≥1, (B̃

i,k
t )t≥0,i=1,...,N )

going a.s. in [C([0,∞), (R2)N)]N × C([0,∞), (R2)N) to some
(((X

i,N,�
t )t≥0,i=1,...,N )�≥1, (B

i
t )t≥0,i=1,...,N ) and such that, for each � ≥ 1, each

k ≥ 1, (X̃
i,N,εk,�
t )t≥0,i=1,...,N solves (20) with the Brownian motions

(B̃
i,k
t )t≥0,i=1,...,N and some FN

0 -distributed initial condition (X̃
i,N,εk

0 )i=1,...,N (not

depending on � ≥ 1). The exchangeability of {(Xi,N,�
t )t≥0,�≥1, i = 1, . . . ,N} is

inherited from that of {(X̃i,N,εk,�
t )t≥0,�≥1, i = 1, . . . ,N}. Next, Lemma 12 and the

Fatou lemma imply that for all t ≥ 0, all � ≥ 1,

max
{
E
[(

1 + ∣∣X1,N,�
t

∣∣2)1/2]
, sup
k≥1

E
[(

1 + ∣∣X1,N,εk,�
t

∣∣2)1/2]}

≤ E
[(

1 + ∣∣X1,N
0

∣∣2)1/2]+ 2t

and that, for all α ∈ (χ/(2πN),1), all T > 0, all � ≥ 1,

E

[∫ T

0

∣∣X1,N,�
s −X2,N,�

s

∣∣α−2
ds

]
+ sup

k≥1
E

[∫ T

0

∣∣X1,N,εk,�
s −X2,N,εk,�

s

∣∣α−2
ds

]
< ∞.



PARTICLE APPROXIMATION OF THE KELLER–SEGEL EQUATION 2831

Step 3. We introduce Ft = σ((Xi,N,�
s ,Bi

s)i=1,...,N,s∈[0,t]), to which
(X

i,N,�
t )t≥0,i=1,...,N is of course adapted for each � ≥ 1. We clearly have X

i,N,�
0 =

X
i,N,�′
0 for all i = 1, . . . ,N and all �, �′ ≥ 1 (because X̃

i,N,εk,�
0 = X̃

i,N,εk,�
′

0 for

all k ≥ 1, all i = 1, . . . ,N and all �, �′ ≥ 1). We thus may define X
i,N
0 :=

X
i,N,�
0 for all i = 1, . . . ,N , for any value of �. The family (X

i,N
0 )i=1,...,N is of

course FN
0 -distributed. Finally, one checks as in the proof of Theorem 5-Step 2

(Bi
t )t≥0,i=1,...,N is 2N -dimensional (Ft )t≥0-Brownian motion.
Step 4. It is checked exactly as in the proof of Theorem 5-Step 3 that for each

� ≥ 1, (X
i,N,�
t )t≥0,i=1,...,N solves (22): it suffices to pass to the limit in probability

as k → ∞ in the equation satisfied by (X̃
i,N,εk,�
t )t≥0,i=1,...,N , using the estimates

proved in Step 2 and that �N
� is continuous.

Step 5. It only remains to prove the compatibility property. We introduce, for
� ≥ 1 and k ≥ 1,

τ
�,k
N := inf

{
t ≥ 0 : (X̃i,N,εk,�

t

)
i=1,...,N /∈ DN

�

}
and

τ �
N := inf

{
t ≥ 0 : (Xi,N,�

t

)
i=1,...,N /∈ DN

�

}
.

Since (X̃
i,N,εk,�
t )t≥0,i=1,...,N goes a.s. to (X

i,N,εk,�
t )t≥0,i=1,...,N in C([0,∞),

(R2)N) and since (DN
� )c is a closed subset of (R2)N , we deduce that τ �

N ≤
lim infk→∞ τ

�,k
N . But for all �′ ≥ � ≥ 1, we have (X̃

i,N,εk,�
t )i=1,...,N =

(X̃
i,N,εk,�

′
t )i=1,...,N on the time interval [0, τ

�,k
N ] for any k ≥ 1: this follows from

the pathwise uniqueness for (20) and from the fact that �N
� = �N

�′ = 1 on DN
� . Us-

ing finally that (X̃
i,N,εk,�
t , X̃

i,N,εk,�
′

t )t≥0,i=1,...,N goes a.s. to

(X
i,N,�
t ,X

i,N,�′
t )t≥0,i=1,...,N in C([0,∞), (R2)N × (R2)N), we conclude that in-

deed, (X
i,N,�
t )i=1,...,N = (X

i,N,�′
t )i=1,...,N on [0, τ �

N ]. �

Finally, we let � increase to infinity.

PROOF OF THEOREM 7. We fix χ > 0, N > max{2, χ/(2π)} and FN
0 ∈

Psym,1((R
2)N) such that (7) holds true. We consider the objects built in Lemma 14:

the filtration (Ft )t≥0, the 2N -dimensional (Ft )t≥0-Brownian motion
(Bi

t )i=1,...,N,t≥0, the (Ft )t≥0-adapted solution (X
i,N,�
t )t≥0,i=1,...,N , for each � ≥ 1,

to (22), and the associated stopping times τ �
N . Using the compatibility property, we

deduce that τ �
N is a.s. increasing (as a function of �) and we define τN = sup�≥1 τ �

N .
Still using the compatibility property, we deduce that for all t ∈ [0, τN), all � such
that τ �

N ≥ t , all �′ ≥ �, (X
i,N,�
t )i=1,...,N = (X

i,N,�′
t )i=1,...,N . Hence, for t ∈ [0, τN),

we can define (X
i,N
t )i=1,...,N as (X

i,N,�
t )i=1,...,N for any choice of � such that τ �

N ≥
t . Since �N

� ((X
i,N,�
t )i=1,...,N ) = 1 for t ∈ [0, τ �

N ], by the definitions of ��
N and of
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τ �
N , we conclude that indeed, (X

i,N
t )t∈[0,τN ),i=1,...,N solves (4) with the Brownian

motions (Bi
t )i=1,...,N,t≥0, and that τ �

N = inf{t ≥ 0 : (Xi,N
t )i=1,...,N /∈ DN

� }, so that

τN = sup
�≥1

inf
{
t ≥ 0 : (Xi,N

t

)
i=1,...,N /∈ DN

�

}
as in the statement. The exchangeability and (Ft )t≥0-adaptation of the family
{(Xi,N

t )t∈[0,τN ), i = 1, . . . ,N} is of course inherited from {(Xi,N,�
t )t≥0,�≥1, i =

1, . . . ,N}. We also have a.s., for all t ∈ [0, τN), all α ∈ (χ/(2πN),1),∫ t

0

∣∣X1,N
s − X2,N

s

∣∣α−2
ds =

∫ t

0

∣∣X1,N,�
s − X2,N,�

s

∣∣α−2
ds

as soon as � is large enough so that τ �
N ≥ t . This last quantity is a.s. finite by

Lemma 14 again.
It remains to decide whether τN is finite or infinite. For I ⊂ {1, . . . ,N}

with cardinality |I | ≥ 2 and t ∈ [0, τN), let X̄I
t = |I |−1∑

i∈I X
i,N
t and RI

t =
2−1∑

i∈I |Xi,N
t − X̄I

t |2.
First, assume that χ > 8π(N − 2)/(N − 1). Consider IN = {1, . . . ,N}. As

shown in Lemma 16 below, (R
IN
t )t∈[0,τN ) is a squared Bessel process with dimen-

sion (N − 1)(2 − χ/4π) < 2, restricted to [0, τN). But a squared Bessel process
with dimension smaller than 2 a.s. reaches zero in finite time, see [36], page 442.
We conclude that on the event {τN = ∞}, RIN reaches zero in finite time, which
of course implies that τN < ∞. Thus, P(τN = ∞) = 0 as desired.

Assume next that χ ≤ 8π(N −2)/(N −1). Observe that for (x1, x2, x3) ∈ (R2)3

and x̄ = (x1 + x2 + x3)/3,

|x1 − x2| + |x2 − x3| + |x3 − x1| ≥ (|x1 − x2|2 + |x2 − x3|2 + |x3 − x1|2)1/2

= √
3
(|x1 − x̄|2 + |x2 − x̄|2 + |x3 − x̄|2)1/2

.

Consequently, for � ≥ 1,

P(τN < ∞)

= P
(
τN < ∞, τ �

N ≤ τN

)
= P

(
τN < +∞, min

i,j,k distinct
inf

t∈[0,τN )

(∣∣Xi
t − X

j
t

∣∣+ ∣∣Xj
t − Xk

t

∣∣
+ ∣∣Xk

t − Xi
t

∣∣)≤ 1

�

)

≤ P

(
τN < +∞, min

I :|I |=3
inf

t∈[0,τN )
RI

t ≤ 1

6�2

)
.

This last quantity tends to 0 as � → ∞ thanks to the following lemma, whence
P(τN < ∞) = 0. �
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LEMMA 15. Let N ≥ 3 and χ ∈ (0,8π(N − 2)/(N − 1)]. Consider
(X

i,N
t )t∈[0,τN ),i=1,...,N built in the previous proof. For I ⊂ {1, . . . ,N} with cardi-

nality |I | ≥ 2 and t ∈ [0, τN), let X̄I
t = |I |−1∑

i∈I X
i,N
t and RI

t =
2−1∑

i∈I |Xi,N
t − X̄I

t |2. For all I ⊂ {1, . . . ,N} with |I | ≥ 3,

P
(
τN < ∞, inf

t∈[0,τN )
RI

t = 0
)

= 0.

This lemma requires some preparation.

LEMMA 16. Adopt the notation and assumptions of Lemma 15. Let I ⊂
{1, . . . ,N} with |I | ≥ 3. A.s., RI

0 > 0 and there exists a one-dimensional Brow-
nian motion (βI

t )t≥0 such that for t ∈ [0, τN),

dRI
t = 2

√
RI

t dβI
t + (|I | − 1

)(
2 − χ |I |

4πN

)
dt

(23)
+ χ

N

∑
i∈I

∑
j /∈I

(
X

i,N
t − X̄I

t

) · K(
X

i,N
t − X

j,N
t

)
dt.

In particular, with IN = {1, . . . ,N}, dR
IN
t = 2

√
R

IN
t dβI

t +(N −1)(2− χ
4π

) dt and

(R
IN
t )t∈[0,τN ) is a squared Bessel process with dimension (N − 1)(2 −χ/4π) ≥ 2,

restricted to [0, τN).

PROOF. Fix I as in the statement. By assumption, recall (7), we clearly have
RI

0 > 0 a.s. Also, by definition of τN , we have a.s. RI
t > 0 for all t ∈ [0, τN). For

all t ∈ [0, τN), let

βI
t =

∫ t

0

1√
2RI

s

∑
i∈I

(
Xi,N

s − X̄I
s

) · dBi
s .

This process can easily be extended into a one-dimensional Brownian motion
(βI

t )t≥0. We now check (23). We work on [0, τN). Starting from (4) and setting
B̄I

t = |I |−1∑
i∈I Bi

t ,

d
(
X

i,N
t − X̄I

t

)= √
2d

(
Bi − B̄I )

t + χ

N

[∑
j �=i

K
(
X

i,N
t − X

j,N
t

)− |I |−1ZI
t

]
dt,

where ZI
t =∑

k∈I

∑
j �=k K(X

k,N
t − X

j,N
t ). Using the Itô formula, we thus find

d
∣∣Xi,N

t − X̄I
t

∣∣2 = 2
√

2
(
X

i,N
t − X̄I

t

) · (dBi
t − dB̄I

t

)+ 4
|I | − 1

|I | dt

+ 2χ

N

(
X

i,N
t − X̄I

t

) ·
[∑
j �=i

K
(
X

i,N
t − X

j,N
t

)− |I |−1ZI
t

]
dt
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and thus

dRI
t = √

2
∑
i∈I

(
X

i,N
t − X̄I

t

) · (dBi
t − dB̄I

t

)+ 2
(|I | − 1

)
dt

+ χ

N

∑
i∈I

(
X

i,N
t − X̄I

t

) ·
[∑
j �=i

K
(
X

i,N
t − X

j,N
t

)− |I |−1ZI
t

]
dt.

We now observe that
∑

i∈I (X
i,N
t − X̄I

t ) · (dBi
t −dB̄I

t ) =∑
i∈I (X

i,N
t − X̄I

t ) ·dBi
t =√

2RI
t dβI

t and that
∑

i∈I (X
i,N
t − X̄I

t )ZI
t = 0, so that

dRI
t = 2

√
RI

t dβI
t + 2

(|I | − 1
)
dt + χ

N

∑
i∈I

∑
j �=i

(
X

i,N
t − X̄I

t

) · K(
X

i,N
t − X

j,N
t

)
dt.

It now suffices to note that
∑

i,j∈I,j �=i X̄
I
t · K(X

i,N
t − X

j,N
t ) = 0 and that

∑
i,j∈I,j �=i

X
i,N
t · K(

X
i,N
t − X

j,N
t

)= 1

2

∑
i,j∈I,j �=i

(
X

i,N
t − X

j,N
t

) · K(
X

i,N
t − X

j,N
t

)

= −|I |(|I | − 1)

4π

to conclude the proof. �

The following remark is a key observation.

REMARK 17. We see in (23) that, up to the third-term in the right-hand side,
for all I ⊂ {1, . . . ,N} with |I | ≥ 3, the process RI evolves like the square of
a Bessel process of dimension (|I | − 1)(2 − χ |I |/(4πN)). The condition χ ∈
(0,8π(N − 2)/(N − 1)] implies that

(24) min
n=3,...,N

(n − 1)
(
2 − χn/(4πN)

)≥ 2.

Indeed, observe that φ(x) = (x − 1)(2 − χx/(4πN)) is concave, so that we
only have to verify that φ(3) ≥ 2 and φ(N) ≥ 2. First, φ(N) ≥ 2 is equivalent
to our condition that χ ≤ 8π(N − 2)/(N − 1). Next, φ(3) ≥ 2 is equivalent to
χ ≤ 4πN/3. Finally, it is not hard to verify that, N ≥ 3 being an integer, we al-
ways have 8π(N − 2)/(N − 1) ≤ 4πN/3.

Since by [36], page 442, a squared Bessel process of dimension δ ≥ 2 a.s. never
reaches zero, we expect that indeed, for any |I | ≥ 3, RI a.s. never reaches zero.

PROOF OF LEMMA 15. We prove by backward induction that for all n =
3, . . . ,N ,

(25) ∀I ⊂ {1, . . . ,N} with |I | = n, P
(
τN < ∞, inf

t∈[0,τN )
RI

t = 0
)

= 0.



PARTICLE APPROXIMATION OF THE KELLER–SEGEL EQUATION 2835

We first observe that (25) is clear when n = N . Indeed, we know from
Lemma 16 that for IN = {1, . . . ,N}, (RI

t )t∈[0,τN ) is a squared Bessel process with
dimension (N − 1)(2 − χ/(4π)) ≥ 2 restricted to [0, τN). Hence, inf[0,τN ) R

I
t > 0

a.s. on the event {τN < ∞}.
We now assume that (25) holds for some n ∈ {4, . . . ,N} and check that it also

holds for n−1. We thus consider some fixed I ⊂ {1, . . . ,N} with cardinality n−1.
We have to prove that a.s. on {τN < ∞}, inf[0,τN ) R

I
t > 0. For each j ∈ {1, . . . ,N}\

I , we introduce Ij = I ∪ {j}.
The main ideas are the following:
• If RI was reaching 0, then around the time it does, the last term in (23) would

be reasonable (not too large). Indeed, RI reaches zero when a collision between
(n−1) particles occur, so that the other particles are not too close since we already
know there are no collisions of n (or more) particles. These facts are quantified in
Steps 1 and 2.

• But if the last term in (23) is not too large, then RI really behaves as a Bessel
process with dimension (n − 2)(2 − χ(n − 1)/(4πN)) ≥ 2 and thus cannot reach
0. This is checked in Steps 3 and 4.

Step 1. We claim that for each j ∈ {1, . . . ,N} \ I , each (x1, . . . , xN) ∈ (R2)N ,
setting x̄I = (n − 1)−1∑

i∈I xi and x̄Ij = n−1∑
i∈I j xi ,

(2n − 3)min
k∈I

|xk − xj |2 ≥ n
∑
i∈Ij

∣∣xi − x̄Ij
∣∣2 − 3(n − 1)

∑
i∈I

∣∣xi − x̄I
∣∣2.

We fix k ∈ I and start from |xk − xj |2 = ∑
i∈I |xi − xj |2 − ∑

i∈I,i �=k |xi − xj |2
whence, since

∑
i∈I,i �=k |xi − xj |2 ≤ 2(n − 2)|xk − xj |2 + 2

∑
i∈I,i �=k |xi − xk|2,

(2n − 3)|xk − xj |2 ≥∑
i∈I

|xi − xj |2 − 2
∑

i∈I,i �=k

|xi − xk|2.

But one easily checks that 2 maxk∈I

∑
i∈I,i �=k |xi − xk|2 ≤ ∑

i,k∈I |xi − xk|2,
whence

(2n − 3)min
k∈I

|xk − xj |2 ≥ ∑
i∈I

|xi − xj |2 − ∑
i,k∈I

|xi − xk|2

= 1

2

∑
i,k∈Ij

|xi − xk|2 − 3

2

∑
i,k∈I

|xi − xk|2.

The claim then follows from the facts that
∑

i,k∈Ij
|xi −xk|2 = 2n

∑
i∈I j |xi − x̄Ij |2

and that
∑

i,k∈I |xi − xk|2 = 2(n − 1)
∑

i∈I |xi − x̄I |2.

Step 2. We now fix a > 0 and b = a/3. Step 1 implies that when minj /∈I R
Ij

t ≥ a

and RI
t ≤ b, we have

(26) min
k∈I,j /∈I

∣∣Xk,N
t − X

j,N
t

∣∣2 ≥ 2an

2n − 3
− 6(n − 1)b

2n − 3
= 2a

2n − 3
,
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whence

max
k∈I,j /∈I

∣∣K(
X

k,N
t − X

j,N
t

)∣∣≤
√

2n − 3

2π
√

2a
.

Hence, one may bound the third term in the right-hand side of (23) from below:

1{minj /∈I R
Ij
t ≥a,RI

t ≤b}
χ

N

∑
i∈I

∑
j /∈I

(
X

i,N
t − X̄I

t

) · K(
X

i,N
t − X

j,N
t

)
(27)

≥ −χ
√

2n − 3

2πN
√

2a

∑
i∈I

∑
j /∈I

∣∣Xi,N
t − X̄I

t

∣∣≥ −c

√
RI

t ,

with c := (N + 1 − n)χ
√

(2n − 3)(n − 1)/(2πN
√

a). Let us now define the stop-
ping time

σa = inf
{
t ∈ [0, τN) : min

j /∈I
R

Ij

t < a
}

with convention inf∅ = τN and introduce the process (R
I,a
t )t∈[0,τN ) defined by

R
I,a
t = RI

t for t ∈ [0, σa) and, when σa < τN , by being the unique solution, for
t ∈ [σa, τN), to

R
I,a
t = RI

σa
+ 2

∫ t

σa

√
R

I,a
s dβI

s + (|I | − 1
)(

2 − χ |I |
4πN

)
(t − σa).

The existence of a pathwise unique solution to this equation follows from [36],
Theorem 3.5, page 390. We deduce from (23) that this process satisfies, for all
t ∈ [0, τN),

R
I,a
t = RI

0 + 2
∫ t

0

√
R

I,a
s dβI

s + (|I | − 1
)(

2 − χ |I |
4πN

)
t

+ χ

N

∫ t

0
1{s<σa}

∑
i∈I

∑
j /∈I

(
Xi,N

s − X̄I
s

) · K(
Xi,N

s − Xj,N
s

)
ds.

Step 3. Recall that a > 0 and b = a/3 are fixed and that c > 0 has been defined in
Step 2. The existence of a solution (R

I,b
t )t≥0 such that P(∀t ≥ 0,R

I,b
t ∈ (0, b]) = 1

to the SDE reflected at the level b,

(28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
I,b
t = RI

0 ∧ b + 2
∫ t

0

√
RI,b

s dβI
s + (|I | − 1

)(
2 − χ |I |

4πN

)
t

− c

∫ t

0

√
RI,b

s ds − Lt,

(Ls)s≥0 is an adapted increasing process such that L0 = 0

and
∫ t

0

(
b − RI,b

s

)
dLs = 0

will be checked at the end of the proof using that |I | ≥ 3. We take this for granted
and show that a.s., for all t ∈ [0, τN), R

I,a
t ≥ R

I,b
t .
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By [36], Lemma 3.3, page 389, with the choice ρ(u) = |u|, the local time at
0 of the continuous semimartingale St = R

I,b
t − R

I,a
t vanishes. Indeed, it suffices

that a.s.,
∫ t

0 (ρ(Ss))
−1 d〈S,S〉s < ∞, which follows from the fact that d〈S,S〉s =

4(

√
RI,b

s −
√

R
I,a
s )2 ds ≤ 4|RI,b

s − RI,a
s |ds = 4ρ(Ss) ds.

Hence, setting x+ = max(x,0), one has, by Tanaka’s formula, for all t ∈
[0, τN),

(
R

I,b
t − R

I,a
t

)+ = (
R

I,b
0 − R

I,a
0

)+ +
∫ t

0
1{RI,b

s >R
I,a
s } d

(
RI,b

s − RI,a
s

)
.

Since R
I,b
0 − R

I,a
0 = RI

0 ∧ b − RI
0 ≤ 0, we find

(
R

I,b
t − R

I,a
t

)+
≤ 2

∫ t

0
1{RI,b

s >R
I,a
s }

(√
RI,b

s −
√

R
I,a
s

)
dβI

s −
∫ t

0
1{RI,b

s >R
I,a
s } dLs

+
∫ t

0
1{RI,b

s >R
I,a
s }

(
−c

√
RI,b

s

− χ

N
1{s<σa}

∑
i∈I

∑
j /∈I

(
Xi,N

s − X̄I
s

) · K(
Xi,N

s − Xj,N
s

))
ds.

Since L is an increasing process, the second term on the right-hand side is non-
positive. The third term on the right-hand side is also nonpositive, because s < σa

implies that RI,a
s = RI

s , so that RI,b
s > RI,a

s implies that RI
s ≤ b, whence, using

(27) and the definition of σa , for all s ∈ [0, τN) such that RI,b
s > RI,a

s ,

− χ

N
1{s<σa}

∑
i∈I

∑
j /∈I

(
Xi,N

s − X̄I
s

) · K(
Xi,N

s − Xj,N
s

)

≤ c

√
RI

s

= c

√
R

I,a
s < c

√
RI,b

s .

We conclude that a.s., for all t ∈ [0, τN),

(
R

I,b
t − R

I,a
t

)+ ≤ 2
∫ t

0
1{RI,b

s >R
I,a
s }

(√
RI,b

s −
√

R
I,a
s

)
dβI

s .(29)

We next introduce Mt := ∫ t
0 1{s<τN ,R

I,b
s >R

I,a
s }(

√
RI,b

s −
√

R
I,a
s ) dβI

s , which is a

true martingale (because the integrand is clearly bounded by
√

b), which is a.s.
nonnegative for all times by (29) and which starts from 0: we classically con-
clude that a.s., Mt vanishes for all t ≥ 0. Coming back to (29), we deduce that
(R

I,b
t − R

I,a
t )+ ≤ 2Mt = 0 a.s. for all t ∈ [0, τN), which ends the step.
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Step 4. We now conclude the induction. For any a > 0 and b = a/3, using that
(RI

t )t∈[0,σa) = (R
I,a
t )t∈[0,σa) and the definition of σa ,

P
(
τN < ∞, inf

t∈[0,τN )
RI

t = 0
)

≤ P
(
τN < ∞, σa = τN, inf

t∈[0,τN )
RI

t = 0
)

+ P(τN < ∞, σa < τN)

= P
(
τN < ∞, σa = τN, inf

t∈[0,τN )
R

I,a
t = 0

)

+ P
(
τN < ∞,min

j /∈I
inf

t∈[0,τN )
R

Ij

t ≤ a
)

≤ P
(
τN < ∞, inf

t∈[0,τN )
R

I,b
t = 0

)
+ P

(
τN < ∞,min

j /∈I
inf

t∈[0,τN )
R

Ij

t ≤ a
)
.

Since the continuous process (R
I,b
t )t≥0 does not reach 0, the first term in the right-

hand side is 0. We thus can let a tend to 0 to get

P
(
τN < ∞, inf

t∈[0,τN )
RI

t = 0
)

≤ P
(
τN < ∞,min

j /∈I
inf

t∈[0,τN )
R

Ij

t = 0
)
.

This last quantity vanishes by our induction assumption.
Existence for (28). To conclude the proof, we still have to check the existence

of a solution (R
I,b
t )t≥0 such P(∀t ≥ 0,R

I,b
t ∈ (0, b]) = 1 to (28). For � ≥ 1/b,

according to Skorokhod [37], existence and trajectorial uniqueness hold for the
reflected (at b) stochastic differential equation with Lipschitz drift and diffusion
coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
I,b,�
t = RI

0 ∧ b + 2
∫ t

0

√
�−1 ∨ RI,b,�

s dβI
s + (|I | − 1

)(
2 − χ |I |

4πN

)
t

− c

∫ t

0

√
�−1 ∨ RI,b,�

s ds − L�
t ,

∀t ≥ 0,R
I,b,�
t ≤ b,(

L�
s

)
s≥0 is an adapted increasing process such that L�

0 = 0

and
∫ t

0

(
b − RI,b,�

s

)
dL�

s = 0.

Denoting by ν� = inf{t ≥ 0 : R
I,b,�
t ≤ 1/�}, we deduce from pathwise uniqueness

that for �′ ≥ �, (R
I,b,�′
t ,L�′

t )t∈[0,ν�] and (R
I,b,�
t ,L�

t )t∈[0,ν�] coincide and thus that
� �→ ν� is a.s. increasing. Setting ν∞ = sup�→∞ ν�, we easily deduce the existence
of a solution (R

I,b
t ,Lt )t∈[0,ν∞) to (28) satisfying supt∈[0,ν∞) R

I,b
t ≤ b and R

I,b
t > 0

for all t ∈ [0, ν∞). More precisely, R
I,b
t = R

I,b,�
t ≥ 1/� for all � and all t ∈ [0, ν�).

It thus only remains to prove that ν∞ = ∞ a.s.
By the Girsanov theorem, under the probability measure Q defined by

dQ
dP

|σ(RI
0 ,(βI

s )s∈[0,t]) = exp(cβI
t /2 − c2t/8) (which is, of course, a true martingale),
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the process Wt = βI
t − ct/2 is a one-dimensional Brownian motion. We introduce

the equation, satisfied by (R
I,b
t ,Ll

t ) on the time-interval [0, ν∞), for a squared
Bessel process (ρt ,�t)t≥0 of dimension (|I | − 1)(2 − χ |I |/(4πN)) driven by W

and reflected at the level b,

(30)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρt = RI
0 ∧ b + 2

∫ t

0

√
ρs dWs + (|I | − 1

)(
2 − χ |I |

4πN

)
t − �t,

∀t ≥ 0, ρt ≤ b,

(�s)s≥0 is an adapted increasing process s.t. �0 = 0

and
∫ t

0
(b − ρs) d�s = 0.

To check global existence for this equation, we set η
0
= 0 and define, inductively

on k ≥ 0, ρt to be equal to:

• the squared Bessel process

Rt = 1{k=0}RI
0 ∧ b + 1{k≥1}

b

3
+ 2

∫ t

η
k

√
Rs dWs + (|I | − 1

)(
2 − χ |I |

4πN

)
(t − η

k
)

on the time interval [η
k
, η̄k+1] where η̄k+1 = inf{t ≥ η

k
: Rt ≥ 2b/3},

• the solution to the stochastic differential equation with Lipschitz coefficients

Rb
t = 2b

3
+ 2

∫ t

η̄k+1

√
b

3
∨ Rb

s dWs + (|I | − 1
)(

2 − χ |I |
4πN

)
(t − η̄k+1) − �b

t ,

reflected at b on the time interval [η̄k+1, ηk+1
] where η

k+1
= inf{t ≥ η̄k+1 :

Rb
t ≤ b/3}.

Since, under Q, the delays (η̄k+1 − η̄k)k≥1 are i.i.d. and positive, Q-a.s., η̄k goes to
∞ with k by the law of large numbers and ρt is defined for t ∈ [0,+∞). It is easily
checked that the process (�)t≥0 defined by the first equality in (30) also satisfies
the last one.

Reasoning like in the comparison between RI,a and RI,b performed in Step 3.3,
we check that the first component of any of two solutions to (30) is above the other
one so that the first components coincide.

We deduce that R
I,b
t and ρt coincide for t ∈ [0, ν∞). With the definition of ν∞

and the continuity of ρ, this implies that {ν∞ ≤ t} ⊂ {∃s ∈ [0, t] : ρs = 0}. Since
(ρt )t≥0 always evolves as a squared Bessel process of dimension (|I | − 1)(2 −
χ |I |/(4πN)) ≥ 2 under the level b/3, by [36], page 442, Q(∃s ∈ [0,+∞) : ρs =
0). For each t ∈ [0,∞), we deduce that 0 = P(∃s ∈ [0, t] : ρs = 0) ≥ P(ν∞ ≤ t) by
equivalence of P and Q on σ(RI

0 , (βI
s )s∈[0,t]). Letting t → ∞, we conclude that

P(ν∞ < ∞) = 0. �
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5. Positive probability of collisions. The goal of this section is to establish
that in the N -particle system (4), pairs of particles do collide during [0, t0] with
positive probability, for any t0 > 0. Assume by contradiction that particles do a.s.
not collide before t0. Then, with, for example, I = {1,2}, the third term in the
right-hand side of (23) cannot be very large (since it explodes only when there is
a collision). Consequently, RI behaves as a squared Bessel process with dimen-
sion (2 − χ/(2πN)) < 2. But such a process reaches 0 before t0 with positive
probability, whence a contradiction.

This simple strategy is not so easy to write down. We first reduce to the case
where the initial condition is deterministic and equal to (x1, . . . , xN) ∈ (R2)N such
that |x1 − x2| = min1≤i<j≤N |xi − xj | > 0.

In Step 1, we introduce a stopping time τ before which particles 3, . . . ,N are
not too close to particles 1,2 and particles 1 and 2 do not move too much.

We use Girsanov’s theorem in Step 2 to introduce a new probability P̃ equivalent
to P (thanks to the use of τ ).

In Step 3, we show that under P̃, Y = |X1,N − X2,N |2/4 is a Bessel pro-
cess, γ = (X1,N + X2,N − X

1,N
0 − X

2,N
0 )/2 is a Brownian motion, and the triple

Y,X1,N + X2,N , (Xi,N)i=3,...,N is independent. But all this holds only on [0, τ ),
so we extend these processes on [0, t0] (if τ < t0). More precisely, we introduce Ỹ ,
γ and (X̃i,N )i=3,...,N , satisfying the above properties on [0, t0] and equal to Y , γ

and (Xi,N)i=3,...,N on [0, τ ∧ t0).
In Step 4, we fix s0 ∈ (0, t0) and we introduce an event �0, involving Ỹ , γ and

(X̃i,N )i=3,...,N , on which we have τ > s0 and min[0,s0] Ỹs = 0, all this implying
that min[0,s0] Ys = 0.

It only remains to prove that P̃(�0) > 0 [which implies that P(�0) > 0], which
we do in Step 5.

PROOF OF PROPOSITION 4. We thus consider any fixed N ≥ 2, χ > 0 and any
solution (if it exists) (X

i,N
t )i=1,...,N,t∈[0,t0] to (4) with (X

i,N
0 )i=1,...,N exchangeable

(with law FN
0 ). We work by contradiction and assume that a.s., Xi,N

s �= X
j,N
s for

all s ∈ [0, t0] and all i �= j . Then the singularity of K is a.s. not visited and the
particle system (4) is classically strongly well-posed on [0, t0]. Thus, for FN

0 -a.e.

(x1, . . . , xN) ∈ (R2)N , there is a unique strong solution (X
i,N
t )i=1,...,N,t∈[0,t0] to

(4) such that a.s., X
i,N
0 = xi for all i and Xi,N

s �= X
j,N
s for all s ∈ [0, t0] and all

i �= j . We fix for the rest of the proof an initial condition (x1, . . . , xN) ∈ (R2)N

enjoying these properties. All the processes below are defined on the finite time
interval [0, t0].

Step 1. By construction, d = mini �=j |xi −xj | > 0 and we may of course assume
that d = |x1 − x2|. We introduce x̄ := (x1 + x2)/2 and note that min3≤j≤N |xj −
x̄| ≥ √

3d/2. Fix 1/2 < a < b <
√

3/2 and consider the stopping time τ =



PARTICLE APPROXIMATION OF THE KELLER–SEGEL EQUATION 2841

min{τ1, τ2, τ3}, where

τ1 = inf
{
t ∈ [0, t0] : ∣∣X1,N

t − X
2,N
t

∣∣≥ 2a + 1

2
d

}
,

τ2 = inf
{
t ∈ [0, t0] : ∣∣X1,N

t + X
2,N
t − 2x̄

∣∣≥ 2a − 1

2
d

}
,

τ3 = inf
{
t ∈ [0, t0] : min

j=3,...,N

∣∣Xj,N
t − x̄

∣∣≤ bd
}
,

with the convention that inf∅ = t0. We will use that a.s., for all t ∈ [0, τ ],
min

i=1,2,j=3,...,N

∣∣Xi,N
t − X

j,N
t

∣∣≥ (b − a)d.

Indeed, consider, for example, the case i = 1 and j = 3, write |X1,N
t − X

3,N
t | ≥

|X3,N
t − x̄| − |X1,N

t − x̄| and use that |X3,N
t − x̄| ≥ bd and that |X1,N

t − x̄| ≤
|X1,N

t − X
2,N
t |/2 + |X1,N

t + X
2,N
t − 2x̄|/2 ≤ (2a + 1)d/4 + (2a − 1)d/4 = ad .

Step 2. Consider the exponential martingale defined on [0, t0] by

Mt = exp

[
χ√
2N

N∑
i=1

∫ t∧τ

0

(
1{i≤2}

N∑
j=3

K
(
Xj,N

s − Xi,N
s

)

+ 1{i≥3}
2∑

j=1

K
(
Xj,N

s − Xi,N
s

)) · dBi
s

− χ2

4N2

N∑
i=1

∫ t∧τ

0

∣∣∣∣∣1{i≤2}
N∑

j=3

K
(
Xj,N

s − Xi,N
s

)

+ 1{i≥3}
2∑

j=1

K
(
Xj,N

s − Xi,N
s

)∣∣∣∣∣
2

ds

]
.

This is indeed a true martingale, because K(X
j,N
s − Xi,N

s ) is bounded by (2π(b −
a)d)−1 on [0, τ ] for each i = 1,2 and j = 3, . . . ,N ; see Step 1. Hence, P̃ := Mt0 ·P
is a probability measure equivalent to P. In particular, it also holds that P̃-a.s.,
Xi,N

s �= X
j,N
s for all s ∈ [0, t0] and all i �= j . The Girsanov theorem tells us that,

under P̃, the processes

Wi
t := Bi

t + χ√
2N

∫ t∧τ

0

(
1{i≤2}

N∑
j=3

K
(
Xi,N

s − Xj,N
s

)

+ 1{i≥3}
2∑

j=1

K
(
Xi,N

s − Xj,N
s

))
ds
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are independent two-dimensional Brownian motions on [0, t0]. We next introduce

βt =
∫ t

0

(X1,N
s − X2,N

s )

|X1,N
s − X

2,N
s | · d

(
W 1

s − W 2
s√

2

)
and γt = W 1

t + W 2
t√

2
.

It is easily seen, computing brackets and using Karatzas and Shreve [23], Theo-
rem 4.13, page 179, that still under P̃, β is a one-dimensional Brownian motion on
[0, t0], γ,W 3, . . . ,WN are two-dimensional Brownian motions on [0, t0], and all
these processes are independent.

Step 3. We have

X
1,N
t − X

2,N
t = x1 − x2 + √

2
(
B1

t − B2
t

)+ 2χ

N

∫ t

0
K
(
X1,N

s − X2,N
s

)
ds

+ χ

N

N∑
j=3

∫ t

0

(
K
(
X1,N

s − Xj,N
s

)− K
(
X2,N

s − Xj,N
s

))
ds

= x1 − x2 + √
2
(
W 1

t − W 2
t

)+ 2χ

N

∫ t

0
K
(
X1,N

s − X2,N
s

)
ds

for all t ∈ [0, τ ]. By the Itô formula, Yt = |X1,N
t − X

2,N
t |2/4 thus solves, still for

t ∈ [0, τ ],
Yt := d2

4
+ 2

∫ t

0

√
Ys dβs +

(
2 − χ

2πN

)
t.

We also have, for all t ∈ [0, τ ]
X

1,N
t + X

2,N
t = 2x̄ + √

2
(
B1

t + B2
t

)

+ χ

N

N∑
j=3

∫ t

0

(
K
(
X1,N

s − Xj,N
s

)+ K
(
X2,N

s − Xj,N
s

))
ds

= 2x̄ + √
2
(
W 1

t + W 2
t

)
= 2x̄ + 2γt ,

and, for all t ∈ [0, τ ] and all i = 3, . . . ,N [recall that K(0) = 0],

X
i,N
t = xi + √

2Bi
t + χ

N

∫ t

0

N∑
j=1

K
(
Xi,N

s − Xj,N
s

)
ds

= xi + √
2Wi

t + χ

N

∫ t

0

N∑
j=3

K
(
Xi,N

s − Xj,N
s

)
ds.

We introduce (Ỹt )t∈[0,t0] the unique strong solution (see [36], Theorem 3.5, page
390) to

Ỹt := d2

4
+ 2

∫ t

0

√
|Ỹs |dβs +

(
2 − χ

2πN

)
t.



PARTICLE APPROXIMATION OF THE KELLER–SEGEL EQUATION 2843

We clearly have (Yt )t∈[0,τ ] = (Ỹt )t∈[0,τ ]. We next consider the system

X̃
i,N
t = xi + √

2Wi
t + χ

N

∫ t

0

N∑
j=3

K
(
X̃i,N

s − X̃j,N
s

)
ds, i = 3, . . . ,N,

which classically has a unique strong solution (X̃
i,N
t )i=3,...,N,t∈[0,σ ) up to σ =

lim�→∞ inf{t ∈ [0, t0] : min3≤i<j≤N |X̃i,N
t − X̃

j,N
t | ≤ 1/�} (convention: inf∅ =

t0), which is a.s. positive because the initial conditions x3, . . . , xN are pair-
wise different. Clearly, (X

i,N
t )i=3,...,N,t∈[0,τ∧σ) = (X̃

i,N
t )i=3,...,N,t∈[0,τ∧σ). We

conclude this step mentioning that the processes (Ỹt )t∈[0,t0], (γt )t∈[0,t0] and
(X̃

i,N
t )i=3,...,N,t∈[0,σ ) are independent under P̃.
Step 4. For any s0 ∈ (0, t0), we claim that

�1 ∩ �2 ∩ �3 ⊂
{

min[0,s0]
∣∣X1,N

s − X2,N
s

∣∣= 0
}
,

where

�1 =
{

min[0,s0]
Ỹs = 0, max[0,s0]

Ỹs <
(2a + 1)2d2

16

}
,

�2 =
{

max[0,s0]
|γs | < (2a − 1)d

4

}
,

�3 =
{
σ > s0, min

s∈[0,s0],j≥3

∣∣X̃j,N
s − x̄

∣∣> bd
}
.

Indeed, on �1, we have max[0,s0] Ỹs < (2a + 1)2d2/16, whence, since |X1,N
t −

X
2,N
t |2 = 4Ỹt on [0, τ ], max[0,s0∧τ ] |X1,N

s − X2,N
s | < (2a + 1)d/2, and thus

τ1 > s0 ∧ τ . Since X
1,N
t + X

2,N
t = 2x̄ + 2γt on [0, τ ], we deduce that on �2,

max[0,s0∧τ ] |X1,N
s + X2,N

s − 2x̄| ≤ sup[0,s0∧τ ] 2|γs | < (2a − 1)d/2, whence τ2 >

s0 ∧ τ . On �3, since σ > s0, we have (X
i,N
t )i=3,...,N,t∈[0,τ∧s0] =

(X̃
i,N
t )i=3,...,N,t∈[0,τ∧s0], and thus mins∈[0,s0∧τ ],j≥3 |Xj,N

s − x̄| > bd , so that τ3 >

s0 ∧ τ . As a conclusion, τ > s0 ∧ τ and thus τ > s0 on �1 ∩ �2 ∩ �3. We deduce
that �1 ∩ �2 ∩ �3 ⊂ {τ > s0,min[0,s0] Ỹs = 0} ⊂ {min[0,s0] |X1,N

s − X2,N
s | = 0},

because Ỹt = |X1,N
t − X

2,N
t |2/4 for all t ∈ [0, τ ].

Step 5. Here, we show that we can find s0 ∈ (0, t0) such that P̃(�1 ∩�2 ∩�3) >

0. As seen at the end of Step 3, the events �1,�2 and �3 are independent (under
P̃). It obviously holds true that P̃(�2) > 0 (for any s0 > 0) and that P̃(�3) > 0 if
s0 > 0 is small enough because σ > 0 a.s. and by continuity of the sample-paths
(at time 0, we have minj≥3 |X̃j,N

0 − x̄| = minj≥3 |xj − x̄| ≥ √
3d/2 > bd). It thus

only remains to verify that P̃(�1) for all s0 ∈ (0, t0). Since, by the comparison
principle stated in [36], Theorem 3.7, page 394, P̃(�1) is nondecreasing with χ ,
it is enough to check that P̃(�1) > 0 for all s0 ∈ (0, t0) when χ < 4πN , which we
now do.
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It holds that Ỹ is a squared Bessel process of dimension δ := 2 − χ/(2πN)

started at y = d2/4 and restricted to the time-interval [0, t0]. We set z = (2a +
1)2d2/16 and observe that z > y. For x ≥ 0, we also introduce τx = inf{t ∈ [0, t0] :
Ỹt = x}. Then �1 = {τ0 < s0 ∧ τz}.

For x ≥ 0, we denote by Qx the law of the squared Bessel process of dimension
δ starting from x (on the whole time interval [0,∞)), and by qs(x,u) the density of
its marginal at time s > 0, which is a positive function of u on (0,+∞) according
to [36], Corollary 4.1, page 441. For all u �= v, we define τu as the first passage
time at u and τuv as the first passage time at v after τu. It holds that P̃(�1) =
Qy(τ0 < s0 ∧ τz) and what we have to check is that Qy(τ0 < s0 ∧ τz) > 0 for all
s0 ∈ (0, t0).

We first show that Qx(τ0 < t) > 0 for all t > 0 and all x > 0. Since δ < 2, we
know from [36], page 442, that Qx(τ0 < ∞) = 1 for all x > 0. With the Markov
property, we deduce that

1 = ∑
n≥0

Qx

(
τ0 ∈ (

nt/2, (n + 1)t/2
])

≤ Qx(τ0 ≤ t/2) +
∫ +∞

0
Qu(τ0 ≤ t/2)

(∑
n≥1

qnt/2(x, u)

)
du.

Since u �→ qt/2(x, u) is positive on (0,+∞), this ensures the positivity of

Qx(τ0 ≤ t/2) + 1{Qx(τ0≤t/2)=0}
∫ +∞

0
Qu(τ0 ≤ t/2)qt/2(x, u) du ≤ Qx(τ0 ≤ t).

Using the strong Markov property, that 0 < y < z and the monotonicity of t �→
Qy(τ0 ≤ t),

Qy(τz < τ0 ≤ t) = Qy(τzy < τ0 ≤ t)

=
∫

1{τzy<t}Qy(τ0 ≤ t − s)|s=τzy dQy ≤ Qy(τzy < t)Qy(τ0 ≤ t).

By continuity of the sample-paths, lims→0 Qy(τzy < s) = 0 and we can find s1 ∈
(0, t0) so that for all s0 ∈ (0, s1], Qy(τzy < s0) < 1. We conclude that for all s0 ∈
(0, s1],

Qy(τ0 ≤ s0 ∧ τz) = Qy(τ0 ≤ s0) − Qy(τz < τ0 ≤ s0)

≥ (
1 − Qy(τzy < s0)

)
Qy(τ0 ≤ s0) > 0.

If now s0 ∈ [s1, t0], we obviously have Qy(τ0 ≤ s0 ∧ τz) ≥ Qy(τ0 ≤ s1 ∧ τz) > 0.
This ends the step.

Step 6. We deduce from Steps 4 and 5 that P̃(min[0,t0] |X1,N
s − X2,N

s | = 0) > 0.
But P and P̃ being equivalent, this implies that P(min[0,t0] |X1,N

s −X2,N
s | = 0) > 0,

whence a contradiction. �
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6. Two particles system. In this section, we consider the particle system (4)
with N = 2. Assuming that (X1

t ,X
2
t )t≥0 solves (4) with N = 2, we easily find

that St = X1
t + X2

t and Dt = X1
t − X2

t solve two autonomous equations, namely
St = S0 + 2Bt and

(31) Dt = D0 + 2Wt + χ

∫ t

0
K(Ds)ds,

with the two independent 2-dimensional Brownian motions Bt = (B1
t + B2

t )/
√

2
and Wt = (B1

t − B2
t )/

√
2. The equation satisfied by (St )t≥0 being trivial, only the

study of (31) is interesting. This equation can be seen as a natural two-dimensional
generalization of a Bessel process of dimension (2−χ/(4π)). Indeed, (|Dt |/2)t≥0

is a Bessel process of dimension (2 − χ/(4π)) and the dynamics of (Dt)t≥0 is
radially symmetric.

During the whole section, the initial condition D0 is only assumed to be a R2-
random variable independent of (Wt)t≥0.

REMARK 18. Theorem 5 ensures us existence for (31) when χ < 4π and
D0 is the difference of two i.i.d. integrable random vectors. When χ ≥ 4π , the
equation (31) has no global (in time) solution in the usual sense. More precisely,
assume that it has a global solution (Dt)t≥0. Then τ = inf{t ≥ 0 : Dt = 0} is a.s.
finite and a.s.,

∫ τ+h
τ |K(Ds)|ds = ∞ for all h > 0.

PROOF. Let thus χ ≥ 4π and assume that there is a global solution (Dt)t≥0

to (31). By a direct application of the Itô formula, this implies that Rt = |Dt |2/4
solves Rt = R0 +2

∫ t
0
√|Rs |dβs + (2−χ/(4π))t , where βt = ∫ t

0 1{Ds �=0}|Ds |−1 ×
Ds dWs + ∫ t

0 1{Ds=0} dβ̃s is a 1-dimensional Brownian motion [here β̃ is any one-
dimensional Brownian motion independent of (D0,W)]. According to [36], page
442, combined, when χ > 8π , with the comparison theorem [36], Theorem 3.7,
page 394, τ = inf{t ≥ 0 : Rt = 0} is a.s. finite. By the strong Markov property
(for the process R), the comparison theorem ([36], Theorem 3.7, page 394) and
since χ ≥ 4π , (Rτ+t )t≥0 can be bounded from above by a squared 1-dimensional
Bessel process starting from 0, process with the same law as (|βt |2)t≥0. For h > 0,
by the occupation times formula ([36], Corollary 1.6, page 224),

∫ h
0 |βs |−1 ds =∫

R |a|−1La
h da. But L0

h > 0 as soon as h > 0 and we know from [36], Corollary 1.8,
page 226, that a �→ La

h is a.s. continuous, so that
∫ h

0 |βs |−1 ds = ∞ for all h > 0

a.s. Thus, 4π
∫ τ+h
τ |K(Ds)|ds = ∫ τ+h

τ R
−1/2
s ds = ∞ for all h > 0 a.s. �

Hence, (31) has no global solution for χ ≥ 4π , while we expect that in some
sense, the dynamics it represents is meaningful at least for all χ ∈ (0,8π). We
thus would like to reformulate it, in such a way that it is possible to build global



2846 N. FOURNIER AND B. JOURDAIN

solutions. More precisely, we would like to identify, for any value of χ > 0, the
limit, as ε > 0, of the smoothed equation

(32) Dε
t = D0 + 2Wt + χ

∫ t

0
Kε

(
Dε

s

)
ds,

where Kε was defined in (10). The regularized drift coefficient Kε being Lipschitz,
existence and trajectorial uniqueness hold for this SDE. We introduce the equation
formally satisfied by Zt = |Dt |2Dt for (Dt)t≥0 solution to (31):

(33) Zt = Z0 +
∫ t

0
σ(Zs) dWs +

∫ t

0
b(Zs) ds,

where σ(z) = 2|z|−4/3(|z|2I2 + 2zz∗) and b(z) = (16 − 3χ/(2π))|z|−2/3z. Here
and below, I2 is the identity matrix and z∗ is the transpose of z.

It might seem more natural to rather consider |Dt |Dt (since this resembles more
a squared Bessel process), but this unfortunately leads to discontinuous (although
bounded) diffusion and drift coefficients. Here is the main result of this section.

THEOREM 19. Set Z0 = |D0|2D0:

(i) If χ ∈ (0,8π), (33) has a unique (in law) solution (Zt )t≥0 such a.s.,∫∞
0 1{Zt=0} dt = 0. Moreover, if χ ∈ (0,4π), (31) has a unique (in law) solution.

(ii) If χ ≥ 8π , (33) has a pathwise unique solution frozen when it reaches 0
(and it a.s. reaches 0).

(iii) In any case, the solution (Dε
t )t≥0 to (32) goes in law, as ε → 0, to (Dt)t≥0

defined by Dt = |Zt |−2/3Zt1{Zt �=0} and, when χ ∈ (0,4π), this process (Dt)t≥0
solves (31).

In point (i), uniqueness in law cannot hold true without restriction for (33): the
time passed at 0 by the solution that we consider is Lebesgue-nul, while it is easy
to build a solution by freezing the process when it reaches 0.

The rest of the section is devoted to the proof of this theorem. The following
lemma is more or less standard.

LEMMA 20. Let χ > 0 be fixed. For each ε ∈ (0,1), we consider the unique
solution (Dε

t )t≥0 to (32) and we put Zε
t = |Dε

t |2Dε
t :

(i) The family {(Zε
t )t≥0, ε ∈ (0,1)} is tight in C([0,∞),R2).

(ii) Any limit point (Zt )t≥0 is a weak solution to (33) and, setting Rt = |Zt |2/3/4,
it holds that:
(a) if χ ∈ (0,8π), then (Rt )t≥0 is a (2−χ/(4π))-dimensional squared Bessel

process;
(b) if χ ≥ 8π , then (Rt )t≥0 is a (2 − χ/(4π))-dimensional squared Bessel

process frozen when it reaches 0.
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PROOF. We divide the proof in several steps.
Step 1. Direct applications of the Itô formula show that

Zε
t = Z0 +

∫ t

0
σ
(
Zε

s

)
dWs +

∫ t

0
bε

(
Zε

s

)
ds,

where bε(z) = 16|z|−2/3z − (3χ/(2π))(|z|2/3 + ε2)−1z and that Rε
t := |Dε

t |2/4
solves

Rε
t = R0 + 2

∫ t

0

√
Rε

s dβε
s +

∫ t

0

(
2 − χRε

s

π(ε2 + 4Rε
s )

)
ds,

where βε
t = ∫ t

0 1{Dε
s �=0}|Dε

s |−1Dε
s · dWs . Since supr≥0(χr)/[2π

√
r(ε2 + 4r)] =

χ/(8πε), the Girsanov theorem ensures us that for all T ∈ (0,+∞), the law of
(Rε

t )t∈[0,T ] is equivalent to the law of the restriction to the time interval [0, T ]
of a 2-dimensional squared Bessel process starting from R0. By [36], page 442,
we deduce that a.s., for all t > 0, Rε

t > 0. As a consequence, (βε
t )t≥0 is a one-

dimensional Brownian motion.
Step 2. By trajectorial uniqueness for (32), for M > 0, on the event {|D0| ≤ M},

the solution starting from D0 coincides with the one starting from D01{|D0|≤M}.
Therefore, by both implications in the Prokhorov theorem, to check that the family
{(Zε

t )t≥0, ε ∈ (0,1)} is tight in C([0,∞),R2) it is enough to do so when D0 is
bounded. The tightness property then easily follows from the Kolmogorov crite-
rion, using that supε∈(0,1) |bε(z)| and |σ(z)| both have at most affine growth: one
classically verifies successively that for all ρ ≥ 2 and all T > 0 there is CT,ρ such
that for all ε ∈ (0,1), sup[0,T ]E[|Zε

t |ρ] ≤ CT,ρ and E[|Zε
t −Zε

s |ρ] ≤ CT,ρ |t −s|ρ/2

for all 0 ≤ s ≤ t ≤ T .
Step 3. Using martingale problems, that b and σ are continuous and that bε

converges (uniformly) to b, it is checked without difficulty that any limit point
(Zt )t≥0 (as ε → 0) of the family {(Zε

t )t≥0, ε > 0} is indeed a (weak) solution
to (33).

Step 4. Here, we assume that χ ∈ (0,8π) and we prove that (Rε
t )t≥0 goes in

law to the squared (2 − χ/(4π))-dimensional Bessel process. We consider the
(2 − χ/(4π))-dimensional Bessel process (Rt )t≥0 associated to (βε

t )t≥0, that is
Rt = R0 + 2

∫ t
0
√

Rs dβε
s + (2 − χ/(4π))t (its law does of course not depend on

ε) and we prove that limε→0 E[sup[0,T ] |Rε
t −Rt |] = 0 for all T > 0, which clearly

suffices.
Since

∫ ε
ε3/2 x−1 dx = log(1/ε)/2, one may construct a family of C2 nondecreas-

ing convex functions ϕε : [0,∞) �→ [0,∞), indexed by ε ∈ (0,1/2) such that
ϕε(x) = 0 for x ≤ ε3/2, ϕ′(x) = 1 for x ≥ ε and ϕ′′

ε (x) ≤ C1{ε3/2≤x≤ε}/[x log(1/ε)]
for some constant C ∈ (1,+∞) not depending on ε. Such functions are called Ya-
mada functions in the literature. We then observe that Rε

t ≥ Rt for all t ≥ 0 by the
comparison theorem stated in [36], Theorem 3.7, page 394. Computing Rε

t − Rt
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and applying the Itô formula, we obtain that

ϕε

(
Rε

t − Rt

)= 2
∫ t

0
ϕ′

ε

(
Rε

s − Rs

)(√
Rε

s −√
Rs

)
dβs

+ χ

4π

∫ t

0
ϕ′

ε

(
Rε

s − Rs

) ε2

ε2 + 4Rε
s

ds

+ 2
∫ t

0
ϕ′′

ε

(
Rε

s − Rs

)(√
Rε

s −√
Rs

)2
ds.

We next remark that

ϕ′
ε

(
Rε

s − Rs

) ε2

ε2 + 4Rε
s

≤ ϕ′
ε

(
Rε

s − Rs

) ε2

ε2 + 4(Rε
s − Rs)

≤ 1{Rε
s −Rs≥ε3/2}

ε2

ε2 + 4(Rε
s − Rs)

≤
√

ε

4

and that

ϕ′′
ε

(
Rε

s − Rs

)(√
Rε

s −√
Rs

)2 ≤ ϕ′′
ε

(
Rε

s − Rs

)(
Rε

s − Rs

)≤ C

log(1/ε)
,

whence (the constant C may now change from line to line)

ϕε

(
Rε

t − Rt

)
(34)

≤ 2
∫ t

0
ϕ′

ε

(
Rε

s − Rs

)(√
Rε

s −√
Rs

)
dβs + χ

√
ε

16π
t + C

log(1/ε)
t.

Taking expectations, we conclude that E[ϕε(R
ε
t − Rt)] ≤ Ct/ log(1/ε). But since

ϕε(x) ≤ x ≤ ϕε(x) + ε, we deduce that E[Rε
t − Rt ] ≤ ε + Ct/ log(1/ε). Coming

back to (34), using the Doob inequality and that 0 ≤ ϕ′
ε ≤ 1 and (

√
Rε

s − √
Rs)

2 ≤
Rε

s − Rs , we conclude that E[sup[0,T ] ϕε(R
ε
t − Rt)] ≤ CT/ log(1/ε) + C(εT +

CT 2/ log(1/ε))1/2, and finally that E[sup[0,T ](Rε
t − Rt)] ≤ ε + CT/ log(1/ε) +

C(εT + CT 2/ log(1/ε))1/2, from which the conclusion follows.
Step 5. Finally, we assume that χ ≥ 8π and we prove that (Rε

t )t≥0 goes in law
to the (2 −χ/(4π))-dimensional squared Bessel process frozen when it reaches 0.
We consider the frozen (2 − χ/(4π))-dimensional squared Bessel process associ-
ated to (βε

t )t≥0, that is, Rt = R0 + 2
∫ t

0
√

Rs dβε
s + (2 −χ/(4π))t for all t ∈ [0, τ ],

with τ = inf{t ≥ 0 : Rt = 0} and Rt = 0 for all t ≥ τ . We will check that for all
α > 0, all T > 0, limε→0 P(sup[0,T ] |Rε

t − Rt | > α) = 0 and this will complete the
proof. We introduce τk = inf{t ≥ 0 : Rt ≤ 1/k} and observe that τ = supk≥1 τk .

Step 5.1. For any α > 0, t ≥ 0 and k ≥ 1, limε→0 P(sup[0,t∧τk)
|Rε

s −Rs | ≥ α) =
0. Indeed, using that Rε

t ≥ Rt for all t ≥ 0 by the comparison theorem [36], The-
orem 3.7, page 394, that Rε

t − Rt = 2
∫ t

0 (
√

Rε
s − √

Rs)dβε
s + (χ/4π)

∫ t
0 [ε2/(ε2 +
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4Rε
s )]ds for all t ∈ [0, τk], and that |√x −√

y| ≤ k1/2|x − y|/2 for all x, y ≥ 1/k,
it is easily checked, by the Doob inequality, that

E
[

sup
[0,t∧τk)

(
Rε

s − Rs

)2]≤ Ck

∫ t

0
E
[

sup
[0,s∧τk)

(
Rε

u − Ru

)2]
ds + Cε4k2t2,

whence E[sup[0,t∧τk)
(Rε

s − Rs)
2] ≤ Cε4k2t2 exp(Ckt) by the Gronwall lemma.

Step 5.2. We write, for α > 0 and k ≥ 1 fixed,

P
(

sup
[0,T ]

(
Rε

t − Rt

)≥ α
)

≤ P
(

sup
[0,T ∧τk]

(
Rε

t − Rt

)≥ α
)

+ P
(
τk < T ,Rε

τk
> 2/k

)

+ P
(
τk < T ,Rε

τk
≤ 2/k, sup

[τk,T ]
Rε

t ≥ α
)
.

For the last term, we used that sup[τk,T ](Rε
t −Rt) ≥ α implies that sup[τk,T ] Rε

t ≥ α

because 0 ≤ Rt ≤ Rε
t . By Step 5.1, the two first terms tend to 0 as ε → 0 (recall

that Rτk
= 1/k), whence

lim sup
ε→0

P
(

sup
[0,T ]

(
Rε

t − Rt

)≥ α
)

≤ lim sup
ε→0

P
(
τk < T ,Rε

τk
≤ 2/k, sup

[τk,T ]
Rε

t ≥ α
)
.

Using the strong Markov property for the process Rε as well as its monotony with
respect to its initial condition (by the comparison theorem), we deduce that

lim sup
ε→0

P
(

sup
[0,T ]

(
Rε

t − Rt

)≥ α
)

≤ lim sup
ε→0

P
(

sup
[0,T ]

R
2/k,ε
t ≥ α

)
,

where

R
2/k,ε
t = 2/k + 2

∫ t

0

√
R

2/k,ε
s dβε

s +
∫ t

0

(
2 − χR

2/k,ε
s

π(ε2 + 4R
2/k,ε
s )

)
ds.

We introduce, for r ∈ (0,1) and ε ∈ (0,1/2), the solution (S
r,ε
t )t≥0 to S

r,ε
t = r +

2
∫ t

0

√
|Sr,ε

s |dβε
s + 2ε2 ∫ t

0 (ε2 + 4|Sr,ε
s |)−1 ds. Such a solution is pathwise unique by

[36], Theorem 3.5, page 390, and nonnegative by the comparison theorem [36],
Theorem 3.7, page 394. Again by the comparison theorem, and since χ ≥ 8π , we
find that a.s., R

2/k,ε
t ≤ S

2/k,ε
t for all t ≥ 0. Hence,

lim sup
ε→0

P
(

sup
[0,T ]

(
Rε

t − Rt

)≥ α
)

≤ lim sup
ε→0

P
(

sup
[0,T ]

S
2/k,ε
t ≥ α

)

≤ lim sup
ε→0

E[sup[0,T ] S
2/k,ε
t ]

α
.

We will verify in the next step that (if r ∈ (0,1])
(35) E

[
sup
[0,T ]

S
r,ε
t

]
≤ C(1 + T )

(
r + 1/ log(1/ε)

)1/2
,
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so that lim supε→0 P(sup[0,T ](Rε
t − Rt) ≥ α) ≤ C(1 + T )k−1/2/α. Letting k tend

to infinity, we conclude that, as desired, lim supε→0 P(sup[0,T ](Rε
t −Rt) ≥ α) = 0.

Step 5.3. To show (35), we consider the Yamada function ϕε built in Step 4. By
the Itô formula,

ϕε

(
S

r,ε
t

)= ϕε(r) + 2
∫ t

0
ϕ′

ε

(
Sr,ε

s

)√
S

r,ε
s dβε

s +
∫ t

0
ϕ′

ε

(
Sr,ε

s

) 2ε2

ε2 + 4S
r,ε
s

ds

+ 2
∫ t

0
ϕ′′

ε

(
Sr,ε

s

)
Sr,ε

s ds.

Proceeding as in Step 4, we find that

ϕε

(
S

r,ε
t

)≤ r + 2
∫ t

0
ϕ′

ε

(
Sr,ε

s

)√
S

r,ε
s dβε

s +
√

ε

2
t + C

log(1/ε)
t

(36)

≤ r + C

log(1/ε)
t + 2

∫ t

0
ϕ′

ε

(
Sr,ε

s

)√
S

r,ε
s dβs.

Taking expectations, we deduce that E[ϕε(S
r,ε
t )] ≤ r + Ct/ log(1/ε), whence

E[Sr,ε
t ] ≤ r + ε + Ct/ log(1/ε). Coming back to (36) and using the Doob inequal-

ity and that 0 ≤ ϕ′
ε ≤ 1, we conclude that

E
[

sup
[0,T ]

ϕε

(
S

r,ε
t

)]≤ r + CT

log(1/ε)
+ C

(
rT + εT + T 2

log(1/ε)

)1/2

≤ C(1 + T )

(
r + 1

log(1/ε)

)1/2

because r ∈ (0,1]. Then (35) follows from the fact that x ≤ ε + ϕε(x). �

This allows us to conclude when χ ≥ 8π .

PROOF OF THEOREM 19 WHEN χ ≥ 8π . The existence of a (weak) solution
to (33) follows from Lemma 20, and the solution built there is frozen when it
reaches 0. The pathwise uniqueness of such a frozen solution follows from the
Lipschitz continuity of coefficients σ, b on R2 \{0} and can easily be verified using
the stopping times τ� = inf{t ≥ 0 : |Zt | ≤ 1/�} and that τ = inf{t ≥ 0 : |Zt | = 0} =
sup�≥1 τ� [because t �→ Zt is a.s. continuous on [0,∞)]. Using Lemma 20, we
easily conclude that (Zε

t )t≥0 goes in law to this (Zt )t≥0. Since Dε
t = |Zε

t |−2/3Zε
t

and since the map z �→ |z|−2/3z1{z �=0} is continuous, we conclude that (Dε
t )t≥0

goes in law, as ε → 0, to (|Zt |−2/3Zt1{Zt �=0})t≥0. �

To conclude the proof when χ ∈ (0,8π), the only issue is to check the the
uniqueness in law of the solution. We define h2π(θ) = θ − 2π�θ/(2π)� ∈ [0,2π).
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LEMMA 21. Consider 0 ≤ s0 < t0, a continuous function r : [0,∞) �→ R+
satisfying that rs0 = rt0 = 0 and rt > 0 for all t ∈ (s0, t0) and

∫ t
s0

(rs)
−1 ds = ∞ for

all t ∈ (s0, t0). There is a law �(s0, t0, (rs)s∈[s0,t0]) on C((s0, t0), [0,2π)) (with the
torus topology on [0,2π)) such that for any filtration (Ht )t≥0 in which we have a
1-dimensional (Ht )t≥0-Brownian motion (γt )t≥0 and a (Ht )t≥0-adapted process
(Tt )t∈(s0,t0) with Tt = h2π(Tu + ∫ t

u(rs)
−1/2 dγs) for all s0 < u < t < t0, (Tt )t∈(s0,t0)

is independent of Hs0 and is �(s0, t0, (rs)s∈[s0,t0])-distributed.

PROOF OF LEMMA 21. Existence. Let u0 ∈ (s0, t0) be chosen arbitrarily.
We consider a Brownian motion (γt )t≥0, independent of a random variable �,
uniformly distributed on [0,2π). We put Tt = h2π(� + ∫ t

u0
(rs)

−1/2 dγs) for
all t ∈ (s0, t0) [with

∫ t
u0

(rs)
−1/2 dγs = − ∫ u0

t (rs)
−1/2 dγs when t < u0]. Then

(Tt )t∈(s0,t0) is clearly continuous for the torus topology and it holds that Tt =
h2π(Tu + ∫ t

u(rs)
−1/2 dγs) for all s0 < u < t < t0. Furthermore, for each fixed

t ∈ (s0, t0), by independence between � and γ , the conditional law of Tt knowing
(γs)s≥0 is the uniform distribution on [0,2π), which implies that Tt is independent
of (γs)s≥0. Finally, we have to verify that setting Ht = σ((Ts), (γs)s∈[0,t]), (γs)s≥0
is a (Ht )t≥0-Brownian motion. Let thus t ∈ (s0, t0) be fixed. We have to verify that
(γs −γt )s≥t is independent of (Ts, γs)s∈(s0,t]. Since Ts = h2π(Tt −∫ t

s (ru)
−1/2 dγu)

for all s ∈ (s0, t], it holds that σ((Ts, γs)s∈(s0,t]) = σ(Tt , (γs)s∈(s0,t]) and the con-
clusion easily follows from the independence between Tt and (γs)s∈[s0,t0].

Uniqueness. We thus consider a filtration (Ht )t≥0 in which we have a
Brownian motion (γt )t≥0 and an adapted process (Tt )t∈(s0,t0) satisfying Tt =
h2π(Tu + ∫ t

u(rs)
−1/2 dγs) for all s0 < u < t < t0. We will show that for any

fixed u0 ∈ (s0, t0), Tu0 is uniformly distributed on [0,2π) and independent of
Hs0 ∨ σ((γt )t≥0). Since (Tt )t∈[s0,t0] is σ(Tu0, (γt − γs0)t∈(s0,t0))-measurable and
since (γt )t≥0 is a (Ht )t≥0-Brownian motion, we conclude that (Tt )t∈(s0,t0) is inde-
pendent of Hs0 . Furthermore, the process (Tt )t∈(s0,t0) clearly has the same law as
the one built above.

For 0 < ε < η < u0 − s0, we have Tu0 = h2π(Ts0+ε + ∫ s0+η
s0+ε (rs)

−1/2 dγs +∫ u0
s0+η(rs)

−1/2 dγs). By assumption, the vector (
∫ s0+η
s0+ε (rs)

−1/2 dγs,∫ u0
s0+η(rs)

−1/2 dγs) has independent components and is independent of Hs0 ∨
σ(Ts0+ε). Setting σε,η = ∫ s0+η

s0+ε (rs)
−1 ds, we thus have, for any ϕ : R �→ [0,∞)

continuous and 2π -periodic,

E
[
ϕ(Tu0)|Hs0 ∨ σ

(
Ts0+ε, (γs − γs0+η)s≥s0+η

)]

=
∫
R

ϕ

(
Ts0+ε +

∫ u0

s0+η
(rs)

−1/2 dγs + σε,ηx

)
e−x2/2
√

2π
dx(37)

→ (2π)−1
∫ 2π

0
ϕ(x)dx



2852 N. FOURNIER AND B. JOURDAIN

a.s. as ε → 0. This last convergence follows from the facts that limε→0 σε,η = ∞
and that, setting ϕ̄(x) := ϕ(x) − (2π)−1 ∫ 2π

0 ϕ(y)dy and �(x) := ∫ x
0 ϕ̄(y) dy, for

all θ ∈ [0,2π),
∣∣∣∣
∫
R

ϕ(θ + σx)
e−x2/2
√

2π
dx − 1

2π

∫ 2π

0
ϕ(x)dx

∣∣∣∣
= 1√

2π

∣∣∣∣∑
k∈Z

∫ 2π/σ

0
ϕ̄(σy)e−(y−(θ+2kπ)/σ)2/2 dy

∣∣∣∣
= 1

σ
√

2π

∣∣∣∣∑
k∈Z

∫ 2π/σ

0
�(σy) × (

y − (θ + 2kπ)/σ
)
e−(y−(θ+2kπ)/σ)2/2 dy

∣∣∣∣
≤

√
2π

σ
sup

x∈[0,2π)

∣∣ϕ(x)
∣∣ ∫

R
|z|e−z2/2 dz

= 2
√

2π

σ
sup

x∈[0,2π)

∣∣ϕ(x)
∣∣.

We used an integration by parts, that �(0) = �(2π) = 0 and that |�(y)| ≤
2π supx∈[0,2π) |ϕ(x)| for all y ∈ [0,2π).

We deduce from (37) that Tu0 is uniformly distributed on [0,2π) and is indepen-
dent of Hs0 ∨ σ((γs − γs0+η)s≥s0+η). Since η > 0 can be chosen arbitrarily small,
we conclude that Tu0 is independent of Hs0 ∨σ((γs −γs0)s≥s0) = Hs0 ∨σ((γs)s≥0)

as desired. �

LEMMA 22. Assume that χ ∈ (0,8π). There is uniqueness in law for (33)
among solutions such that a.s.,

∫∞
0 1{Zt=0} dt = 0.

PROOF. As in the proof of Theorem 19 when χ ≥ 8π , (33) admits a pathwise
unique solution until it reaches 0. All the difficulty is thus to prove the uniqueness
in law of the solution started at 0. We thus consider, if it exists, a continuous
solution (Zt )t≥0 to (33) with Z0 = 0, adapted to some filtration (Ft )t≥0 in which
(Wt)t≥0 is a 2-dimensional Brownian motion, and such that

∫∞
0 1{Zt=0} dt vanishes

a.s.
Step 1. We define Rt = |Zt |2/3/4 and βt = ∫ t

0 1{Zs �=0}|Zs |−1Zs · dWs , which is
clearly a 1-dimensional (Ft )t≥0-Brownian motion. Here, we prove that

(38) Rt = 2
∫ t

0

√
Rs dβs + (

2 − χ/(4π)
)
t.

Starting from (33) (with Z0 = 0) and using the Itô formula, we easily find that

|Zt |2 = 12
∫ t

0
|Zs |5/3 dβs + (72 − 3χ/π)

∫ t

0
|Zs |4/3 ds.
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For η > 0, using again Itô’s formula, we find that

(|Zt |2 + η
)1/3 = η1/3 + 4

∫ t

0
|Zs |5/3(|Zs |2 + η

)−2/3
dβs

+ (24 − χ/π)

∫ t

0
|Zs |4/3(|Zt |2 + η

)−2/3
ds

− 16
∫ t

0
|Zs |10/3(|Zs |2 + η

)−5/3
ds.

Since
∫ t

0 1{Zs=0} ds = 0 a.s. by assumption, the Lebesgue theorem ensures us that
the sum of the two last terms in the right-hand side converges a.s. to (8 −χ/π)t as
η → 0. The Itô isometry ensures that the second term in the right-hand side con-
verges in L2 to 4

∫ t
0 |Zs |1/3 dβs . All in all, we find that |Zt |2/3 = 4

∫ t
0 |Zs |1/3 dβs +

(8 − χ/π)t . Dividing by 4 completes the proof of (38).
Step 2. We consider, for each η > 0, a nondecreasing C2-function ψη :

[0,∞) �→ [0,∞) such that ψη(u) = 0 for all u ∈ [0, η/2] and ψη(u) = 1 for all
u ≥ η. Observing that ψη(Rt)|Zt |−1Zt = �η(Zt) where �η(z) = ψη(|z|2/3/4) ×
|z|−1z is of class C2 on R2, we easily obtain, starting from (33) and applying the
Itô formula,

ψη(Rt)
Zt

|Zt | =
∫ t

0
ψη(Rs)

(
2Z⊥

s

Z⊥
s · dWs

|Zs |7/3 − 2Zs

|Zs |5/3 ds

)
(39)

+
∫ t

0

Zs

|Zs |
(
ψ ′

η(Rs) dRs + 2ψ ′′
η (Rs)Rs ds

)
,

where, for z ∈ R2 with respective coordinates z1 and z2, z⊥ denotes the element of
R2 with respective coordinates −z2 and z1.

Let γt = ∫ t
0 1{Zs �=0}|Zs |−1Z⊥

s · dWs . Since 〈β,γ 〉t = ∫ t
0 1{Zs �=0}|Zs |−2Zs ·

Z⊥
s ds = 0, the process (γt )t≥0 is a 1-dimensional (Ft )t≥0-Brownian indepen-

dent of (βt )t≥0, and thus also of (Rs)s≥0 [because (Rs)s≥0 is σ(R0, (βs)s≥0)-
measurable by pathwise uniqueness for the SDE it solves].

For any 0 < u < t , on the event {inf[u,t] Rs > 0}, choosing η ∈ (0, inf[u,t] Rs) in
the difference between (39) and the same equation with t replaced by u, we obtain

Zt

|Zt | = Zu

|Zu| +
∫ t

u

(
2

Z⊥
s

|Zs |
dγs

|Zs |1/3 − 2Zs

|Zs |5/3 ds

)
(40)

= Zu

|Zu| +
∫ t

u

(
Z⊥

s

|Zs |
dγs√
Rs

− Zs

|Zs |
ds

2Rs

)
.

Step 3. For s > 0 such that Rs > 0 we define Ts ∈ [0,2π) through the equality
|Zs |−1Zs = eiTs . For s ≥ 0 with Rs = 0, we simply put Ts = 0. We used the natural
identification between R2 and C: for θ ∈ R, we denote by eiθ (resp., ieiθ ) the
2-dimensional vector with coordinates cos θ and sin θ (resp., − sin θ and cos θ ).
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We claim that for all 0 < u < t , on the event {inf[u,t] Rs > 0}, it holds that Tt =
h2π(Tu + ∫ t

u R
−1/2
s dγs).

To check this claim, on the event {inf[u,t] Rs > 0}, we introduce Tv = Tu +∫ v
u R

−1/2
s dγs , for all v ∈ [u, t]. Since (γv)v≥0 is independent of the event

{inf[u,t] Rs > 0}, we can apply the Itô formula:

for all v ∈ [u, t], eiTv = eiTu +
∫ v

u

(
ieiTs

dγs√
Rs

− eiTs
ds

2Rs

)
.

Recalling (40) and using a uniqueness argument, we deduce that on the event
{inf[u,t] Rs > 0}, |Zv|−1Zv = eiTv whence Tv = h2π(Tv) for all v ∈ [u, t].

Step 4. Here, we check that a.s.,
∫ t+h
t R−1

s ds = ∞ for all t ≥ 0 such that Rt = 0
and all h > 0. This follows from the fact that for all T > 0, limu↘0 supt∈[0,T ][u(1∨
log(1/u))]−1/2|√Rt+u − √

Rt | = √
2 a.s.; see Khoshnevisan [25], (2.1a), page

1299, and recall that (Rs)s≥0 is a squared (2 − χ/(4π))-dimensional Bessel pro-
cess starting from 0 by Step 1, with 2 − χ/(4π) > 0.

Step 5. Here, we verify that conditionally on (Rs)s≥0, for any σ((Rs)s≥0)-
measurable finite family 0 < s1 < t1 < s2 < t2 < · · · < sn < tn such that
for all k = 1, . . . , n, Rsk = Rtk = 0 and Rs > 0 on (sk, tk), the variables
{(Ts)s∈(sk,tk), k = 1, . . . , n} are independent and for each k = 1, . . . , n, (Ts)s∈(sk,tk)

is �(sk, tk, (Rs)s∈(sk,tk))-distributed. The function � was introduced in Lemma 21.
Let (Zt ,gt )t≥0 denote the canonical process on C([0,∞),R2 × R) endowed

with the conditional law of (Zt , γt )t≥0 knowing (Rt )t≥0. We define Tt ∈ [0,2π)

by |Zt |−1Zt = eiTt if Zt �= 0 and Tt = 0 else. We introduce the filtration Ht =
σ((Ts,gs)s∈[0,t]). We claim that a.s., (gt )t≥0 is a (Ht )t≥0-Brownian motion, be-
cause (γt )t≥0 is independent of σ((Rs)s≥0) and is a Brownian motion in the fil-
tration (Ft )t≥0 to which (Tt )t≥0 is adapted: for all t > 0, all bounded measurable
�,� ,

E
[
�
(
(γt+s − γt )s≥0

)
�
(
(γs, Ts)s∈[0,t]

)|(Rs)s≥0
]

= E
[
�
(
(γs, Ts)s∈[0,t]

)
E
[
�
(
(γt+s − γt )s≥0

)|Ft ∨ σ
(
(Rs)s≥0

)]|(Rs)s≥0
]

= E
[
�
(
(γt+s − γt )s≥0

)]
E
[
�
(
(γs, Ts)s∈[0,t]

)|(Rs)s≥0
]
.

Fix now k ∈ {1, . . . , n}. It a.s. holds that Tt = h2π(Tu + ∫ t
u R

−1/2
s dgs) for all

sk < u < t < tk by Step 3 and that
∫ t
sk

R−1
s ds = ∞ for all t ∈ (sk, tk) by Step 4.

Applying Lemma 21, we find that a.s., (Ts)s∈(sk,tk) is independent of Hsk and
is �(sk, tk, (Rs)s∈(sk,tk))-distributed. Using that (Ts)s∈(sk,tk) is Htk -measurable for
each k = 1, . . . , n, the independence easily follows.

Step 6. By Step 1, (Rt )t≥0 is a (2 − χ/(4π))-dimensional Bessel process start-
ing from 0. By Step 5, the conditional law of (Tt1{Rt �=0})t≥0 knowing (Rt )t≥0

is also determined: conditionally on (Rs)s≥0, for any σ((Rs)s≥0)-measurable fi-
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nite family {(sk, tk), k = 1, . . . , n} of excursions of (Rs)s≥0, we know the law
of (Ts)s∈⋃n

k=1(sk,tk)
. Since by construction Zt = (4Rt)

3/2eiTt 1{Rt �=0}, the law of
(Zt )t≥0 is thus entirely characterized. �

Finally, we can give the following.

PROOF OF THEOREM 19 WHEN χ ∈ (0,8π). First, the existence of a solu-
tion (Zt )t≥0 to (33) such that a.s.

∫∞
0 1{Zt=0} dt = 0 follows from Lemma 20: the

solution (Zt )t≥0 built there satisfies that |Zt |2/3/4 is a (2 − χ/(4π))-dimensional
Bessel process, whence

∫∞
0 1{Zt=0} dt = 0 a.s. by [36], page 442. The unique-

ness in law of this solution has been checked in Lemma 22. The convergence
of (Zε

t )t≥0 to (Zt )t≥0 clearly follows from Lemma 20 and from this unique-
ness in law. This implies as in the case χ ≥ 8π that (Dε

t )t≥0 goes in law to
(|Zt |−2/3Zt1{Zt �=0})t≥0.

It remains to verify that when χ ∈ (0,4π), Dt = |Zt |−2/3Zt1{Zt �=0} solves (31)
and that uniqueness in law holds true for (31).

For (Dt)t≥0 a solution to (31), one easily checks by Itô’s formula that Zt =
|Dt |2Dt solves (33) and that |Dt |2 is a (2 − χ/(4π))-dimensional Bessel process,
whence

∫∞
0 1{Zt=0} dt = 0 a.s. by [36], page 442. The uniqueness in law for (31)

then follows from Lemma 22.
For (Zt )t≥0 built above, by Itô’s formula, for η > 0,(|Zt |2 + η

)−1/3
Zt

= (|Z0|2 + η
)−1/3

Z0 + 2
∫ t

0
|Zs |2/3(|Zs |2 + η

)−1/3
dWs

+ 4
∫ t

0

(|Zs |−1/3(|Zs |2 + η
)−1/3 − |Zs |5/3(|Zs |2 + η

)−4/3)
Zs dβs

+
∫ t

0

((
16 − 3χ/(2π)

)|Zs |−2/3(|Zt |2 + η
)−1/3

+ (χ/π − 48)|Zs |4/3(|Zt |2 + η
)−4/3

+ 32|Zs |10/3(|Zt |2 + η
)−7/3)

Zs ds.

By the Itô isometry and the Lebesgue theorem and since a.s.
∫ t

0 1{Zs=0} ds = 0,
the second term on the RHS tends to 2Wt in L2 and the third term on the
RHS tends to 0 in L2. Since |Zt |2/3/4 is a (2 − χ/(4π))-dimensional squared
Bessel process and 2 − χ/(4π) > 1, [36], Exercise 1.26, page 451, ensures that
a.s.

∫ t
0 |Zs |−1/3 ds < ∞. Hence, the Lebesgue theorem ensures us that the last

term on the RHS converges a.s. to −(χ/(2π))
∫ t

0 |Zs |−4/3Zs ds. We conclude that
Dt = |Zt |−2/3Zt1{Zt �=0} solves Dt = D0 +2Wt −(χ/(2π))

∫ t
0 |Ds |−2Ds ds, which

completes the proof. �
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7. On the system with N ≥ 3 particles.

7.1. Classification of reflecting and sticky collisions. We have seen in the
proof of Lemma 15-Step 2 that very roughly, the empirical variance of the po-
sitions of k particles in the system with N particles resembles a squared Bessel
process of dimension δN,χ (k) = (k − 1)(2 − χk/(4πN)). Fix χ > 0 and N ≥ 3
and consider the regularized particle system (11), which is always well-posed. We
now describe formally the expected behavior of its limit as ε → 0. According to
[36], page 442, and the comparison theorem [36], Theorem 3.7 page 394, the fol-
lowing events should occur:

• if δN,χ (k) ≥ 2, no collisions of subsystems of k particles,
• if δN,χ (k) ∈ (0,2), (instantaneously) reflecting collisions of subsystems of k

particles,
• if δN,χ (k) ≤ 0, sticky collisions of subsystems of k particles.

Let us now study the inequality δN,χ (k) ≥ 2. We have already seen in the proof
of Lemma 15-Step 2 that when χ ∈ (0,8π(N − 2)/(N − 1)], δN,χ (k) ≥ 2 for all
k ∈ {3, . . . ,N}. When χ ∈ (8π(N − 2)/(N − 1),4πN/3], δN,χ (3) ≥ 2 whereas
δN,χ (2) < 2 and δN,χ (N) < 2; hence, the two roots x±

N,χ = [1 + (8πN)/χ ±√
(1 + 8πN/χ)2 − 64πN/χ ]/2 of the second-order equation δN,χ (x) = 2 are

such that x−
N,χ ∈ (2,3] and x+

N,χ ∈ [3,N), so that δN,χ (2) < 2, δN,χ (k) ≥ 2 for

k ∈ {3, . . . , �x+
N,χ�} and δN,χ (k) < 2 for k ∈ {�x+

N,χ� + 1, . . . ,N}. Finally, one

easily checks that x−
N,4πN/3 = 3 and x+

N,4πN/3 = 4. By strict monotonicity of the
map χ �→ δN,χ (k), we conclude that if χ > 4πN/3, then δN,χ (k) < 2 for all
k ∈ {2, . . . ,N}.

Let us next study the inequality δN,χ (k) ≤ 0, which, for k ∈ {2, . . . ,N} is equiv-
alent to k ≥ 8πN/χ . Hence, for χ ∈ (0,8π), δN,χ (k) > 0 for all k ∈ {2, . . . ,N}
whereas for χ ∈ [8π,4πN), δN,χ (k) > 0 for all k ∈ {2, . . . , �8πN/χ� − 1} and
δN,χ (k) ≤ 0 for all k ∈ {�8πN/χ�, . . . ,N} with the two sets nonempty. When
χ ≥ 4πN , δN,χ (k) ≤ 0 for all k ∈ {2, . . . ,N}.

When N ≥ 6, we end up with the following picture.
(a) If χ ∈ (0,8π(N −2)/(N −1)], the regularized particle system should tend to

the particle system (4) and the latter should have a unique (in law) solution. Indeed,
it holds that δN,χ (k) ≥ 2 for all k ≥ 3 and that δN,χ (2) ∈ (0,2), so that only binary
reflecting collisions occur. We have already checked a tightness/consistency result
in this spirit in Theorem 7. Only the uniqueness in law remains open.

(b) If χ ∈ (8π(N − 2)/(N − 1),8π), the regularized particle system should
tend to the particle system (4) and the latter should also have a unique (in law)
solution. One may check that k0 := �x+

N,χ� + 1 ∈ {N − 1,N} [it suffices to verify
that δN,χ (N − 2) ≥ δN,8π(N − 2) ≥ 2]. In this situation, there should be binary
reflecting collisions and also reflecting collisions of subsystems of particles with
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cardinality in {k0,N}. To check the existence (and a fortiori uniqueness) of such
a process, one has to control the drift term during the collisions with reflection.
In the present paper, we are more or less able to contol the drift during a (reflect-
ing) binary collision, but we have not the least idea of what to do during a k-ary
reflecting collision with k ≥ 3.

(c) If χ ∈ [8π,4πN/3], the regularized particle system should tend to a particle
system with sticky collisions that we will describe more precisely in the next sub-
section. One can check that, for k0 := �x+

N,χ� + 1 > 4 and k1 := �8πN/χ� ≤ N ,
we have k0 ∈ {k1 −2, k1 −1} [just verify that δN,χ (k1 −3) ≥ δN,χ (8πN/χ −2) ≥
2 and δN,χ (k1 − 1) ≤ δN,χ (8πN/χ − 1) < 2]. Thus, binary reflecting collisions,
as well as k-ary reflecting collisions, for k ∈ {k0, k1 − 1}, should occur, as well
as sticky collisions of subsytem of k-particles, for k ∈ {k1, . . . ,N}. Assume, for
example, that k0 = k1 − 1. What might happen is that, at some time, k0 particles
become close to each other, they may collide (with reflection) a few times, then
another particle is attracted in the zone, the k0 + 1 = k1 particles meet and then
remain stuck forever. Such a cluster will move with a very small diffusion coeffi-
cient and should collide later with other particles (or clusters) in a sticky way. Of
course, such a result would be very interesting but it seems very difficult to prove,
because to check the existence of such a process, one would have to control the
drift term during the collisions with reflection, as mentioned previously. The sticky
collisions should be easier to describe.

(d) If χ ∈ (4πN/3,4πN), the same situation as previously should arise, except
that there should be k-ary reflecting collisions for all k ∈ {2, . . . , �8πN/χ� − 1}
and sticky k-ary collisions for all k ∈ {�8πN/χ�, . . . ,N}. In addition, when χ ≥
2πN , there is a problem of definition of the drift due to binary collisions as in
Remark 18: the particle system without cutoff (4) should have solutions only until
the first binary collision. It is not clear to us how to rewrite the equation in a way
that makes sense

(e) If finally χ ≥ 4πN , then there should be sticky k-ary collisions for all k ∈
{2, . . . ,N}.

When N = 5, we find the following dichotomy. If χ ∈ (0,6π ], only binary
reflecting collisions. If χ ∈ (6π,20π/3], only reflecting collisions of subsystems
of k ∈ {2,5} particles. If χ ∈ (20π/3,8π), only reflecting collisions of subsys-
tems of k ∈ {2,3,4,5} particles. If χ ∈ [8π,20π), reflecting collisions of sub-
systems of k ∈ {2, . . . , �40π/χ� − 1} particles and sticky collisions of subsys-
tems of k ∈ {�40π/χ�, . . . ,5} particles. If χ ≥ 20π , k-ary sticky collisions for all
k ∈ {2, . . . ,5}.

When finally N ∈ {3,4}, 8π(N − 2)/(N − 1) = 4πN/3 and the situation is
as follows. If χ ∈ (0,8π(N − 2)/(N − 1)], only binary reflecting collisions. If
χ ∈ (4πN/3,8π), reflecting collisions of subsystems of k ∈ {2, . . . ,N} particles.
If χ ∈ [8π,4πN), k-ary reflecting collisions for k ∈ {2, . . . , �8πN/χ� − 1} and
k-ary sticky collisions of subsystems of k ∈ {�8πN/χ�, . . . ,N} particles. If χ ≥
4πN , k-ary sticky collisions for all k ∈ {2, . . . ,N}.
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7.2. A particle system in the supercritical case. When χ ≥ 8π , the following
dynamics should describe the limit of the regularized particle system as ε → 0.
Particles are characterized by their masses and their positions. Initially, we start
with N particles with masses ν1

0 , . . . , νN
0 all equal to 1/N and with some given

positions X
1,N
0 , . . . ,X

N,N
0 . If now at some time t ≥ 0, we have Nt particles (Nt

will be a.s. nonincreasing) with masses ν1
t , . . . , ν

Nt
t (such that

∑Nt

1 νi
t = 1), we

make the positions evolve according to

(41) dX
i,N
t =

√
2

Nνi
t

dBi
t + χ

Nt∑
j=1

ν
j
t K

(
X

i,N
t − X

j,N
t

)
dt, i = 1, . . . ,Nt

until the next collision between at least two of these Nt particles. If the sum S

of the masses of the particles involved in the collision is smaller than 8π/χ , they
should automatically separate instantaneously and we carry on making evolve the
system according to (41) (with the same values for the masses and for Nt ) until
the next collision. If now S exceeds 8π/χ , the particles involved in the collision
are replaced by a single particle with mass S, the number of particles is decreased
accordingly, the particles are relabeled, and we make the system evolve according
to (41) with these new values for Nt and for the masses until the next collision.

By construction, the masses take values in {1/N,2/N, . . . ,N/N} and actually
in {k/N : k = 1 or 8πN/χ ≤ k ≤ N}. A particle of mass k/N with k ≥ 2 has to
be seen as a cluster of k elementary particles. The drift term is thus easily un-
derstood: a single elementary particle interacts with the other ones proportionally
to 1/N , so that a cluster consisting of k elementary particles interacts with the
other ones proportionally to its mass k/N . The diffusion coefficients are also quite
natural: a single particle being subjected to a Brownian excitation with coefficient√

2, a cluster with mass k/N is excited by the mean of k Brownian motions with
coefficient

√
2, that is, by a Brownian motion with coefficient

√
2/k.

If Nt ≥ 2, setting for I ⊂ {1, . . . ,Nt } with cardinality |I | ≥ 2, X̄I
t =∑

i∈I νi
t X

i,N
t /

∑
i∈I νi

t and RI
t = (N/2)

∑
i∈I νi

t |Xi,N
t − X̄I

t |2, a simple compu-
tation shows that, when neglecting the interaction with particles with label out-
side I , RI

t behaves like a squared Bessel process of dimension 2(|I | − 1) −
(χN/4π)

∑
i,j∈I,i �=j νi

t ν
j
t ≤ (|I |− 1)[2 −Sχ/(4π)], which is nonpositive as soon

as S =∑
i∈I νi

t ≥ 8π/χ .
Let us mention that once a cluster is formed, its mass necessarily exceeds 8π/χ ,

so that any collision involving a cluster will be sticky.
The existence of such a process is not clear. Sticky collisions should not be very

hard to treat. The main difficulty is to control reflecting collisions. As explained
just above, reflecting collisions only concern particles with masses 1/N , so that
the classification given in Section 7.1 should still be relevant. Thus, we believe
that the main difficulty is to build a (necessarily nontrivial) local (in time) solution
to (4) when χ ≥ 8π and starting from an initial condition where k particles have
the same initial positions, for some k ∈ {2, . . . , �8πN/χ� − 1}.
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7.3. Comments. Observe that this process is different of the one introduced
by Haškovec and Schmeiser in [13] where they consider a system of particles
with different masses to approximate the singular solution to the Keller–Segel
equation. In fact, rather than considering like us the limit ε → 0 of the regular-
ized particle system (11), they first prove propagation of chaos as N → ∞ for a
fixed ε > 0 in [14]. More precisely, they check that for fixed k ≥ 1, the density of
(X

1,N,ε
t , . . . ,X

k,N,ε
t ) solving (11) (with another regularized kernel Kε) converges

as N → ∞ to
∏k

i=1 f ε
t (xi) where (f ε

t )t≥0 solves the regularized Keller–Segel par-
tial differential equation

∂tf
ε
t (x) + χdivx

((
Kε � f ε

t

)
(x)f ε

t (x)
)= �xf

ε
t (x).

The limiting behaviour of (f ε
t )t≥0 as ε → 0 was studied in [6] and involves a

defect measure. Then Haškovec and Schmeiser introduce in [13] a particle system
associated with this limit, in which there are heavy particles that occupy a positive
proportion of the mass, interact with the other particles, but do not undergo any
Brownian excitation.
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