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Product quality and uncertainty are two important issues in the design and operation of
natural gas production networks. This paper presents a stochastic pooling problem optimiza-
tion formulation to address these two issues, where the qualities of the flows in the system are
described with a pooling model and the uncertainty in the system is handled with a multi-
scenario, two-stage stochastic recourse approach. In addition, multi-objective problems are
handled via a hierarchical optimization approach. The advantages of the proposed formula-
tion are demonstrated with case studies involving an example system based on Haverly’s
pooling problem and a real industrial system. The stochastic pooling problem is a potentially
large-scale nonconvex Mixed-Integer Nonlinear Program (MINLP), and a rigorous decom-
position method developed recently is used to solve this problem. A computational study
demonstrates the advantage of the decomposition method over a state-of-the-art branch-
and-reduce global optimizer, BARON. VVC 2010 American Institute of Chemical Engineers AIChE

J, 00: 000–000, 2010
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Introduction

Natural gas is a vital component of the world’s energy
supply; as of 2007, it contributed around a fifth of global

energy demand.1 The importance of natural gas as a fossil
fuel has been increasing in recent years because of differ-
ent factors. First of all, natural gas is a less carbon-intense
fuel than oil or coal, that is, its combustion produces less
greenhouse emissions; it also produces relatively lower sul-
fur, NOx, and particulates emissions on combustion. In
addition, as it is easy, cheap, and clean to convert
into hydrogen, natural gas is considered to be one of the
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most important elements in the transition to a hydrogen
economy.

Raw natural gas consists primarily of methane (CH4; usu-
ally 70–90%); the remaining components include varying
amounts of heavier gaseous hydrocarbons such as ethane
(C2H6), propane (C3H8), butane (C4H10), and so forth, and
acid gases including carbon dioxide (CO2) and hydrogen
sulfide (H2S), as well as nitrogen (N2), helium (He), and
water vapor.2 Therefore, gas quality, as determined by the
compositions of these components, plays an important role
in natural gas production systems. Although the quality of
gas produced by different reservoirs can vary over large
ranges, the products produced by a natural gas production
system must satisfy strict quality specifications because
these products are usually sent to customers with little fur-
ther processing. This is different from oil production sys-
tems in which the quality of the crude oil is usually of little
concern, because it will be further processed into different
products in downstream refineries. Therefore, in the design
and operation of natural gas production systems, the qual-
ities of the gas flows must be tracked throughout the entire
system.

The development of natural gas production infrastructure
involves large investments, and the infrastructure often
remains in operation over the entire life span of the project
(which can be several decades). Also, the natural gas indus-
try has large turnovers and volumes. Hence, even small frac-
tional performance gains made in the design and operation
of natural gas production systems can translate into signifi-
cant increases in profits. It is therefore not surprising that
mathematical programming has been widely applied to the
integrated design and operation problem arising from infra-
structure development and long-term planning for natural
gas production. When some information about the system is
uncertain, before the decisions are implemented, the uncer-
tainty should be described by the model and addressed in the
optimization for profitability or even feasibility of the solu-
tion. One of the most important sources of uncertainty is the
quality of the reservoirs, which can be known exactly only
after gas wells into the reservoirs have been developed.
Other important sources of uncertainty include the capacity
of reservoirs, customer demands on the system, prices of the
products, and so forth.

This article provides a general stochastic pooling problem
formulation to address the qualities of gas flows and differ-
ent sources of uncertainty in infrastructure development and
long-term planning for natural gas production. This is the
first study in the literature, to the best of our knowledge, of
the integrated design and operation of natural gas production
systems through a stochastic pooling framework.

The remaining part of the article is organized as follows.
The previous relevant work is reviewed. Then, the stochastic
pooling problem for the generalized pooling system is stated.
Next, the deterministic and stochastic pooling models of the
system are developed, and several economic objectives as
well as a hierarchical multiobjective optimization approach
are discussed. After that, a rigorous decomposition method is
briefly described for solving the stochastic pooling problem.
Case studies involving one example system and an industrial
natural gas production system are presented to demonstrate
the advantages of the proposed formulations and the decom-

position method. The article ends with conclusions and dis-
cussions on future work.

Literature Review

This section gives a brief review of previous work on
infrastructure development and long-term planning for oil
and natural gas production systems, as well as the relevant
approaches to address product quality and uncertainty in the
problem. The work on oil production systems is reviewed
because the modeling and solution strategies for oil and nat-
ural gas production problems are very similar, and only a
little work on natural gas production systems has been
published.

Although the application of mathematical programming in
the oil and natural gas industry dates back to middle of the
last century,3 the application to infrastructure development
and long-term planning during that period has been limited
by the available computing capability. To ease the computa-
tional burden, the design problem and the operation problem
were solved separately, for example, the design problem
solved with fixed operation profile through linear program-
ming (LP),4 or the operation problem solved with fixed
design through LP.5 Efforts to solve the design and operation
problem simultaneously emerged no later than the beginning
of 1970s. Flanigan6 presented a nonlinear programming
(NLP) model for the design and operation of natural gas
pipeline systems and proposed a specialized, derivative-
based optimization algorithm to solve the problem. Bohan-
non,7 Sullivan,8 and Nygreen et al.9 developed different
mixed-integer linear programming (MILP) models for infra-
structure development and production planning with different
levels of details of the systems. Murray and Edgar10 solved
a well location problem with a simplified reservoir model
via a MILP formulation and an approximating NLP formula-
tion, respectively. McFarland et al.11 used a simple tank
model for reservoir dynamics to formulate an optimal control
problem and solved it with a generalized reduced gradient
method. Iyer et al.12 approximated the nonlinear oil reservoir
model with disjunctive linear models and solved the result-
ing large MILP problem with an iterative aggregation/disag-
gregation approach. Later on van den Heever and Gross-
mann13 modeled the same problem using a nonlinear reser-
voir model and solved the resulting mixed-integer NLP
(MINLP) problem with a Lagrangean decomposition heuris-
tic, and complex economic objectives are incorporated in the
same problem formulation in van den Heever et al.14 Lin
and Floudas15 presented a continuous-time model framework
for well platform planning problems and the resulting
MINLP formulation is better than the one based on a
discrete-time model.

The product quality, however, is not addressed in the
work mentioned above. One reason for this is that most of
the above work focuses on oil production systems, where the
quality of the crude oil is not a key quantity to be controlled
in the production system (as mentioned in the last section).
Actually, oil product qualities are tracked in the downstream
refineries where crude oils are mixed, separated, and reacted
to produce intermediate quality streams that are then blended
to produce the final products. This blending problem, usually
called the pooling problem, has been systematically studied
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for decades.16 The pooling problem is inherently nonconvex
because of the bilinear terms in the model for tracking the
qualities of the flows in the system, and it is considered a
difficult optimization problem to solve reliably. (Note that a
blending problem may include more complicated nonconvex
terms, e.g., when a complex emission model is included,17

but such complex problems are outside the scope of this arti-
cle.) The early research work on the pooling problem obtains
local solutions with different local optimization methods,
such as guessing the qualities and solving the resulting prob-
lem recursively until convergence,18,19 successive LP
(SLP),20 and generalized benders decomposition (GBD).21

Later on, deterministic global optimization methods, which
can guarantee convergence to the global optimum, have been
proposed to solve pooling problems, such as the GOP
method,22,23 and the extensively studied branch-and-bound
(BB) methods.24–26 Tomasgard et al.27 and Rømo et al.28

approximated equations with bilinear terms as linear equa-
tions with integer variables, so the resulting formulation
becomes a MILP. Gounaris et al.29 proposed to relax the
bilinear terms in the pooling problem with piecewise-linear
relaxations and solve the problem via MILP subproblems.
Also, reformulation-linearization techniques are presented for
efficient solution of bilinear programming problems,30,31 and
Tawarmalani and Sahinidis32 discussed different formula-
tions of the pooling problem. Although most of the studied
pooling problems contain simple pooling systems where no
connections between different pools exist, more complicated
pooling systems have been handled,33,34 and the integrated
design and operation of complicated pooling systems has
also been addressed.35,36

With the advancement of computing hardware and mathe-
matical programming techniques, more and more attention
has been paid to include uncertainty in optimization formula-
tions explicitly. Sahinidis37 summarized the various
approaches for optimization under uncertainty, among which
stochastic programming with recourse38 naturally fits and
has been adopted in the integrated design and operation of
oil and natural gas production systems (e.g., Ref. 27, 39). In
a typical stochastic programming formulation with recourse,
the possible realizations of uncertainty are approximated by
a limited number of representative realizations (scenarios),
and the decisions are made sequentially over two or more
time periods according to the outcome of uncertain variables
over these periods. Jonsbraten40 classified uncertainty in
planning problems into two categories: (1) project exogenous
uncertainty, where optimization decisions do not affect the
resolution of uncertainty or change the scenario tree in the
stochastic recourse formulation, for example, the prices of
the products, the customer demands; (2) project endogenous
uncertainty, where optimization decisions do affect the reso-
lution of uncertainty and changes the scenario tree in the sto-
chastic recourse formulation, for example, capacity and qual-
ity of reservoirs. Generally, project endogenous uncertainty
is more difficult to handle (for problems with more than two
stages), because it requires the incorporation of non-anticipa-
tivity constraints to link the decisions (in the second or a
later stage) for different scenarios.41 A typical application of
stochastic programming to a natural gas production system
design can be found in Goel et al.,42 and to an oil and gas
production system design in Tarhan et al.43 A more detailed

survey of recent work on infrastructure development and
production planning under uncertainty can be found in Goel
and Grossmann.44

With explicit modeling of product quality and uncertainty,
the formulation for integrated design and operation of natural
gas production systems becomes a nonconvex MINLP prob-
lem, where the integer variables are at least from the devel-
opment decisions and the nonconvex functions are at least
from the bilinear terms to model the qualities. MINLP prob-
lems are typically solved with BB strategies, such as branch-
and-reduce,44 SMIN-aBB, and GMIN-aBB,45 or decomposi-
tion strategies, such as outer approximation,46–48 and GBD.49

A detailed survey of MINLP solution techniques can be
found in the review article by Grossmann.50

Problem Statement

Figure 1 illustrates the generalized pooling system
addressed in this article. In this system, there are n sources
(labeled from 1 to n) that supply the materials or intermedi-
ate products into the system, r pools (labeled from 1 to r)
where the different materials or intermediate products are
mixed or blended, and m product terminals (labeled from 1
to m) that supply the (same or different) final products. For
a natural gas production system, the sources can be gas
fields or individual wells in the gas fields, the pools can be
production platforms, riser platforms or simple mixing and
splitting units, the product terminals can be liquefied natural
gas (LNG) plants that produce LNG for long distance trans-
portation or dry gas terminals supplying end customers with
pipelines directly.

Different from most of the pooling systems studied in the
literature, this system not only allows connections between a
source and a product terminal, a source and a pool, or a pool
and a product terminal but also allows connections between
two pools.51 Connections between two sources or between
two product terminals, which are also possible in real sys-
tems, are not considered explicitly in this article, but these
connections can be modeled by introducing additional (vir-
tual) pools.

Figures 1b–d give more details on the flows entering or
leaving the sources, pools, and product terminals. Figure 1b
shows that a flow coming out of source i may either go to a
pool j (denoted by fSPi;j ), or go to a product terminal k
(denoted by fSTi;k ). Note that as the component compositions
of source i are parameters, there is no need to model the
individual component flows explicitly for a flow coming out
of source i (which avoids introducing more bilinear terms).
Figure 1c shows that a flow entering a pool j may come
from a source i or come from another pool jþ (whose flow
of component w is denoted by fPPjþ;j;w). Also, a flow leaving
pool j may go to another pool j� (whose flow of component
w is denoted by fPPj;j�;w) or go to a product terminal k (whose
flow of component w is denoted by fPTj;k;w). The subscript w [
{1,…,l} indicates the different component. Figure 1d shows
that a flow entering a product terminal k may come from a
pool j or a source i. All the symbols used in this article are
summarized in Table 1.

The stochastic pooling problem is stated as follows:
‘‘Determine the optimal network design decisions and the

operating flows for the pooling system that maximize the
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profitability of developing and operating the system, while
satisfying the product-specific constraints for all the uncer-
tainty scenarios addressed.’’

Notice that the profitability of developing and operating a
pooling system can be evaluated according to different cri-
teria, which lead to different objective functions in the
problem formulation (and this will be discussed in more
details later). Also, the problem does not address an infinite
number of uncertainty scenarios that might occur, but
addresses a limited number of representative scenarios that
can be selected by scenario generation techniques or
according to industrial experience. A stochastic program-
ming formulation typically optimizes the expected value of
an objective function over the addressed scenarios. If the
formulation optimizes the objective function for the worst-
case scenario or the weighted sum of the expected value
and the variance of the objective function, it becomes a ro-
bust optimization formulation. The pros and cons of robust
optimization formulation compared with the stochastic pro-
gramming formulation have been well discussed in literature
(e.g., Ref. 37, 52). As this article focuses on the advantage
of addressing the uncertainty instead of comparing the dif-
ferent approaches to address uncertainty, the robust optimi-
zation formulation is not implemented and compared in the
case studies.

Two types of formulations can be used to model the gener-
alized pooling system shown in Figure 1. One is to formulate
the mass balance equations with total flows and component
compositions, and the other is to express the mass balances
with individual component flows. As has been well recog-
nized,33 these two formulations have their own pros and
cons, respectively. In general, the first formulation will lead
to more bilinear terms if the total number of mixing flows

entering the pools are more than the total number of splitting
flows leaving the pools; the second formulation will lead to
more bilinear terms otherwise. In this article, the second for-
mulation is used because natural gas production systems are
usually convergent from sources to product terminals.

Model for the Deterministic Pooling Problem

Here, the deterministic pooling problem refers to the
operational problem for an existing pooling system, where
the sources, pools, and product terminals and the connections
between them are already constructed and the parameters of
the model are assumed to be known exactly. This section
gives the model for the deterministic pooling problem, which
is the basis of the model for the stochastic pooling problem
(that is developed in the next section). The model is built by
modeling mass balances and constraints at sources, pools,
and product terminals, respectively.

Model for the sources

The total flow coming out of a source i is subject to a
lower bound ZLBi (which is due to non-negative flow or other
system requirements) and an upper bound ZUBi (which is due
to the source capacity or other system requirements), so:

ZLB
i �

X
j2HSP

i

f SPi;j þ
X
k2HST

i

f STi;k � ZUB
i ; 8i 2 f1;…; ng; (1)

where HSP
i is an index set containing the indices of the pools

that connect to source i and HST
k is an index set containing the

indices of the product terminals that connect to source i. Also,
each flow coming out of source i is subject to lower and upper

Figure 1. The generalized pooling system.

(a) The general diagram. (b) The flows at source i. (c) The flows at pool j. (d) The flows at terminal k.
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bounds (that are due to the pipeline capacity, non-negative
flow, or other system requirements) as:

FSP;LB
i;j � f SPi;j � FSP;UB

i;j ; 8i 2 f1;…; ng; 8j 2 HSP
i ; (2)

FST;LB
i;k � f STi;k � FST;UB

i;k ; 8i 2 f1;…; ng; 8k 2 HST
i ; (3)

where FST;LB
i;k , FST;UB

i;k , FSP;LB
i;j , and FSP;UB

i;j denote the corre-
sponding lower and upper bounds, respectively.

Model for the pools

Fractional variables sPPj;j� and sPTj;k are introduced to model
the mass balances at pool j. They denote the ratio of the flow
from pool j to pool j� to the total flow entering pool j, and
the ratio of the flow from pool j to product terminal k to the
total flow entering pool j, respectively. Then each individual
component flow of each outlet flow can be written as:

f PTj;k;w ¼ sPTj;k
X
i2XSP

j

f SPi;j Ui;w þ
X

jþ2XPPþ
j

f PPjþ;j;w

0
@

1
A;

8j 2 f1;…; rg; 8k 2 XPT
j ; 8w 2 f1;…; lg; ð4Þ

f PPj;j�;w ¼ sPPj;j�
X
i2XSP

j

f SPi;j Ui;w þ
X

jþ2XPPþ
j

f PPjþ;j;w

0
@

1
A;

8j 2 f1;…; rg; 8j� 2 XPP�
j ; 8w 2 f1;…; lg; ð5Þ

where parameter Ui,w denotes the fraction of component w in
the flow from source i, XSP

j is an index set containing the
indices of the sources where an inlet flow to pool j can come
from, XPPþ

j is an index set containing the indices of the pools
where an inlet flow to pool j can come from, XPP�

j is an index
set containing the indices of the pools where an outlet flow
from pool j can go to, and XPT

j is an index set containing the
indices of the product terminals where an outlet flow from
pool j can go to. According to their definition, the split fraction
variables for pool j should be non-negative and their sum
should be unity because of mass balance at pool j, so:X
j�2XPP�

j

sPPj;j� þ
X
k2XPT

j

sPTj;k ¼ 1; sPPj;j� ; s
PT
j;k � 0;

8j 2 f1;…; rg; j� 2 XPP�
j ; k 2 XPT

j : ð6Þ

Also, each flow is subject to upper and lower bounds due
to non-negative flow, pipeline capacity and other system
requirements, and the individual component flows in it are
non-negative. So,

FPP;LB
j;j� �

X
w2f1;…;lg

f PPj;j�;w � FPP;UB
j;j� ; 8j 2f1;…; rg; 8j�2XPP�

j ;

(7)

FPT;LB
j;k �

X
w2f1;…;lg

f PTj;k;w � FPT;UB
j;k ; 8j2f1;…; rg; 8k 2 XPT

j ;

(8)

Table 1. List of Symbols

Symbol Type Description

b Parameter Number of scenarios
c Subscript Index for objectives in multiobjective

optimization
d Subscript Index for objectives in multiobjective

optimization
f Variable Flow rate
h Subscript Index for scenarios, h [ {1,…,b}
i Subscript Index for sources, i [ {1,…,n}
j Subscript Index for pools, j [ {1,…,r}
jþ Subscript Index for the pools whose outlet flows

enter a particular pool
j� Subscript Index for the pools whose inlet flows

are from a particular pool
k Subscript Index for product terminals, k [

{1,…,m}
l Parameter Number of quality components
m Parameter Number of product terminals
n Parameter Number of sources
p Parameter Probability of scenario
r Parameter Number of pools
s Variable Ratio of a flow leaving a pool to the

total flow entering the pool
t Parameter year
w Subscript Index of quality, w [ {1,…,l}
y Binary variable Decision on source, pool, product

terminal or pipeline investment
(AC) Superscript Indicator of annualized capital cost
C Parameter Economic coefficient with cost and

price information
(Cap) Superscript Indicator of capital cost
D Parameter Demand at product terminal
F Parameter Bound on flow rate
L Parameter Life span of the system
LB Superscript Indicator of lower bound
N Parameter Number of objectives in multiobjec-

tive optimization
(OC) Superscript Indicator of annual cost and price

information related to operation
P Superscript Indicator of pool
PP Superscript Indicator of flow from pool to pool
PPþ Superscript Indicator of flow from pool entering a

particular pool
PP� Superscript Indicator of flow from a particular

pool entering a pool
PT Superscript Indicator of flow from pool to product

terminal
S Superscript Indicator of source related quantity
SP Superscript Indicator of flow from source

to pool
ST Superscript Indicator of flow from source to

product terminal
T Superscript Indicator of product terminal
U Parameter Quality of materials at source
UB Superscript Indicator of upper bound
V Parameter Quality bound at product terminal
Z Parameter Source outlet flow bound
a Parameter Discount rate for calculating net

present value
b Parameter Internal rate of return
r Variable A function of internal rate of return

to be optimized
U�1 Function Inverse cumulative distribution

function
P Set Index set for sources and pools con-

nected to a product terminal
H Set Index set for pools and product

terminals connected to a source
X Set Index set for sources, pools and

terminals connected to a pool
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f PPj;j�;w; f
PT
j;k;w � 0; 8j 2 f1;…; rg; 8j� 2 XPP�

j ; 8k 2 XPT
j ;

(9)

where FPP;LB
j;j� , FPP;UB

j;j� , FPT;LB
j;k , and FPT;UB

j;k denote the corre-
sponding lower and upper bounds, respectively.

Model for the product terminals

The total flow coming into a product terminal k to satisfy
customer demand is subject to lower and upper bounds DLB

k

and DUB
k , which are related to the minimum supply required

by contract and the maximum possible demand from the
market or the plant capacity, respectively. (Note they do not
refer to the range of an uncertain demand.) Therefore,

DLB
k �

X
j2PPT

k

X
w2f1;…;lg

f PTj;k;w þ
X
i2PST

k

f STi;k � DUB
k ; 8k 2 f1;…;mg;

(10)

where PPT
k is an index set containing the indices of the pools

where an inlet flow to product terminal k can come from, and
PST

k is an index set containing the indices of the sources where
an inlet flow to product terminal k can come from. Also, the
product flow entering product terminal k is the final product,
and it is subject to quality requirements imposed by contracts,
technological limitations, or laws. The quality requirements
are usually ranges for the percentages of specific components
permitted in the product. Define VLB

k;w and VUB
k;w as the lower and

upper bounds, respectively, on the fraction of component w in
the final product at product terminal k. Then, the quality
constraints can be written as:

X
j2PPT

k

X
w2f1;…;lg

f PTj;k;w þ
X
i2PST

k

f STi;k

0
@

1
AVUB

k;w �
X
j2PPT

k

f PTj;k;w

þ
X
i2PST

k

f STi;k Ui;w �
X
j2PPT

k

X
w2f1;…;lg

f PTj;k;w þ
X
i2PST

k

f STi;k

0
@

1
AVLB

k;w ;

8k 2 f1;…;mg; 8w 2 f1;…; lg: ð11Þ

According to the discussion in this section, Eq. 1–11 con-
stitute the model for the deterministic pooling problem.

Model for the Stochastic Pooling Problem

This section discusses the model for the stochastic pooling
problem for the design and operation of natural gas systems
under uncertainty. We will restrict our discussion to a two-
stage stochastic recourse formulation,38 where the first-stage
decisions develop the sources, pools and product terminals,
and the pipelines between them while the second-stage deci-
sions plan the operation of the system. The two-stage sto-
chastic recourse formulation is basically a bilevel optimiza-
tion formulation whose inner optimization problems mimic
the second-stage planning process. As has been widely rec-
ognized,38 due to special structure, two-stage stochastic pro-
grams can be naturally reformulated into an equivalent
single-level optimization problem. So, this article addresses
the single-level optimization formulation of two-stage
recourse directly.

The model for the stochastic pooling problem differs from
that for the deterministic pooling problem in two aspects.
One is that the existence of sources, pools, product termi-
nals, and their connections in the system can be decided by
the optimization problem, and the other is that the optimal
flows can be different for each different realization of the
uncertainty in the system. As has been done for the deter-
ministic model, the stochastic model will be constructed by
modeling mass balances and constraints at sources, pools,
and product terminals, respectively.

Model for the sources

According to Eq. 1–3 for the deterministic model, the con-
straints on the flows leaving the sources in the context of the
stochastic model can be written as:

ySi Z
LB
i;h �

X
j2HSP

i

f SPi;j;h þ
X
k2HST

i

f STi;k;h � ySi Z
UB
i;h ; (12)

ySPi;j F
SP;LB
i;j � f SPi;j;h � ySPi;j F

SP;UB
i;j ; (13)

ySTi;k F
ST;LB
i;k � f STi;k;h � ySTi;k F

ST;UB
i;k ; ySi ; y

SP
i;j ; y

ST
i;k 2 f0; 1g; (14)

8i 2 f1;…; ng; 8j 2 HSP
i ; 8k 2 HST

i ; 8h 2 f1;…; bg;

where the new subscript h [ {1,…b} is used in the stochastic
model for all the variables and parameters whose values may
be different in the b different uncertainty scenarios. ySi is a
binary decision variable to determine whether source i is
developed or not. If ySi ¼ 1, then source i will be developed
and Eq. 12 will become the source capacity constraint;
otherwise source i will not be developed and Eq. 12 forces the
total flow from source i to be zero. Similarly, in Eqs. 13 and
14, ySPi;j or ySTi;k is a binary variable to determine whether the
pipeline between source i and pool j or the pipeline between
source i and product terminal k is developed. Each of these two
binary variables will enforce the bounds on the flow if the
corresponding pipeline is developed or force the flow to be
zero otherwise.

Because of topological restrictions on the sources and the
pipelines connecting to them, the above decision variables
are subject to the following constraints:

ySi � ySPi;j ; (15)

ySi � ySTi;k ; (16)

8i 2 f1;…; ng; 8j 2 HSP
i ; 8k 2 HST

i ;

where Eq. 15 means that the pipeline between a source and a
pool can be developed only when the source is developed,
and Eq. 16 means that the pipeline between a source and a
product terminal can be developed only when the source is
developed.

Model for the pools

According to Eqs. 4–8 for the deterministic model, the
mass balances and the constraints at the pools for the sto-
chastic model can be written as:
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f PTj;k;w;h ¼ sPTj;k;h
X
i2XSP

j

f SPi;j;hUi;w;h þ
X

jþ2XPPþ
j

f PPjþ;j;w;h

0
@

1
A; (17)

f PPj;j�;w;h ¼ sPPj;j�;h
X
i2XSP

j

f SPi;j;hUi;w;h þ
X

jþ2XPPþ
j

f PPjþ;j;w;h

0
@

1
A; (18)

X
j�2XPP�

j

sPPj;j�;h þ
X
k2XPT

j

sPTj;k;h ¼ 1; sPPj;j�;h; s
PT
j;k;h � 0; (19)

yPPj;j�F
PP;LB
j;j� �

X
w2f1;…;lg

f PPj;j�;w;h � yPPj;j�F
PP;UB
j;j� ; (20)

yPTj;k F
PT;LB
j;k �

X
w2f1;…;lg

f PTj;k;w;h � yPTj;k F
PT;UB
j;k ; (21)

f PPj;j�;w;h; f
PT
j;k;w;h � 0; (22)

yPj ; y
PP
j;j� ; y

PT
j;k 2 f0; 1g;

8j 2 f1;…; rg; 8j� 2 XPP�
j ; 8k 2 XPT

j ;

8w 2 f1;…; lg; 8h 2 f1;…; bg

where the binary decision variable yPj determines whether pool
j is developed or not, yPPj;j� determines whether the pipeline
between pool j and a downstream pool j� is developed or not,
and yPTj;k determines whether the pipeline between pool j and
product terminal k is developed or not.

Because of topological restrictions on the pools and the
pipelines connecting to them, the above decision variables
are subject to the following constraints:

yPj � ySPi;j ; (23)

yPj � yPPj;j� ; (24)

yPj� � yPPj;j� ; (25)

yPj � yPTj;k ; (26)

8j 2 f1;…; rg; 8j� 2 XPP�
j ; 8k 2 XPT

j ;

which mean that each of the pipelines connecting to a pool can
be developed only when that pool is developed.

Model for the product terminals

According to Eqs. 10–11 for the deterministic model, the
constraints on the flows entering the product terminals for
the stochastic model can be written as:

yTk D
LB
k �

X
j2PPT

k

X
w2f1;…;lg

f PTj;k;w;h þ
X
i2PST

k

f STi;k;h � yTk D
UB
k;h ; (27)

X
j2PPT

k

X
w2f1;…;lg

f PTj;k;w;h þ
X
i2PST

k

f STi;k;h

0
@

1
AVUB

k;w �
X
j2PPT

k

f PTj;k;w;h

þ
X
i2PST

k

f STi;k;hUi;w;h �
X
j2PPT

k

X
w2f1;…;lg

f PTj;k;w;h þ
X
i2PST

k

f STi;k;h

0
@

1
AVLB

k;w ;

8k 2 f1;…;mg; 8w 2 f1;…; lg; 8h 2 f1;…; bg: ð28Þ

The binary variable yTk is to determine whether a product
terminal k is developed or not, and the following topology
constraints must hold:

yTk � ySTi;k ; (29)

yTk � yPTj;k ; (30)

8i 2 PST
k ; 8j 2 PPT

k ; 8k 2 f1;…;mg;

which mean that each of the pipelines connecting to a product
terminal can be developed only when that product terminal is
developed.

According to the discussion in this section, Eqs. 12–30
constitute the model for the stochastic pooling problem.
Note that all the integer variables in the model are the first-
stage decisions of the two-state stochastic program, which
determine the development of sources, pools, product termi-
nals, and the pipelines between them; all the continuous var-
iables are the second-stage decisions, which determine the
long-term operation of the system.

Objectives for the Stochastic Pooling Problem

Annualized profit

Annualized profit is the difference between the annual net
income of the operation and the annualized capital cost of
the facilities developed in the system, so the expected value
of annualized profit can be maximized as:

max �CðACÞ þ
X

h2f1;…;bg
phC

ðOCÞ
h ; (31)

where C(AC) denotes the annualized capital cost and

CðACÞ ¼
X

i2f1;…;ng
C
S;ðACÞ
i ySi þ

X
j2f1;…;rg

C
P;ðACÞ
j yPj

þ
X

k2f1;…;mg
C
T;ðACÞ
k yTk þ

X
i2f1;…;ng

X
j2HSP

i

C
SP;ðACÞ
i;j ySPi;j

þ
X

i2f1;…;ng

X
k2HST

i

C
ST;ðACÞ
i;k ySTi;k þ

X
j2f1;…;rg

X
j�2XPP�

j

C
PP;ðACÞ
j;j� yPPj;j�

þ
X

j2f1;…;rg

X
k2XPT

j

C
PT;ðACÞ
j;k yPTj;k ; ð32Þ

where C
S;ðACÞ
i , C

P;ðACÞ
j , and C

T;ðACÞ
k are the annualized

investment costs of source i, pool j, and product terminal k,

respectively, and C
SP;ðACÞ
i;j , C

ST;ðACÞ
i;k , C

PP;ðACÞ
j;j� , and C

PT;ðACÞ
j;k are
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the annualized pipeline investment costs connecting different
nodes in the network.

Also, C
ðOCÞ
h denotes the annual net income from operating

the production system, which depends on the scenario of
uncertainty realization h with probability ph, and:

C
ðOCÞ
h ¼

X
i2f1;…;ng

�C
S;ðOCÞ
i

X
j2HSP

i

f SPi;j;h þ
X
k2HST

i

f STi;k;h

0
@

1
A

þ P
k2f1;…;mg

C
T;ðOCÞ
k;h

P
j2PPT

k

P
w2f1;…;lg

f PTj;k;w;h þ
P

i2PST
k

f STi;k;h

 !
; ð33Þ

where C
S;ðOCÞ
i denotes the annual cost related to the operation

of source i per unit of gas produced, and C
T;ðOCÞ
k;h denotes the

annual revenue related to the operation of product terminal k in
scenario h per unit of gas produced. Thus, the second term of
the objective (31) is actually the expected annual net income
of the project. Operating costs incurred by the pipelines and
pools are not considered in the article, but they can be
incorporated in the objective function easily.

When maximizing the expected annualized profit, the sto-
chastic pooling problem to be solved is

obj ¼ ð31Þ
s:t: ð32� 33Þ and ð12� 30Þ:

Net present value

Net present value is the sum of the discounted values of
all the cash flows at the present. Assume the annual discount
rate for the calculation is a and the system life span is L
years, then the expected net present value of the project over
the system life-span can be maximized as:

max �CðCapÞ þ
X

t2f1;…;Lg

1

ð1þ aÞt

0
@

1
A X

h2f1;…;bg
phC

ðOCÞ
h

0
@

1
A ;

(34)

where C(Cap) denotes the total capital cost and

CðCapÞ ¼
X

i2f1;…;ng
�C

S;ðCapÞ
i ySi þ

X
j2f1;…;rg

C
P;ðCapÞ
j yPi

þ
X

k2f1;…;mg
C
T;ðCapÞ
k yTk þ

X
i2f1;…;ng

X
j2HSP

i

C
SP;ðCapÞ
i;j ySPi;j

þ
X

i2f1;…;ng

X
k2HST

i

C
ST;ðCapÞ
i;j ySTi;k þ

X
j2f1;…;rg

X
j�2XPP

j

C
PP;ðCapÞ
i;j� yPPi;j�

þ P
j2f1;…;rg

P
k2XPT

j

C
PT;ðCapÞ
j;k yPTj;k ; ð35Þ

where C
S;ðCapÞ
i , C

P;ðCapÞ
j , and C

T;ðCapÞ
k are the investment costs of

source i, pool j, and product terminal k, respectively, and

C
SP;ðCapÞ
i;j , C

ST;ðCapÞ
i;k , C

PP;ðCapÞ
j;j� , and C

PT;ðCapÞ
j;k are the investment

costs of the pipelines connecting different units in the network.
Notice that, in Eq. 34, each gas flow is assumed to be same for
each year in the system life-span.

When maximizing the expected net present value, the sto-
chastic pooling problem to be solved is

obj ¼ Equationð34Þ
s.t. Equationsð33Þ; ð35Þ and ð12� 30Þ:

Addressing multiple objectives

A natural gas production system design and operation
problem may have more than one objective to optimize. For
example, in addition to maximize the profitability of the pro-
ject, one may want to exploit sour fields preferentially over
sweet fields when the quality constraints can be satisfied
anyway. In these cases, the hierarchical multiobjective opti-
mization approach presented by Selot et al.53 applies.

Assume there are N objectives to maximize, which are z1,
z2, … zN, and their priorities are ranked as 1st, 2nd, … Nth
respectively. Then, the problem is optimized N times with
the hierarchical optimization strategy; for the cth optimiza-
tion (c [ {1,…N}), the objective is

max zc; (36)

and if c [ 1, the problem has the following additional
constraints:

zd � z�d;c�1; 8d 2 f1;…; cg; (37)

which ensure the other objectives are no worse than
their values obtained in the (c � 1)th optimization. z�d;c�1

denotes the value of zd at the optimum of the (c � 1)th
optimization.

Decomposition Method

The stochastic pooling problem is a potentially large-scale
nonconvex MINLP problem. The solution time for this prob-
lem with BB type methods increases dramatically with the
number of scenarios (which will be demonstrated in the case
studies later). This section briefly introduces a novel decom-
position method recently developed by Li et al. (submittted).
The computational advantage of the decomposition method
for the stochastic pooling problem will be demonstrated
through the case study results in the next section.

Overview of the decomposition method

The decomposition method is developed based on the
framework of concepts presented by Geoffrion for the design
of large-scale mathematical programming techniques.54 This
framework includes two groups of concepts: problem manip-
ulations and solution strategies. Problem manipulations, such
as convexification, projection, and dualization, are devices
for restating a given problem in an alternative form more
amenable to solution. The result is often what is referred to
as a master problem. Solution strategies, such as relaxation
and restriction, reduce the master problem to a related
sequence of simpler subproblems.

In the novel decomposition approach, the bilinear terms
in the stochastic pooling problem are replaced by their
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convex and concave envelopes,55 so the lower bounding
problem is a potentially large-scale MILP. The lower
bounding problem is equivalently transformed into a master
problem by projection and dualization, as in Benders
decomposition.56 This master problem is solved by solving
a sequence of ‘‘primal bounding problems’’ and ‘‘relaxed
master problems.’’ The primal bounding problem is con-
structed by restricting the integer variables to specific val-
ues in the lower bound problem, whose solution yields a
valid upper bound on the optimal objective value of the
lower bounding problem. The primal bounding problem is
a potentially large-scale LP, but it can be further decom-
posed into LP subproblems for each scenario. When the
primal bounding problem is infeasible, a corresponding
‘‘feasibility problem’’ is solved, which yields valid informa-
tion for the algorithm to proceed. The feasibility problem
is also a potentially large-scale LP, and it can be decom-
posed into LP subproblems for each scenario as well. The
relaxed master problem is constructed by relaxing the mas-
ter problem with finite number of constraints (cuts), and
the solution of the relaxed master problem yields a valid
lower bound on the optimal objective of the master prob-
lem. The relaxed master problem is a MILP whose size is
independent of the number of scenarios.

On the other hand, a restriction of the stochastic pool-
ing problem, called the Primal Problem, is constructed
by restricting the integer variables to specific values in
the stochastic pooling problem. The primal problem is a
potentially large-scale nonconvex NLP, which can be
further decomposed into NLP subproblems for each
scenario.

The decomposition algorithm is implemented by solving
the aforementioned subproblems iteratively, as illustrated by
the diagram in Figure 2. The algorithm terminates finitely
with an e-optimal solution or an indication of the infeasibil-
ity of the problem. This proof and other details of the algo-
rithm can be found in Li et al. (submitted).

Reformulation-linearization technique for
tighter relaxation

The lower bounding problem is a convex relaxation of the
stochastic pooling problem. According to the idea of the
reformulation-linearization technique,30,31 additional redun-
dant constraints can be integrated into the stochastic pooling
problem formulation for a tighter convex relaxation. Tawar-
malani and Sahinidis32 gave a thorough discussion on the
reformulation-linearization technique for the classical pool-
ing problem (where no connections between pools are
allowed). They proved that a so-called pq-formulation, which
includes proper redundant constraints, yields a convex relax-
ation that is as good as the Lagrangian relaxation for the
original pooling problem. Here, the pq-formulation is
extended for the stochastic pooling problem and the general-
ized pooling system, that is, the following redundant con-
straints are integrated in the formulation:

X
j�2XPP�

j

sPPj;j�;hf
SP
i;j;h þ

X
k2XPT

j

sPTj;k;hf
SP
i;j;h ¼ f SPi;j;h;

8j 2 f1;…; rg; 8i 2 XSP
j ; 8h 2 f1;…; bg; ð38Þ

Figure 2. Flowchart for the decomposition algorithm.

Upper, Upper bound on the original problem; PBUpper, Upper bound on the lower bounding problem/master problem; Lower, Lower
bound on the lower bounding problem/master problem
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X
j�2XPP�

j

sPPj;j�;hf
PP
jþ;j;w;h þ

X
k2XPT

j

sPTj;k;hf
PP
jþ;j;w;h ¼ f PPjþ;j;w;h;

8j 2 f1;…; rg; 8w 2 f1;…; lg; 8jþ 2 XPPþ
j ; 8h 2 f1;…; bg

:

(39)

Notice that those redundant constraints are generated
by multiplying both sides of Eq. 19 by fSPi;j;h and fPPjþ;j;w;h,
respectively.

Case Studies

Formulations and implementation

The advantages of the stochastic pooling problem formula-
tion over other formulations will be demonstrated in the case
studies. The following formulations are compared for each
case study:

Formulation 1. A deterministic formulation that does not
address uncertainty in the formulation explicitly (i.e., the
total number of scenarios addressed is b ¼ 1) and does not
have any quality constraints. It has one of the economic
objectives developed in the last section.

This deterministic formulation does not address other
potential scenarios with recourse. However, once the system
has been developed and the uncertainty realized, an opera-
tional problem can be solved to improve the long-term
operational plan obtained at the design stage, according to
the known uncertainty realization. The formulation of this
operational problem can be derived from the deterministic
formulation solved at the system design stage with the inte-
ger decision variables fixed according to the existing system

design and the scenario fixed according to the realized
uncertainty scenario. Note that this operational problem does
not have quality constraints either.

It is important to highlight Formulation 1 (which does not

track gas qualities in system) can lead to infeasible design

and operation, because otherwise we do not need to model

the gas qualities with bilinear terms and the problem formu-

lation becomes a MILP, which is much easier to solve than

Formulation 2 and 3 (which are nonconvex MINLPs).
Formulation 2. A deterministic formulation that does not

address uncertainty in the formulation explicitly (i.e., the total

number of scenarios addressed is b ¼ 1) but has quality con-

straints on the final products at the product terminals. It has

one of the economic objectives developed in the last section.
Again an operational problem can be solved once the sys-

tem is developed and the uncertainty realized, according to

the realized uncertainty scenario. The formulation of this

operational problem can be developed using the same

approach explained for Formulation 1, but in this case there

are quality constraints on the final products so the operating

variables may be adjusted to different values from those in

the deterministic design.
Formulation 3a. A two-stage stochastic recourse formu-

lation with quality constraints on the final products at the

product terminals. It has one of the economic objectives

developed in the last section.
This formulation provides solutions for all the operational

problems for each uncertainty realization as part of the design.
Formulation 3b. A two-stage stochastic recourse formula-

tion with quality constraints on the final products at the prod-
uct terminals. It has one of the economic objectives

Figure 3. Case study A and the different system design results.

(a) The problem superstructure and parameters. Data along pipelines are flow bounds. Cost at sources denotes Annualized investment cost
of source/material flow cost. Annualized investment cost of pool, product terminal or pipe is 10. (b) Design Result with Formulation 1.
Data along pipelines show flows in scenario 1 – 5 in order. (c) Design Result with Formulation 2. Data along pipelines show flows in sce-
nario 1 – 5 in order. (d) Design Results with Formulation 3a. Data along pipelines show flows in scenario 1 – 5 in order.
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developed in the last section as well as additional objectives
with lower priorities. So, it is solved via the hierarchical
multiobjective optimization approach described in the last
section.

This formulation provides solutions for all the operational
problems for each uncertainty realization as part of the
design.

Formulation 1 leads to an MILP problem, and the other
three formulations lead to nonconvex MINLP problems. For
all the nonconvex MINLP problems, additional redundant
constraints (38–39) are integrated to yield better convex
relaxations. All the case study problems are solved on
GAMS 22.8.159 with a computer-allocated single 2.83-GHz
CPU and running Linux kernel. The problems are solved
with BARON 8.1.5,44 a state-of-the-art branch-and-reduce
global optimizer, which uses SNOPT 7.2.458 as local NLP
solver and CPLEX 11.1.1 as local LP solver. The problems
are also solved with the decomposition algorithm that uses
BARON 8.1.559 for solving nonconvex NLP subproblems
and CPLEX 11.1.160 for solving LP and MILP subproblems.
The relative termination criterion for all the case study prob-
lems is 10�2.

Case study A (stochastic Haverly pooling problem)

This example is inspired by Haverly’s pooling problem.18

Figure 3a shows the superstructure and the parameters of

the system in case study A. All the potential facilities are
shown in dashed lines, which include four sources, one
pool, two product terminals, and several pipelines between
them. The product quality in this problem refers to the sul-
fur percentage in the product flow. The quality requirements
at the product terminals and the qualities of the source
flows are shown Figure 3a, where the quality of Source 4
(i.e., the sulfur percentage in the flow from Source 4) is
uncertain and it obeys a normal distribution with a mean of
2.5 and a standard deviation of 0.8. The costs of the flows
from the sources, the prices of the product flows, the
annualized investment cost of each facility, the maximum
demands on the product terminals, and the bounds on the
flows in each of the pipelines are also shown in Figure 3a.
In addition, the capacity of each source can be deemed as
unlimited.

A naive sampling rule is used here to generate scenarios
for the normal distribution. If the normal distribution has
mean l and standard deviation r and the total number of sce-
narios to be sampled is b, then scenarios are only sampled in
the range [�3r þ l, 3r þ l] and the h th scenario is

xh ¼ �3rþ lþ 3r=bþ ðh� 1Þ6r=b:

This is illustrated in Figure 4. Also, the probability of
each scenario is

Pðx ¼ xhÞ ¼
U�1 �3rþ lþ 6r=bð Þ; if h ¼ 1;
U�1 �3rþ lþ 6rh=bð Þ � U�1 �3rþ lþ 6rðh� 1Þ=bð Þ; if 1\ h\ b;
1� U�1 �3rþ lþ 6rðb� 1Þ=bð Þ; if h ¼ b;

8<
:

where U�1 denotes the inverse cumulative distribution
function of the normal distribution.

According to this sampling rule, five scenarios for the
uncertain Source 4 quality realizations are addressed here. In
the deterministic formulations, the mean value of Source 4
quality is used as the deterministic Source 4 quality, whereas
in the stochastic formulations the Source 4 qualities in the
five scenarios are addressed explicitly.

Formulations 1, 2, and 3a are compared for this problem,
and the objective of all these formulations is to maximize
the annualized profit. Figures 3b–d show the system design
using the three formulations. As Formulation 1 does not con-
sider the quality constraints at the product terminals, the sys-
tem designed with this formulation Source 1, which supplies
the cheapest flow for the two product terminals. However,
this design is unreasonable concerning the quality constraints
at the product terminals, because the quality of the flow
from Source 1 violates both of the constraints. Formulation
2 includes the quality constraints, so the system designed by
this formulation has Source 2 and Source 4 instead of Source
1 to supply the flows. The drawback of this design is that
the Source 4 quality is uncertain and this source cannot be
used to supply Terminal 1 when its sulfur percentage is
greater than 2.5. When considering this uncertainty explicitly
in Formulation 3a, another design is obtained for the system
where Source 3 is developed as well, which can be used to
compensate the high sulfur percentage of Source 4 for sup-
plying Terminal 1 when needed.

The advantages of the stochastic formulation, Formulation
3a, over the other two deterministic formulations can be fur-
ther recognized with the results in Table 2. Table 2 summa-
rizes the design and operation results for case study A with
the three formulations. For each formulation, the annualized
capital cost is calculated according to each designed system
and each result is shown in the table; the annualized profit
for each scenario with this formulation is calculated and the
averages over the five scenarios are shown in the table. Ta-
ble 2 also shows whether product quality upper bound is sat-
isfied at each product terminal for each scenario. It can be
found that with Formulation 1, the product qualities at both
product terminals violate the bounds, so the high profit cal-
culated by this formulation is meaningless for the real prob-
lem. Both Formulation 2 and Formulation 3a observe the
product quality constraints, but Formulation 3a achieves bet-
ter average annualized profits. Note that it is important to
highlight Formulation 1 can lead to infeasible design and
operation, because otherwise we do not need to model the
gas qualities with bilinear terms and the problem formulation
is a MILP, which is much easier to solve than Formulation 2
and 3 (which are nonconvex MINLPs).

Next, the computational efficiencies of BARON and the
decomposition method for case study A are compared by
solving the stochastic pooling problem Formulation 3a with
different numbers of scenarios. It is assumed that the
demands at the two product terminals are uncertain as well,
which obey normal distributions with means of 180 and 200,
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and standard deviations of 10 and 10, respectively. Also, the
three uncertain parameters are assumed to be independent. 1,
2, 3, 4, and 5 scenarios are generated for each uncertain pa-
rameter in the way described before, which lead to problems
with 1, 8, 27, 64, and 125 scenarios. These five problems are
solved with both BARON and the decomposition method,
and the solver times are displayed in Table 3. It can been
seen that the decomposition method is much faster than
BARON when 3 or more scenarios are addressed for each
uncertain parameters (i.e., 27 or more scenarios for the prob-
lem), although it is slower than BARON when the number
of scenarios is unrealistically small for a stochastic formula-
tion. Also, the solver time with the decomposition method
increases moderately with the number of scenarios, whereas
the time with BARON increases dramatically with the num-
ber of scenarios.

Case study B

This case study is motivated by a real industrial system,
the Sarawak gas production system (SGPS), which is located
in the South China Sea off the coast of the state of Sarawak
in East Malaysia. The details and the modeling issues for this
system can be found in Selot et al.53 and Selot.61 The system
model used in this case study is the one presented by Selot
et al.,53 whose structure and parameters are changed from the
real system because of the confidentiality of industrial data.
The gas processing inside the LNG plants, for example,

removal of CO2 and heavy hydrocarbons, is not considered in
the model. Also, the water removal at production platforms is
not modeled, because water constitutes a tiny proportion of
each gas flow, and it is negligible for the calculation of other
gas components of interest. In addition, three major revisions
of the model are made to simplify the problem:

1. The complex production sharing contracts are not
addressed in the model. The gas from any field may go to
any LNG plant (if it is physically possible).

2. It is assumed that any desired flow rate in a particular
pipeline (within the pipeline capacity) can be achieved by
(adding) a compressor at an upstream platform, so the pres-
sure-flow relationships in the pipelines are not included in
the model.

3. Only the quality bounds on CO2 are considered. So
only two individual component flows (i.e., CO2 flow and
non-CO2 flow) are modeled for each pipeline.

Figure 5 shows the superstructure of the system. The units
and the connecting pipelines with solid lines in Figure 5 rep-
resent the existing part of the system, which has eight gas
fields (D35, BY, SC, E11, F6, F23SW, F23, and BN) as
sources, four platforms (BYP, E11P, F23P, and E11R-A)
and one plant slugcatcher (SC-1) as pools, and one LNG
plant (LNG1) as product terminal. Because of expansion of
the market, more gas fields, platforms, pipelines need to be
developed to feed gas to two potential LNG plants. The
potential units and the connecting pipelines of the new part
of the system are shown in dashed lines in the figure, includ-
ing seven gas fields (B11, HL, SE, M3, M4, M1, and JN) as
sources, five platforms (B11P, M3P, M1P, E11R-B, and
E11R-C), and one pipeline connection (T) and two plant
slugcatchers (SC-2 and SC-3) as pools, and two LNG plants
(LNG2 and LNG3) as product terminals. The gas platform
B11P is designated to locate at the gas field B11, which
should at least serve gas from B11. This means B11 must be
developed if B11P is developed and vice versa. The same
relationship exists between M3 and M3P, M1 and M1P, SC-
2 and LNG2, and SC-3 and LNG3 (where SC-2 or SC-3 is
part of plant LNG2 or LNG3) as well. Such relationship is
enforced by additional topology constraints to the model.
Figure 5 also displays the investment costs of the potential
units and pipelines in the new part of the system used in the
case study, which are estimated according to industrial data
and literature.62,63 The cost of the gas produced from each
gas field is assumed to be zero. The new part of system to
be developed has a life span of 25 years.

The parameter values for this problem are shown in Figure
6a. (Note the CO2 specifications labeled by LNG2 and LNG3

Table 3. Case Study A Computational Results With Three
Uncertain Parameters

Number of Scenarios 1 8 27 64 125

Number of variables 16/13* 16/97 16/325 16/769 16/1501
Time with BARON (s) 0.1 2.8 199.9 9011.8 –†

Time with
decomposition
method‡ (s)

0.9 4.0 17.1 30.5 77.4

*Number of integer variables/number of continuous variables.
†No solution is returned after 100,000 s.
‡This is the total time for solving all the subproblems in the local solvers.

Figure 4. Scenario generation for normal distribution.

Table 2. Case Study A Design and Operation Results with
Different Formulations

Average
Annualized

Profit

Satisfaction of Product
Quality* Bound at Each
Product Terminal for the

Five Scenarios
Annualized
Capital
CostTerminal 1 Terminal 2

Formulation 1 2070† N/N/N/N/N‡ N/N/N/N/N 180
Formulation 2 104 Y/Y/Y/Y/Y Y/Y/Y/Y/Y 480
Formulation 3a 118 Y/Y/Y/Y/Y Y/Y/Y/Y/Y 625

*Product quality means the percentage of sulfur in product flow.
†This profit cannot be achieved in reality because of the violation of the
quality bounds!
‡‘‘Y’’ or ‘‘N’’ indicates whether the product quality upper bound is satisfied
for each of the five scenarios.

12 DOI 10.1002/aic Published on behalf of the AIChE 2010 Vol. 00, No. 0 AIChE Journal



are for the gas flows entering the LNG plants and they are
due to the CO2 separation capacity at the LNG plants.) The
uncertainty in this design problem comes from the quality of
gas field M1 (i.e., the CO2 mole percentage of gas from M1),
which obeys a normal distribution with a mean of 3.34 mol
% and a standard deviation of 0.6 mol %. Five scenarios of
the uncertain M1 quality are selected according to the sam-
pling rule described before. In the deterministic formulations,
the mean quality is used as the deterministic quality, whereas
in the stochastic formulations, the five M1 qualities in the
five scenarios are addressed explicitly.

Formulations 1, 2, 3a, and 3b are compared for this prob-
lem. All these formulations have an economic objective to
maximize the net present value with a discount rate of 12%.
Formulation 3b has an additional objective with a lower pri-
ority, which is to maximize the total flow rate of the individ-
ual flows of CO2 entering the LNG plants. This additional
objective is introduced into the formulation to exploit the gas
in the sour fields as much as possible (as long as the quality
constraints are satisfied at the LNG plants). The hierarchical
optimization approach discussed in the previous section is
applied for solving this multiobjective optimization problem.

Figures 6b–d show the three system designs using the four
formulations (Formulations 3a and 3b lead to the same sys-
tem). As Formulation 1 does not consider the quality con-
straints at the LNG plants, the new part of the system
designed with this formulation contains gas fields M1 and JN
for the lowest investment cost. However, this design is infea-
sible for some scenarios considering the quality constraints at
the LNG plants, because the quality of gas field JN severely
violates the quality upper bounds, and the quality of gas field
M1 violates the bounds as well in some scenarios. Formula-
tion 2 observes the quality constraints, so the new part of the
system designed by this formulation has gas fields B11, M3,
and M1 instead. The blending of the gases from these fields
can satisfy the quality constraints at the LNG plants in the
deterministic case. The drawback of this design is that the

quality of M1 may be so high that M1 cannot supply as
much gas for blending to final products as expected by the
deterministic formulation; in this situation, gas field M1 will
be of little use and the investment in it is not profitable.
When considering the quality uncertainty explicitly in For-
mulations 3a and 3b, the designed system is different from
the one designed with Formulation 2, where gas fields HL,
SE, and M4 are developed instead of B11. Although these
gas fields are more expensive to develop than B11, they can
serve gas flows with much better qualities, so M1 can still
supply substantial amount of gas for blending final products
when its quality is much worse than the mean quality value.

The advantage of the two stochastic formulations over the
two deterministic formulations can be further recognized
with Table 4, which summarizes the design and operation
results of the case study B problem with different formula-
tions. For each formulation, the total capital cost is calcu-
lated according to each designed system and shown in the
table; the net present value of each scenario is calculated
and the average over the five scenarios is shown in the table.
As the operating cost is not included in all the formulations,
all the net present values shown in Table 4 will be higher
than the real ones. Table 4 also shows whether the product
quality upper bound is satisfied at the LNG plants for each
scenario. It can be found that with Formulation 1, the prod-
uct quality at either of the two new LNG plants violates the
bound for four of the five scenarios, so the net present value
calculated by this formulation is meaningless for the real
problem. Formulations 2, 3a, and 3b observe the product
quality constraints, but Formulations 3a and 3b achieve bet-
ter average net present values than the one achieved by For-
mulation 2 (with a large improvement of $3.2 billion). Table
5 compares the CO2 percentage at each LNG plant in each
scenario with Formulation 3a and that with Formulation 3b.
It can be inferred that Formulation 3b achieves a better oper-
ation than Formulation 3a does in the sense that it prefers to
exploit more gas from sour fields while observing all the

Figure 5. The superstructure and economic information for case study B.

Labeled data are costs of gas fields, LNG plants and pipelines (unit: Million $). Costs of pools (Million $): (a) BYP, E11P, F23P, B11P,
M3P, M1P, E11R-A, E11R-B, E11R-C: 500 (b) T, SC-1, SC-2, SC-3: 0 Price of natual gas: 5364.17$/Mmol (1 Mmol ¼ 106 mol)
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quality constraints (because the CO2 percentage with Formu-
lation 3b is higher than or equal to that with Formulation 3a
for each scenario and each LNG plant).

Again, the computational efficiencies of BARON and the
decomposition method for case study B are compared, by
solving the stochastic pooling problem Formulation 3a with
different numbers of scenarios. It is assumed that there are
four independent uncertain parameters in the system, which
are the qualities of gas fields M1, JN, and the maximum
demands at LNG plants 2 and 3, which obey normal distri-
butions with means 5.04 mol %, 2.63 mol %, 1736 Mmol/
day, and 2275 Mmol/day, and standard deviations 1 mol %,
0.4 mol %, 144 Mmol/day, and 239 Mmol/day, respectively.
1, 2, 3, 4, and 5 scenarios are generated for each uncertain
parameter in the way described before, which lead to prob-
lems with 1, 16, 81, 256, and 625 scenarios. These five prob-
lems are solved with both BARON and the decomposition
method, and the solver times are displayed in Table 6.

Although the decompostion method is slower than BARON
when the number of scenarios is 1 (i.e., a deterministic for-
mulation is solved), it is much faster when more scenarios
are addressed, and the solver time with the decomposition
method increases moderately with the number of scenarios.
On the other hand, BARON cannot obtain a solution for the
problem within 100,000 seconds when 3 or more scenarios
are addressed for each uncertain parameters (i.e., 81 or more
scenarios for the problem).

Conclusions and Future Work

A stochastic pooling problem optimization formulation for
the integrated design and operation of natural gas production
systems is presented in this article. This formulation is devel-
oped based on combining a generalized pooling model with a
two-stage stochastic recourse approach. Economic objectives,
such as annualized profit and net present value, can be

Table 4. Case Study B Design and Operation Results with Different Formulations

Average Net Present
Value (Billion $)

Satisfaction of Product Quality* Bound at Each LNG Plant
for the Five Scenarios

Capital Cost
(Billion $)LNG 1 LNG 2 LNG 3

Formulation 1 33.1† Y/Y/Y/Y/N‡ Y/Y/N/N/N Y/N/N/N/N 20.8
Formulation 2 29.0 Y/Y/Y/Y/Y Y/Y/Y/Y/Y Y/Y/Y/Y/Y 21.1
Formulation 3a 32.2 Y/Y/Y/Y/Y Y/Y/Y/Y/Y Y/Y/Y/Y/Y 21.6
Formulation 3b 32.2 Y/Y/Y/Y/Y Y/Y/Y/Y/Y Y/Y/Y/Y/Y 21.6

*Product quality means the percentage of CO2 in the product.
†This net present value cannot be achieved in reality because of the violation of the quality bound!
‡‘‘Y’’ or ‘‘N’’ indicates whether the quality upper bound is satisfied or not for each of the five scenarios.

Figure 6. Case study B and the different design results.

(a) The problem superstructure and parameters. (b) System design with Formulation 1. (c) System design with Formulation 2. (d) System
design with Formulations 3a and 3b.
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incorporated in the stochastic pooling framework, and a prob-
lem with multiple objectives can be handled via a hierarchical
optimization approach. The case study results for a simple
system and a real industrial system demonstrate the advan-
tages of the proposed stochastic formulation over the tradi-
tional deterministic formulations by observing quality con-
straints and addressing uncertainty in the system. The advant-
age of having multiple objectives over having single objective
in the optimization is also shown in the case studies.

The stochastic pooling problem is a nonconvex MINLP
problem, whose scale depends on the number of scenarios
addressed. The state-of-the-art branch-and-reduce global
optimization solver, BARON, can solve the stochastic pool-
ing problem with a small number of scenarios within reason-
able time. When the number of scenarios increases (due to
more uncertain parameters included, larger uncertainty
regions or finer uncertainty representation), however, the run
time with BARON increases dramatically and can be prohib-
itively large in practice. Therefore, a rigorous decomposition
method developed recently is used for solving the stochastic
pooling problem. The computational study results show that
the solver time with the decomposition method increases
moderately with the number of scenarios, and an industrial
problem with 38 binary variables and 36,251 continuous var-
iables can be solved to guaranteed global optimality within
14 min of solver time. This indicates the potential of the sto-
chastic pooling problem formulation and the decomposition
method for real industrial systems with larger scales and
larger numbers of uncertainty scenarios.

In the decomposition method, a large number of decom-
posed subproblems can be solved in parallel without
exchanging any information between them. Therefore, exploi-
tation of a parallel computing architecture can significantly
reduce the run time, and this will be an interesting avenue for
future work. Also, the stochastic pooling problem formulation
can be extended to include more than two stages. The multi-
stage stochastic pooling problem formulation can be naturally
applied to the multistage design, which is a commonly
applied strategy for natural gas production systems.
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