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ABSTRACT

We present a method that learns to integrate temporal information, from a learned
dynamics model, with ambiguous visual information, from a learned vision model,
in the context of interacting agents. Our method is based on a graph-structured
variational recurrent neural network (Graph-VRNN), which is trained end-to-end
to infer the current state of the (partially observed) world, as well as to forecast
future states. We show that our method outperforms various baselines on two sports
datasets, one based on real basketball trajectories, and one generated by a soccer
game engine.

1 INTRODUCTION

Imaging watching a soccer game on television. At any given time, you can only see a subset of the
players, and you may or may not be able to see the ball, yet you probably have some reasonable idea
about where all the players currently are, even if they are not in the field of view. (For example, the
goal keeper is probably close to the goal.) Similarly, you cannot see the future, but you may still be
able to predict where the “agents” (players and ball) will be, at least approximately. Crucially, these
problems are intertwined: we are able to predict future states by using a state dynamics model, but
we can also use the same dynamics model to infer the current state of the world by extrapolating from
the last time we saw each agent.

In this paper, we present a unified approach to state estimation and future forecasting for problems
of this kind. More precisely, we assume the observed data consists of a sequence of video frames,
v1:T , obtained from a stationary or moving camera. The desired output is a (distribution over a)
structured representation of the scene at each time step, p(st|v1:t), as well as a forecast into the future,
p(st+∆|v1:t), where skt encodes the state (e.g., location) of the k’th agent and st = {skt }

K
k=1.∗

The classical approach to this problem (see, e.g., Bar-Shalom et al. (2011)) is to use state-space
models, such as Kalman filters, for tracking and forecasting, combined with heuristics, such as nearest
neighbor, to perform data association (i.e., inferring the mapping from observations to latent objects).
Such generative approaches require a dynamical model for the states, p(st|st−1), and a likelihood
model for the pixels, p(vt|st). These are then combined using Bayes’ rule. However, it is hard to learn
good generative model of pixels, and inverting such models is even harder. By contrast, our approach
is discriminative, and learns an inference network to compute the posterior belief state p(st|v1:t)
directly. In particular, our model combines ideas from graph networks, variational autoencoders, and
RNNs in a novel way, to create what we call a graph-structured variational recurrent neural network
(Graph-VRNN).

We have tested our approach on two datasets: real basketball trajectories, rendered as a series of
(partially observed) bird’s eye views of the court; and a simple simulated soccer game, rendered using
a 3d graphics engine, and viewed from a simulated moving camera. We show that our approach can
infer the current state more accurately than other methods, and can also make more accurate future
forecasts. We also show that our method can vary its beliefs in a qualitatively sensible way. For

∗In this work, we assume the number of agents K is known, for simplicity — we leave the ”open world”
scenario to future work.
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Figure 1: Illustration of visual VRNN with a single agent. Dotted edges are not used. Dashed edges
are non-standard edges that we add.

example, it “knows” the location of the goalie even if it is not visible, since the goalie does not move
much (in our simulation). Thus it learns to “see beyond the pixels”.

In summary, our main contribution is a unified way to do state estimation and future forecasting at
the level of objects and relations directly from pixels using Graph-VRNN. We believe our technique
will have a variety of other applications beyond analysing sports videos, such as self-driving cars
(where inferring and predicting the motion of pedestrians and vehicles is crucial), and human-robot
interaction.

2 RELATED WORK

In this section, we briefly review some related work.

Graph-structured and stochastic RNNs. There are several papers that combine standard RNNs
(recurrent neural networks) with graph-structured representations, such as Chang et al. (2017);
Battaglia et al. (2016); Sanchez-Gonzalez et al. (2018). There are also several papers that extend
standard RNNs by adding stochastic latent variables, notably the variational RNN approach of Chung
et al. (2015), as well as recent extensions, such Krishnan et al. (2017); Fraccaro et al. (2016); Karl
et al. (2017); Goyal et al. (2017); Buesing et al. (2018). However, as far as we know, combining
VRNNs with graphs is novel.

Predicting future pixels from past pixels. There are many papers that try to predict the future at
the pixel level (see e.g., (Kitani et al., 2017) for a review). Some use a single static stochastic variable,
as in a conditional VAE (Kingma & Welling, 2014), which is then “decoded” into a sequence using
an RNN, either using a VAE-style loss (Walker et al., 2016; Xue et al., 2016) or a GAN-style loss
(Vondrick et al., 2016b; Mathieu et al., 2016). More recent work, based on VRNNs, uses temporal
stochastic variables, e.g., the SV2P model of Babaeizadeh et al. (2018) and the SVGLP model of
Denton & Fergus (2018). There are also various GAN-based approaches, such as the SAVP approach
of Lee et al. (2018) and the MoCoGAN approach of Tulyakov et al. (2018). The recent sequential
AIR (attend, infer, repeat) model of Kosiorek et al. (2018) uses a variable-sized, object-oriented
latent state space rather than a fixed-dimensional unstructured latent vector. This is trained using a
VAE-style loss, where p(vt|st) is an RNN image generator.

Forecasting future states from past states. There are several papers that try to predict future
states given past states. In many cases the interaction structure between the agents is assumed to be
known (e.g., using fully connected graphs or using a sparse graph derived from spatial proximity),
as in the social LSTM (Alahi et al., 2016) and the social GAN (Gupta et al., 2018), or methods
based on inverse optimal control (Kitani et al., 2017; Lee et al., 2017). In the “neural relational
inference” method of Kipf et al. (2018), they infer the interaction graph from trajectories, treating it
as a static latent variable in a VAE framework. Ehrhardt et al. (2017) proposed to predict a Gaussian
distribution for the uncertain future states of a sphere. It is also possible to use graph attention
networks (Veličković et al., 2018) for this task (see e.g., Hoshen (2017); Battaglia et al. (2018)).
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(a) Prior. (b) Inference.

(c) Recurrence. (d) Generation.

Figure 2: Illustration of the operations performed by the Graph-VRNN model, when the number
of agents is 4. Dashed line is only used for the observed frames. The attention mechanism during
generation stage is omitted for simplicity.

Forecasting future states from past pixels. Our main interest is predicting the hidden state of
the world given noisy visual evidence. (Vondrick et al., 2016a) train a conditional CNN to predict
future feature vectors, and several papers (e.g., (Lerer et al., 2016; Mottaghi et al., 2016; Wu et al.,
2017; van Steenkiste et al., 2018; Fragkiadaki et al., 2016; Watters et al., 2017)) predict future object
states. Our work differs by allowing the vision and dynamics model to share and update a common
belief space; also, our model is stochastic, not deterministic. Our method is related to the “deep
tracking” approach of (Dequaire et al., 2018). However, they assume the input is a partially observed
binary occupancy grid , and the output is a fully observed binary occupancy grid, whereas we predict
the state of individual objects using a graph-structured model. Our method is also related to the
”backprop Kalman filtering” approach of (Haarnoja et al., 2016). However, they assume the structure
and dynamics of the latent state is known, and they use the Kalman filter equations to integrate
information from the dynamical prior and (a nonlinear function of) the observations, whereas we
learn the dynamics, and also learn how to integrate the two sources of information using attention.

3 METHODS

3.1 VRNNS

We start by reviewing the VRNN approach of Chung et al. (2015). This model has three types of
variable: the observed output xt, the stochastic VAE state zt, and the deterministic RNN hidden state
ht, which summarizes x≤t and z≤t. We define the following update equations:

pθ(zt|x<t, z<t) = ϕprior(ht−1) (prior), (1)

qφ(zt|x≤t, z<t) = ϕenc(xt, ht−1) (inference), (2)

pθ(xt|z≤t, x<t) = ϕdec(zt, ht−1) (generation), (3)

ht = ϕrnn(xt, zt, ht−1) (recurrence), (4)

where ϕ are neural networks (see section 3.4 for the details).
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VRNNs are trained by maximizing the evidence lower bound (ELBO), which can be decomposed as
follows:

L = Eqφ(zT |x≤T ,z≤T )

[

T
∑

t=1

log pθ(xt|z≤t, x<t)−KL (qφ(zt|x≤t, z<t)||pθ(zt|x<t, z<t))

]

. (5)

We use Gaussians for the prior and posterior, so we can leverage the reparameterization trick to
optimize this objective using SGD, as explained in Kingma & Welling (2014). In practice, we scale
the KL divergence term by β, which we anneal from 0 to 1, as in (Bowman et al., 2016). Also, we
start by using the ground truth values of xt−1 (teacher forcing), and then we gradually switch to using
samples from the model; this technique is known as scheduled sampling (Bengio et al., 2015), and
helps the method converge.

3.2 ADDING GRAPH STRUCTURE

To create a structured, stochastic temporal model, we associate one VRNN with each agent. The
hidden states of the RNNs interact using a fully connected graph interaction network. (This ensures
the model is permutation invariant to the ordering of the agents.) To predict the observable state
skt for agent k, we decode the hidden state vector hk

t using an MLP with shared parameters. The
resulting model and operations are illustrated in fig. 2.

3.3 CONDITIONING ON IMAGES

We can create a conditional generative model of the form p(s1:t|v1:t) by using a VRNN (where
xt = st is the generated output) by making all the equations in section 3.1 depend on vt as input.
This is similar to a standard sequence-to-sequence model, but augmented to the graph setting, and
with additional stochastic noise injected into the latent dynamics. We choose to only condition the
outputs st on the visual input vt, rather than making the hidden state, ht, depend on vt. The reason
is that we want to be able to perform future prediction in the latent state space without having to
condition on images. In addition, we want the latent noise zt to reflect variation of the dynamics,
not the appearance of the world. See fig. 1 for a simplified illustration of our model (ignoring the
graph network component). All parameters are shared across all agents except for the visual encoder;
they have a shared feature extraction ”backbone”, but then use agent-specific features to identify the
specific agent. (Agents have the same appearance across videos.) Thus the model learns to perform
data association.

The key issue is how to define the output decoder, p(st|zt, ht−1, vt), in such a way that we properly
combine the information from the current (partially observed) visual input, vt, with our past beliefs
about the object states, ht−1, as well as any stochastic noise zt (used to capture any residual
uncertainty). In a generative model, this step would be performed with Bayes’ rule, combining the
dynamical prior with the visual likelihood. In our discriminative setting, we can learn how to weight
the information sources using attention. In particular, we define

ϕdec(vt,ht−1, zt) = αV · ϕDV(vt) + αH · ϕDH(ht−1, zt) (6)

where ϕDV is the visible decoder, ϕDH is the hidden decoder, and the αi terms are attention weights,
computed as follows:

αi = Sigmoid
(

ϕSi(vt,ht−1, zt)
)

(7)

where i ∈ {V,H}.

This is similar to the gating mechanism in an LSTM, where we either pass through the current
observations, or we pass through the prior hidden state, or some combination of the two. If the visual
input is uninformative (e.g., for future frames, we set vt+∆ = 0), the model will rely entirely on its
dynamics model. To capture uncertainty more explicitly, we also pass in sheat

t into the ϕSi functions
that compute attention, where sheat

t = softmax(ϕdec(zt,ht−1,vt)) is the set of “heatmaps” over
object locations. (This is illustrated by the st−1 → st edges in fig. 1.) We also replace the sample zt

with its sufficient statistics, (µt,Σt), computed using the state dependent prior, ϕprior(ht−1).

To encourage the model to learn to forecast future states, in addition to predicting the current state,
we modify the above loss function to maximize a lower bound† on log p(s1:T+∆|v1:T ), computed as

†Strictly speaking, the expression is only a lower bound if β = 1. See e.g., (Alemi et al., 2018) for a
discussion of the KL weighting term.
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follows:
T+∆T
∑

t=1

E

[

λt log p(st|z≤t,v≤t, s≤t))− βKL(N enc
t ‖ N prior

t )
]

(8)

where λt = max(t/T, 1) is a weighting factor that trades off state estimation and forecasting losses,

N prior
t = N (zt|ϕ

prior(ht−1)) is the prior, N enc
t = N (zt|ϕ

enc(ht−1, st)) is the variational posterior,
the expectation is over z1:T , and where we set vτ = 0 if τ > t.

3.4 IMPLEMENTATION DETAILS

For the image encoder, we use convolutional neural networks with random initialization. In the case
when there are multiple frames per step, we combine the image network with an S3D (Xie et al.,
2018) inspired network, which adds additional temporal convolutions on spatial feature maps. For the
recurrent model, we tried both vanilla RNNs and GRUs, and found that results were similar. We report
results using the GRU model. For the graph network, we use relation networks (Santoro et al., 2017),
i.e. a fully connected topology with equal edge weights. During training, both state estimation and
future prediction losses are important, and need to be weighted properly. When the future prediction
loss weight is too small, the dynamics model is not trained well (reflected by log-likelihood). We find
that scaling the losses using an exponential discount factor for future predictions is a good heuristic.
We normalize the total weights for state estimation losses and future predictions losses to be the same.

4 RESULTS

In this section, we show results on two datasets, comparing our full model to various baselines.

4.1 DATASETS

Since we are interested in inferring and forecasting the state of a system composed of multiple
interacting objects, based on visual evidence, analysing sports videos is a natural choice. We focus
on basketball and soccer, since these are popular games for which we can easily get data. The states
here are the identities of the objects (players and ball), and their (x, y) locations on the ground plane.
Although specialized solutions to state estimation for basketball and soccer already exist (e.g., based
on wearable sensors (Sanguesa, 2017), multiple calibrated cameras (Manafifard et al., 2017), or
complex monocular vision pipelines (Rematas et al., 2018)), we are interested in seeing how far we
can get with a pure learning based approach, since such a method will be more generally applicable.

Basketball. We use the basketball data from Zhan et al. (2018). Each example includes the
trajectories of 11 agents (5 offensive players, 5 defensive players and 1 ball) for 50 steps. We follow
the standard setup from Zhan et al. (2018) and just model the 5 offensive players, ignoring the defense.
However, we also consider the ball, since it has very different dynamics than the players. Overall,
there are 107,146 training and 13,845 test examples. We generate bird’s-eye view images based on
the trajectories (since we do not have access to the corresponding video footage of the game), where
each agent is represented as a circle color-coded by its identity. To simulate partial observation, we
randomly remove one agent from the rendered image every 10 steps. Some example rendered images
can be found in fig. 3b.

Soccer. To evaluate performance in a more visually challenging environment, we consider soccer,
where it is much harder to get a bird’s-eye view of the field, due to its size. Instead most soccer videos
are recorded from a moving camera which shows a partial profile view of the field. Since we do not
have access to ground truth soccer trajectories, we decided to make our own soccer simulator, which
we call Soccer World, using the Unity game engine. The location of each player is determined by
a hand-designed “AI”, which is a probabilistic decision tree based on the player’s current state, the
states of other players and the ball. The players can take actions such as kicking the ball and tackling.
The ball is driven by the players’ actions. Each game lasts 5 minutes. For each game, a player with
the same id is assigned to a random position to play, except for the two goal keepers. We render the
players using off-the-shelf human models from Unity. The identities of the players are color-coded
on their shirts. The camera tracks the ball, and shows a partial view of the field at each frame. See
fig. 3a for some visualizations. We create 700 videos for training, and 300 videos for test. We apply
a random sliding window of 10 seconds to sample the training data. The test videos are uniformly
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(a) Soccer World.

(b) Basketball.

Figure 3: (a) Frames from Soccer World are rendered from a moving camera. (b) Examples frames
from basketball data. At T = 0, 5, the player (light green) who controls the ball (yellow) is not
visible. At T = 10, 15, 20, the ball is not visible.

segmented into 10-second clips, resulting in 9000 total test examples. We plan to release the videos
along with the game engine after publication of the paper. ‡

4.2 EXPERIMENTAL SETUP

The first task we evaluate is inferring the current state (which we define to be the 2d location) of the all
the objects (players and ball). To do this, we replace the discrete predictions with the corresponding
real-valued coordinates by using weighted averaging. We then compute normalized ℓ2 distance
between the ground truth locations and the predicted locations of all objects at each step.

The second task is predicting future states. Since there are many possible futures, using ℓ2 loss does
not make sense, either for training or evaluation (c.f., (Mathieu et al., 2016)). Instead we evaluate
the negative log-likelihood on the discretized predictions, which can better capture the multi-modal
nature of the problem. (This is similar to the perplexity measure used to evaluate language models,
except we apply it to each object separately and sum the results.)

For each task, we consider the following models: Visual only: standalone visual encoder without
any recurrent neural network as backbone. For future prediction, we follow Felsen et al. (2017) and
directly predict future locations from last observed visual features. RNN: standard RNN, the hidden
states are globally shared by all agents. VRNN: standard VRNN. Indep-RNN: one RNN per agent,
each RNN runs independently without any interaction. Social-RNN: one RNN per agent, agents
interact via the pooling mechanism in Social GAN (Gupta et al., 2018). Graph-RNN: one RNN per
agent, with a graph interaction network. Graph-VRNN: the full model, which adds stochasticity to
Graph-RNN. All models have the same architectures for visual encoders and state decoders.

Our visual encoder is based on ResNet-18 (He et al., 2016), we use the first two blocks of ResNet
to maintain spatial resolution, and then aggregate the feature map with max pooling. The encoder
is pre-trained on visible players, and then fine-tuned for each baseline. We find this step important
to stabilize training. For the soccer data, we down-sample the video to 4 FPS, and treat 4 frames (1
second) as one step. We consider 10 steps in total, 6 observed, 4 unobserved. We set the size of GRU
hidden states to 128 for all baselines. The state decoder is a 2-layer MLP. For basketball data, we set
every 5 frames as one step, and consider 10 steps as well. The size of GRU hidden states is set to 128.
The parameters of the VRNN backbone and state decoders are shared across all agents, while each
agent has its own visual encoder as “identifier”. For all experiments, we use the standard momentum
optimizer. The models are trained on 6 V100 GPUs with synchronous training with batch size of 8
per GPU, we train the model for 80K steps on soccer and 40K steps on basketball. We use a linear
learning rate warmup schedule for the first 1K steps, followed by a cosine learning rate schedule.

‡Video samples can be found at bit.ly/2E3qg6F
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Method t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

Visual only 0.192 0.190 0.188 0.188 0.190 0.081 0.078 0.077 0.077 0.080
RNN 0.189 0.167 0.164 0.164 0.163 0.067 0.061 0.037 0.047 0.037
VRNN 0.185 0.168 0.167 0.166 0.166 0.074 0.058 0.035 0.044 0.035
Indep-RNN 0.183 0.169 0.160 0.159 0.157 0.071 0.066 0.038 0.046 0.036
Social-RNN 0.186 0.167 0.160 0.156 0.152 0.069 0.057 0.036 0.043 0.037
Graph-RNN 0.189 0.169 0.159 0.153 0.147 0.068 0.055 0.034 0.041 0.034
Graph-VRNN 0.184 0.165 0.153 0.149 0.143 0.062 0.052 0.025 0.034 0.024

Table 1: Normalized ℓ2 distances to ground truth locations at different steps on (left) soccer data and
(right) basketball data.

The hyper parameters, such as the base learning rate and the KL divergence weight β, are tuned on a
hold-out validation set.

Method
Ball Player

Visible Hidden Visible Hidden

Visual only 0.011 0.277 0.016 0.315
RNN 0.008 0.266 0.028 0.266
VRNN 0.009 0.260 0.029 0.250
Indep-RNN 0.009 0.279 0.039 0.262
Social-RNN 0.010 0.260 0.044 0.242
Graph-RNN 0.011 0.251 0.034 0.240
Graph-VRNN 0.006 0.227 0.013 0.214

Table 2: Average normalized ℓ2 distance for
basketball ball and players at first 5 time steps.

Method
Perm.
Inv.

Inter-
act

Stoch-
astic

Soccer
Basket-

ball

Prior No No No 3.0 1.8
Visual only No No No 6.6 2.5
RNN No Yes No 7.0 5.9
VRNN No Yes Yes ≥ 6.7 ≥ 5.9
Indep-RNN Yes No No 48.9 14.3
Social-RNN Yes Yes No 54.6 14.6
Graph-RNN Yes Yes No 60.9 15.0
Graph-VRNN Yes Yes Yes ≥ 61.1 ≥ 18.4

Table 3: Future prediction performance as mea-
sured by log-likelihood ratio over random guess.

4.3 QUANTITATIVE RESULTS

Basketball. The right half of Table 1 shows the average normalized ℓ2 distance between the true
and predicted location of all the agents for the basketball data. (Error bars are not shown, but variation
across trials is quite small.) We see that the Graph-VRNN error generally goes down over time, as the
system integrates evidence from multiple frames. (Recall that one of the agents becomes “invisible”
every 10 frames or 2 steps, so just looking at the current frame is insufficient.)

The visual-only baseline has more or less constant error, which is expected since it does not utilize
information from earlier observations. All other methods outperform the visual-only baseline. We
can see that stochasticity helps (VRNN better than RNN, Graph-VRNN better than Graph-RNN), and
Graph-RNN is better than vanilla RNN. As most of the players are visible in the basketball videos,
we also report performance for visible and hidden (occluded) agents in Table 2. As expected, the ℓ2
distances for visible agents are very low, since the localization task is trivial for this data. When the
agents are hidden, Graph-VRNN significantly outperforms other baselines. Again, we observe that
stochasticity helps. We also find that graph network is a better interaction model than social pooling,
both outperform Indep-RNN.

Soccer. The left half of Table 1 shows the average normalized ℓ2 distance between the true and
predicted location of all the agents for the soccer data as a function of time. The results are
qualitatively similar to the basketball case, although in this setting the ℓ2 distances are higher since
the vision problem is much harder. However, the gains from adding stochasticity to the Graph-RNN
are smaller in this setting. We believe the reason for this is that the dynamics of the agents in soccer
world is much more predictable than in the basketball case, because our simulator is not very realistic.
(This will become more apparent in Section 4.4.)

Forecasting. In this section, we assess the ability of the models to predict the future. In particular,
the input is the last 6 steps, and we forecast the next 4 steps. Since the future is multimodal, we do
not use ℓ2 error, but instead we compute the log-likelihood of the discretized ground truth locations,
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Figure 4: Belief states for one player in the basketball data across multiple different world state
scenarios. We show the heatmap over possible locations based on multiple stochastic samples. The
top row shows the true state of the world for reference. V is visible, O is occluded, U is unseen.

normalized by the performance of random guessing§, which is a uniform prior over all locations.
The prior baseline trains the decoder based on constant zero input vectors, thus reflecting the prior
marginal distribution over locations. The visual only baseline predicts all 4 future steps based on
last observed visual feature, as is in Felsen et al. (2017). The results are shown in Table 3. Not
surprisingly, we see that modeling the interaction between the agents helps, and adding stochasticity
to the latent dynamics also helps.

4.4 QUALITATIVE RESULTS

This section shows some qualitative visualizations of the belief state of the system (i.e., the marginal
distributions p(skt+∆|v1:t)) over time. (Note that this is different from the beliefs over the internal

states, p(zt+∆|v1:t), which are uninterpretable.) We consider the tracking case, where ∆ = 0, and the
forecasting case, where ∆ > 0. We include visualizations of sampled trajectories in the Appendix.

Basketball. In Figure 4, we visualize the belief state for a single agent in the basketball dataset as a
function of time. More precisely, we visualize the output of the decoder, pkt = ϕdec(vt,ht−1, z

k
t ), as

a heatmap, where z
k
t ∼ ϕprior(ht−1) are different stochastic samples of the latent state drawn from

the dynamical prior. When we roll forward in time, we sample a specific value skt ∼ pkt , and use
this to update each hk

t . When we forecast the future, we set vt = 0. During tracking, when visual
evidence is available, we see that the entropy of the belief state reduces over time, and is consistent
across different draws. However, when forecasting, we see increased entropy, reflecting uncertainty
in the dynamics. Furthermore, the trajectory of the belief state differs along different possible future
scenarios (values of zkt ). Figure 6 shows the examples trajectories for five attacking players generated
by Graph-VRNN and baseline methods. In Figure 6a, we can see that the samples generated by
Graph-VRNN are consistent with ground truth for the first 5 to 6 steps (observed), and are diverse for
the next 4 steps (not observed). Figure 6b shows the trajectories generated for the same example by
Indep-RNN and vanilla RNN, which are cluttered or shaky.

§In the case of variational models, we report the ELBO, rather than the true log likelihood. Technically
speaking, this makes the numbers incomparable across models. However, all the inference networks have the
same structure, so we believe the tightness of the lower bound will be comparable.
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Figure 5: Heatmaps for multiple agent types for soccer data (left) and basketball data (right).

(a) Different samples generated by Graph-VRNN. (b) Samples generated by baselines.

Figure 6: Sampled generated by Graph-VRNN and baselines for basketball data.

Soccer. Figure 5 (left) shows the belief states for the soccer domain for three different kinds of
agents: a regular player (top row), the goal keeper (middle row), and the ball (bottom row). For the
player, we see that the initial belief state reflects the 4-4-2 pattern over possible initial locations of
the players. In frame 3, enough visual evidence has been accumulated to localize the player to one
of two possible locations. For the future prediction, we draw a single stochastic sample (to break
symmetry), and visualize the resulting belief states. We see that the model predicts the player will
start moving horizontally (as depicted by the heatmap diffusing), since he is already at the top edge of
the field. The goal keeper beliefs are always deterministic, since in the simulated game, the movement
of the goalie is below the quantization threshold. The ball is tracked reliably (since the camera is
programmed to track the ball), but future forecasts start to diffuse. Figure 5 (right) shows similar
results for the basketball domain. We see that the dynamics of the players and ball are much more
complex than in our soccer simulator.

5 CONCLUSIONS AND FUTURE WORK

We have presented a method that learns to integrate temporal information with partially observed
visual evidence, based on graph-structured VRNNs, and shown that it outperforms various baselines
on two simple datasets. In the future, we would like to consider more challenging datasets, such as
real sports videos. We would also like to reduce the dependence on labeled data, perhaps by using
some form of self-supervised learning.

Acknowledgements. We thank Raymond Yeh and Bo Chang for helpful discussions.
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A.1 SAMPLED SOCCER TRAJECTORIES

Figure A1: Sampled trajectories for Soccer World for 11 “home” players.

Figure A1 shows the sampled trajectories for Soccer World. Unlike basketball, Soccer World has a
moving camera with limited field of view. We observe that the trajectories for the first few observed
steps are quite shaky since only a few players have been observed. We thus show the trajectories
from t = 5. From fig. A1, we can see that the trajectories generated by RNN are very shaky. Graph-
VRNN generates much better trajectories, but some of the players are assigned incorrect identities, or
incorrect locations. We conjecture that this issue can be mitigated by providing longer visual inputs
to the model, such that most of the players could be observed at some point of the videos.

A.2 SAMPLED BASKETBALL TRAJECTORIES

Figure A2 and Figure A3 provide more visualizations for different sampled trajectories by Graph-
VRNN, and comparison with baseline methods. The observations are consistent as in Figure 6.
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Figure A2: Sampled trajectories for 5 attacking players, generated by Graph-VRNN.
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Figure A3: Sampled trajectories for 5 attacking players, generated by various baselines.
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