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Chapter 1

Introduction

In this chapter we introduce some of the concepts and techniques that we will study
in this book. In Section 1.1 we present a brief historical overview on the develop-
ment of the theory of stochastic processes in the twentieth century. In Section 1.2
we introduce the one-dimensional random walk an we use this example in order
to introduce several concepts such Brownian motion, the Markov property. Some
comments on the role of probabilistic modeling in the physical sciences are of-
fered in Section 1.3. Discussion and bibliographical comments are presented in
Section 1.4. Exercises are included in Section 1.5.

1.1 Historical Overview

The theory of stochastic processes, at least in terms of its application to physics,
started with Einstein’s work on the theory of Brownian motion: Concerning the
motion, as required by the molecular-kinetic theory of heat, of particles suspended
in liquids at rest(1905) and in a series of additional papers that were published in
the period1905 − 1906. In these fundamental works, Einstein presented an expla-
nation of Brown’s observation (1827) that when suspended inwater, small pollen
grains are found to be in a very animated and irregular state of motion. In devel-
oping his theory Einstein introduced several concepts thatstill play a fundamental
role in the study of stochastic processes and that we will study in this book. Using
modern terminology, Einstein introduced a Markov chain model for the motion of
the particle (molecule, pollen grain...). Furthermore, heintroduced the idea that it
makes more sense to talk about the probability of finding the particle at positionx
at timet, rather than about individual trajectories.
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In his work many of the main aspects of the modern theory of stochastic pro-
cesses can be found:

• The assumption of Markovianity (no memory) expressed through the Chapman-
Kolmogorov equation.

• The Fokker–Planck equation (in this case, the diffusion equation).

• The derivation of the Fokker-Planck equation from the master (Chapman-
Kolmogorov) equation through a Kramers-Moyal expansion.

• The calculation of a transport coefficient (the diffusion equation) using macro-
scopic (kinetic theory-based) considerations:

D =
kBT

6πηa
.

• kB is Boltzmann’s constant,T is the temperature,η is the viscosity of the
fluid anda is the diameter of the particle.

Einstein’s theory is based on an equation for the probability distribution function,
the Fokker–Planck equation. Langevin (1908) developed a theory based on a
stochastic differential equation. The equation of motion for a Brownian particle is

m
d2x

dt2
= −6πηa

dx

dt
+ ξ,

whereξ is a random force. It can be shown that there is complete agreement be-
tween Einstein’s theory and Langevin’s theory. The theory of Brownian motion
was developed independently by Smoluchowski, who also performed several ex-
periments.

The approaches of Langevin and Einstein represent the two main approaches
in the modelling of physical systems using the theory of stochastic processes and,
in particular, diffusion processes: either study individual trajectories of Brownian
particles. Their evolution is governed by a stochastic differential equation:

dX

dt
= F (X) + Σ(X)ξ(t),

whereξ(t) is a random force or study the probabilityρ(x, t) of finding a particle
at positionx at time t. This probability distribution satisfies the Fokker–Planck
equation:

∂ρ

∂t
= −∇ · (F (x)ρ) +

1

2
D2 : (A(x)ρ),
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whereA(x) = Σ(x)Σ(x)T . The theory of stochastic processes was developed
during the20th century by several mathematicians and physicists including Smolu-
chowksi, Planck, Kramers, Chandrasekhar, Wiener, Kolmogorov, Itô, Doob.

1.2 The One-Dimensional Random Walk

We let time be discrete, i.e.t = 0, 1, . . . . Consider the following stochastic
processSn: S0 = 0; at each time step it moves to±1 with equal probability1

2 .

In other words, at each time step we flip a fair coin. If the outcome is heads,
we move one unit to the right. If the outcome is tails, we move one unit to the left.

Alternatively, we can think of the random walk as a sum of independent random
variables:

Sn =

n
∑

j=1

Xj ,

whereXj ∈ {−1, 1} with P(Xj = ±1) = 1
2 .

We can simulate the random walk on a computer:

• We need a (pseudo)random number generator to generaten independent ran-
dom variables which are uniformly distributed in the interval [0,1].

• If the value of the random variable is> 1
2 then the particle moves to the left,

otherwise it moves to the right.

• We then take the sum of all these random moves.

• The sequence{Sn}N
n=1 indexed by the discrete timeT = {1, 2, . . . N} is

the path of the random walk. We use a linear interpolation (i.e. connect the
points{n, Sn} by straight lines) to generate a continuous path.

Every path of the random walk is different: it depends on the outcome of a se-
quence of independent random experiments. We can compute statistics by gen-
erating a large number of paths and computing averages. For example,E(Sn) =

0, E(S2
n) = n. The paths of the random walk (without the linear interpolation) are

not continuous: the random walk has a jump of size1 at each time step. This is an
example of a discrete time, discrete space stochastic processes. The random walk
is a time-homogeneous Markov process. If we take a large number of steps, the
random walk starts looking like a continuous time process with continuous paths.
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Figure 1.1: Three paths of the random walk of lengthN = 50.
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Figure 1.2: Three paths of the random walk of lengthN = 1000.
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Figure 1.3: Sample Brownian paths.

We can quantify this observation by introducing an appropriate rescaled pro-
cess and by taking an appropriate limit. Consider the sequence of continuous time
stochastic processes

Zn
t :=

1√
n
Snt.

In the limit asn → ∞, the sequence{Zn
t } converges (in some appropriate sense,

that will be made precise in later chapters) to a Brownian motion with diffusion
coefficientD = ∆x2

2∆t = 1
2 . Brownian motionW (t) is a continuous time stochastic

processes with continuous paths that starts at0 (W (0) = 0) and has indepen-
dent, normally. distributed Gaussian increments. We can simulate the Brownian
motion on a computer using a random number generator that generates normally
distributed, independent random variables. We can write anequation for the evo-
lution of the paths of a Brownian motionXt with diffusion coefficientD starting
at x:

dXt =
√

2DdWt, X0 = x.

This is the simplest example of a stochastic differential equation. The probability
of finding Xt at y at time t, given that it was atx at time t = 0, the transition
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probability densityρ(y, t) satisfies the PDE

∂ρ

∂t
= D

∂2ρ

∂y2
, ρ(y, 0) = δ(y − x).

This is the simplest example of the Fokker–Planck equation.The connection be-
tween Brownian motion and the diffusion equation was made byEinstein in 1905.

1.3 Why Randomness

Why introduce randomness in the description of physical systems?

• To describe outcomes of a repeated set of experiments. Thinkof tossing a
coin repeatedly or of throwing a dice.

• To describe a deterministic system for which we have incomplete informa-
tion: we have imprecise knowledge of initial and boundary conditions or of
model parameters.

– ODEs with random initial conditions are equivalent to stochastic pro-
cesses that can be described using stochastic differentialequations.

• To describe systems for which we are not confident about the validity of our
mathematical model.

• To describe a dynamical system exhibiting very complicatedbehavior (chaotic
dynamical systems). Determinism versus predictability.

• To describe a high dimensional deterministic system using asimpler, low
dimensional stochastic system. Think of the physical modelfor Brownian
motion (a heavy particle colliding with many small particles).

• To describe a system that is inherently random. Think of quantum mechan-
ics.

Stochastic modeling is currently used in many different areas ranging from
biology to climate modeling to economics.
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1.4 Discussion and Bibliography

The fundamental papers of Einstein on the theory of Brownianmotion have been
reprinted by Dover [7]. The readers of this book are stronglyencouraged to study
these papers. Other fundamental papers from the early period of the development
of the theory of stochastic processes include the papers by Langevin, Ornstein
and Uhlenbeck [25], Doob [5], Kramers [13] and Chandrashekhar’s famous re-
view article [3]. Many of these early papers on the theory of stochastic processes
have been reprinted in [6]. Many of the early papers on the theory of Brown-
ian motion are available fromhttp://www.physik.uni-augsburg.de/
theo1/hanggi/History/BM-History.html. Very useful historical com-
ments can be founds in the books by Nelson [19] and Mazo [18].

The figures in this chapter were generated using matlab programs fromhttp:
//www-math.bgsu.edu/z/sde/matlab/index.html.

1.5 Exercises

1. Read the papers by Einstein, Ornstein-Uhlenbeck, Doob etc.

2. Write a computer program for generating the random walk inone and two di-
mensions. Study numerically the Brownian limit and computethe statistics of
the random walk.
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Chapter 2

Elements of Probability Theory

In this chapter we put together some basic definitions and results from probability
theory that will be used later on. In Section 2.1 we give some basic definitions
from the theory of probability. In Section 2.2 we present some properties of ran-
dom variables. In Section 2.3 we introduce the concept of conditional expectation
and in Section 2.4 we define the characteristic function, oneof the most useful
tools in the study of (sums of) random variables. Some explicit calculations for
the multivariate Gaussian distribution are presented in Section 2.5. Different types
of convergence and the basic limit theorems of the theory of probability are dis-
cussed in Section 2.6. Discussion and bibliographical comments are presented in
Section 2.7. Exercises are included in Section 2.8.

2.1 Basic Definitions from Probability Theory

In Chapter 1 we defined a stochastic process as a dynamical system whose law of
evolution is probabilistic. In order to study stochastic processes we need to be able
to describe the outcome of a random experiment and to calculate functions of this
outcome. First we need to describe the set of all possible experiments.

Definition 2.1. The set of all possible outcomes of an experiment is called the
sample spaceand is denoted byΩ.

Example 2.2. • The possible outcomes of the experiment of tossing a coin are
H andT . The sample space isΩ =

{

H, T
}

.

• The possible outcomes of the experiment of throwing a die are1, 2, 3, 4, 5

and6. The sample space isΩ =
{

1, 2, 3, 4, 5, 6
}

.

9
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We defineeventsto be subsets of the sample space. Of course, we would like
the unions, intersections and complements of events to alsobe events. When the
sample spaceΩ is uncountable, then technical difficulties arise. In particular, not
all subsets of the sample space need to be events. A definitionof the collection of
subsets of events which is appropriate for finite additive probability is the follow-
ing.

Definition 2.3. A collectionF of Ω is called a field onΩ if

i. ∅ ∈ F ;

ii. if A ∈ F thenAc ∈ F ;

iii. If A, B ∈ F thenA ∪B ∈ F .

From the definition of a field we immediately deduce thatF is closed under
finite unions and finite intersections:

A1, . . . An ∈ F ⇒ ∪n
i=1Ai ∈ F , ∩n

i=1Ai ∈ F .

When Ω is infinite dimensional then the above definition is not appropriate
since we need to consider countable unions of events.

Definition 2.4 (σ−algebra). A collectionF of Ω is called aσ-field or σ-algebra
onΩ if

i. ∅ ∈ F ;

ii. if A ∈ F thenAc ∈ F ;

iii. If A1, A2, · · · ∈ F then∪∞
i=1Ai ∈ F .

A σ-algebra is closed under the operation of taking countable intersections.

Example 2.5. • F =
{

∅, Ω
}

.

• F =
{

∅, A, Ac, Ω
}

whereA is a subset ofΩ.

• The power set ofΩ, denoted by{0, 1}Ω which contains all subsets ofΩ.

Let F be a collection of subsets ofΩ. It can be extended to aσ−algebra (take
for example the power set ofΩ). Consider all theσ−algebras that containF and
take their intersection, denoted byσ(F), i.e. A ⊂ Ω if and only if it is in every
σ−algebra containingF . σ(F) is aσ−algebra (see Exercise 1 ). It is the smallest
algebra containingF and it is called theσ−algebra generated byF .
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Example 2.6. Let Ω = R
n. Theσ-algebra generated by the open subsets ofR

n

(or, equivalently, by the open balls ofR
n) is called the Borelσ-algebra ofRn and

is denoted byB(Rn).

LetX be a closed subset ofR
n. Similarly, we can define the Borelσ-algebra

of X, denoted byB(X).
A sub-σ–algebra is a collection of subsets of aσ–algebra which satisfies the

axioms of aσ–algebra.
Theσ−field F of a sample spaceΩ contains all possible outcomes of the ex-

periment that we want to study. Intuitively, theσ−field contains all the information
about the random experiment that is available to us.

Now we want to assign probabilities to the possible outcomesof an experiment.

Definition 2.7 (Probability measure). A probability measureP on the measurable
space(Ω, F) is a functionP : F 7→ [0, 1] satisfying

i. P(∅) = 0, P(Ω) = 1;

ii. For A1, A2, . . . withAi ∩Aj = ∅, i 6= j then

P(∪∞
i=1Ai) =

∞
∑

i=1

P(Ai).

Definition 2.8. The triple
(

Ω, F , P
)

comprising a setΩ, aσ-algebraF of subsets
of Ω and a probability measureP on (Ω, F) is a called a probability space.

Example 2.9. A biased coin is tossed once:Ω = {H, T}, F = {∅, H, T, Ω} =

{0, 1}, P : F 7→ [0, 1] such thatP(∅) = 0, P(H) = p ∈ [0, 1], P(T ) =

1 − p, P(Ω) = 1.

Example 2.10. TakeΩ = [0, 1], F = B([0, 1]), P = Leb([0, 1]). Then(Ω,F ,P)

is a probability space.

2.1.1 Conditional Probability

One of the most important concepts in probability is that of the dependence be-
tween events.

Definition 2.11. A family{Ai : i ∈ I} of events is called independent if

P
(

∩j∈J Aj

)

= Πj∈JP(Aj)

for all finite subsetsJ of I.
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When two eventsA, B are dependent it is important to know the probability
that the eventA will occur, given thatB has already happened. We define this to
beconditional probability, denoted byP(A|B). We know from elementary proba-
bility that

P (A|B) =
P (A ∩B)

P(B)
.

A very useful result is that of thelaw of total probability.

Definition 2.12. A family of events{Bi : i ∈ I} is called a partition ofΩ if

Bi ∩Bj = ∅, i 6= j and ∪i∈I Bi = Ω.

Proposition 2.13. Law of total probability. For any eventA and any partition
{Bi : i ∈ I} we have

P(A) =
∑

i∈I

P(A|Bi)P(Bi).

The proof of this result is left as an exercise. In many cases the calculation of
the probability of an event is simplified by choosing an appropriate partition ofΩ
and using the law of total probability.

Let (Ω,F ,P) be a probability space and fixB ∈ F . ThenP(·|B) defines a
probability measure onF . Indeed, we have that

P(∅|B) = 0, P(Ω|B) = 1

and (sinceAi ∩Aj = ∅ implies that(Ai ∩B) ∩ (Aj ∩B) = ∅)

P (∪∞
j=1Ai|B) =

∞
∑

j=1

P(Ai|B),

for a countable family of pairwise disjoint sets{Aj}+∞
j=1. Consequently,(Ω,F ,P(·|B))

is a probability space for everyB ∈ cF .

2.2 Random Variables

We are usually interested in the consequences of the outcomeof an experiment,
rather than the experiment itself. The function of the outcome of an experiment is
a random variable, that is, a map fromΩ to R.
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Definition 2.14. A sample spaceΩ equipped with aσ−field of subsetsF is called
a measurable space.

Definition 2.15. Let (Ω,F) and (E,G) be two measurable spaces. A function
X : Ω → E such that the event

{ω ∈ Ω : X(ω) ∈ A} =: {X ∈ A} (2.1)

belongs toF for arbitrary A ∈ G is called a measurable function or random
variable.

WhenE is R equipped with its Borelσ-algebra, then (2.1) can by replaced
with

{X 6 x} ∈ F ∀x ∈ R.

LetX be a random variable (measurable function) from(Ω,F , µ) to (E,G). If E
is a metric space then we may defineexpectationwith respect to the measureµ by

E[X] =

∫

Ω
X(ω) dµ(ω).

More generally, letf : E 7→ R beG–measurable. Then,

E[f(X)] =

∫

Ω
f(X(ω)) dµ(ω).

Let U be a topological space. We will use the notationB(U) to denote the Borel
σ–algebra ofU : the smallestσ–algebra containing all open sets ofU . Every ran-
dom variable from a probability space(Ω,F , µ) to a measurable space(E,B(E))

induces a probability measure onE:

µX(B) = PX−1(B) = µ(ω ∈ Ω;X(ω) ∈ B), B ∈ B(E). (2.2)

The measureµX is called thedistribution (or sometimes thelaw) of X.

Example 2.16. Let I denote a subset of the positive integers. A vectorρ0 =

{ρ0,i, i ∈ I} is a distribution onI if it has nonnegative entries and its total mass
equals1:

∑

i∈I ρ0,i = 1.

Consider the case whereE = R equipped with the Borelσ−algebra. In this
case a random variable is defined to be a functionX : Ω → R such that

{ω ∈ Ω : X(ω) 6 x} ⊂ F ∀x ∈ R.
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We can now define the probability distribution function ofX, FX : R → [0, 1] as

FX(x) = P
( {

ω ∈ Ω
∣

∣X(ω) 6 x
)}

=: P(X 6 x). (2.3)

In this case,(R,B(R), FX) becomes a probability space.

The distribution functionFX(x) of a random variable has the properties that
limx→−∞ FX(x) = 0, limx→+∞ F (x) = 1 and is right continuous.

Definition 2.17. A random variableX with values onR is called discrete if it takes
values in some countable subset{x0, x1, x2, . . . } of R. i.e.: P(X = x) 6= x only
for x = x0, x1, . . . .

With a random variable we can associate the probability massfunction pk =

P(X = xk). We will consider nonnegative integer valued discrete random vari-
ables. In this casepk = P(X = k), k = 0, 1, 2, . . . .

Example 2.18. The Poisson random variable is the nonnegative integer valued
random variable with probability mass function

pk = P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . ,

whereλ > 0.

Example 2.19. The binomial random variable is the nonnegative integer valued
random variable with probability mass function

pk = P(X = k) =
N !

n!(N − n)!
pnqN−n k = 0, 1, 2, . . . N,

wherep ∈ (0, 1), q = 1 − p.

Definition 2.20. A random variableX with values onR is called continuous if
P(X = x) = 0∀x ∈ R.

Let (Ω,F ,P) be a probability space and letX : Ω → R be a random variable
with distributionFX . This is a probability measure onB(R). We will assume that
it is absolutely continuous with respect to the Lebesgue measure with densityρX :
FX(dx) = ρ(x) dx. We will call the densityρ(x) the probability density function
(PDF) of the random variableX.
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Example 2.21. i. The exponential random variable has PDF

f(x) =

{

λe−λx x > 0,
0 x < 0,

with λ > 0.

ii. The uniform random variable has PDF

f(x) =

{ 1
b−a a < x < b,

0 x /∈ (a, b),

with a < b.

Definition 2.22. Two random variablesX and Y are independent if the events
{ω ∈ Ω |X(ω) 6 x} and{ω ∈ Ω |Y (ω) 6 y} are independent for allx, y ∈ R.

Let X, Y be two continuous random variables. We can view them as a ran-
dom vector, i.e. a random variable fromΩ to R

2. We can then define the joint
distribution function

F (x, y) = P(X 6 x, Y 6 y).

The mixed derivative of the distribution functionfX,Y (x, y) := ∂2F
∂x∂y (x, y), if it

exists, is called the joint PDF of the random vector{X, Y }:

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (x, y) dxdy.

If the random variablesX andY are independent, then

FX,Y (x, y) = FX(x)FY (y)

and
fX,Y (x, y) = fX(x)fY (y).

The joint distribution function has the properties

FX,Y (x, y) = FY,X(y, x),

FX,Y (+∞, y) = FY (y), fY (y) =

∫ +∞

−∞
fX,Y (x, y) dx.

We can extend the above definition to random vectors of arbitrary finite dimen-
sions. LetX be a random variable from(Ω,F , µ) to (Rd,B(Rd)). The (joint)
distribution functionFXR

d → [0, 1] is defined as

FX(x) = P(X 6 x).
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Let X be a random variable inRd with distribution functionf(xN ) wherexN =

{x1, . . . xN}. We define the marginal or reduced distribution functionfN−1(xN−1)

by

fN−1(xN−1) =

∫

R

fN(xN ) dxN .

We can define other reduced distribution functions:

fN−2(xN−2) =

∫

R

fN−1(xN−1) dxN−1 =

∫

R

∫

R

f(xN ) dxN−1dxN .

2.2.1 Expectation of Random Variables

We can use the distribution of a random variable to compute expectations and prob-
abilities:

E[f(X)] =

∫

R

f(x) dFX (x) (2.4)

and

P[X ∈ G] =

∫

G
dFX(x), G ∈ B(E). (2.5)

The above formulas apply to both discrete and continuous random variables, pro-
vided that we define the integrals in (2.4) and (2.5) appropriately.

WhenE = R
d and a PDF exists,dFX(x) = fX(x) dx, we have

FX(x) := P(X 6 x) =

∫ x1

−∞
. . .

∫ xd

−∞
fX(x) dx..

WhenE = R
d then byLp(Ω; Rd), or sometimesLp(Ω;µ) or even simplyLp(µ),

we mean the Banach space of measurable functions onΩ with norm

‖X‖Lp =
(

E|X|p
)1/p

.

LetX be a nonnegative integer valued random variable with probability mass
function pk. We can compute the expectation of an arbitrary function ofX using
the formula

E(f(X)) =

∞
∑

k=0

f(k)pk.

Let X, Y be random variables we want to know whether they are correlated
and, if they are, to calculate how correlated they are. We define the covariance of
the two random variables as

cov(X,Y ) = E
[

(X − EX)(Y − EY )
]

= E(XY ) − EXEY.
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The correlation coefficient is

ρ(X,Y ) =
cov(X,Y )

√

var(X)
√

var(X)
(2.6)

The Cauchy-Schwarz inequality yields thatρ(X,Y ) ∈ [−1, 1]. We will say
that two random variablesX andY are uncorrelated provided thatρ(X,Y ) = 0. It
is not true in general that two uncorrelated random variables are independent. This
is true, however, for Gaussian random variables (see Exercise 5).

Example 2.23. • Consider the random variableX : Ω 7→ R with pdf

γσ,b(x) := (2πσ)−
1

2 exp

(

−(x− b)2

2σ

)

.

Such anX is termed a Gaussian or normal random variable. The mean is

EX =

∫

R

xγσ,b(x) dx = b

and the variance is

E(X − b)2 =

∫

R

(x− b)2γσ,b(x) dx = σ.

• Let b ∈ R
d andΣ ∈ R

d×d be symmetric and positive definite. The random
variableX : Ω 7→ R

d with pdf

γΣ,b(x) :=
(

(2π)ddetΣ
)− 1

2

exp

(

−1

2
〈Σ−1(x− b), (x − b)〉

)

is termed a multivariate Gaussian or normal random variable. The mean is

E(X) = b (2.7)

and the covariance matrix is

E

(

(X − b) ⊗ (X − b)
)

= Σ. (2.8)

Since the mean and variance specify completely a Gaussian random variable on
R, the Gaussian is commonly denoted byN (m,σ). The standard normal random
variable isN (0, 1). Similarly, since the mean and covariance matrix completely
specify a Gaussian random variable onR

d, the Gaussian is commonly denoted by
N (m,Σ).

Some analytical calculations for Gaussian random variables will be presented
in Section 2.5.
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2.3 Conditional Expecation

Assume thatX ∈ L1(Ω,F , µ) and letG be a sub–σ–algebra ofF . The conditional
expectation ofX with respect toG is defined to be the function (random variable)
E[X|G] : Ω 7→ E which isG–measurable and satisfies

∫

G
E[X|G] dµ =

∫

G
X dµ ∀G ∈ G.

We can defineE[f(X)|G] and the conditional probabilityP[X ∈ F |G] = E[IF (X)|G],
whereIF is the indicator function ofF , in a similar manner.

We list some of the most important properties of conditionalexpectation.

Theorem 2.24. [Properties of Conditional Expectation]. Let(Ω,F , µ) be a prob-
ability space and letG be a sub–σ–algebra ofF .

(a) If X is G−measurable and integrable thenE(X|G) = X.

(b) (Linearity) IfX1, X2 are integrable andc1, c2 constants, then

E(c1X1 + c2X2|G) = c1E(X1|G) + c2E(X2|G).

(c) (Order) IfX1, X2 are integrable andX1 6 X2 a.s., thenE(X1|G) 6 E(X2|G)

a.s.

(d) If Y andXY are integrable, andX is G−measurable thenE(XY |G) =

XE(Y |G).

(e) (Successive smoothing) IfD is a sub–σ–algebra ofF , D ⊂ G andX is inte-
grable, thenE(X|D) = E[E(X|G)|D] = E[E(X|D)|G].

(f) (Convergence) Let{Xn}∞n=1 be a sequence of random variables such that, for
all n, |Xn| 6 Z whereZ is integrable. IfXn → X a.s., thenE(Xn|G) →
E(X|G) a.s. and inL1.

Proof. See Exercise 10.

2.4 The Characteristic Function

Many of the properties of (sums of) random variables can be studied using the
Fourier transform of the distribution function. LetF (λ) be the distribution function
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of a (discrete or continuous) random variableX. The characteristic function ofX
is defined to be the Fourier transform of the distribution function

φ(t) =

∫

R

eitλ dF (λ) = E(eitX ). (2.9)

For a continuous random variable for which the distributionfunctionF has a den-
sity, dF (λ) = p(λ)dλ, (2.9) gives

φ(t) =

∫

R

eitλp(λ) dλ.

For a discrete random variable for whichP(X = λk) = αk, (2.9) gives

φ(t) =
∞
∑

k=0

eitλkak.

From the properties of the Fourier transform we conclude that the characteristic
function determines uniquely the distribution function ofthe random variable, in
the sense that there is a one-to-one correspondance betweenF (λ) andφ(t). Fur-
thermore, in the exercises at the end of the chapter the reader is asked to prove the
following two results.

Lemma 2.25. Let {X1,X2, . . . Xn} be independent random variables with char-
acteristic functionsφj(t), j = 1, . . . n and letY =

∑n
j=1Xj with characteristic

functionφY (t). Then

φY (t) = Πn
j=1φj(t).

Lemma 2.26. LetX be a random variable with characteristic functionφ(t) and
assume that it has finite moments. Then

E(Xk) =
1

ik
φ(k)(0).

2.5 Gaussian Random Variables

In this section we present some useful calculations for Gaussian random variables.
In particular, we calculate the normalization constant, the mean and variance and
the characteristic function of multidimensional Gaussianrandom variables.
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Theorem 2.27.Letb ∈ R
d andΣ ∈ R

d×d a symmetric and positive definite ma-
trix. Let X be the multivariate Gaussian random variable with probability density
function

γΣ,b(x) =
1

Z
exp

(

−1

2
〈Σ−1(x − b),x − b〉

)

.

Then

i. The normalization constant is

Z = (2π)d/2
√

det(Σ).

ii. The mean vector and covariance matrix ofX are given by

EX = b

and

E((X − EX) ⊗ (X − EX)) = Σ.

iii. The characteristic function ofX is

φ(t) = ei〈b,t〉− 1

2
〈t,Σt〉.

Proof. i. From the spectral theorem for symmetric positive definitematrices
we have that there exists a diagonal matrixΛ with positive entries and an
orthogonal matrixB such that

Σ−1 = BT Λ−1B.

Let z = x− b andy = Bz. We have

〈Σ−1z, z〉 = 〈BT Λ−1Bz, z〉
= 〈Λ−1Bz, Bz〉 = 〈Λ−1y,y〉

=

d
∑

i=1

λ−1
i y2

i .

Furthermore, we have that det(Σ−1) = Πd
i=1λ

−1
i , that det(Σ) = Πd

i=1λi

and that the Jacobian of an orthogonal transformation isJ = det(B) = 1.
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Hence,

∫

Rd

exp

(

−1

2
〈Σ−1(x − b),x − b〉

)

dx =

∫

Rd

exp

(

−1

2
〈Σ−1z, z〉

)

dz

=

∫

Rd

exp

(

−1

2

d
∑

i=1

λ−1
i y2

i

)

|J | dy

=
d
∏

i=1

∫

R

exp

(

−1

2
λ−1

i y2
i

)

dyi

= (2π)d/2Πn
i=1λ

1/2
i = (2π)d/2

√

det(Σ),

from which we get that

Z = (2π)d/2
√

det(Σ).

In the above calculation we have used the elementary calculus identity

∫

R

e−α x2

2 dx =

√

2π

α
.

ii. From the above calculation we have that

γΣ,b(x) dx = γΣ,b(B
Ty + b) dy

=
1

(2π)d/2
√

det(Σ)

d
∏

i=1

exp

(

−1

2
λiy

2
i

)

dyi.

Consequently

EX =

∫

Rd

xγΣ,b(x) dx

=

∫

Rd

(BTy + b)γΣ,b(B
Ty + b) dy

= b

∫

Rd

γΣ,b(B
Ty + b) dy = b.

We note that, sinceΣ−1 = BT Λ−1B, we have thatΣ = BTΛB. Further-
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more,z = BTy. We calculate

E((Xi − bi)(Xj − bj)) =

∫

Rd

zizjγΣ,b(z + b) dz

=
1

(2π)d/2
√

det(Σ)

∫

Rd

∑

k

Bkiyk

∑

m

Bmiym exp

(

−1

2

∑

ℓ

λ−1
ℓ y2

ℓ

)

dy

=
1

(2π)d/2
√

det(Σ)

∑

k,m

BkiBmj

∫

Rd

ykym exp

(

−1

2

∑

ℓ

λ−1
ℓ y2

ℓ

)

dy

=
∑

k,m

BkiBmjλkδkm

= Σij.

iii. Let y be a multivariate Gaussian random variable with mean0 and covari-
anceI. Let alsoC = B

√
Λ. We have thatΣ = CCT = CTC. We have

that
X = CY + b.

To see this, we first note thatX is Gaussian since it is given through a linear
transformation of a Gaussian random variable. Furthermore,

EX = b and E((Xi − bi)(Xj − bj)) = Σij.

Now we have:

φ(t) = Eei〈X,t〉 = ei〈b,t〉
Eei〈CY,t〉

= ei〈b,t〉
Eei〈Y,CT t〉

= ei〈b,t〉
Eei

P

j(
P

k Cjktk)yj

= ei〈b,t〉e−
1

2

P

j|Pk Cjktk|2

= ei〈b,t〉e−
1

2
〈Ct,Ct〉

= ei〈b,t〉e−
1

2
〈t,CT Ct〉

= ei〈b,t〉e−
1

2
〈t,Σt〉.

Consequently,

φ(t) = ei〈b,t〉− 1

2
〈t,Σt〉.
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2.6 Types of Convergence and Limit Theorems

One of the most important aspects of the theory of random variables is the study of
limit theorems for sums of random variables. The most well known limit theorems
in probability theory are the law of large numbers and the central limit theorem.
There are various different types of convergence for sequences or random variables.
We list the most important types of convergence below.

Definition 2.28. Let{Zn}∞n=1 be a sequence of random variables. We will say that

(a) Zn converges toZ with probability one if

P
(

lim
n→+∞

Zn = Z
)

= 1.

(b) Zn converges toZ in probability if for everyε > 0

lim
n→+∞

P
(

|Zn − Z| > ε
)

= 0.

(c) Zn converges toZ in Lp if

lim
n→+∞

E
[∣

∣Zn − Z
∣

∣

p]
= 0.

(d) Let Fn(λ), n = 1, · · · + ∞, F (λ) be the distribution functions ofZn n =

1, · · · + ∞ andZ, respectively. ThenZn converges toZ in distribution if

lim
n→+∞

Fn(λ) = F (λ)

for all λ ∈ R at whichF is continuous.

Recall that the distribution functionFX of a random variable from a probability
space(Ω,F ,P) to R induces a probability measure onR and that(R,B(R), FX ) is
a probability space. We can show that the convergence in distribution is equivalent
to the weak convergence of the probability measures inducedby the distribution
functions.

Definition 2.29. Let (E, d) be a metric space,B(E) theσ−algebra of its Borel
sets,Pn a sequence of probability measures on(E,B(E)) and letCb(E) denote
the space of bounded continuous functions onE. We will say that the sequence of
Pn converges weakly to the probability measureP if, for eachf ∈ Cb(E),

lim
n→+∞

∫

E
f(x) dPn(x) =

∫

E
f(x) dP (x).
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Theorem 2.30.LetFn(λ), n = 1, · · · + ∞, F (λ) be the distribution functions of
Zn n = 1, · · · + ∞ andZ, respectively. ThenZn converges toZ in distribution if
and only if, for allg ∈ Cb(R)

lim
n→+∞

∫

X
g(x) dFn(x) =

∫

X
g(x) dF (x). (2.10)

Notice that (2.10) is equivalent to

lim
n→+∞

Eng(Xn) = Eg(X),

whereEn andE denote the expectations with respect toFn andF , respectively.

When the sequence of random variables whose convergence we are interested
in takes values inRd or, more generally, a metric space space(E, d) then we can
use weak convergence of the sequence of probability measures induced by the
sequence of random variables to define convergence in distribution.

Definition 2.31. A sequence of real valued random variablesXn defined on a
probability spaces(Ωn,Fn, Pn) and taking values on a metric space(E, d) is said
to converge in distribution if the indued measuresFn(B) = Pn(Xn ∈ B) for
B ∈ B(E) converge weakly to a probability measureP .

Let {Xn}∞n=1 be iid random variables withEXn = V . Then, thestrong law
of large numbersstates that average of the sum of the iid converges toV with
probability one:

P

(

lim
N→+∞

1

N

N
∑

n=1

Xn = V
)

= 1.

The strong law of large numbers provides us with informationabout the behav-
ior of a sum of random variables (or, a large number or repetitions of the same
experiment) on average. We can also study fluctuations around the average be-
havior. Indeed, letE(Xn − V )2 = σ2. Define the centered iid random variables
Yn = Xn − V . Then, the sequence of random variables1

σ
√

N

∑N
n=1 Yn converges

in distribution to aN (0, 1) random variable:

lim
n→+∞

P

(

1

σ
√
N

N
∑

n=1

Yn 6 a

)

=

∫ a

−∞

1√
2π
e−

1

2
x2

dx.

This is thecentral limit theorem.
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2.7 Discussion and Bibliography

The material of this chapter is very standard and can be foundin many books on
probability theory. Well known textbooks on probability theory are [2, 8, 9, 16, 17,
12, 23].

The connection between conditional expectation and orthogonal projections is
discussed in [4].

The reduced distribution functions defined in Section 2.2 are used extensively
in statistical mechanics. A different normalization is usually used in physics text-
books. See for instance [1, Sec. 4.2].

The calculations presented in Section 2.5 are essentially an exercise in linear
algebra. See [15, Sec. 10.2].

Random variables and probability measures can also be defined in infinite di-
mensions. More information can be found in [20, Ch. 2].

The study of limit theorems is one of the cornerstones of probability theory and
of the theory of stochastic processes. A comprehensive study of limit theorems can
be found in [10].

2.8 Exercises

1. Show that the intersection of a family ofσ-algebras is aσ-algebra.

2. Prove the law of total probability, Proposition 2.13.

3. Calculate the mean, variance and characteristic function of the following prob-
ability density functions.

(a) The exponential distribution with density

f(x) =

{

λe−λx x > 0,
0 x < 0,

with λ > 0.

(b) The uniform distribution with density

f(x) =

{

1
b−a a < x < b,

0 x /∈ (a, b),

with a < b.
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(c) The Gamma distribution with density

f(x) =

{

λ
Γ(α)(λx)

α−1e−λx x > 0,

0 x < 0,

with λ > 0, α > 0 andΓ(α) is the Gamma function

Γ(α) =

∫ ∞

0
ξα−1e−ξ dξ, α > 0.

4. LeX andY be independent random variables with distribution functionsFX

andFY . Show that the distribution function of the sumZ = X + Y is the
convolution ofFX andFY :

FZ(x) =

∫

FX(x− y) dFY (y).

5. LetX andY be Gaussian random variables. Show that they are uncorrelated if
and only if they are independent.

6. (a) LetX be a continuous random variable with characteristic function φ(t).
Show that

EXk =
1

ik
φ(k)(0),

whereφ(k)(t) denotes thek-th derivative ofφ evaluated att.

(b) LetX be a nonnegative random variable with distribution function F (x).
Show that

E(X) =

∫ +∞

0
(1 − F (x)) dx.

(c) LetX be a continuous random variable with probability density function
f(x) and characteristic functionφ(t). Find the probability density and
characteristic function of the random variableY = aX+ b with a, b ∈ R.

(d) LetX be a random variable with uniform distribution on[0, 2π]. Find the
probability density of the random variableY = sin(X).

7. LetX be a discrete random variable taking vales on the set of nonnegative inte-
gers with probability mass functionpk = P(X = k) with pk > 0,

∑+∞
k=0 pk =

1. Thegenerating functionis defined as

g(s) = E(sX) =
+∞
∑

k=0

pks
k.
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(a) Show that

EX = g′(1) and EX2 = g′′(1) + g′(1),

where the prime denotes differentiation.

(b) Calculate the generating function of the Poisson randomvariable with

pk = P(X = k) =
e−λλk

k!
, k = 0, 1, 2, . . . and λ > 0.

(c) Prove that the generating function of a sum of independent nonnegative
integer valued random variables is the product of their generating func-
tions.

8. Write a computer program for studying the law of large numbers and the central
limit theorem. Investigate numerically the rate of convergence of these two
theorems.

9. Study the properties of Gaussian measures on separable Hilbert spaces from [20,
Ch. 2].

10. Prove Theorem 2.24.
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Chapter 3

Basics of the Theory of Stochastic
Processes

In this chapter we present some basic results form the theoryof stochastic pro-
cesses and we investigate the properties of some of the standard stochastic pro-
cesses in continuous time. In Section 3.1 we give the definition of a stochastic pro-
cess. In Section 3.2 we present some properties of stationary stochastic processes.
In Section 3.3 we introduce Brownian motion and study some ofits properties.
Various examples of stochastic processes in continuous time are presented in Sec-
tion 3.4. The Karhunen-Loeve expansion, one of the most useful tools for repre-
senting stochastic processes and random fields, is presented in Section 3.5. Further
discussion and bibliographical comments are presented in Section 3.6. Section 3.7
contains exercises.

3.1 Definition of a Stochastic Process

Stochastic processes describe dynamical systems whose evolution law is of proba-
bilistic nature. The precise definition is given below.

Definition 3.1 (stochastic process). LetT be an ordered set,(Ω,F ,P) a probabil-
ity space and(E,G) a measurable space. A stochastic process is a collection of
random variablesX = {Xt; t ∈ T} where, for each fixedt ∈ T , Xt is a random
variable from(Ω,F ,P) to (E,G). Ω is called the sample space. andE is the state
space of the stochastic processXt.

The setT can be either discrete, for example the set of positive integersZ+, or

29
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continuous,T = [0,+∞). The state spaceE will usually beR
d equipped with the

σ–algebra of Borel sets.
A stochastic processX may be viewed as a function of botht ∈ T andω ∈ Ω.

We will sometimes writeX(t),X(t, ω) orXt(ω) instead ofXt. For a fixed sample
point ω ∈ Ω, the functionXt(ω) : T 7→ E is called a (realization, trajectory) of
the processX.

Definition 3.2 (finite dimensional distributions). The finite dimensional distribu-
tions (fdd) of a stochastic process are the distributions oftheEk–valued random
variables(X(t1),X(t2), . . . ,X(tk)) for arbitrary positive integerk and arbitrary
timesti ∈ T, i ∈ {1, . . . , k}:

F (x) = P(X(ti) 6 xi, i = 1, . . . , k)

with x = (x1, . . . , xk).

From experiments or numerical simulations we can only obtain information
about the finite dimensional distributions of a process. A natural question arises:
are the finite dimensional distributions of a stochastic process sufficient to deter-
mine a stochastic process uniquely? This is true for processes with continuous
paths1. This is the class of stochastic processes that we will studyin these notes.

Definition 3.3. We will say that two processesXt and Yt are equivalent if they
have same finite dimensional distributions.

Definition 3.4. A one dimensional continuous time Gaussian process is a stochas-
tic process for whichE = R and all the finite dimensional distributions are Gaus-
sian, i.e. every finite dimensional vector(Xt1 ,Xt2 , . . . ,Xtk ) is aN (µk,Kk) ran-

dom variable for some vectorµk and a symmetric nonnegative definite matrixKk

for all k = 1, 2, . . . and for all t1, t2, . . . , tk.

From the above definition we conclude that the finite dimensional distributions
of a Gaussian continuous time stochastic process are Gaussian with probability
distribution function

γµk ,Kk
(x) = (2π)−n/2(detKk)

−1/2 exp

[

−1

2
〈K−1

k (x− µk), x− µk〉
]

,

wherex = (x1, x2, . . . xk).

1In fact, what we need is the stochastic process to beseparable. See the discussion in Section 3.6
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It is straightforward to extend the above definition to arbitrary dimensions. A
Gaussian processx(t) is characterized by its mean

m(t) := Ex(t)

and the covariance (or autocorrelation) matrix

C(t, s) = E

(

(

x(t) −m(t)
)

⊗
(

x(s) −m(s)
)

)

.

Thus, the first two moments of a Gaussian process are sufficient for a complete
characterization of the process.

3.2 Stationary Processes

3.2.1 Strictly Stationary Processes

In many stochastic processes that appear in applications their statistics remain in-
variant under time translations. Such stochastic processes are calledstationary. It
is possible to develop a quite general theory for stochasticprocesses that enjoy this
symmetry property.

Definition 3.5. A stochastic process is called (strictly) stationary if allfinite di-
mensional distributions are invariant under time translation: for any integerk and
timesti ∈ T , the distribution of(X(t1),X(t2), . . . ,X(tk)) is equal to that of
(X(s + t1),X(s + t2), . . . ,X(s + tk)) for any s such thats + ti ∈ T for all
i ∈ {1, . . . , k}. In other words,

P(Xt1+t ∈ A1,Xt2+t ∈ A2 . . . Xtk+t ∈ Ak) = P(Xt1 ∈ A1,Xt2 ∈ A2 . . . Xtk ∈ Ak), ∀t ∈ T.

Example 3.6.LetY0, Y1, . . . be a sequence of independent, identically distributed
random variables and consider the stochastic processXn = Yn. ThenXn is a
strictly stationary process (see Exercise 1). Assume furthermore thatEY0 = µ <

+∞. Then, by the strong law of large numbers, we have that

1

N

N−1
∑

j=0

Xj =
1

N

N−1
∑

j=0

Yj → EY0 = µ,

almost surely. In fact, the Birkhoff ergodic theorem statesthat, for any functionf
such thatEf(Y0) < +∞, we have that

lim
N→+∞

1

N

N−1
∑

j=0

f(Xj) = Ef(Y0), (3.1)
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almost surely. The sequence of iid random variables is an example of an ergodic
strictly stationary processes.

Ergodic strictly stationary processes satisfy (3.1) Hence, we can calculate the
statistics of a sequence stochastic processXn using a single sample path, provided
that it is long enough (N ≫ 1).

Example 3.7. LetZ be a random variable and define the stochastic processXn =

Z, n = 0, 1, 2, . . . . ThenXn is a strictly stationary process (see Exercise 2). We
can calculate the long time average of this stochastic process:

1

N

N−1
∑

j=0

Xj =
1

N

N−1
∑

j=0

Z = Z,

which is independent ofN and does not converge to the mean of the stochastic pro-
cessesEXn = EZ (assuming that it is finite), or any other deterministic number.
This is an example of a non-ergodic processes.

3.2.2 Second Order Stationary Processes

Let
(

Ω,F ,P
)

be a probability space. LetXt, t ∈ T (with T = R or Z) be a
real-valued random process on this probability space with finite second moment,
E|Xt|2 < +∞ (i.e. Xt ∈ L2(Ω,P) for all t ∈ T ). Assume that it is strictly
stationary. Then,

E(Xt+s) = EXt, s ∈ T (3.2)

from which we conclude thatEXt is constant. and

E((Xt1+s − µ)(Xt2+s − µ)) = E((Xt1 − µ)(Xt2 − µ)), s ∈ T (3.3)

from which we conclude that the covariance or autocorrelation or correlation
functionC(t, s) = E((Xt − µ)(Xs − µ)) depends on the difference between the
two times,t ands, i.e.C(t, s) = C(t−s). This motivates the following definition.

Definition 3.8. A stochastic processXt ∈ L2 is called second-order stationary or
wide-sense stationary or weakly stationary if the first moment EXt is a constant
and the covariance functionE(Xt − µ)(Xs − µ) depends only on the difference
t− s:

EXt = µ, E((Xt − µ)(Xs − µ)) = C(t− s).
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The constantµ is the expectation of the processXt. Without loss of generality,
we can setµ = 0, since ifEXt = µ then the processYt = Xt − µ is mean zero.
A mean zero process with be called a centered process. The functionC(t) is the
covariance(sometimes also called autocovariance) or the autocorrelation function
of theXt. Notice thatC(t) = E(XtX0), whereasC(0) = E(X2

t ), which is finite,
by assumption. Since we have assumed thatXt is a real valued process, we have
thatC(t) = C(−t), t ∈ R.

Remark 3.9. LetXt be a strictly stationary stochastic process with finite second
moment (i.e.Xt ∈ L2). The definition of strict stationarity implies thatEXt = µ, a
constant, andE((Xt−µ)(Xs−µ)) = C(t−s). Hence, a strictly stationary process
with finite second moment is also stationary in the wide sense. The converse is not
true.

Example 3.10.LetY0, Y1, . . . be a sequence of independent, identically distributed
random variables and consider the stochastic processXn = Yn. From Example 3.6
we know that this is a strictly stationary process, irrespective of whetherY0 is such
that EY 2

0 < +∞. Assume now thatEY0 = 0 and EY 2
0 = σ2 < +∞. Then

Xn is a second order stationary process with mean zero and correlation function
R(k) = σ2δk0. Notice that in this case we have no correlation between the values
of the stochastic process at different timesn andk.

Example 3.11. Let Z be a single random variable and consider the stochastic
processXn = Z, n = 0, 1, 2, . . . . From Example 3.7 we know that this is a strictly
stationary process irrespective of whetherE|Z|2 < +∞ or not. Assume now that
EZ = 0, EZ2 = σ2. ThenXn becomes a second order stationary process with
R(k) = σ2. Notice that in this case the values of our stochastic process at different
times are strongly correlated.

We will see in Section 3.2.3 that for second order stationaryprocesses, ergod-
icity is related to fast decay of correlations. In the first ofthe examples above,
there was no correlation between our stochastic processes at different times and
the stochastic process is ergodic. On the contrary, in our second example there is
very strong correlation between the stochastic process at different times and this
process is not ergodic.

Remark 3.12. The first two moments of a Gaussian process are sufficient for a
complete characterization of the process. Consequently, aGaussian stochastic
process is strictly stationary if and only if it is weakly stationary.
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Continuity properties of the covariance function are equivalent to continuity
properties of the paths ofXt in theL2 sense, i.e.

lim
h→0

E|Xt+h −Xt|2 = 0.

Lemma 3.13. Assume that the covariance functionC(t) of a second order station-
ary process is continuous att = 0. Then it is continuous for allt ∈ R. Further-
more, the continuity ofC(t) is equivalent to the continuity of the processXt in the
L2-sense.

Proof. Fix t ∈ R and (without loss of generality) setEXt = 0. We calculate:

|C(t+ h) − C(t)|2 = |E(Xt+hX0) − E(XtX0)|2 = E|((Xt+h −Xt)X0)|2

6 E(X0)
2
E(Xt+h −Xt)

2

= C(0)(EX2
t+h + EX2

t − 2EXtXt+h)

= 2C(0)(C(0) − C(h)) → 0,

ash→ 0. Thus, continuity ofC(·) at0 implies continuity for allt.
Assume now thatC(t) is continuous. From the above calculation we have

E|Xt+h −Xt|2 = 2(C(0) − C(h)), (3.4)

which converges to0 ash → 0. Conversely, assume thatXt is L2-continuous.
Then, from the above equation we getlimh→0C(h) = C(0).

Notice that form (3.4) we immediately conclude thatC(0) > C(h), h ∈ R.

The Fourier transform of the covariance function of a secondorder stationary
process always exists. This enables us to study second orderstationary processes
using tools from Fourier analysis. To make the link between second order station-
ary processes and Fourier analysis we will use Bochner’s theorem, which applies
to all nonnegative functions.

Definition 3.14. A functionf(x) : R 7→ R is called nonnegative definite if

n
∑

i,j=1

f(ti − tj)cic̄j > 0 (3.5)

for all n ∈ N, t1, . . . tn ∈ R, c1, . . . cn ∈ C.
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Lemma 3.15. The covariance function of second order stationary processis a
nonnegative definite function.

Proof. We will use the notationXc
t :=

∑n
i=1Xtici. We have.

n
∑

i,j=1

C(ti − tj)cic̄j =

n
∑

i,j=1

EXtiXtj cic̄j

= E





n
∑

i=1

Xtici

n
∑

j=1

Xtj c̄j



 = E
(

Xc
t X̄

c
t

)

= E|Xc
t |2 > 0.

Theorem 3.16. [Bochner] LetC(t) be a continuous positive definite function.
Then there exists a unique nonnegative measureρ on R such thatρ(R) = C(0)

and

C(t) =

∫

R

eiωt ρ(dω) ∀t ∈ R. (3.6)

Definition 3.17. LetXt be a second order stationary process with autocorrelation
functionC(t) whose Fourier transform is the measureρ(dω). The measureρ(dω)

is called thespectral measureof the processXt.

In the following we will assume that the spectral measure is absolutely contin-
uous with respect to the Lebesgue measure onR with densityS(ω), i.e. ρ(dω) =

S(ω)dω. The Fourier transformS(ω) of the covariance function is called the
spectral density of the process:

S(ω) =
1

2π

∫ ∞

−∞
e−itωC(t) dt. (3.7)

From (3.6) it follows that that the autocorrelation function of a mean zero, second
order stationary process is given by the inverse Fourier transform of the spectral
density:

C(t) =

∫ ∞

−∞
eitωS(ω) dω. (3.8)

There are various cases where the experimentally measured quantity is the spec-
tral density (or power spectrum) of a stationary stochasticprocess. Conversely,
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from a time series of observations of a stationary processeswe can calculate the
autocorrelation function and, using (3.8) the spectral density.

The autocorrelation function of a second order stationary process enables us to
associate a time scale toXt, thecorrelation timeτcor:

τcor =
1

C(0)

∫ ∞

0
C(τ) dτ =

∫ ∞

0
E(XτX0)/E(X2

0 ) dτ.

The slower the decay of the correlation function, the largerthe correlation time
is. Notice that when the correlations do not decay sufficiently fast so thatC(t) is
integrable, then the correlation time will be infinite.

Example 3.18. Consider a mean zero, second order stationary process with cor-
relation function

R(t) = R(0)e−α|t| (3.9)

whereα > 0. We will writeR(0) = D
α whereD > 0. The spectral density of this

process is:

S(ω) =
1

2π

D

α

∫ +∞

−∞
e−iωte−α|t| dt

=
1

2π

D

α

(∫ 0

−∞
e−iωteαt dt +

∫ +∞

0
e−iωte−αt dt

)

=
1

2π

D

α

(

1

−iω + α
+

1

iω + α

)

=
D

π

1

ω2 + α2
.

This function is called the Cauchy or the Lorentz distribution. The correlation
time is (we have thatR(0) = D/α)

τcor =

∫ ∞

0
e−αt dt = α−1.

A Gaussian process with an exponential correlation function is of particular
importance in the theory and applications of stochastic processes.

Definition 3.19. A real-valued Gaussian stationary process defined onR with cor-
relation function given by(3.9) is called the (stationary) Ornstein-Uhlenbeck pro-
cess.
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The Ornstein Uhlenbeck process is used as a model for the velocity of a Brown-
ian particle. It is of interest to calculate the statistics of the position of the Brownian
particle, i.e. of the integral

X(t) =

∫ t

0
Y (s) ds, (3.10)

whereY (t) denotes the stationary OU process.

Lemma 3.20. Let Y (t) denote the stationary OU process with covariance func-
tion (3.9) and setα = D = 1. Then the position process(3.10) is a mean zero
Gaussian process with covariance function

E(X(t)X(s)) = 2min(t, s) + e−min(t,s) + e−max(t,s) − e−|t−s| − 1. (3.11)

Proof. See Exercise 8.

3.2.3 Ergodic Properties of Second-Order Stationary Processes

Second order stationary processes have nice ergodic properties, provided that the
correlation between values of the process at different times decays sufficiently fast.
In this case, it is possible to show that we can calculate expectations by calculating
time averages. An example of such a result is the following.

Theorem 3.21. Let {Xt}t>0 be a second order stationary process on a proba-
bility spaceΩ, F , P with meanµ and covarianceR(t), and assume thatR(t) ∈
L1(0,+∞). Then

lim
T→+∞

E

∣

∣

∣

∣

1

T

∫ T

0
X(s) ds − µ

∣

∣

∣

∣

2

= 0. (3.12)

For the proof of this result we will first need an elementary lemma.

Lemma 3.22. LetR(t) be an integrable symmetric function. Then
∫ T

0

∫ T

0
R(t− s) dtds = 2

∫ T

0
(T − s)R(s) ds. (3.13)

Proof. We make the change of variablesu = t − s, v = t + s. The domain of
integration in thet, s variables is[0, T ] × [0, T ]. In theu, v variables it becomes
[−T, T ] × [0, 2(T − |u|)]. The Jacobian of the transformation is

J =
∂(t, s)

∂(u, v)
=

1

2
.
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The integral becomes

∫ T

0

∫ T

0
R(t− s) dtds =

∫ T

−T

∫ 2(T−|u|)

0
R(u)J dvdu

=

∫ T

−T
(T − |u|)R(u) du

= 2

∫ T

0
(T − u)R(u) du,

where the symmetry of the functionR(u) was used in the last step.

Proof of Theorem 3.21.We use Lemma (3.22) to calculate:

E

∣

∣

∣

∣

1

T

∫ T

0
Xs ds − µ

∣

∣

∣

∣

2

=
1

T 2
E

∣

∣

∣

∣

∫ T

0
(Xs − µ) ds

∣

∣

∣

∣

2

=
1

T 2
E

∫ T

0

∫ T

0
(X(t) − µ)(X(s) − µ) dtds

=
1

T 2

∫ T

0

∫ T

0
R(t− s) dtds

=
2

T 2

∫ T

0
(T − u)R(u) du

6
2

T

∫ +∞

0

∣

∣

∣

(

1 − u

T

)

R(u)
∣

∣

∣
du 6

2

T

∫ +∞

0
R(u) du→ 0,

using the dominated convergence theorem and the assumptionR(·) ∈ L1.
Assume thatµ = 0 and define

D =

∫ +∞

0
R(t) dt, (3.14)

which, from our assumption onR(t), is a finite quantity.2 The above calculation
suggests that, forT ≫ 1, we have that

E

(
∫ t

0
X(t) dt

)2

≈ 2DT.

This implies that, at sufficiently long times, the mean square displacement of the
integral of the ergodic second order stationary processXt scales linearly in time,
with proportionality coefficient2D.

2Notice however that we do not know whether it is nonzero. Thisrequires a separate argument.



3.3. BROWNIAN MOTION 39

Assume thatXt is the velocity of a (Brownian) particle. In this case, the inte-
gral ofXt

Zt =

∫ t

0
Xs ds,

represents the particle position. From our calculation above we conclude that

EZ2
t = 2Dt.

where

D =

∫ ∞

0
R(t) dt =

∫ ∞

0
E(XtX0) dt (3.15)

is thediffusion coefficient. Thus, one expects that at sufficiently long times and
under appropriate assumptions on the correlation function, the time integral of a
stationary process will approximate a Brownian motion withdiffusion coefficient
D. The diffusion coefficient is an example of a transport coefficient and (3.15) is
an example of the Green-Kubo formula: a transport coefficient can be calculated
in terms of the time integral of an appropriate autocorrelation function. In the
case of the diffusion coefficient we need to calculate the integral of the velocity
autocorrelation function.

Example 3.23. Consider the stochastic processes with an exponential correlation
function from Example 3.18, and assume that this stochasticprocess describes the
velocity of a Brownian particle. SinceR(t) ∈ L1(0,+∞) Theorem 3.21 applies.
Furthermore, the diffusion coefficient of the Brownian particle is given by

∫ +∞

0
R(t) dt = R(0)τ−1

c =
D

α2
.

3.3 Brownian Motion

The most important continuous time stochastic process is Brownian motion. Brow-
nian motion is a mean zero, continuous (i.e. it has continuous sample paths: for
a.eω ∈ Ω the functionXt is a continuous function of time) process with indepen-
dent Gaussian increments. A processXt has independent increments if for every
sequencet0 < t1 < . . . tn the random variables

Xt1 −Xt0 , Xt2 −Xt1 , . . . ,Xtn −Xtn−1
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are independent. If, furthermore, for anyt1, t2, s ∈ T and Borel setB ⊂ R

P(Xt2+s −Xt1+s ∈ B) = P(Xt2 −Xt1 ∈ B)

then the processXt has stationary independent increments.

Definition 3.24. • A one dimensional standardBrownian motionW (t) : R
+ →

R is a real valued stochastic process such that

i. W (0) = 0.

ii. W (t) has independent increments.

iii. For every t > s > 0 W (t) −W (s) has a Gaussian distribution with
mean0 and variancet− s. That is, the density of the random variable
W (t) −W (s) is

g(x; t, s) =
(

2π(t− s)
)− 1

2

exp

(

− x2

2(t− s)

)

; (3.16)

• A d–dimensional standard Brownian motionW (t) : R
+ → R

d is a collec-
tion ofd independent one dimensional Brownian motions:

W (t) = (W1(t), . . . ,Wd(t)),

whereWi(t), i = 1, . . . , d are independent one dimensional Brownian mo-
tions. The density of the Gaussian random vectorW (t) −W (s) is thus

g(x; t, s) =
(

2π(t− s)
)−d/2

exp

(

− ‖x‖2

2(t− s)

)

.

Brownian motion is sometimes referred to as theWiener process.
Brownian motion has continuous paths. More precisely, it has a continuous

modification.

Definition 3.25. LetXt andYt, t ∈ T , be two stochastic processes defined on the
same probability space(Ω,F ,P). The processYt is said to be a modification of
Xt if P(Xt = Yt) = 1 ∀t ∈ T .

Lemma 3.26. There is a continuous modification of Brownian motion.

This follows from a theorem due to Kolmogorov.
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Figure 3.1: Brownian sample paths

Theorem 3.27. (Kolmogorov) LetXt, t ∈ [0,∞) be a stochastic process on a
probability space{Ω,F ,P}. Suppose that there are positive constantsα andβ,
and for eachT > 0 there is a constantC(T ) such that

E|Xt −Xs|α 6 C(T )|t− s|1+β, 0 6 s, t 6 T. (3.17)

Then there exists a continuous modificationYt of the processXt.

The proof of Lemma 3.26 is left as an exercise.

Remark 3.28. Equivalently, we could have defined the one dimensional standard

Brownian motion as a stochastic process on a probability space
(

Ω,F ,P
)

with
continuous paths for almost allω ∈ Ω, and Gaussian finite dimensional distri-
butions with zero mean and covarianceE(WtiWtj ) = min(ti, tj). One can then
show that Definition 3.24 follows from the above definition.

It is possible to prove rigorously the existence of the Wiener process (Brownian
motion):

Theorem 3.29.(Wiener) There exists an almost-surely continuous processWt with
independent increments such andW0 = 0, such that for eacht > 0 the random
variableWt is N (0, t). Furthermore,Wt is almost surely locally Ḧolder continu-
ous with exponentα for anyα ∈ (0, 1

2).
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Notice that Brownian paths are not differentiable.

We can also construct Brownian motion through the limit of anappropriately
rescaled random walk: letX1, X2, . . . be iid random variables on a probability
space(Ω,F ,P) with mean0 and variance1. Define the discrete time stochastic
processSn with S0 = 0, Sn =

∑

j=1Xj , n > 1. Define now a continuous time
stochastic process with continuous paths as the linearly interpolated, appropriately
rescaled random walk:

W n
t =

1√
n
S[nt] + (nt− [nt])

1√
n
X[nt]+1,

where [·] denotes the integer part of a number. ThenW n
t converges weakly, as

n→ +∞ to a one dimensional standard Brownian motion.

Brownian motion is a Gaussian process. For thed–dimensional Brownian mo-
tion, and forI thed× d dimensional identity, we have (see (2.7) and (2.8))

EW (t) = 0 ∀t > 0

and

E

(

(W (t) −W (s)) ⊗ (W (t) −W (s))
)

= (t− s)I. (3.18)

Moreover,

E

(

W (t) ⊗W (s)
)

= min(t, s)I. (3.19)

From the formula for the Gaussian densityg(x, t − s), eqn. (3.16), we immedi-
ately conclude thatW (t) −W (s) andW (t+ u) −W (s+ u) have the same pdf.
Consequently, Brownian motion has stationary increments.Notice, however, that
Brownian motion itself is not a stationary process. SinceW (t) = W (t) −W (0),
the pdf ofW (t) is

g(x, t) =
1√
2πt

e−x2/2t.

We can easily calculate all moments of the Brownian motion:

E(xn(t)) =
1√
2πt

∫ +∞

−∞
xne−x2/2t dx

=
{

1.3 . . . (n− 1)tn/2, n even,
0, n odd.

Brownian motion is invariant under various transformations in time.
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Theorem 3.30. LetWt denote a standard Brownian motion inR. Then,Wt has
the following properties:

i. (Rescaling). For eachc > 0 defineXt = 1√
c
W (ct). Then(Xt, t > 0) =

(Wt, t > 0) in law.

ii. (Shifting). For eachc > 0 Wc+t −Wc, t > 0 is a Brownian motion which is
independent ofWu, u ∈ [0, c].

iii. (Time reversal). DefineXt = W1−t−W1, t ∈ [0, 1]. Then(Xt, t ∈ [0, 1]) =

(Wt, t ∈ [0, 1]) in law.

iv. (Inversion). LetXt, t > 0 defined byX0 = 0, Xt = tW (1/t). Then
(Xt, t > 0) = (Wt, t > 0) in law.

We emphasize that the equivalence in the above theorem holdsin law and not
in a pathwise sense.

Proof. See Exercise 13.

We can also add a drift and change the diffusion coefficient ofthe Brownian
motion: we will define a Brownian motion with driftµ and varianceσ2 as the
process

Xt = µt+ σWt.

The mean and variance ofXt are

EXt = µt, E(Xt − EXt)
2 = σ2t.

Notice thatXt satisfies the equation

dXt = µdt+ σ dWt.

This is the simplest example of astochastic differential equation.
We can define the OU process through the Brownian motion via a time change.

Lemma 3.31. LetW (t) be a standard Brownian motion and consider the process

V (t) = e−tW (e2t).

ThenV (t) is a Gaussian stationary process with mean0 and correlation function

R(t) = e−|t|. (3.20)
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For the proof of this result we first need to show that time changed Gaussian
processes are also Gaussian.

Lemma 3.32. LetX(t) be a Gaussian stochastic process and letY (t) = X(f(t))

wheref(t) is a strictly increasing function. ThenY (t) is also a Gaussian process.

Proof. We need to show that, for all positive integersN and all sequences of times
{t1, t2, . . . tN} the random vector

{Y (t1), Y (t2), . . . Y (tN )} (3.21)

is a multivariate Gaussian random variable. Sincef(t) is strictly increasing, it is
invertible and hence, there existsi, i = 1, . . . N such thatsi = f−1(ti). Thus, the
random vector (3.21) can be rewritten as

{X(s1), X(s2), . . . X(sN )},

which is Gaussian for allN and all choices of timess1, s2, . . . sN . HenceY (t) is
also Gaussian.

Proof of Lemma 3.31.The fact thatV (t) is mean zero follows immediately
from the fact thatW (t) is mean zero. To show that the correlation function ofV (t)

is given by (3.20), we calculate

E(V (t)V (s)) = e−t−s
E(W (e2t)W (e2s)) = e−t−s min(e2t, e2s)

= e−|t−s|.

The Gaussianity of the processV (t) follows from Lemma 3.32 (notice that the
transformation that givesV (t) in terms ofW (t) is invertible and we can write
W (s) = s1/2V (1

2 ln(s))).

3.4 Other Examples of Stochastic Processes

Brownian Bridge Let W (t) be a standard one dimensional Brownian motion.
We define the Brownian bridge (from0 to 0) to be the process

Bt = Wt − tW1, t ∈ [0, 1]. (3.22)

Notice thatB0 = B1 = 0. Equivalently, we can define the Brownian bridge to be
the continuous Gaussian process{Bt : 0 6 t 6 1} such that

EBt = 0, E(BtBs) = min(s, t) − st, s, t ∈ [0, 1]. (3.23)
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Another, equivalent definition of the Brownian bridge is through an appropriate
time change of the Brownian motion:

Bt = (1 − t)W

(

t

1 − t

)

, t ∈ [0, 1). (3.24)

Conversely, we can write the Brownian motion as a time changeof the Brownian
bridge:

Wt = (t+ 1)B

(

t

1 + t

)

, t > 0.

Fractional Brownian Motion

Definition 3.33. A (normalized) fractional Brownian motionWH
t , t > 0 with

Hurst parameterH ∈ (0, 1) is a centered Gaussian process with continuous sam-
ple paths whose covariance is given by

E(WH
t WH

s ) =
1

2

(

s2H + t2H − |t− s|2H
)

. (3.25)

Proposition 3.34. Fractional Brownian motion has the following properties.

i. WhenH = 1
2 , W

1

2

t becomes the standard Brownian motion.

ii. WH
0 = 0, EWH

t = 0, E(WH
t )2 = |t|2H , t > 0.

iii. It has stationary increments,E(WH
t −WH

s )2 = |t− s|2H .

iv. It has the following self similarity property

(WH
αt , t > 0) = (αHWH

t , t > 0), α > 0, (3.26)

where the equivalence is in law.

Proof. See Exercise 19.

The Poisson Process

Definition 3.35. The Poisson process with intensityλ, denoted byN(t), is an
integer-valued, continuous time, stochastic process withindependent increments
satisfying

P[(N(t) −N(s)) = k] =
e−λ(t−s)

(

λ(t− s)
)k

k!
, t > s > 0, k ∈ N.

The Poisson process does not have a continuous modification.See Exercise 20.
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3.5 The Karhunen-Loéve Expansion

Let f ∈ L2(Ω) whereΩ is a subset ofRd and let{en}∞n=1 be an orthonormal basis
in L2(Ω). Then, it is well known thatf can be written as a series expansion:

f =
∞
∑

n=1

fnen,

where

fn =

∫

Ω
f(x)en(x) dx.

The convergence is inL2(Ω):

lim
N→∞

∥

∥

∥

∥

∥

f(x) −
N
∑

n=1

fnen(x)

∥

∥

∥

∥

∥

L2(Ω)

= 0.

It turns out that we can obtain a similar expansion for anL2 mean zero process
which is continuous in theL2 sense:

EX2
t < +∞, EXt = 0, lim

h→0
E|Xt+h −Xt|2 = 0. (3.27)

For simplicity we will takeT = [0, 1]. LetR(t, s) = E(XtXs) be the autocorrela-
tion function. Notice that from (3.27) it follows thatR(t, s) is continuous in botht
ands (exercise 21).

Let us assume an expansion of the form

Xt(ω) =
∞
∑

n=1

ξn(ω)en(t), t ∈ [0, 1] (3.28)

where{en}∞n=1 is an orthonormal basis inL2(0, 1). The random variablesξn are
calculated as

∫ 1

0
Xtek(t) dt =

∫ 1

0

∞
∑

n=1

ξnen(t)ek(t) dt

=
∞
∑

n=1

ξnδnk = ξk,

where we assumed that we can interchange the summation and integration. We
will assume that these random variables are orthogonal:

E(ξnξm) = λnδnm,
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where{λn}∞n=1 are positive numbers that will be determined later.
Assuming that an expansion of the form (3.28) exists, we can calculate

R(t, s) = E(XtXs) = E

( ∞
∑

k=1

∞
∑

ℓ=1

ξkek(t)ξℓeℓ(s)

)

=
∞
∑

k=1

∞
∑

ℓ=1

E (ξkξℓ) ek(t)eℓ(s)

=

∞
∑

k=1

λkek(t)ek(s).

Consequently, in order to the expansion (3.28) to be valid weneed

R(t, s) =

∞
∑

k=1

λkek(t)ek(s). (3.29)

From equation (3.29) it follows that

∫ 1

0
R(t, s)en(s) ds =

∫ 1

0

∞
∑

k=1

λkek(t)ek(s)en(s) ds

=

∞
∑

k=1

λkek(t)

∫ 1

0
ek(s)en(s) ds

=

∞
∑

k=1

λkek(t)δkn

= λnen(t).

Hence, in order for the expansion (3.28) to be valid,{λn, en(t)}∞n=1 have to be
the eigenvalues and eigenfunctions of the integral operator whose kernel is the
correlation function ofXt:

∫ 1

0
R(t, s)en(s) ds = λnen(t). (3.30)

Hence, in order to prove the expansion (3.28) we need to studythe eigenvalue
problem for the integral operatorR : L2[0, 1] 7→ L2[0, 1]. It easy to check that
this operator is self-adjoint ((Rf, h) = (f,Rh) for all f, h ∈ L2(0, 1)) and non-
negative (Rf, f > 0 for all f ∈ L2(0, 1)). Hence, all its eigenvalues are real
and nonnegative. Furthermore, it is a compact operator (if{φn}∞n=1 is a bounded
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sequence inL2(0, 1), then{Rφn}∞n=1 has a convergent subsequence). The spec-
tral theorem for compact, self-adjoint operators implies that R has a countable
sequence of eigenvalues tending to0. Furthermore, for everyf ∈ L2(0, 1) we can
write

f = f0 +
∞
∑

n=1

fnen(t),

whereRf0 = 0, {en(t)} are the eigenfunctions ofR corresponding to nonzero
eigenvalues and the convergence is inL2. Finally, Mercer’s Theorem states that
for R(t, s) continuous on[0, 1] × [0, 1], the expansion (3.29) is valid, where the
series converges absolutely and uniformly.

Now we are ready to prove (3.28).

Theorem 3.36. (Karhunen-Lóeve). Let{Xt, t ∈ [0, 1]} be anL2 process with
zero mean and continuous correlation functionR(t, s). Let{λn, en(t)}∞n=1 be the
eigenvalues and eigenfunctions of the operatorR defined in(3.36). Then

Xt =
∞
∑

n=1

ξnen(t), t ∈ [0, 1], (3.31)

where

ξn =

∫ 1

0
Xten(t) dt, Eξn = 0, E(ξnξm) = λδnm. (3.32)

The series converges inL2 toX(t), uniformly int.

Proof. The fact thatEξn = 0 follows from the fact thatXt is mean zero. The
orthogonality of the random variables{ξn}∞n=1 follows from the orthogonality of
the eigenfunctions ofR:

E(ξnξm) = E

∫ 1

0

∫ 1

0
XtXsen(t)em(s) dtds

=

∫ 1

0

∫ 1

0
R(t, s)en(t)em(s) dsdt

= λn

∫ 1

0
en(s)em(s) ds

= λnδnm.
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Consider now the partial sumSN =
∑N

n=1 ξnen(t).

E|Xt − SN |2 = EX2
t + ES2

N − 2E(XtSN )

= R(t, t) + E

N
∑

k,ℓ=1

ξkξℓek(t)eℓ(t) − 2E

(

Xt

N
∑

n=1

ξnen(t)

)

= R(t, t) +

N
∑

k=1

λk|ek(t)|2 − 2E

N
∑

k=1

∫ 1

0
XtXsek(s)ek(t) ds

= R(t, t) −
N
∑

k=1

λk|ek(t)|2 → 0,

by Mercer’s theorem.

Remark 3.37. Let Xt be a Gaussian second order process with continuous co-
varianceR(t, s). Then the random variables{ξk}∞k=1 are Gaussian, since they
are defined through the time integral of a Gaussian processes. Furthermore, since
they are Gaussian and orthogonal, they are also independent. Hence, for Gaussian
processes the Karhunen-Loéve expansion becomes:

Xt =

+∞
∑

k=1

√

λkξkek(t), (3.33)

where{ξk}∞k=1 are independentN (0, 1) random variables.

Example 3.38.The Karhunen-Lóeve Expansion for Brownian Motion. The corre-
lation function of Brownian motion isR(t, s) = min(t, s). The eigenvalue problem
Rψn = λnψn becomes

∫ 1

0
min(t, s)ψn(s) ds = λnψn(t).

Let us assume thatλn > 0 (it is easy to check that0 is not an eigenvalue). Upon
settingt = 0 we obtainψn(0) = 0. The eigenvalue problem can be rewritten in
the form

∫ t

0
sψn(s) ds+ t

∫ 1

t
ψn(s) ds = λnψn(t).

We differentiate this equation once:
∫ 1

t
ψn(s) ds = λnψ

′
n(t).
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We sett = 1 in this equation to obtain the second boundary conditionψ′
n(1) = 0.

A second differentiation yields;

−ψn(t) = λnψ
′′
n(t),

where primes denote differentiation with respect tot. Thus, in order to calcu-
late the eigenvalues and eigenfunctions of the integral operator whose kernel is
the covariance function of Brownian motion, we need to solvethe Sturm-Liouville
problem

−ψn(t) = λnψ
′′
n(t), ψ(0) = ψ′(1) = 0.

It is easy to check that the eigenvalues and (normalized) eigenfunctions are

ψn(t) =
√

2 sin

(

1

2
(2n− 1)πt

)

, λn =

(

2

(2n− 1)π

)2

.

Thus, the Karhunen-Loéve expansion of Brownian motion on[0, 1] is

Wt =
√

2

∞
∑

n=1

ξn
2

(2n − 1)π
sin

(

1

2
(2n− 1)πt

)

. (3.34)

We can use the KL expansion in order to study theL2-regularity of stochas-
tic processes. First, letR be a compact, symmetric positive definite operator on
L2(0, 1) with eigenvalues and normalized eigenfunctions{λk, ek(x)}+∞

k=1 and con-
sider a functionf ∈ L2(0, 1) with

∫ 1
0 f(s) ds = 0. We can define the one parame-

ter family of Hilbert spacesHα through the norm

‖f‖2
α = ‖R−αf‖2

L2 =
∑

k

|fk|2λ−α.

The inner product can be obtained through polarization. This norm enables us to
measure the regularity of the functionf(t).3 LetXt be a mean zero second order
(i.e. with finite second moment) process with continuous autocorrelation function.
Define the spaceHα := L2((Ω, P ),Hα(0, 1)) with (semi)norm

‖Xt‖2
α = E‖Xt‖2

Hα =
∑

k

|λk|1−α. (3.35)

Notice that the regularity of the stochastic processXt depends on the decay of the
eigenvalues of the integral operatorR· :=

∫ 1
0 R(t, s) · ds.

3Think of R as being the inverse of the Laplacian with periodic boundaryconditions. In this case
H

α coincides with the standard fractional Sobolev space.
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As an example, consider theL2-regularity of Brownian motion. From Exam-
ple 3.38 we know thatλk ∼ k−2. Consequently, from (3.35) we get that, in order
for Wt to be an element of the spaceHα, we need that

∑

k

|λk|−2(1−α) < +∞,

from which we obtain thatα < 1/2. This is consistent with the Hölder continuity
of Brownian motion from Theorem 3.29.4

3.6 Discussion and Bibliography

The Ornstein-Uhlenbeck process was introduced by Ornsteinand Uhlenbeck in
1930 as a model for the velocity of a Brownian particle [25].

The kind of analysis presented in Section 3.2.3 was initiated by G.I. Taylor
in [24]. The proof of Bochner’s theorem 3.16 can be found in [14], where addi-
tional material on stationary processes can be found. See also [11].

The spectral theorem for compact, self-adjoint operators which was needed
in the proof of the Karhunen-Loéve theorem can be found in [21]. The Karhunen-
Loeve expansion is also valid for random fields. See [22] and the reference therein.

3.7 Exercises

1. Let Y0, Y1, . . . be a sequence of independent, identically distributed random
variables and consider the stochastic processXn = Yn.

(a) Show thatXn is a strictly stationary process.

(b) Assume thatEY0 = µ < +∞ andEY 2
0 = sigma2 < +∞. Show that

lim
N→+∞

E

∣

∣

∣

∣

∣

∣

1

N

N−1
∑

j=0

Xj − µ

∣

∣

∣

∣

∣

∣

= 0.

(c) Letf be such thatEf2(Y0) < +∞. Show that

lim
N→+∞

E

∣

∣

∣

∣

∣

∣

1

N

N−1
∑

j=0

f(Xj) − f(Y0)

∣

∣

∣

∣

∣

∣

= 0.

4Notice, however, that Wiener’s theorem refers to a.s. Hölder continuity, whereas the calculation
presented in this section is aboutL

2-continuity.
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2. LetZ be a random variable and define the stochastic processXn = Z, n =

0, 1, 2, . . . . Show thatXn is a strictly stationary process.

3. LetA0, A1, . . . Am andB0, B1, . . . Bm be uncorrelated random variables with
mean zero and variancesEA2

i = σ2
i , EB2

i = σ2
i , i = 1, . . . m. Letω0, ω1, . . . ωm ∈

[0, π] be distinct frequencies and define, forn = 0,±1,±2, . . . , the stochastic
process

Xn =

m
∑

k=0

(

Ak cos(nωk) +Bk sin(nωk)
)

.

Calculate the mean and the covariance ofXn. Show that it is a weakly stationary
process.

4. Let {ξn : n = 0,±1,±2, . . . } be uncorrelated random variables withEξn =

µ, E(ξn − µ)2 = σ2, n = 0,±1,±2, . . . . Let a1, a2, . . . be arbitrary real
numbers and consider the stochastic process

Xn = a1ξn + a2ξn−1 + . . . amξn−m+1.

(a) Calculate the mean, variance and the covariance function of Xn. Show
that it is a weakly stationary process.

(b) Setak = 1/
√
m for k = 1, . . . m. Calculate the covariance function and

study the casesm = 1 andm→ +∞.

5. LetW (t) be a standard one dimensional Brownian motion. Calculate the fol-
lowing expectations.

(a) EeiW (t).

(b) Eei(W (t)+W (s)), t, s,∈ (0,+∞).

(c) E(
∑n

i=1 ciW (ti))
2, whereci ∈ R, i = 1, . . . n and ti ∈ (0,+∞), i =

1, . . . n.

(d) Ee

[

i
(

Pn
i=1

ciW (ti)
)]

, whereci ∈ R, i = 1, . . . n andti ∈ (0,+∞), i =

1, . . . n.

6. LetWt be a standard one dimensional Brownian motion and define

Bt = Wt − tW1, t ∈ [0, 1].
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(a) Show thatBt is a Gaussian process with

EBt = 0, E(BtBs) = min(t, s) − ts.

(b) Show that, fort ∈ [0, 1) an equivalent definition ofBt is through the
formula

Bt = (1 − t)W

(

t

1 − t

)

.

(c) Calculate the distribution function ofBt.

7. Let Xt be a mean-zero second order stationary process with autocorrelation
function

R(t) =

N
∑

j=1

λ2
j

αj
e−αj |t|,

where{αj , λj}N
j=1 are positive real numbers.

(a) Calculate the spectral density and the correlaction time of this process.

(b) Show that the assumptions of Theorem 3.21 are satisfied and use the argu-
ment presented in Section 3.2.3 (i.e. the Green-Kubo formula) to calculate
the diffusion coefficient of the processZt =

∫ t
0 Xs ds.

(c) Under what assumptions on the coefficients{αj , λj}N
j=1 can you study

the above questions in the limitN → +∞?

8. Prove Lemma 3.20.

9. Let a1, . . . an ands1, . . . sn be positive real numbers. Calculate the mean and
variance of the random variable

X =
n
∑

i=1

aiW (si).

10. LetW (t) be the standard one-dimensional Brownian motion and letσ, s1, s2 >

0. Calculate

(a) EeσW (t).

(b) E
(

sin(σW (s1)) sin(σW (s2))
)

.
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11. LetWt be a one dimensional Brownian motion and letµ, σ > 0 and define

St = etµ+σWt .

(a) Calculate the mean and the variance ofSt.

(b) Calculate the probability density function ofSt.

12. Use Theorem 3.27 to prove Lemma 3.26.

13. Prove Theorem 3.30.

14. Use Lemma 3.31 to calculate the distribution function ofthe stationary Ornstein-
Uhlenbeck process.

15. Calculate the mean and the correlation function of the integral of a standard
Brownian motion

Yt =

∫ t

0
Ws ds.

16. Show that the process

Yt =

∫ t+1

t
(Ws −Wt) ds, t ∈ R,

is second order stationary.

17. LetVt = e−tW (e2t) be the stationary Ornstein-Uhlenbeck process. Give the
definition and study the main properties of the Ornstein-Uhlenbeck bridge.

18. The autocorrelation function of the velocityY (t) a Brownian particle moving
in a harmonic potentialV (x) = 1

2ω
2
0x

2 is

R(t) = e−γ|t|
(

cos(δ|t|) − 1

δ
sin(δ|t|)

)

,

whereγ is the friction coefficient andδ =
√

ω2
0 − γ2.

(a) Calculate the spectral density ofY (t).

(b) Calculate the mean square displacementE(X(t))2 of the position of the
Brownian particleX(t) =

∫ t
0 Y (s) ds. Study the limitt→ +∞.

19. Show the scaling property (3.26) of the fractional Brownian motion.
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20. Use Theorem (3.27) to show that there does not exist a continuous modification
of the Poisson process.

21. Show that the correlation function of a processXt satisfying (3.27) is continu-
ous in botht ands.

22. LetXt be a stochastic process satisfying (3.27) andR(t, s) its correlation func-
tion. Show that the integral operatorR : L2[0, 1] 7→ L2[0, 1]

Rf :=

∫ 1

0
R(t, s)f(s) ds (3.36)

is self-adjoint and nonnegative. Show that all of its eigenvalues are real and
nonnegative. Show that eigenfunctions corresponding to different eigenvalues
are orthogonal.

23. LetH be a Hilbert space. An operatorR : H → H is said to be Hilbert–
Schmidt if there exists a complete orthonormal sequence{φn}∞n=1 in H such
that ∞

∑

n=1

‖Ren‖2 <∞.

LetR : L2[0, 1] 7→ L2[0, 1] be the operator defined in (3.36) withR(t, s) being
continuous both int ands. Show that it is a Hilbert-Schmidt operator.

24. LetXt a mean zero second order stationary process defined in the interval[0, T ]

with continuous covarianceR(t) and let{λn}+∞
n=1 be the eigenvalues of the

covariance operator. Show that

∞
∑

n=1

λn = T R(0).

25. Calculate the Karhunen-Loeve expansion for a second order stochastic process
with correlation functionR(t, s) = ts.

26. Calculate the Karhunen-Loeve expansion of the Brownianbridge on[0, 1].

27. LetXt, t ∈ [0, T ] be a second order process with continuous covariance and
Karhunen-Loéve expansion

Xt =

∞
∑

k=1

ξkek(t).
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Define the process
Y (t) = f(t)Xτ(t), t ∈ [0, S],

wheref(t) is a continuous function andτ(t) a continuous, nondecreasing func-
tion with τ(0) = 0, τ(S) = T . Find the Karhunen-Loéve expansion ofY (t),
in an appropriate weightedL2 space, in terms of the KL expansion ofXt. Use
this in order to calculate the KL expansion of the Ornstein-Uhlenbeck process.

28. Calculate the Karhunen-Loéve expansion of a centered Gaussian stochastic pro-
cess with covariance functionR(s, t) = cos(2π(t− s)).

29. Use the Karhunen-Loeve expansion to generate paths of the

(a) Brownian motion on[0, 1].

(b) Brownian bridge on[0, 1].

(c) Ornstein-Uhlenbeck on[0, 1].

Study computationally the convergence of the KL expansion for these pro-
cesses. How many terms do you need to keep in the KL expansion in order
to calculate accurate statistics of these processes?
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