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Chapter 1

Introduction

In this chapter we introduce some of the concepts and tegbsitpat we will study

in this book. In Section 1.1 we present a brief historicalreiav on the develop-

ment of the theory of stochastic processes in the twentittucy. In Section 1.2
we introduce the one-dimensional random walk an we use Kample in order

to introduce several concepts such Brownian motion, thekMaproperty. Some
comments on the role of probabilistic modeling in the phgisiciences are of-
fered in Section 1.3. Discussion and bibliographical comisi@re presented in
Section 1.4. Exercises are included in Section 1.5.

1.1 Historical Overview

The theory of stochastic processes, at least in terms opfication to physics,
started with Einstein’s work on the theory of Brownian matidConcerning the
motion, as required by the molecular-kinetic theory of heéparticles suspended
in liquids at rest(1905) and in a series of additional papers that were pudaisih
the period1905 — 1906. In these fundamental works, Einstein presented an expla-
nation of Brown'’s observation (1827) that when suspendesaiter, small pollen
grains are found to be in a very animated and irregular stateotion. In devel-
oping his theory Einstein introduced several conceptsdfiléplay a fundamental
role in the study of stochastic processes and that we willysitu this book. Using
modern terminology, Einstein introduced a Markov chain eiddr the motion of
the particle (molecule, pollen grain...). Furthermorejrieoduced the idea that it
makes more sense to talk about the probability of finding Hrégde at position:
at timet, rather than about individual trajectories.
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2 CHAPTER 1. INTRODUCTION

In his work many of the main aspects of the modern theory aftetstic pro-
cesses can be found:

e The assumption of Markovianity (no memory) expressed tifindhe Chapman-
Kolmogorov equation.

The Fokker—Planck equation (in this case, the diffusioraéqn).

The derivation of the Fokker-Planck equation from the nra@apman-
Kolmogorov) equation through a Kramers-Moyal expansion.

The calculation of a transport coefficient (the diffusiomatipon) using macro-
scopic (kinetic theory-based) considerations:
kgT

D= .
6mna

kg is Boltzmann's constanfl’ is the temperature; is the viscosity of the
fluid anda is the diameter of the particle.

Einstein’s theory is based on an equation for the probghdistribution function,
the Fokker—Planck equation Langevin (1908) developed a theory based on a
stochastic differential equatiormhe equation of motion for a Brownian particle is

where¢ is a random force. It can be shown that there is complete agneebe-

tween Einstein’s theory and Langevin's theory. The thedrBmwnian motion

was developed independently by Smoluchowski, who alsampedd several ex-
periments.

The approaches of Langevin and Einstein represent the tvio aparoaches
in the modelling of physical systems using the theory oftshstic processes and,
in particular, diffusion processes: either study indidttrajectories of Brownian
particles. Their evolution is governed by a stochasticedifhtial equation:

dX
o = FLX) + D€,

where¢(t) is a random force or study the probabilityz, ¢) of finding a particle
at positionz at timet. This probability distribution satisfies the Fokker—Planc
equation:

o _

57 =~V - (F(2)p) + %DQ : (A(2)p),
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where A(z) = %(z)X(x)”. The theory of stochastic processes was developed
during the20th century by several mathematicians and physicists inugugimolu-
chowksi, Planck, Kramers, Chandrasekhar, Wiener, Kolmmgdtd, Doob.

1.2 The One-Dimensional Random Walk

We let time be discrete, i.et = 0, 1, .... Consider the following stochastic
processS,,: Sy = 0; at each time step it moves 46l with equal probability%.
In other words, at each time step we flip a fair coin. If the oute is heads,
we move one unit to the right. If the outcome is tails, we mowe onit to the left.
Alternatively, we can think of the random walk as a sum of petedent random

variables:
n
Sn=>_Xj,
j=1

whereX; € {—1,1} with P(X; = +1) = 3.
We can simulate the random walk on a computer:

¢ We need a (pseudo)random number generator to genefadependent ran-
dom variables which are uniformly distributed in the intdrf0,1].

o If the value of the random variable s % then the particle moves to the left,
otherwise it moves to the right.

e \We then take the sum of all these random moves.

e The sequencés, }Y_, indexed by the discrete tinfe = {1, 2, ... N} is
the path of the random walk. We use a linear interpolatian ¢onnect the
points{n, S, } by straight lines) to generate a continuous path.

Every path of the random walk is different: it depends on th&came of a se-
quence of independent random experiments. We can compaiistiss by gen-
erating a large number of paths and computing averages. xaarge,E(S,,) =

0, E(S2) = n. The paths of the random walk (without the linear intergolat are
not continuous: the random walk has a jump of diz each time step. This is an
example of a discrete time, discrete space stochastic ggese The random walk
is a time-homogeneous Markov process. If we take a large suwisteps, the
random walk starts looking like a continuous time procedb wontinuous paths.
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50-step random walk

Figure 1.1: Three paths of the random walk of length= 50.

1000-step random walk

I I I I I I I I I
0 00 20 300 400 500 600 700 800 900 1000

Figure 1.2: Three paths of the random walk of lengyth= 1000.
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2 T T
=== mean of 1000 paths
— 5individual paths

15F

Figure 1.3: Sample Brownian paths.

We can quantify this observation by introducing an appeadprrescaled pro-
cess and by taking an appropriate limit. Consider the semgueh continuous time
stochastic processes

Zf = Snt-

NG
In the limit asn — oo, the sequencéZ;*} converges (in some appropriate sense,
that will be made precise in later chapters) to a Brownianionowith diffusion
coefficientD = §—§j = 1. Brownian motionl¥ (¢) is a continuous time stochastic
processes with continuous paths that start8 @8 (0) = 0) and has indepen-
dent, normally. distributed Gaussian increments. We canulsite the Brownian
motion on a computer using a random number generator tharaes normally
distributed, independent random variables. We can writecuration for the evo-
lution of the paths of a Brownian motiol; with diffusion coefficientD starting

at x:
dX, = V2DdW,, X, = .

This is the simplest example of a stochastic differentialatipn. The probability
of finding X; aty at timet, given that it was at: at timet¢ = 0, the transition



6 CHAPTER 1. INTRODUCTION

probability densityp(y, t) satisfies the PDE

dp 0?p

—=D— =i(y — x).
This is the simplest example of the Fokker—Planck equatidre connection be-
tween Brownian motion and the diffusion equation was madEibgtein in 1905.

1.3 Why Randomness

Why introduce randomness in the description of physicaiesys?

e To describe outcomes of a repeated set of experiments. Thitdssing a
coin repeatedly or of throwing a dice.

e To describe a deterministic system for which we have incetephforma-
tion: we have imprecise knowledge of initial and boundargditions or of
model parameters.

— ODEs with random initial conditions are equivalent to stastit pro-
cesses that can be described using stochastic differeqtiations.

e To describe systems for which we are not confident about thditysof our
mathematical model.

e Todescribe a dynamical system exhibiting very complicaiguavior (chaotic
dynamical systems). Determinism versus predictability.

e To describe a high dimensional deterministic system usisgrgpler, low
dimensional stochastic system. Think of the physical méaleBrownian
motion (a heavy particle colliding with many small partg)e

e To describe a system that is inherently random. Think of iuammechan-
ics.

Stochastic modeling is currently used in many differenaareanging from
biology to climate modeling to economics.
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1.4 Discussion and Bibliography

The fundamental papers of Einstein on the theory of Browniation have been
reprinted by Dover [7]. The readers of this book are stromglgouraged to study
these papers. Other fundamental papers from the earlydpefithe development
of the theory of stochastic processes include the papersabgdvin, Ornstein
and Uhlenbeck [25], Doob [5], Kramers [13] and Chandrashekhfamous re-
view article [3]. Many of these early papers on the theoryto€lsastic processes
have been reprinted in [6]. Many of the early papers on therthef Brown-
ian motion are available fromht t p: / / ww. physi k. uni - augsbur g. de/
t heol/ hanggi / Hi st ory/ BM Hi st ory. ht nl . Very useful historical com-
ments can be founds in the books by Nelson [19] and Mazo [18].

The figures in this chapter were generated using matlab @mgfromht t p:
/I ww mat h. bgsu. edu/ z/ sde/ mat | ab/ i ndex. htni .

1.5 Exercises

1. Read the papers by Einstein, Ornstein-Uhlenbeck, Danb et

2. Write a computer program for generating the random walbnia and two di-
mensions. Study numerically the Brownian limit and comphte statistics of
the random walk.
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Chapter 2

Elements of Probability Theory

In this chapter we put together some basic definitions andtsssom probability
theory that will be used later on. In Section 2.1 we give somgddefinitions
from the theory of probability. In Section 2.2 we present squnoperties of ran-
dom variables. In Section 2.3 we introduce the concept oflitimmal expectation
and in Section 2.4 we define the characteristic function, afrihe most useful
tools in the study of (sums of) random variables. Some eixmalculations for
the multivariate Gaussian distribution are presented aii@e2.5. Different types
of convergence and the basic limit theorems of the theoryraibgility are dis-
cussed in Section 2.6. Discussion and bibliographical centmare presented in
Section 2.7. Exercises are included in Section 2.8.

2.1 Basic Definitions from Probability Theory

In Chapter 1 we defined a stochastic process as a dynamitairsyghose law of
evolution is probabilistic. In order to study stochastiogesses we need to be able
to describe the outcome of a random experiment and to cédcfulactions of this
outcome. First we need to describe the set of all possiblergrpnts.

Definition 2.1. The set of all possible outcomes of an experiment is called th
sample spacand is denoted b$p.

Example 2.2. e The possible outcomes of the experiment of tossing a coin are
H andT'. The sample space§$= {H, T'}.

e The possible outcomes of the experiment of throwing a dié &e3, 4, 5
and6. The sample space &= {1, 2, 3, 4, 5, 6}.

9
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We defineeventso be subsets of the sample space. Of course, we would like
the unions, intersections and complements of events tob&svents. When the
sample spac® is uncountable, then technical difficulties arise. In maitr, not
all subsets of the sample space need to be events. A definititve collection of
subsets of events which is appropriate for finite additivabpbility is the follow-

ing.
Definition 2.3. A collectionF of (2 is called a field orf2 if
i. 0eF;
i. if Ae FthenAce F;
jii. If A, Be FthenAUB € F.

From the definition of a field we immediately deduce thats closed under
finite unions and finite intersections:

Al,AnEJ: = U?ZlAiGJ:, ﬂ?zlAZG}-

When Q is infinite dimensional then the above definition is not appiede
since we need to consider countable unions of events.

Definition 2.4 (c—algebra) A collectionF of Q2 is called ac-field or o-algebra
on ) if

i. 0eF;
i. if Ae FthenA®e F;
ji. If Ay, Ag,--- € FthenUu® A; € F.
A o-algebra is closed under the operation of taking countaitdesections.
Example 2.5. o F = {0, Q}.
o F={0, A, A, Q} whereA is a subset of2.
e The power set of?, denoted by{0, 1}** which contains all subsets ©F.

Let F be a collection of subsets 6. It can be extended to@a—algebra (take
for example the power set 6f). Consider all ther—algebras that contaift and
take their intersection, denoted byF), i.e. A C Q if and only if it is in every
o—algebra containingr. o(F) is ac—algebra (see Exercise 1). Itis the smallest
algebra containingt and it is called ther—algebra generated b¥.
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Example 2.6. LetQ) = R™. Theo-algebra generated by the open subsetRbf
(or, equivalently, by the open balls Bf*) is called the Boreb-algebra ofR™ and
is denoted byB(R").

Let X be a closed subset &". Similarly, we can define the Boretl-algebra
of X, denoted by3(X).

A subwv—algebra is a collection of subsets ofraalgebra which satisfies the
axioms of as—algebra.

The o—field F of a sample spac@ contains all possible outcomes of the ex-
periment that we want to study. Intuitively, the-field contains all the information
about the random experiment that is available to us.

Now we want to assign probabilities to the possible outconfies experiment.

Definition 2.7 (Probability measure)A probability measuré on the measurable
space((2, F) is a functionP : F — |0, 1] satisfying

i. P() =0, P(Q) =1;
ii. For Ay, As,... with 4; N A; =0, i # j then

P(U 1 Ai) = ) P(A).
=1

Definition 2.8. The triple (2, 7, P) comprising a sef), a o-algebraF of subsets
of 2 and a probability measur® on (2, F) is a called a probability space.

Example 2.9. A biased coin is tossed onc® = {H, T}, F ={0, H, T, Q} =
{0,1}, P : F + [0,1] such thatP(§) = 0, P(H) = p € [0,1], P(T) =
1—p, P(Q) =1.

Example 2.10. Take(2 = [0, 1], F = B([0,1]), P = Lek(]0, 1]). Then(2, F,P)
is a probability space.
2.1.1 Conditional Probability

One of the most important concepts in probability is thathaf dependence be-
tween events.

Definition 2.11. A family{A; : i € I} of events is called independent if
P(Njes 4;) = ;e sP(4;)

for all finite subsets/ of I.
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When two eventsA, B are dependent it is important to know the probability
that the eventd will occur, given thatB has already happened. We define this to
be conditional probability denoted byP(A|B). We know from elementary proba-
bility that
P(ANB)

P(B)

A very useful result is that of thiaw of total probability

P(A|B) =

Definition 2.12. A family of event§B; : i € I} is called a partition of2 if

BiNBj=0, i#j and U;r B; = Q.

Proposition 2.13. Law of total probability. For any eventi and any partition
{B; : i € I} we have
= P(A|B)P(B
iel
The proof of this result is left as an exercise. In many casesalculation of
the probability of an event is simplified by choosing an appede partition of(2
and using the law of total probability.

Let (2, F,P) be a probability space and fi®8 € F. ThenP(-|B) defines a
probability measure off. Indeed, we have that

P(O|B) =0, P(Q|B)=1

and (sinced; N A; = () implies that(4;, N B) N (4; N B) = 0)
52, Aj|B) = ZP A;|B),

for a countable family of pairwise disjoint st ; }].*j‘f. Consequently2, 7, P(-|B))
is a probability space for evely € cF'.

2.2 Random Variables

We are usually interested in the consequences of the outobrale experiment,
rather than the experiment itself. The function of the onteaf an experiment is
arandom variablethat is, a map fron§ to R.
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Definition 2.14. A sample spac® equipped with ar—field of subset$ is called
a measurable space.

Definition 2.15. Let (2, ) and (E,G) be two measurable spaces. A function
X : Q — FE such that the event

{weQ: X(w) e A} =1 {X € A} (2.2)

belongs toF for arbitrary A € G is called a measurable function or random
variable.

When E is R equipped with its Boreb-algebra, then (2.1) can by replaced
with
{X<z}eF VeekR

Let X be a random variable (measurable function) framF, i) to (E,G). If E
is a metric space then we may defigectatiorwith respect to the measureby

E[X] :/QX(w)d,u(w).

More generally, letf : £ — R beG—measurable. Then,

E[f(X)] = /Q (X () dulw).

Let U be a topological space. We will use the notati®fi/) to denote the Borel
o—algebra ofU: the smallest—algebra containing all open setslof Every ran-
dom variable from a probability spa¢€, F, i) to a measurable spa¢€, B(E))
induces a probability measure @h

px(B) =PX}B) = pw e Q; X(w) € B), BecB(E). (2.2)
The measurg x is called thedistribution (or sometimes thi&aw) of X.

Example 2.16. Let Z denote a subset of the positive integers. A vepor=
{po,i, © € I} is a distribution onZ if it has nonnegative entries and its total mass

equalsl: » ;7 po; = 1.

Consider the case whefe = R equipped with the Boret—algebra. In this
case a random variable is defined to be a funcion 2 — R such that

{we: X(w)<z}CF VreR.
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We can now define the probability distribution functionXf F'y : R — [0, 1] as
Fx(x) :P({w€Q|X(w) <z)} =P(X <a). (2.3)

In this case(R, B(R), F'x) becomes a probability space.
The distribution functionF'x (z) of a random variable has the properties that
lim, o Fx(z) =0, lim, .4~ F(x) =1 and is right continuous.

Definition 2.17. A random variableX with values oRR is called discrete if it takes
values in some countable subsget, =1, x2,...} of R. i.e.: P(X = z) # z only
forx:mo, Tlyennn

With a random variable we can associate the probability riasgion p;, =
P(X = ). We will consider nonnegative integer valued discrete camdari-
ables. Inthiscasg, =P(X =k), k=0,1,2,....

Example 2.18. The Poisson random variable is the nonnegative integeredalu
random variable with probability mass function
ey

pk:]P’(X:k:):ye ., k=0,1,2,...,

where) > 0.

Example 2.19. The binomial random variable is the nonnegative integeugdl
random variable with probability mass function
N!

P X=kl=——p"¢N" k=0,1,2,...N
pr = P( ) v =P :

wherep € (0,1), ¢ =1 —p.

Definition 2.20. A random variableX with values onR is called continuous if
P(X =) =0Vz € R.

Let (2, F,P) be a probability space and l&t : 2 — R be a random variable
with distribution F'x . This is a probability measure di(R). We will assume that
it is absolutely continuous with respect to the Lebesguesnoreawith density x :
Fx(dx) = p(x) dx. We will call the densityp(x) the probability density function
(PDF) of the random variabl& .
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Example 2.21. i. The exponential random variable has PDF
Xe ™™ x>0,
J(@) = { 0 <0,
with A > 0.

ii. The uniform random variable has PDF

= a<z<b,

=17 e

witha < b.

Definition 2.22. Two random variables and Y are independent if the events
{w e X(w) <z}and{w € Q|Y(w) < y} are independent for alt, y € R.

Let X, Y be two continuous random variables. We can view them as a ran-
dom vector, i.e. a random variable frofhto R?. We can then define the joint
distribution function

F(z,y) =P(X <z,Y <vy).

The mixed derivative of the distribution functiofx y (z,y) := g;gy (z,y), if it
exists, is called the joint PDF of the random vec{df, Y'}:

x Yy
Fxy(z,y) = / / fx,y(z,y) dzdy.
If the random variableX andY are independent, then
Fxy(z,y) = Fx(x)Fy(y)

and
fxy(@,y) = fx(x)fy(y).

The joint distribution function has the properties

Fxy(z,y) = Fyx(y ),
—+oco

Fyy(tooy) = Fe(y), fr(y) = / oy (og) do.

—00
We can extend the above definition to random vectors of argifinite dimen-

sions. LetX be a random variable fror(Q, . 1) to (R, B(R9)). The (joint)
distribution functionFxR?¢ — [0, 1] is defined as

Fx(x) =P(X < x).
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Let X be a random variable iR¢ with distribution functionf (xx) wherezy =
{z1,...xx}. We define the marginal or reduced distribution functform! (z_1)

by
fN_l(xN—l):/fN(xN)dwN-
R

We can define other reduced distribution functions:

fN_Q(SUNz):/RfN_l(le)dwN1 Z/R/Rf(fﬂjv)dﬁﬂNMxN.

2.2.1 Expectation of Random Variables

We can use the distribution of a random variable to compyte@ations and prob-
abilities:

E[f(X)] = /R f(z) dFx () (2.9)

and

PIX € G] = / iFx(z), G e B(E). 2.5)
G

The above formulas apply to both discrete and continuoudorarvariables, pro-
vided that we define the integrals in (2.4) and (2.5) appabery.
WhenE = R? and a PDF existsiFx (z) = fx(z) dz, we have

Fy(z) =P(X <) = /Oo . /OO fx(z)dz..

WhenE = R? then byLP(€; R?), or sometimed.?(Q; i) or even simplyLP(u),
we mean the Banach space of measurable functiofs with norm

Xl = (mIxp) .

Let X be a nonnegative integer valued random variable with pritityaimass
function p;. We can compute the expectation of an arbitrary functioX aising
the formula

E(f(X)) =Y f(k)ps.
k=0

Let X, Y be random variables we want to know whether they are coectlat
and, if they are, to calculate how correlated they are. Weanddfie covariance of
the two random variables as

cov(X,Y) =E[(X —EX)(Y —EY)| =E(XY) — EXEY.
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The correlation coefficient is

B cov(X,Y)
Vvar(X)/var(X)
The Cauchy-Schwarz inequality yields thatX,Y) € [—1,1]. We will say

that two random variableX andY” are uncorrelated provided thatX,Y") = 0. It

is not true in general that two uncorrelated random vargabte independent. This
is true, however, for Gaussian random variables (see Beki

p(X,Y) (2.6)

Example 2.23. e Consider the random variabl¥ : Q — R with pdf

Yobl) = (270) "2 exp <_(£U - b)2> .

20

Such anX is termed a Gaussian or normal random variable. The mean is
EX = / 2Yep(x)de =b
R

and the variance is
E(X —b)? = /(ac —b)*y,5(z) dz = 0.
R

o Leth € R* and X € R¥*? be symmetric and positive definite. The random
variable X : Q — R? with pdf

1

Tep(T) = ((27T)dd6t2)7§ exp <—%<E_1(:U —b),(z — b)>>
is termed a multivariate Gaussian or normal random variallee mean is
E(X)=b (2.7)
and the covariance matrix is
IE((X —bh)® (X — b)) =3 (2.8)

Since the mean and variance specify completely a Gaussidomavariable on
R, the Gaussian is commonly denoted&ym, o). The standard normal random
variable isN(0,1). Similarly, since the mean and covariance matrix completely
specify a Gaussian random variable®f, the Gaussian is commonly denoted by
N(m,%).

Some analytical calculations for Gaussian random varsabi# be presented
in Section 2.5.
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2.3 Conditional Expecation

Assume thafX € L'(€, F, 1) and letG be a subs—algebra ofF. The conditional
expectation ofX with respect tq7 is defined to be the function (random variable)
E[X|G] : Q — E which isG—measurable and satisfies

/E[X\g]d,u:/Xdu VG eQG.
G G

We can defin&[ f (X )|G] and the conditional probabilitf[X € F|G] = E[Ir(X)|d],
wherelr is the indicator function of”, in a similar manner.
We list some of the most important properties of conditianglectation.

Theorem 2.24.[Properties of Conditional Expectation]. L¢f2, F, 1) be a prob-
ability space and leg be a subs—algebra ofF.

(@) If X isG—measurable and integrable th@{X|G) = X.

(b) (Linearity) If X1, X5 are integrable and;, ¢y constants, then

E(c1 X1 4+ 2X2|G) = a1 E(X1]G) + E(X3|G).

(c) (Order)IfX;, X5 areintegrable and; < X5 a.s., theri£(X;|G) < E(X32|G)
a.s.

(d) If Y and XY are integrable, andX is G—measurable theE£(XY|G) =
XE(YG).

(e) (Successive smoothing)I¥fis a sub-s—algebra of 7, D c G and X is inte-
grable, thenE(X|D) = E[E(X|G)|D] = E[E(X|D)|g].

(f) (Convergence) LetX,, }o° ; be a sequence of random variables such that, for
all n, |X,| < Z whereZ is integrable. IfX,, — X a.s., thenE(X,|G) —
E(X|G) a.s. and inL'.

Proof. See Exercise 10. O

2.4 The Characteristic Function

Many of the properties of (sums of) random variables can bdietl using the
Fourier transform of the distribution function. LE{\) be the distribution function
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of a (discrete or continuous) random variaBde The characteristic function of
is defined to be the Fourier transform of the distributionction

o(t) = /R N AF () = E(e'X). (2.9)

For a continuous random variable for which the distribufiomction F' has a den-
sity, dF'(\) = p(\)dA, (2.9) gives

o) = [ p(n)ix

For a discrete random variable for whiBfi.X = \;) = ax, (2.9) gives

o0

o(t) = Z ey,

k=0

From the properties of the Fourier transform we conclude ttie characteristic
function determines uniquely the distribution functiontieé random variable, in
the sense that there is a one-to-one correspondance belXagmnd¢(t). Fur-
thermore, in the exercises at the end of the chapter thereadsked to prove the
following two results.

Lemma 2.25. Let { X1, X, ... X,,} be independent random variables with char-
acteristic functionsp;(t), j = 1,...n and letY = Z?:1 X; with characteristic
function¢y (t). Then

Py (t) = IG5 (t).

Lemma 2.26. Let X be a random variable with characteristic functierit) and
assume that it has finite moments. Then

B(x*) = 2600).

2.5 Gaussian Random Variables

In this section we present some useful calculations for &ansandom variables.
In particular, we calculate the normalization constarg, ritrean and variance and
the characteristic function of multidimensional Gaussemdom variables.
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Theorem 2.27.Letb € R? andX € R%*¢ a symmetric and positive definite ma-
trix. Let X be the multivariate Gaussian random variable with probiypitiensity
function

Tep(x) = %exp <—%<E_1(x —b),x— b>> .

Then

i. The normalization constant is
Z = (2m)¥?\/det(D).
ii. The mean vector and covariance matrixXfare given by
EX=b

and
E((X —EX)® (X — EX)) = X.

iii. The characteristic function oK is
b(t) = oi(bt)—5 (6,58)
Proof. i. From the spectral theorem for symmetric positive definitgtrices

we have that there exists a diagonal matkixvith positive entries and an
orthogonal matrixB such that

»1=BTAT!B,
Letz = x — b andy = Bz. We have

(27 'z,2) = (BTA'Bz,z)
= (A"'Bz,Bz) = (A"y,y)

d

-1, 2

= Z)\i Yi
i=1

Furthermore, we have that d&tr') = TI¢_,\; !, that det®) = ¢, )\,

7

and that the Jacobian of an orthogonal transformation is det(B) = 1.
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Hence,

1 1
/exp —— Y x-b),x—Db) ) dx = /exp ——(X7'z,2) ) d=
R4 2 R4 2
1 d
= i N S T d
/Rde><p< 2; ; y@>|J| y
d 1
= H/ exp <——)\i1yi2> dy;
i=17/R 2

= (2m) I, N? = (2n) 2 /dets),

from which we get that

Z = (2m)¥%,/det(D).

In the above calculation we have used the elementary calddduntity

oz 21
e Y2 dr =14/ —.
R (6%

ii. From the above calculation we have that

sp(x)dx = y5p(BTy +b)dy

2wd/2\/mn ( y> dy;.

Consequently

EX = / xyy,p(X) dx
R4
= /d(BTy +b)ys,(BTy +b)dy
R

— b [ wu(BTy +b)dy =b.
Rd

We note that, sinc&—! = BTA~!B, we have that: = BTAB. Further-
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more,z = B”y. We calculate

B~ b)( =) = | szsa(a+b) da
1 1
= Bz Bmz m - = )\_1 2 d
8 o0 o2 B 3 B e"p< 1% y) ’
1 1
= PN IY Bii B m -5 Nlyi ] d
2 de@)% k J/Rdyky eXp( 2; y y4> y

= Z By By AkOkm

k,m

= X

ij

iii. Let y be a multivariate Gaussian random variable with m@amd covari-
ancel. Let alsoC = BvVA. We have thalt = CCT = ¢TC. We have
that

X=CY +b.

To see this, we first note tha is Gaussian since it is given through a linear
transformation of a Gaussian random variable. Furthermore
EX=b and E((X;—b)(X; —b;)) = 3j;.
Now we have:
¢(t) _ E€i<x’t> _ 6i<b,t>E6i<CY,t>
6i<b,t)E€z’(Y,CTt>
ei<b7t>e*% 51k Cintr |2
6i<b,t)6—%((}t,0t)
ez‘(b,t)ef%(t,CTCt)

. 1
ci(bt) —1(t5t)

Consequently,

o(t) = oi(bt) =5 (£,58)



2.6. TYPES OF CONVERGENCE AND LIMIT THEOREMS 23

2.6 Types of Convergence and Limit Theorems

One of the most important aspects of the theory of randonabkas is the study of
limit theorems for sums of random variables. The most wedivkm limit theorems
in probability theory are the law of large numbers and theregétimit theorem.
There are various different types of convergence for segpgeor random variables.
We list the most important types of convergence below.

Definition 2.28. Let{Z, } ">, be a sequence of random variables. We will say that
(a) Z, converges taZ with probability one if

P( lim Z,=2)=1

n—-4oo
(b) Z, converges td&Z in probability if for everys > 0

lim P(|Z, — Z| >¢) =0.

n—-+o0o
(c) Z, converges taZ in LP if

lim E[|Z, - Z|"] =0.
n—-4o0o
(d) Let F,(A\),n = 1,--- + oo, F(X) be the distribution functions of,, n =
1,--- 4+ oo and Z, respectively. Thed,, converges tdZ in distribution if
lim F,(\) = F(\)

n—-4o0o

for all A € R at whichF' is continuous.

Recall that the distribution functiofx of a random variable from a probability
space(?, F,P) to R induces a probability measure &and that R, B(R), F'x) is
a probability space. We can show that the convergence inbdigon is equivalent
to the weak convergence of the probability measures indbgethe distribution
functions.

Definition 2.29. Let (E, d) be a metric spacel3(E) the o—algebra of its Borel
sets, P, a sequence of probability measures @i, B(E)) and letCy(E) denote
the space of bounded continuous functionstbriVe will say that the sequence of
P, converges weakly to the probability measitd, for eachf € C,(E),

lim /E F(z) dPy(z) = /E F(z) dP(x).

n—-+o00
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Theorem 2.30.Let F,(\),n = 1,--- 4+ oo, F(\) be the distribution functions of
Z,n =1,---+ 00 andZ, respectively. Thel,, converges td in distribution if
and only if, for allg € Cy(R)

Jin [ g@)dR@) = [ gta)aF). (2.10)

Notice that (2.10) is equivalent to

Jim Eag(X,) = Eg(X),
whereFE,, and £ denote the expectations with respecf#{pand F', respectively.
When the sequence of random variables whose convergenceevirdexrested
in takes values iiR? or, more generally, a metric space spagd) then we can
use weak convergence of the sequence of probability measaced by the
sequence of random variables to define convergence inbdisom.

Definition 2.31. A sequence of real valued random variabl&s defined on a
probability spaces2,,, F,,, P,,) and taking values on a metric spac®, d) is said

to converge in distribution if the indued measu®s(B) = P,(X, € B) for

B € B(FE) converge weakly to a probability measure

Let {X,,}o° , be iid random variables witlL.X,, = V. Then, thestrong law
of large numbersstates that average of the sum of the iid convergek with
probability one:

| X
P(Nl—lfﬂooN;X" - V) =1

The strong law of large numbers provides us with informatitmout the behav-
ior of a sum of random variables (or, a large number or rapastof the same
experiment) on average. We can also study fluctuations drtha average be-
havior. Indeed, leE(X,, — V)? = 2. Define the centered iid random variables
Y, = X,, — V. Then, the sequence of random variabi% Zﬁle Y,, converges

in distribution to a\ (0, 1) random variable:

1 & a 1,
lim P Y, <a :/ e~ 3% d.
n—+o00 <a N nZ:l " ) 27

—00

This is thecentral limit theorem
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2.7 Discussion and Bibliography

The material of this chapter is very standard and can be faunthny books on
probability theory. Well known textbooks on probabilityetiry are [2, 8, 9, 16, 17,
12, 23].

The connection between conditional expectation and odhalgprojections is
discussed in [4].

The reduced distribution functions defined in Section 2e2umed extensively
in statistical mechanics. A different normalization is albpiused in physics text-
books. See for instance [1, Sec. 4.2].

The calculations presented in Section 2.5 are essentialBxarcise in linear
algebra. See [15, Sec. 10.2].

Random variables and probability measures can also be déefingfinite di-
mensions. More information can be found in [20, Ch. 2].

The study of limit theorems is one of the cornerstones of aibdity theory and
of the theory of stochastic processes. A comprehensivg sfldnit theorems can
be found in [10].

2.8 Exercises

1. Show that the intersection of a family @falgebras is &-algebra.
2. Prove the law of total probability, Proposition 2.13.

3. Calculate the mean, variance and characteristic fumctiche following prob-
ability density functions.

(@) The exponential distribution with density

e ™M x>0,
)= { 0 x<0,
with A > 0.
(b) The uniform distribution with density
1

3 a<x <),
f“”)‘{bo 2 ¢ (a,b)

with a < b.
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(c) The Gamma distribution with density

flz) = { ﬁ()\x)aflefm x>0,

0 x <0,
with A > 0, @ > 0 andI'(«) is the Gamma function
I(a) = / g lem8de, a>0.

0

4. Le X andY be independent random variables with distribution fumsié’y
and Fy. Show that the distribution function of the suth= X + Y is the

convolution of F'x and Fy-:

Fp(z) = / Fy(x — y) dFy (3).

5. LetX andY be Gaussian random variables. Show that they are unceuaddfat
and only if they are independent.
(a) LetX be a continuous random variable with characteristic faomcti(t).
Show that

6.

where¢(¥)(t) denotes thé-th derivative ofg evaluated at.
(b) LetX be a nonnegative random variable with distribution furctig(x).

Show that .
E(X) = /0 (1 - F(x))dx.

(c) LetX be a continuous random variable with probability densityction
f(x) and characteristic function(¢). Find the probability density and
characteristic function of the random variable= a X + b with a, b € R.

(d) LetX be arandom variable with uniform distribution @h27]. Find the
probability density of the random variab}é = sin(X).

7. LetX be a discrete random variable taking vales on the set of matine inte-
gers with probability mass function, = P(X = k) with p, > 0, >/ pp =
1. Thegenerating functioris defined as

+oo
g(s) = B(s¥) = Zpksk.
k=0
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(@) Show that
EX =¢'(1) and EX?=g"(1)+4'(1),
where the prime denotes differentiation.
(b) Calculate the generating function of the Poisson randanable with

e ANk
pr=P(X =k) = T k=0,1,2,... and \>0.

(c) Prove that the generating function of a sum of independennegative

integer valued random variables is the product of their gpimgy func-
tions.

8. Write a computer program for studying the law of large narstand the central

limit theorem. Investigate numerically the rate of conesrge of these two
theorems.

9. Study the properties of Gaussian measures on separdbégtidpaces from [20,
Ch. 2].

10. Prove Theorem 2.24.
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Chapter 3

Basics of the Theory of Stochastic
Processes

In this chapter we present some basic results form the thefosyochastic pro-
cesses and we investigate the properties of some of theasthstbchastic pro-
cesses in continuous time. In Section 3.1 we give the defimdf a stochastic pro-
cess. In Section 3.2 we present some properties of stafist@rhastic processes.
In Section 3.3 we introduce Brownian motion and study somisofrroperties.
Various examples of stochastic processes in continuowesdim presented in Sec-
tion 3.4. The Karhunen-Loeve expansion, one of the mosuusadls for repre-
senting stochastic processes and random fields, is prddarection 3.5. Further
discussion and bibliographical comments are presenteddtidh 3.6. Section 3.7
contains exercises.

3.1 Definition of a Stochastic Process

Stochastic processes describe dynamical systems whdséi@vdaw is of proba-
bilistic nature. The precise definition is given below.

Definition 3.1 (stochastic process).etT be an ordered setf2, 7, P) a probabil-

ity space and E/,G) a measurable space. A stochastic process is a collection of
random variablesX = {Xy;t € T'} where, for each fixed € T, X, is a random
variable from(Q2, 7, P) to (E, G). Q is called the sample space. aftis the state
space of the stochastic proceks.

The setl” can be either discrete, for example the set of positive &g, , or

29
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continuous” = [0, +o0). The state spacE will usually beR? equipped with the
o—algebra of Borel sets.

A stochastic proces& may be viewed as a function of batke 7" andw € Q.
We will sometimes writeX (¢), X (¢,w) or X;(w) instead ofX;. For a fixed sample
pointw € €, the functionX;(w) : T — E'is called a (realization, trajectory) of
the processX.

Definition 3.2 (finite dimensional distributions)The finite dimensional distribu-
tions (fdd) of a stochastic process are the distributionshefE*—valued random
variables(X (¢1), X (t2), ..., X (tx)) for arbitrary positive integerk and arbitrary
timest; € T,i € {1,...,k}:

Fx)=P(X(t;) <zji=1,...,k)
withx = (z1, ..., xk).

From experiments or numerical simulations we can only obtafiormation
about the finite dimensional distributions of a process. Airs question arises:
are the finite dimensional distributions of a stochasticcpss sufficient to deter-
mine a stochastic process uniquely? This is true for presessth continuous
paths!. This is the class of stochastic processes that we will siutlyese notes.

Definition 3.3. We will say that two processes; and Y; are equivalent if they
have same finite dimensional distributions.

Definition 3.4. A one dimensional continuous time Gaussian process is hatec
tic process for whictEl = R and all the finite dimensional distributions are Gaus-

sian, i.e. every finite dimensional veclot,, , Xs,, ..., Xy, ) is aN (ug, Kj) ran-
dom variable for some vectai, and a symmetric nonnegative definite mafkix
forall k =1,2,... andforallty, s, ..., .

From the above definition we conclude that the finite dimeraidistributions
of a Gaussian continuous time stochastic process are @ausdth probability
distribution function

_n _ 1,
Vi i, (X) = (2m) "2 (deti ) "'/ exp —5 (K, Yo — )z — )|

wherex = (x1,x9, ... zk).

LIn fact, what we need is the stochastic process tsdpmrable See the discussion in Section 3.6
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It is straightforward to extend the above definition to agbig dimensions. A
Gaussian processt) is characterized by its mean

m(t) := Ex(t)
and the covariance (or autocorrelation) matrix

C(t,s) = E((z(t) —m(t)) ® (z(s) — m(s))).

Thus, the first two moments of a Gaussian process are suffitie complete
characterization of the process.

3.2 Stationary Processes

3.2.1 Strictly Stationary Processes

In many stochastic processes that appear in applicati@nsstatistics remain in-
variant under time translations. Such stochastic prosesmsecalledstationary It

is possible to develop a quite general theory for stochasticesses that enjoy this
symmetry property.

Definition 3.5. A stochastic process is called (strictly) stationary if fitlite di-

mensional distributions are invariant under time trang@at for any integerk and
timest; € T, the distribution of(X(¢1), X (t2),...,X(tx)) is equal to that of
(X(s+t1),X(s + ta2),...,X(s + tx)) for any s such thats + ¢t; € T for all

i €{1,...,k}. Inother words,

P(Xh-l-t S Althg—i—t € Ay .. -th-‘,-t S Ak) = ]P’(th S Al,Xt2 € Ay .. .th S Ak), VteT.

Example 3.6. LetY), Y7, ... be a sequence of independent, identically distributed
random variables and consider the stochastic proc&ss= Y,,. ThenX, is a
strictly stationary process (see Exercise 1). Assumedumibre thatEYy = p <
+00. Then, by the strong law of large numbers, we have that

1 N-1 1 N-1

T Xi=5 ) B =y,

J=0 J=0

almost surely. In fact, the Birkhoff ergodic theorem stakes, for any functionf
such thatE f (Y)) < +oo, we have that

1 N-1
Jm jZ; F(X)) = Ef(Y), 3.1)
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almost surely. The sequence of iid random variables is ampi@ of an ergodic
strictly stationary processes.

Ergodic strictly stationary processes satisfy (3.1) Hema= can calculate the
statistics of a sequence stochastic procéssising a single sample path, provided
that it is long enough{ > 1).

Example 3.7.Let Z be a random variable and define the stochastic procéss=
Z,n=0,1,2,.... ThenX, is a strictly stationary process (see Exercise 2). We
can calculate the long time average of this stochastic mece

N-1 N

1

- -1
j=0 =0

1
— Z=2Z
N 7

which is independent @f and does not converge to the mean of the stochastic pro-
cesse¥ X, = EZ (assuming that it is finite), or any other deterministic n&mb

This is an example of a hon-ergodic processes.

3.2.2 Second Order Stationary Processes

Let (2, F,P) be a probability space. LeX;,t € T (with T = R or Z) be a
real-valued random process on this probability space wittefsecond moment,
E|X:|? < 400 (i.e. X; € L?(Q,P) forallt € T). Assume that it is strictly
stationary. Then,

E(Xi1s) =EX;,, seT (3.2)

from which we conclude that X; is constant. and

E((Xty+s — 1) (Xty4s — 1) = E(( Xy, — p)( Xy, — 1)), s€T (3.3)

from which we conclude that the covariance or autocorhatir correlation
functionC(t,s) = E((X: — n)(Xs — p)) depends on the difference between the
two times,t ands, i.e. C(t, s) = C(t — s). This motivates the following definition.

Definition 3.8. A stochastic procesx; € L? is called second-order stationary or
wide-sense stationary or weakly stationary if the first monieX; is a constant
and the covariance functioB(X; — u)(Xs — 1) depends only on the difference
t—s:

EXe =p, E((Xe —p)(Xs —p)) = C(t — s).
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The constant: is the expectation of the proce&s. Without loss of generality,
we can sel = 0, since iIfEX; = u then the proces¥; = X; — u is mean zero.
A mean zero process with be called a centered process. Thediud'(¢) is the
covariance(sometimes also called autocovariance) or the autoctimelfunction
of the X;. Notice thatC(t) = E(X;Xj), whereas” (0) = E(X?), which is finite,
by assumption. Since we have assumed Hais a real valued process, we have
thatC(t) = C(—t), t € R.

Remark 3.9. Let X; be a strictly stationary stochastic process with finite seto
moment (i.eX; € L?). The definition of strict stationarity implies thBtX; = u, a
constant, andE ((X;—pu)(Xs—p)) = C(t—s). Hence, a strictly stationary process
with finite second moment is also stationary in the wide s€Rise converse is not
true.

Example 3.10.LetY), Y7, ... be asequence of independent, identically distributed
random variables and consider the stochastic procéss= Y,,. From Example 3.6
we know that this is a strictly stationary process, irredperof whethef is such
that EY? < +oo. Assume now thafY, = 0 andEY} = o? < +oo. Then

X, is a second order stationary process with mean zero and lediwa function
R(k) = 02510. Notice that in this case we have no correlation between éhecg

of the stochastic process at different timeand k.

Example 3.11. Let Z be a single random variable and consider the stochastic
processX,, = Z, n=0,1,2,.... From Example 3.7 we know that this is a strictly
stationary process irrespective of whetf&Z|?> < +oo or not. Assume now that
EZ = 0, EZ? = ¢%. ThenX,, becomes a second order stationary process with
R(k) = o%. Notice that in this case the values of our stochastic pmeeslifferent
times are strongly correlated.

We will see in Section 3.2.3 that for second order statioqaogesses, ergod-
icity is related to fast decay of correlations. In the firsttiof examples above,
there was no correlation between our stochastic processiiffesent times and
the stochastic process is ergodic. On the contrary, in azorgbexample there is
very strong correlation between the stochastic procesgfatest times and this
process is not ergodic.

Remark 3.12. The first two moments of a Gaussian process are sufficient for a
complete characterization of the process. Consequentlgaassian stochastic
process is strictly stationary if and only if it is weakly titaary.
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Continuity properties of the covariance function are eglgimt to continuity
properties of the paths of; in the L? sense, i.e.

lim E|X,.;, — X;|? = 0.
Jim | Xirn — Xi

Lemma 3.13. Assume that the covariance functi6tit) of a second order station-
ary process is continuous at= 0. Then it is continuous for all € R. Further-
more, the continuity of'(¢) is equivalent to the continuity of the processin the
L?-sense.

Proof. Fix t € R and (without loss of generality) sEtX; = 0. We calculate:

(X141 X0) — E(X: Xo)|? = E|((Xp4n — X1) Xo)|?
E(X0)*E(Xehn — X1)?

C(0)(EX7,), + EX? — 2EX; Xy 1)

2C(0)(C(0) = C(h)) — 0,

[C(t+h)—CW)P

I/

ash — 0. Thus, continuity of”(-) at0 implies continuity for allt.
Assume now thaf’(¢) is continuous. From the above calculation we have

E[Xiin — thz =2(C(0) = C(h)), (3.4)

which converges t® ash — 0. Conversely, assume thaf; is L?-continuous.
Then, from the above equation we et .o C(h) = C(0). O

Notice that form (3.4) we immediately conclude tlia0) > C'(h), h € R.

The Fourier transform of the covariance function of a secanuér stationary
process always exists. This enables us to study second siediemary processes
using tools from Fourier analysis. To make the link betweszoed order station-
ary processes and Fourier analysis we will use Bochnerréine, which applies
to all nonnegative functions.

Definition 3.14. A functionf(x) : R — R is called nonnegative definite if
> f(ti—ty)eie; = 0 (3.5)
ij=1

forallneN, t1,...t, €R, c1,...c, € C.
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Lemma 3.15. The covariance function of second order stationary prodess
nonnegative definite function.

Proof. We will use the notationX{ := >""" ;| X;,c;. We have.

n n
Z C(tz — tj)CZ'Ej = Z EXtithCiEj

i,j=1 6,j=1

n n

= B Xua) X,¢ | =E(X{X)
i=1 j=1

= E|X{]? >0.

0

Theorem 3.16. [Bochner] Let C(t) be a continuous positive definite function.
Then there exists a unique nonnegative meapuse R such thatp(R) = C(0)
and

C(t) = /]R et p(dw) Vt €R. (3.6)

Definition 3.17. Let X, be a second order stationary process with autocorrelation
functionC'(t) whose Fourier transform is the measuyrglw). The measure(dw)
is called thespectral measuref the processy;.

In the following we will assume that the spectral measurd#hutely contin-
uous with respect to the Lebesgue measur& avith density.S(w), i.e. p(dw) =
S(w)dw. The Fourier transfornS(w) of the covariance function is called the
spectral density of the process:

1 <
S(w) = —/ e M C(t) dt. (3.7
27 J_ o

From (3.6) it follows that that the autocorrelation functiof a mean zero, second
order stationary process is given by the inverse Fouriersfam of the spectral
density:

S .

C(t) = / "™ S (w) dw. (3.8)

—00
There are various cases where the experimentally measuesdity is the spec-
tral density (or power spectrum) of a stationary stochgstozess. Conversely,
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from a time series of observations of a stationary proceagesan calculate the
autocorrelation function and, using (3.8) the spectrabkdgn

The autocorrelation function of a second order stationapggss enables us to
associate a time scale 1, thecorrelation timer.,,:

1 oo o0
Teor = —/ C(r)dr = / E(X,Xo)/E(X2) dr.
C(0) Jo 0

The slower the decay of the correlation function, the latger correlation time

is. Notice that when the correlations do not decay suffityefiast so that”'(¢) is
integrable, then the correlation time will be infinite.

Example 3.18. Consider a mean zero, second order stationary process with ¢
relation function

R(t) = R(0)e M (3.9)

wherea > 0. We will write R(0) = £ whereD > 0. The spectral density of this
process is:
1 D [t

S(w) = e~ wtemoltl g

2 o J_ o

— ig </0 efiwteat dt + /+OO efiwtefat dt>
2m o \J_o 0

B 1D 1 . 1
 2ra \—iw+ta iw+ta

D 1

T w?4a?’

This function is called the Cauchy or the Lorentz distribnti The correlation
time is (we have thakR(0) = D/«)

o0
Teor = / e dt =a b
0

A Gaussian process with an exponential correlation funcigoof particular
importance in the theory and applications of stochasticgsses.

Definition 3.19. A real-valued Gaussian stationary process define@®avith cor-
relation function given by3.9)is called the (stationary) Ornstein-Uhlenbeck pro-
cess.
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The Ornstein Uhlenbeck process is used as a model for theityedd a Brown-
ian particle. Itis of interest to calculate the statisti€the position of the Brownian

particle, i.e. of the integral
t
= / Y(s)ds, (3.10)
0

whereY (t) denotes the stationary OU process.

Lemma 3.20. Let Y (¢) denote the stationary OU process with covariance func-
tion (3.9) and setae = D = 1. Then the position proce¢8.10)is a mean zero
Gaussian process with covariance function

E(X (£)X(s)) = 2min(t, s) + e~ Mints) 4 gmmazlts) _ o=lt=sl _ 7 (3.11)

Proof. See Exercise 8. O

3.2.3 Ergodic Properties of Second-Order Stationary Procgses

Second order stationary processes have nice ergodic fiegpgrovided that the
correlation between values of the process at differentdidezays sufficiently fast.
In this case, it is possible to show that we can calculatecations by calculating
time averages. An example of such a result is the following.

Theorem 3.21. Let {X;}:>( be a second order stationary process on a proba-
bility space(?, F, P with meanu and covarianceR(t¢), and assume thaR(t) €
LY(0,+00). Then

= 0. (3.12)

1 T
lim E|= X(s)ds —
i B[ [ X(ds =
For the proof of this result we will first need an elementamiea.

Lemma 3.22. Let R(t) be an integrable symmetric function. Then

/ / (t — s)dtds = 2/ (T — s)R(s) ds. (3.13)

Proof. We make the change of variables= ¢t — s, v = t + s. The domain of
integration in the, s variables 0,7 x [0,T]. In thew, v variables it becomes
[—T,T] % [0,2(T — |u|)]. The Jacobian of the transformation is

_o(t,s) 1

- O(u,v) 2
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The integral becomes

T T T p2(T—|ul)
/ / R(t — s)dtds = / / R(u)J dvdu
o Jo -7 Jo
T

- [ @R
T

T
= 2/ (T — u)R(u) du,
0
where the symmetry of the functidR(«) was used in the last step. O
Proof of Theorem 3.2\We use Lemma (3.22) to calculate:

1 7T 2
E'T/O Xsds —p

1 T 2
_ T_E‘/o (X, — p)ds

T T
= B[ [ X0 =m) ) dnas

1 T T
= — R(t — s) dtds
9 [T

_ _2/0 (T = w) R(u) du

T
2 [t u 2 [Tt
< = - — < =
< T/o ((1 T) R(u)‘ dus g [ Rlw)du—o,
using the dominated convergence theorem and the assuniptipe L'. O
Assume thap, = 0 and define
+o0
D= R(t)dt, (3.14)

0

which, from our assumption oR(t), is a finite quantity? The above calculation
suggests that, fdr > 1, we have that

E (/OtX(t) dt>2 ~ 2DT.

This implies that, at sufficiently long times, the mean squdisplacement of the
integral of the ergodic second order stationary procegscales linearly in time,
with proportionality coefficienD.

2Notice however that we do not know whether it is nonzero. Téigiires a separate argument.
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Assume thatX; is the velocity of a (Brownian) particle. In this case, thiein

gral of X;
t
Zt:/ XSdS,
0

represents the particle position. From our calculatiorvalyee conclude that
EZ? = 2Dt.

where
D:/ R(t)dt:/ E(X;:Xo) dt (3.15)
0 0

is thediffusion coefficient Thus, one expects that at sufficiently long times and
under appropriate assumptions on the correlation functimm time integral of a
stationary process will approximate a Brownian motion wdiffusion coefficient

D. The diffusion coefficient is an example of a transport codfit and (3.15) is
an example of the Green-Kubo formula: a transport coeffiaian be calculated

in terms of the time integral of an appropriate autocori@afunction. In the
case of the diffusion coefficient we need to calculate thegral of the velocity
autocorrelation function.

Example 3.23. Consider the stochastic processes with an exponentiaéltadion
function from Example 3.18, and assume that this stochpsiitess describes the
velocity of a Brownian particle. SincB(t) € L'(0,+oc) Theorem 3.21 applies.
Furthermore, the diffusion coefficient of the Brownian it is given by

= R(t)dt = R(0)r, ! = D

0 ¢ a?

3.3 Brownian Motion

The most important continuous time stochastic processas/Bian motion. Brow-
nian motion is a mean zero, continuous (i.e. it has contiswsample paths: for
a.ew € () the functionX; is a continuous function of time) process with indepen-
dent Gaussian increments. A procé§shas independent increments if for every
sequencéy < t1 < ...t, the random variables

th - Xtoa XtQ - th’ tee ’th - th—l
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are independent. If, furthermore, for ahy t», s € 7' and Borel se3 C R
P(Xty4s — Xty 45 € B) =P(Xy, — Xy, € B)
then the procesX; has stationary independent increments.

Definition 3.24. e Aone dimensional standaBrownian motioni¥’ (¢) : R —
R is a real valued stochastic process such that
i. W(0)=0.
ii. W (t) has independent increments.

iii. Foreveryt > s > 0 W (t) — W(s) has a Gaussian distribution with
mean0 and variancet — s. That is, the density of the random variable
W(t) — W(s)is

g(x;t,s) = (271(1? - s)>_% exp <_2(tx7js)> : (3.16)

e A d-dimensional standard Brownian motid¥i () : Rt — R is a collec-
tion of d independent one dimensional Brownian motions:

W(t) = (W), ..., Wa(t)),

whereW;(t),i = 1,...,d are independent one dimensional Brownian mo-
tions. The density of the Gaussian random vegtait) — W (s) is thus

g(x;t,s) = (271'(25 - s)) s exp <_2(’1’fx!23)> .

Brownian motion is sometimes referred to astMiener process
Brownian motion has continuous paths. More precisely, & aaontinuous
modification.

Definition 3.25. Let X; andY;, t € T, be two stochastic processes defined on the
same probability spac&?, F,P). The proces¥; is said to be a modification of
X ifP(Xy=Y)=1VvteT.

Lemma 3.26. There is a continuous modification of Brownian motion.

This follows from a theorem due to Kolmogorov.
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2 T T
mean of 1000 paths
5 individual paths

I I I I
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Figure 3.1: Brownian sample paths

Theorem 3.27. (Kolmogorov) LetX,, ¢t € [0,00) be a stochastic process on a
probability space{2, F,P}. Suppose that there are positive constamtand (3,
and for eacHI” > 0 there is a constant’(7") such that

E|X; — X,|* <C(T)|t —s]*P, 0<s,t<T. (3.17)
Then there exists a continuous madificatigrof the processX;.

The proof of Lemma 3.26 is left as an exercise.

Remark 3.28. Equivalently, we could have defined the one dimensionatlatdn
Brownian motion as a stochastic process on a probabilityce;(aﬂ,]—“ ) IP’) with
continuous paths for almost alt € €2, and Gaussian finite dimensional distri-
butions with zero mean and covarianggW;, W;,) = min(t;,t;). One can then
show that Definition 3.24 follows from the above definition.

Itis possible to prove rigorously the existence of the Wignmecess (Brownian
motion):

Theorem 3.29.(Wiener) There exists an almost-surely continuous prodéssith
independent increments such an@ = 0, such that for eaclh > 0 the random
variable W; is N/(0, t). Furthermore,W; is almost surely locally Elider continu-
ous with exponent for anya € (0, 1).
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Notice that Brownian paths are not differentiable.

We can also construct Brownian motion through the limit ofagpropriately
rescaled random walk: leX;, X5,... be iid random variables on a probability
space(?, F,P) with mean0 and variancel. Define the discrete time stochastic
processS, with Sy = 0, S, = ijl X, n > 1. Define now a continuous time
stochastic process with continuous paths as the lineadygdalated, appropriately
rescaled random walk:

1 1
th — %S[nt] + (nt — [nt]) %X[nt]—i—lv

where[-] denotes the integer part of a number. TH&Jt converges weakly, as
n — +oo to a one dimensional standard Brownian motion.

Brownian motion is a Gaussian process. Fordhdimensional Brownian mo-
tion, and for! thed x d dimensional identity, we have (see (2.7) and (2.8))

and
E((W(t) —W(s))® (W(t) W(s))) — (t —s)I. (3.18)

Moreover,
E(W(t) ® W(s)) = min(t, s)I. (3.19)

From the formula for the Gaussian density:, ¢ — s), eqn. (3.16), we immedi-
ately conclude thalV' (¢) — W (s) andW (¢t + u) — W (s + u) have the same pdf.
Consequently, Brownian motion has stationary incremeNtstice, however, that
Brownian motion itself is not a stationary process. SiHc&) = W (t) — W(0),
the pdf of W (¢) is

1 2
r,t) = —e * /2t
g9(z,1) 5

We can easily calculate all moments of the Brownian motion:

n 1 oo n, —x?/2t
E(z"(t)) = Wz xz"e dx
B { 1.3...(n—1)t"2, neven
B 0, nodd

Brownian motion is invariant under various transformasiamtime.
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Theorem 3.30. Let IW; denote a standard Brownian motion & Then,W; has
the following properties:

i. (Rescaling). For eacl > 0 defineX, = %W(ct). Then(X;, t > 0) =
(Wi, t = 0) in law.

ii. (Shifting). For eachc > 0 W, — W,,t > 0 is a Brownian motion which is
independent ofV,,, u € [0, c|.

iii. (Timereversal). Defin&; = Wy_—W1, t € [0,1]. Then(Xy, t € [0,1]) =
(W, t €[0,1]) in law.

iv. (Inversion). LetX;, ¢t > 0 defined byX, = 0, X; = tW(1/t). Then
(Xt, t > 0) = (Wt, t> 0) in law.

We emphasize that the equivalence in the above theorem imollals and not
in a pathwise sense.

Proof. See Exercise 13. O

We can also add a drift and change the diffusion coefficienhefBrownian
motion: we will define a Brownian motion with drift and variancer? as the
process

Xi = pt + oW

The mean and variance &f; are
EX; = ut, E(X;—EX;)? =0t
Notice thatX,; satisfies the equation
dX; = pdt + o dWy.

This is the simplest example ofstochastic differential equation
We can define the OU process through the Brownian motion Wiaedthange.

Lemma 3.31. Let W (¢) be a standard Brownian motion and consider the process
V(t) = e tW(e?).
ThenV/(t) is a Gaussian stationary process with méaand correlation function

R(t) =e M. (3.20)
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For the proof of this result we first need to show that time geahGaussian
processes are also Gaussian.

Lemma 3.32. Let X (¢) be a Gaussian stochastic process andiét) = X (f(t))
wheref(t) is a strictly increasing function. The¥i(¢) is also a Gaussian process.

Proof. We need to show that, for all positive integé¥sand all sequences of times
{t1, ta, ...ty } the random vector

{Y(t1), Y(t2),...Y(tn)} (3.21)

is a multivariate Gaussian random variable. Sifi¢e is strictly increasing, it is
invertible and hence, there exist i = 1,... N such thats; = f~!(¢;). Thus, the
random vector (3.21) can be rewritten as

{X(Sl), X(SQ), e X(SN)},

which is Gaussian for alN and all choices of times;, sa, ... sy. HenceY (t) is
also Gaussian. O

Proof of Lemma 3.31The fact thatV/ (¢) is mean zero follows immediately
from the fact thatV (¢) is mean zero. To show that the correlation functiofy¢f)
is given by (3.20), we calculate

E(V()V(s)) = e " EW ()W (e*)) = e ' min(e*, e*)

eIl

The Gaussianity of the proceds(t) follows from Lemma 3.32 (notice that the
transformation that give¥ (¢) in terms of W (¢) is invertible and we can write
W(s) = s/2V (3 In(s))). O

3.4 Other Examples of Stochastic Processes

Brownian Bridge Let W (¢) be a standard one dimensional Brownian motion.
We define the Brownian bridge (fromto 0) to be the process

By =W, —tWy, telo,1]. (3.22)

Notice thatBy, = B; = 0. Equivalently, we can define the Brownian bridge to be
the continuous Gaussian procdd$ : 0 < ¢t < 1} such that

EB, =0, E(B:Bs)=min(s,t)—st, s,te]l0,1]. (3.23)
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Another, equivalent definition of the Brownian bridge isalgh an appropriate
time change of the Brownian motion:

t
Bi=(1-tW <m> , telo,1). (3.24)
Conversely, we can write the Brownian motion as a time charigee Brownian
bridge:

t
=(t+1)B|— t>0.
Wy (+)<1+t>, 0

Fractional Brownian Motion

Definition 3.33. A (normalized) fractional Brownian motioW//, ¢t > 0 with
Hurst parameterd € (0, 1) is a centered Gaussian process with continuous sam-
ple paths whose covariance is given by

S

EWHWH) = %(SQH + 22— |t — s, (3.25)
Proposition 3.34. Fractional Brownian motion has the following properties.
i. WhenH = 1, Wt% becomes the standard Brownian motion.
i. WH =0, EWH =0, EWH)? =t t>0.
iii. It has stationary increment& (W7 — W2 = |t — 5|21,
iv. It has the following self similarity property

(Wat

Ht>0)=@WH t>0), a>0, (3.26)
where the equivalence is in law.

Proof. See Exercise 19. O

The Poisson Process

Definition 3.35. The Poisson process with intensity denoted byN (¢), is an
integer-valued, continuous time, stochastic process milependent increments
satisfying

e~ Mt=s) ()\(t — s)) F

k! ’
The Poisson process does not have a continuous modific&#mExercise 20.

P[(N(t) — N(s)) = k] = t>s>0,keN.
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3.5 The Karhunen-Loéve Expansion

Let f € L?(Q2) whereQ is a subset oR? and let{e,, }>; be an orthonormal basis
in L2(Q). Then, it is well known thaf can be written as a series expansion:

[ = Z Jnn,
n=1

where

fn:/ﬂf(x)en(x)dx.

The convergence is ifi?(Q):

N
Jim [ f(2) =) faen(@) = 0.
n=1 L2(2)

It turns out that we can obtain a similar expansion forl&nmean zero process
which is continuous in thé&? sense:

EX? < 400, EX;=0, lim E| X n — X¢> = 0. (3.27)

For simplicity we will takeT = [0, 1]. Let R(t, s) = E(X;X,) be the autocorrela-
tion function. Notice that from (3.27) it follows thdt(¢, s) is continuous in bot
ands (exercise 21).

Let us assume an expansion of the form

Xi(w) =Y &wlen(t), te[0,1] (3.28)
n=1

where{e,, }° ; is an orthonormal basis ih?(0,1). The random variable$, are
calculated as

1 1>
/0 Xeer(t)dt = /0 nzlsnen@)ek(t)dt

= > &bk = &k,
n=1

where we assumed that we can interchange the summation tggaition. We
will assume that these random variables are orthogonal:
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where{\, }>° , are positive numbers that will be determined later.
Assuming that an expansion of the form (3.28) exists, we aedcutate

Zﬁk%(ﬂ&@@)

R(t,s) = B(X;X,) = IE(
(=1

I
NE
Mz 112

E (&r&e) ex(t)ee(s)

e
Il
—
~
Il
—_

[
NE

Arek(t)ex(s).

i

1

Consequently, in order to the expansion (3.28) to be valicheex
R(t,s) =Y Aren(t)ex(s). (3.29)
k=1
From equation (3.29) it follows that

1R t ds = By A t d
/O (t,8)en(s)ds = /0 S cer(B)e(s)en(s) ds

k=1

00 1
= kzz:l)\kek(t)/o ek(s)en(s)ds

= > er(t)okn
k=1
= Apen(t).

Hence, in order for the expansion (3.28) to be va{id,, e, (t)}°°, have to be
the eigenvalues and eigenfunctions of the integral operstmse kernel is the
correlation function ofX;:

/1 R(t,s)en(s)ds = Apen(t). (3.30)
0

Hence, in order to prove the expansion (3.28) we need to sheleigenvalue
problem for the integral operat@ : L2[0,1] — L?[0,1]. It easy to check that
this operator is self-adjoin{ R f, h) = (f, Rh) for all f, h € L?(0,1)) and non-
negative Rf, f > 0 for all f € L?(0,1)). Hence, all its eigenvalues are real
and nonnegative. Furthermore, itis a compact operatdi(if>° ; is a bounded
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sequence i.%(0,1), then{R#, }°>, has a convergent subsequence). The spec-
tral theorem for compact, self-adjoint operators implieatfR has a countable
sequence of eigenvalues tendingtd=urthermore, for every € L?(0,1) we can
write

F="Ffo+>_ fnen(t)
n=1

whereR fo = 0, {e,(t)} are the eigenfunctions d® corresponding to nonzero
eigenvalues and the convergence i Finally, Mercer's Theorem states that
for R(t,s) continuous or0, 1] x [0, 1], the expansion (3.29) is valid, where the
series converges absolutely and uniformly.

Now we are ready to prove (3.28).

Theorem 3.36. (Karhunen-Léve). Let{X;, t € [0,1]} be anL? process with

zero mean and continuous correlation functiB(t, s). Let{\,, e,(t)}>>, be the
eigenvalues and eigenfunctions of the oper&todefined in(3.36) Then

X = Luen(t), t€[0,1], (3.31)
n=1
where
1
b= [ Xiea)dt, BS =0, B&n) =M. (332
0
The series converges ii¥ to X (¢), uniformly int.
Proof. The fact thatE&,, = 0 follows from the fact thatX; is mean zero. The

orthogonality of the random variablgs,, }>° ; follows from the orthogonality of
the eigenfunctions oR:

E(6ném) = / / X, X en(t)em(s) dtds

= // (t, 8)en(t)em(s) dsdt

= n/ en(s)em(s)ds
0
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Consider now the partial susiy = Zﬁle Enen(t).

E|X; — Sn|? = EX?+ES% — 2E(X;Sy)

N N
= R@0+E§:&&%MWGFQE<&§:&%®>
n=1

k=1

N N 1
— R(t,t)+ZAk|ek(t)|2—2EZ/ X Xser(s)ex(t) ds
k=1 k=170

N
= R(t,t) = > Mler(®)]> =0,
k=1

by Mercer’s theorem. O

Remark 3.37. Let X; be a Gaussian second order process with continuous co-
variance R(t, s). Then the random variable§; }° , are Gaussian, since they
are defined through the time integral of a Gaussian procedseghermore, since
they are Gaussian and orthogonal, they are also independienice, for Gaussian
processes the Karhunen-&ee expansion becomes:

+o00
Xi =YV rer(t), (3.33)
k=1

where{¢;, }72 ; are independent/ (0, 1) random variables.

Example 3.38. The Karhunen-Leve Expansion for Brownian Motion. The corre-
lation function of Brownian motion iB(¢, s) = min(¢, s). The eigenvalue problem
Ry, = Aptb, becomes

1
/0 min(t, $)1,(8) ds = Ay ().

Let us assume that, > 0 (it is easy to check that is not an eigenvalue). Upon
settingt = 0 we obtaini,,(0) = 0. The eigenvalue problem can be rewritten in
the form

/Ot stn(s) ds +t/t1 Ui (s) ds = Apin(t).

We differentiate this equation once:

1
L[%@®=M%w
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We set = 1 in this equation to obtain the second boundary conditigri1) = 0.
A second differentiation yields;

_T;Z)n(t) = An Z(t)>

where primes denote differentiation with respectttoThus, in order to calcu-
late the eigenvalues and eigenfunctions of the integralaipe whose kernel is
the covariance function of Brownian motion, we need to stleeSturm-Liouville
problem

—Un(t) = At (1), ¥(0) =¢/(1) = 0.

It is easy to check that the eigenvalues and (normalize@néigpctions are

Y (t) = V2sin (%(Qn - 1)m€> . Ay = (%)2

(2n—1

Thus, the Karhunen-l&ve expansion of Brownian motion in1] is

Wy = \/izlﬁnﬁ sin <%(2n — 1)7Tt> . (3.34)

We can use the KL expansion in order to study fiferegularity of stochas-
tic processes. First, |k be a compact, symmetric positive definite operator on
L?(0,1) with eigenvalues and normalized eigenfunctigng, ey (x)}; > and con-
sider a functionf € L?(0, 1) with fol f(s)ds = 0. We can define the one parame-
ter family of Hilbert spaceg/® through the norm

12 = 1R FlI72 = D 1felPAme
k

The inner product can be obtained through polarizations ibrm enables us to
measure the regularity of the functigift).® Let X; be a mean zero second order
(i.e. with finite second moment) process with continuousemtrelation function.
Define the space(® := L2((2, P), H*(0, 1)) with (semi)norm

X2 = B XlFra = D A" (3.35)
k

Notice that the regularity of the stochastic proc&sslepends on the decay of the
eigenvalues of the integral operat@r := fol R(t,s) - ds.

3Think of R as being the inverse of the Laplacian with periodic boundanditions. In this case
H* coincides with the standard fractional Sobolev space.
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As an example, consider tHe’-regularity of Brownian motion. From Exam-
ple 3.38 we know thah;, ~ k2. Consequently, from (3.35) we get that, in order
for W, to be an element of the spag&*, we need that

> AT < oo,
k

from which we obtain thate < 1/2. This is consistent with the Holder continuity
of Brownian motion from Theorem 3.29.

3.6 Discussion and Bibliography

The Ornstein-Uhlenbeck process was introduced by OrnsteihUhlenbeck in
1930 as a model for the velocity of a Brownian particle [25].

The kind of analysis presented in Section 3.2.3 was indidtg G.I. Taylor
in [24]. The proof of Bochner’'s theorem 3.16 can be found ih][vhere addi-
tional material on stationary processes can be found. SedHl].

The spectral theorem for compact, self-adjoint operatdngchvwas needed
in the proof of the Karhunen-Loéve theorem can be found 14. [Zhe Karhunen-
Loeve expansion is also valid for random fields. See [22] haddference therein.

3.7 Exercises

1. LetYy, Y7,... be a sequence of independent, identically distributedaeind
variables and consider the stochastic procéss=Y.,.

(@) Show thatX,, is a strictly stationary process.
(b) Assume thaRY) = p1 < +oo andEY? = sigma® < +o00. Show that

lim E|— ZX ul =0.

(c) Let f be such thaE f2(Yy) < +oc. Show that

. 1

<.
Il
o

“Notice, however, that Wiener's theorem refers to a.s. Bibddntinuity, whereas the calculation
presented in this section is abdit-continuity.
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2. Let Z be a random variable and define the stochastic pro&gss- Z, n =
0,1,2,.... Show thatX,, is a strictly stationary process.

3. LetAy, Aq,... A, and By, By, ... B,, be uncorrelated random variables with
mean zero and variancBs\? = o2, EB? = 02, i = 1,...m. Letwy, w1, ...wn €
[0, 7] be distinct frequencies and define, for= 0, £1,+2, ..., the stochastic
process

m
X, = Z <Ak cos(nwy) + By sin(nwk)).
k=0
Calculate the mean and the covarianc&Qf Show that it is a weakly stationary
process.

4. Let{{, : n=0,£1,42,...} be uncorrelated random variables wil,, =
w, E(&n — )2 = 02, n = 0,£1,%2,.... Letay,as,... be arbitrary real
numbers and consider the stochastic process

Xn=a1&n +a2kp—1+ ... Am&n—m+1-

(a) Calculate the mean, variance and the covariance funofick,,. Show
that it is a weakly stationary process.

(b) Seta = 1/y/mfor k = 1,...m. Calculate the covariance function and
study the cases: = 1 andm — +oo.

5. LetW (t) be a standard one dimensional Brownian motion. Calculaddh
lowing expectations.

(a) EeW(®),
(b) Ee:WO+W () ¢ 5 € (0,400).

(© EQC, W (t;))?, wherec; € R, i = 1,...n andt; € (0,+00), i =

1,...n.

(d) Eel(Se )] wheree; € R, i = 1,...n andt; e (0,400), i =

1,...n.

P

6. LetW; be a standard one dimensional Brownian motion and define

By =W, —tW;, te [0,1].
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(@) Show thatB; is a Gaussian process with
EB, =0, E(B¢Bs)=min(t,s)—ts.
(b) Show that, fort € [0,1) an equivalent definition of3; is through the

formula
t

(c) Calculate the distribution function @,.

7. Let X; be a mean-zero second order stationary process with atgtatan
function

>

N2
J

R() = ool

Jj=1

<

N .-y .
where{o;, )\j}jzl are positive real numbers.

() Calculate the spectral density and the correlactioe difthis process.

(b) Show that the assumptions of Theorem 3.21 are satisfibdsethe argu-
ment presented in Section 3.2.3 (i.e. the Green-Kubo fajralcalculate
the diffusion coefficient of the process = fot X, ds.

(c) Under what assumptions on the coefficiefis, )\j}jyzl can you study
the above questions in the lim — +o00?

8. Prove Lemma 3.20.

9. Letaq,...a, andsy,...s, be positive real numbers. Calculate the mean and
variance of the random variable

n

X = Z aiW(si).
i=1
10. LetW (t) be the standard one-dimensional Brownian motion and let, so >
0. Calculate
(a) Ee”W(®),

(b) E(sin(cW (s1))sin(cW(s2))).
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11.

12.

13.

14.

15.

16.

17.

18.

LetW; be a one dimensional Brownian motion andidet > 0 and define
S, = etttoWe,
(a) Calculate the mean and the varianc&pf
(b) Calculate the probability density function 8f.
Use Theorem 3.27 to prove Lemma 3.26.
Prove Theorem 3.30.

Use Lemma 3.31 to calculate the distribution functiothefstationary Ornstein-
Uhlenbeck process.

Calculate the mean and the correlation function of thegnal of a standard
Brownian motion

t
Y, :/ Wsds.
0
Show that the process
t+1
Yt:/ (Ws —Wy)ds, teR,
t

is second order stationary.

LetV; = e W (e?!) be the stationary Ornstein-Uhlenbeck process. Give the
definition and study the main properties of the Ornsteinedhkck bridge.

The autocorrelation function of the velocity(t) a Brownian particle moving

in a harmonic potential (z) = JwZz? is

1
R(t) = e <cos(5|t|) - sin(6|t|)),
wherey is the friction coefficient and = /w3 — 2.

(a) Calculate the spectral density¥{¢).

(b) Calculate the mean square displaceni&fX (¢))? of the position of the
Brownian particleX (¢) = [ Y (s) ds. Study the limitt — +oc.

19. Show the scaling property (3.26) of the fractional Brmmrmotion.
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20. Use Theorem (3.27) to show that there does not exist éncanis modification
of the Poisson process.

21. Show that the correlation function of a procégssatisfying (3.27) is continu-
ous in botht ands.

22. LetX, be a stochastic process satisfying (3.27) &tdl s) its correlation func-
tion. Show that the integral operat® : L2[0,1] — L?[0,1]

1
Rf ::/O R(t,s)f(s)ds (3.36)

is self-adjoint and nonnegative. Show that all of its eigdmes are real and
nonnegative. Show that eigenfunctions correspondingfterdnt eigenvalues
are orthogonal.

23. Let H be a Hilbert space. An operat®® : H — H is said to be Hilbert—
Schmidt if there exists a complete orthonormal sequerRggo® ; in H such
that

o
D IRen|® < 0.
n=1

LetR : L2[0,1] — L?[0, 1] be the operator defined in (3.36) wikt(t, s) being
continuous both it ands. Show that it is a Hilbert-Schmidt operator.

24. LetX, amean zero second order stationary process defined in émeatjo, 7]
with continuous covariancé(t) and let{\,} > be the eigenvalues of the
covariance operator. Show that

i An = T R(0).
n=1

25. Calculate the Karhunen-Loeve expansion for a secoret stdchastic process
with correlation functionR(¢, s) = ts.

26. Calculate the Karhunen-Loeve expansion of the Browbiage on0, 1].

27. LetX,, t € [0,T] be a second order process with continuous covariance and

Karhunen-Loéve expansion

Xi = Z Erer(t).
=1
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Define the process

Y(t) = f(t)X’T(t)v te [07 5]7
wheref(t) is a continuous function andt) a continuous, nondecreasing func-
tion with 7(0) = 0, 7(S) = 7. Find the Karhunen-Loéve expansiontt),

in an appropriate weightel?> space, in terms of the KL expansion &f. Use

this in order to calculate the KL expansion of the Ornstemddbeck process.
28. Calculate the Karhunen-Loéve expansion of a centeees$tan stochastic pro-
cess with covariance functioR(s, t) = cos(27(t — s)).

29. Use the Karhunen-Loeve expansion to generate paths of th
(a) Brownian motion or0, 1].
(b) Brownian bridge ono0, 1].
(c) Ornstein-Uhlenbeck of), 1].
Study computationally the convergence of the KL expansimmtliese pro-

cesses. How many terms do you need to keep in the KL expansiorder
to calculate accurate statistics of these processes?
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